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Abstract. We consider a class of optimal control problems that depend on a set of scalar parameters which could 
have some uncertainty as to their exact values. We show how to compute the control functions given that we 
wish to balance two objectives. The first is the original objective while the second is the ~riation of the original 
objective with respect to the scalar parameters. That is we wish to move the controls to a position where there 
is less variation with respect to uncertainty in the scalar parameters, perhaps at the expense of the original objec- 
tive. The gradient of the combined objective is derived and the method demonstrated using two examples. 

1. Introduction 

Consider a class optimal control problems involving uncertain coefficients. For  specified 
values of these coefficients, let u* be an optimal control and J* the corresponding value 
of the objective functional. We refer to this u* as the base control. In this article, we wish 
to consider the question regarding the sensitivity of  J* with respect  to these uncertain coef- 
ficients. More  precisely, i f  we use the same base control u* but make a small change in 
the values of  the coefficients, how will  the value of  J* change in response? Clearly, it is 
desirable that this change be small. The aim of  this article is to propose a computational 
approach for solving this class of optimal control problems in such a way that the control 

obtained takes into account the dual objective of  minimizing the objective functional J as 
well as minimizing the sensitivity of J with respect to changes in the coefficients. For  illus- 
tration, two numerical  examples are included. 

2. Problem statement 

This article is concerned with the sensitivity of  the following unconstrained optimal con- 
trol problem,  which is denoted Problem (P): 

Subject to the dynamical  system 

Jc(O = f (t, x(t) ,  u(t), a), (la) 

x(O) = xo(a), (lb) 

*This paper was partially supported by a research grant from the Australian Research Council. 
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find a control u E '11 such that 

£ J = ~o(x(T), a) + £o(t,  x( t ) ,  u(t) ,  a ) d t  (2) 

is minimized over ~t, wherex  : [0, T] --* IR" is called the state; u : [0, T] ~ IWis  called 
the control; a E lR m is called the coefficient vector; f :  [0, T] × IR ~ × IR r × IR m ~ IRn; 
~ 0  " [0, Z] × IR n × ]R r × IR m ~ IR ; ~0 : ]Rn x IR m _.~ IR ; x 0 : IR m ~ ]Rn; and 

ql  = {u E L ~  : u i  < ui(t) < fig a.e. in [0, T], ui, t~ i E IR; i E [1 . . . .  , r]} 

is known as the set of  admissible controls, where L r denotes the Banach space 
L~([0, T], IR r) of  all essentially bounded measurable functions from [0, T] into IRq 
Its norm is 

]lull ~ = ess sup (ui(t)) . 
tE[O,T] i=1 

I f  the coefficient vector a is specified, then Problem (P) may be solved numerically by 
several methods such as the gradient-restoration algorithms [5] and the control parameteriza- 
tion technique [1, 7]. Note, that the control parameterization technique involves partition- 
ing the interval [0, T] and then approximating the controls by piecewise constant functions 
that are consistent with the partitioning. The reduced problem can then be viewed as a 
mathematical programming problem. 

In more detail, for i = 1, 2 . . . .  , r, let {5~};= 1 be a sequence of partitions of the in- 
terval [0, T] such that 5 e has np elements, 5~ +~ is a refinement of  5/p, and II FII -~ 0 as 
p ~ 0% where II ,efl denotes the length of the largest interval in the partition 5,P. We 
assume that 

5P~ = ~a p~np 
I ° i j l j = l ,  

P P P P P where I i  p = [t i,j-1, t q] and 0 = t io < t,a < • • • < t inp = T. Then, 

]IgPl] = max I(IPj), 
l <_j<_np 

P where l(I~j) = t p - t i , j - p  
Let ql p be the subset of  admissible controls which are piecewise constant and consis- 

tent with the partitions $~, i = 1, 2, . . . ,  r. Clearly, each u p E q l  p can be written as 

np 

uP(t)  = E P P i~X l ik ( O , 
k=l 

t E [ O , T ] , i =  1 , 2 , . . . , r  (3) 

P where crik E IR and xxP~(t) denotes the indicator function of l i  p ,  defined by 

X1(t) = ~ 0 '  i f t E  I 

, otherwise. 
(4) 
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Then, each control u p E cttP can be identified uniquely with a control parameter vector 
a p and vice versa, where 

and 

¢yP rz~P~, T (o-P) T, (O/~r)T] T, 
= [k  11 ~ " " • 

P P P P T 
a = [el  p ,  ~i2, el3 . . . . .  ainpl , i = 1, 2, . . . , r .  

By virtue of the definition of 'It, the control parameters are subject to the following 
constraints: 

ui <- a i  p < ui, i = 1 , 2  . . . .  , r ; j  = 1 , 2 ,  . . . , n p .  (5) 

Denote by NP the subset of IRnp r which consists of all vectors ffP such that the con- 
straints (5) are satisfied. ~ p is called the set of admissible control parameters. 

Using this approach, we obtain the following approximate problem, which is referred 
to as Problem Q(p). 

Subject to the dynamical system 

Jc(O = f ( t ,  x(t) ,  a e, a), (6a) 

x(O) = xo(a), (6b) 

find a control parameter o p E ~P such that 

)P = ¢bo(x(TlaP), a) + £0(t, x(t loP),  a p, a) dt (7) 

is minimized over EP, where x( . la  p) denotes the solution of the system (1) when u p is 
given by equation (3), J30(t, x(t), cr p, a) = ol30(t , X(t), ~k=lnP ffikXik(t),p P a ) ,  and 
f ( t ,  x(t),  o p, a) = f ( t ,  x(t) ,  E~P=t p p 0 ikXik(t) ,  a).  
Define the Hamiltonian for Problem (P) as: 

H(t,  x(t) ,  u(t), k( t) ,  a) = £o( t ,  x(t) ,  u(t), a) + [k(t)]r f (t, x(t),  u(t), a),  (8) 

where X is the costate vector satisfying: 

[X(t)] v = _ 0 H(t,  x(t) ,  u(t), X(O, a) ,  (9a) 
Ox 

IX(T)] T _ a,:I,o(x(T) , a) (9b) 
ax(T) 

The gradient formula for the objective functional (7) is well known (c.f.[2]). It is given 
in the following theorem. 
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Theorem 1. Consider Problem (Q(p)). The gradient of JP with respect to control param- 
eter a~  is given by 

0 )P _ (t~y 0 H(t, x(tlaP), uP(t), X(tIaP), a) 
dt, 

0 (FPij JJPtij_ 1 OU i 
(lo) 

where u p is defmed by equation (3), and X(.la p) denotes the solution of the costate system 
corresponding to u P. 

Using the result of Theorem 1, the gradient of (7) corresponding to each control parameter 
o p E NP may be calculated using the following plan, which is referred to as Plan 1. 

1. Integrate the state equations (la) together with the initial conditions (lb) forward in 
time f r o m t  = 0 t o t  = T. 

2. Integrate the costate equations (9a) together with the final conditions (9b) backward 
in time f r o m t  = T t o t  = 0 .  

3. Calculate the required gradient using the formula (10) 

With the aid of Plan 1, Problem (Q(p)) may be solved by using standard mathematical 
programming techniques. 

We may now formulate a new problem so as to take into account the sensitivity of the 
optimum cost with respect to changes in the coefficient vector a. It is done by incorporating 
the function 

Oa .J " 

in the objective functional. In this process, we obtain a new problem, which is referred 
to as Problem (S). 

Subject to the dynamical system 

Jc(t) = f ( t ,  x(t), u(t), a), (11a) 

x(O) = xo(a), ( l lb)  

find a control u ~ St such that 

I°J  T 
G = J + ot (12) 

is minimized over St, where x, u, a, ~bo, £0, f, x0 and St are all as defined in Problem 
(P), c~ is a weighting factor, and J is the original objective functional 

£ J = I'o(x(T), a) + £o(t,  x(t), u(t), a) dt. (13) 
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Problem (S) is of a different nature than Problem (P). Plan 1 cannot be used to find 
the gradient of the objective functional (12) in the parameterized version of Problem (S) 
because of the term ~o_~_J) ~-~-Jfos-)r appearing in the new objective functional. Problem (S) 
needs to be handled differently and the details are given in the next section. 

3. Solution method 

Let the control parameters a p and the set E p be as defined in Section 2. Now, by apply- 
ing the technique of control parameterization to Problem (S), we obtain the approximate 
problem, Problem (T(p)): 

Subject to the dynamical system 

it(t) = f(t ,  x(t), ~P, a), (14a) 

x(O) = xo(a) (14b) 

find a control parameter o p ~ EP such that 

GP = )P + I_ Oa _) Oa _J (15) 

is minimized over E P, where 

)P = d~o(x(TltrP), a) + £o(t, x(tloP), tr p, a) dt, 

and J3 o, 3~ and x('Io p) have the same meaning as in Problem (Q(p)). 

(16) 

To solve Problem (T(p)), we need the gradient formula for the objective functional (15). 
Let us establish a number of preliminary results. Since the notation in this section will 
soon become very cumbersome, we will simplify it somewhat by temporarily abandoning 
the 'hat' notation in the definition of Problem (T(p)) and by writing tr for aP. 

Lemma 1. The gradient of the objective functional (16) with respect to a is: 

0 J a ~0(x(T[a), a) + [k(0)]tr)] v Oxo(a) + ( _ r O H  dt, (17) 
Oa Oa Oa J,o cga 

where 

H(t, x(t), a, X(t), a) = •o(t, x(t), a, a) + [X(t)] r f ( t ,  x(t), a, a), (18) 

and X('Ig) is the solution of the costate system: 
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[]~(t)]T = __ 3 H(t, x(t), a, X(t), a) (19a) 
Ox 

[X(T)] T _ 0 ~o(x(T), a) (19b) 
Ox(T) 

corresponding to ~ ~ E P. 

Proof Let a o ~ IR m be given and Po E IR m be arbitrary but fixed. Define 

a(e) = a0 + e0o, (20) 

where e > 0 is arbitrarily small. Let x(') and x(-; e) denote, respectively, the solution of 
the dynamical system (14) corresponding to a 0 and a(e). Then, from (14), 

/o x(t) = xo(a) + f (s ,  x(s), ~, ao)ds (21) 

£ x(t; e) = x0(a(e)) + f (s ,  x(s; e), ~, a(e))ds. (22) 

Hence, by Taylor's Theorem, it follows that 

6x(t) - ~-~o ~_ l im~x(t ;  e) e-- x(t).~ 

_ Oxo(a) ( t ~-Of(s, x(s), a, ao) Of(s, x(s), ~, ao)ponds. (23) 
so + .  + 3 ~  ~x Jo L Oa j 

Clearly, 

6Jc(t) = Of(t, x(t), a, ao) 6x(t) + Of(t, x(t), a, ao) Po 
Ox Oa 

6x(0) - 0x°(a)p o. 
Oa 

Now, we express J as 

£ J(a) = Cbo(x(T), a) + {H(t, x(t), a, k(t), a) - [X(t)] T f ( t ,  x(O, or, a)}dt. 

(24) 

(25) 

(26) 
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Then it follows that 

M(a) 0 J(ao) 
- - -  P o  

Oa 

_ O~o(x(T), a) 6x(T) + O~'°(x(T)' a) 
Ox Oa Po 

T 
+ fo {6H(t, x(t), a, h(t), ao) - [h(t)] r 6~c(t) - [6h(t)]rf(t, x(t), a, ao)}dt, 

where 

6H(t, x(t), a, h(t), ao) = 0 H(t, x(t), a, h(t), ao) 6x(t) 
Ox 

0 H(t, x(t), a, h(t), ao) 
+ Po Oa 

+ 0 H(t, x(t), a, h(t), ao) 6h(t), 
0h 

From the definition of H, we have 

O H(t, x(t), a, h(t), a0) = [f(t, x(t), a, a0)] T = [)~(t)] T. 
Oh 

Substituting equations (19a) and (29) into equation (28), we get 

?;H(t, x(t), a, h(t), ao) = -[~( t ) ]  r ~x(t) + Ix(t)] r ~h(t) 

+ 0 H(t, x(t), a, h(t), ao)Po. 
Oa 

Then, equation (27) becomes 

0 J(ao) O~°(x(T)' a°) 6x(T) + Od~°(x(T)' a°) Po 
- -  P O  - -  

Oa Ox Oa 

+ d[[h(t)] r 6x(t)] 
dt 

-h 
0 H(t, x(t), a, h(t), ao)p.~ dt 

+ Oa 

_ O~o(x(T), ao)6x(T) + O~o(x(T), ao) 
Ox Oa 

oo - [h (T) ]  r 6x (T)  

+ [X(O)]V6x(O) + f ~ ( O -  H(t 'x( t ) ' ° 'h( t ) 'a°)  o )  Oa P dt. 

(27) 

(28) 

(29) 

(30) 

(31) 
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Using equations (19b) and (25), (31) becomes 

O J(ao) O@o(x(T), ao) 
-~a P o -  aa Oxo(a) f:~OH(t,x(t) ,a,X(t) ,aO)po)dt.  Po + [X(O)] r ~ P o  + Oa 

(32) 

Since Po is arbitrary, it follows that 

c9 J _ O¢o(x(T), a) 
aa Oa 

+ [X(0)]T axo(a) f :~-~dt ,  

as required. 

Lemma 2. The gradient of the objective functional (16) with respect to aij is given by 

3 J  I"0 
Otrij -- fO OoijH dt" (33) 

Proof Since aij can be treated similarly to a, the proof is almost identical to that of Lemma 
I, except that @0 as well as x0 are not an explicit function of aij. Also aij is not a vector. 

Lemma 3. Let 4~ : [0, T] --* ]R n x IRm; ¢ : [0, T] --* IR n X IRm; and/_/r E IR m be such 
that 

/ . / = a H + f r @ + a a  ~a-~-xH)¢' (34) 

_/T)) r 
~ ( t )  = - ~ , ( 3 5 a )  

o r -1 ) T, (35h) 
4~(T) = "Ox(T) (._ Oa .) 

¢(t) = [..r- 8(Hr)ox l T, (36a) 

¢(0) - Oxo(a) (36b) 
Oa 

Then, 

a a(-, ~ = f r o  [-i dt (37) 
Offij ~Oa_) .1o Offij " 
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Proof Note that both x and X depend on a. However, for convenience, we shall use x(-) 
and X(') to denote x('la) and X(.la), respectively. From Lemma 1, we have 

a [ c g J ~ a  ~'[TOHdt a~o(x(T),a)+[X(O)]Vaxo(a)- ) 
Oaij ~ Ùaij I_Jo Oa + aa Oa J" 

Let 

Ga = (l" f OH + (f -- x)T4~ [Oa Of-~x + ~'TI ~b)dt 

+ 0¢o(x(T), a) + [X(0)]T Oxo(a) (38) 
Oa Oa 

Then, 

Ga = fT {~/ _ .~v 4) + xT~} dt+ a¢o(x(T),aa a) + [X(0)] v axo(a)aa (39) 

Integrating by parts, equation (39) becomes 

Ga = fo  ~ d r -  [xT4~]o~ + foxr~ dr+ [U4']o r -  f~'x T ~ dt 

+ a¢o(x(T), a) + [X(0)] T Oxo(a) 
aa aa 

= fo ~ {/t + x~$ - xT~} dt - xT(T~,~(~ + xT(0),~(0) 

+ XT(T)~(T ) _ XT(0)~b(0) + a¢0(x(T), a) + [X(0)] T Oxo(a ) 
aa 0a 

(40) 

Now, a small perturbation in_aij will cause a perturbation in x and X and both of these 
will induce a perturbation in Go. Hence, by using the chain rule and equation (40), we get 

JI- f Ta~-] ~oiAt - -  [~x(T)] T ~)(T) -]- [~x(0)] T ¢ (0 )  -]- [~k(T)] T ~(T)  
30 Oaij 

[aax(~ [-_a¢o_-]~] TJ  axo(a) -[~X(T)] r ¢,(T) + [~x(T)] r ----=- [_-~a J + [~X(0)]r aa (41) 
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Both the initial conditions for the states and the fmal conditions for the costates are prescribed 
and fixed so that 

~x(0) = 0 

ax(r) = 0. 

Hence, equation (41) becomes 

= + 

+ ~o,J fro D e, + 70~o ~ ' y  _ o(~J 

+ [~X(0)] T F axo(a) 1 L aa - ~ ( 0 ) j .  (42) 

From equations (35) and (36), equation (42) simplifies to 

ij J o am1 dr (43) 

Thus, it follows that 

0 0r,~ ) = r~0[4d, 
aOij LOaJ Jo aOij " 

This completes the proof. 

Remark 1. Returning to the 'hat' notation, we have 

[4(t, x(t), a, k(t), a) = H(t, x(t), u(t), k(t), a). 

So, 

0 [ 4 _  OH aui 
affij OU i aaij 

where, from equation (3), 

aui _ f - l ,  t i j _  1 <--- t <_ tij 

aaiy [~_0, otherwise. 
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Hence, Lemma 2 becomes 

a2 _ ft,j aHdt" 
Offij tij-10Ui 

By a similar argument for H and/ t ,  Lemma 3 becomes 

(44) 

°°u ,,;_, -o~ at (45) 

We are now in a position to present the gradient formula for the objective functional 
(15) in the following theorem. 

Theorem 2. The gradient of the objective functional (15) is: 

O G _  f tu  OHdt 
Oaij tij-10I~l i 

+ 20~ 
tu_ 1 0 ui J 

I OCbo(x(T[a), a) 
Oa 

+ [•(0)10.)] T O xo(a) + f T O H  dtl T 
Oa .1o Oa J 

(46) 

where G is given by equation (15); H is given by equation (18); and [ / is  given by equation 
(34). 

Proof. We omit the 'hat' notation here for clarity. First, 

O G _ O  + a  
O,r u ao u -~a Oa J J 

_OJ J~2ol ~ _~OJ~]-~ (-19J-~ T. 
oou La,~;j L J J ~ - a  L Oa _J 

(47) 

Using Lemmas 1, 2, and 3 and Remark 1, equation (47) becomes 

c3G_ f/i~ aHdt + 2a ~f,u tldt- ~ ~OJ"] r 
OtTij ij-I Oui k: tu-t Oui _) Oa _) 

= f tu O H dt 
tij- t Obl i 

k2. tu.-.l OUi _J ~_ Oa Oa 20 Oa _J 
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Consequently, the result follows readily: 
Looking at equation (36), we see that it is reducible to: 

~(t) = a___f + Of ~(t ) (48a) 
aa aa 

~(0) - axo(a) (48b) 
aa 

The system (48) is independent of both X and ~b. Thus, it is solvable without knowing either 
of these. Next, let us examine the right hand side of equation (35a) and the integrand of 
equation (45). We have 

a[-i 
OU i 

Oui t aa c3a 

_ a2~o + X  T a2f + 

cguiOa OuiOa 

0 

-7--- + + ~b, for i =  1 . . . .  , r. 
auiax J 

(49) 

Similarly, 

O~ / t ~  02~0 -t-~T 02 f  Jr" foqs]T(~"~ - ~ -a2~O 
axi axiaa axiaa Lax~ L axiax 

02f  
F)~ | ~ , f o r a l l i =  1 . . . .  ,n .  

axiax_J 
(50) 

The system (35) becomes 

(~(t) = -- f -~/Oq(J~T)/ T --~ -- 

L a x J  

• . o 

axl aXl axl 

o#= O#m 
• ° ° 

Ox= Ox2 Ox2 

• , . 

ax. ax. ax. 

_0(#7) 
OXl 

O(/~/T) 

aXE 

a(#  T) 
ax. 

(51a) 

J 
(51b) 
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where - -  
0//  

, i = 1, . . . ,  n, are given by equation (50). 
0xi 

We are now in a position to give a plan, denoted by Plan 2, for finding the gradient 
o f  the objective functional (15): 

1. Integrate the state equations (lla) together with the initial conditions (lib) forward in 
time f r o m t  = 0 t o t  = T. 

2. Integrate the costate equations (19a) together with the final conditions (19b) backward 
in time f r o m t  = T t o t  = 0. 

0 3  
~ f o r i  1, r. 3. Calculate -q---- f rom (44), using = . . . ,  
o u  i 

OJ a H  
4. Calculate ~ from (17), using aa  " 

5. Integrate the ~ equations (48a) together with the initial conditions (48b) forward in time 
f r o m t  = 0 t o t  = T. 

6. Integrate the ~b equations (51a) together with the final conditions (51b) backward in time 
f r o m t  = T t o t  = 0. 

Z Calculate 0 from (46), using 0____H for i = 1, . . . ,  r as given by (49). 
Oaij Oui 

Using this plan, we may, as before, apply the techniques of mathematical programming 
to solve Problem (T(p)). From now on we will no longer use the 'hat'  notation, so that 
3 and G are referred to as J and G respectively. 

4. Examples 

The general purpose software MISER3 [3] is an efficient one for solving Problem (P) via 
the control parameterization technique. However, it cannot be used directly for solving 
optimal control problems involving the cost functional of  the form (15). On the basis of  
Plan 2, we have modified the code of MISER3 for our purpose. The new code is used 
to solve the following two examples. 

Example  1.[6]. Consider the following dynamical system: 

icl(t) = xz(t) 

x2(/) = -Xl(/)  q- (1.4 - -  O.14(x2(t))2)x2(t) + 4u(t), (52a) 

with initial conditions 

xl(O) = - 5  + a  

x2(O) = - 5 .  (5eb) 
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The objective functional is: 

1,10 2 
j = 12 Jo ((Xl(t)) + (u(t))Z)dt" (53) 

Here, we have one coefficient a which occurs only in the initial conditions and we set 
a = t3. We solve two problems. The first is just the standard optimal control problem (52)- 
(53). The second problem is of the form (S), which is obtained from the problem (52)- 
(53) by incorporating the sensitivity factor in the objective functional. More precisely, the 
new problem is: subject to the dynamical system (52), find a control u, such that the "ob- 
jective functional" 

G = J + c~ (54) 

is minimized, where J is defined by (53) and c~ is the weighting factor. In both cases, np is 
taken as 20. The weighting factor ~ is set to be 1. Let u* and ti be, respectively, the optimal 
controls of the problems (52) with equation (53) and (52) with equation (54), both with 
a = 0. These are shown in Figure 1. Furthermore, let J(u*) and J(fi) denote, respectively, 
the values of J corresponding to the controls u* and ~. As we expect, J(u*) = 15.882 < J(t~) 
= 17.948. However, the value of 01 which gives an idea of the sensitivity of J with 

Oa 
respect to a, has been reduced significantly when K instead of u* is used. This is shown 
in Table 1. 

Table 1. Optimal solution for Example 1. 

Problem Objective J 0~aJ 

(52) with (53) t5.882 4.5464 
(52) with (54) 17.948 0.0312 

Let us now see how varying the value of a about a = 0 influences the value of J in 
both cases. The controls obtained from a = 0, u* and fi, are taken to be the base controls. 
J is recalculated using the base controls and changing the values of a for both the original 
and the new problem. The results are shown in Figure 2. The first thing to note is that 
J(u*) is very sensitive with respect to changes in a. For example, a change of 0. t in the 
value of a causes J(u*) to nearly double. The change in J(tT), however, is much smaller. 
For most values of a, except those near a = 0, J(u-) is far superior to J(u*). A few numerical 
values to compare the two solutions are given in Table 2. 

Example 2.[4]. Consider the following dynamical system: 

X l ( t )  = - (x l ( t )  + 0 . 2 5 ) ( 2 . 0  + u(t)) + (xz(t)  + 0.5)e(xl(t)) 

2~2(t ) = 0 . 5  - x2( t  ) - (x2(t)  q- 0.5)e(xl(t)), (55a) 
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Figure 1. Optimal controls computed for Example 1. 
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Tab~ 2. Varying a forthe solutions of Example 1. 

a J(u*) J(u-) 

-0.10 31.311 20.407 
-0.05 27.548 18.684 
0.03 24.059 18.195 
0.08 28.892 19.313 

where 

e(x) = e~2+x) 

The initial conditions are: 

xl(0) = 0.1 + a 

xz(O) = O. (55b) 

The objective functional is: 

J = (lO0(xt(t))  2 + IO0(x2(t)) 2 + (u(t))Z)dt. (56) 

Again, we have one coefficient a which occurs in the initial conditions and we set a = 
0. As befbre, two problems are solved, one with minimizing the sensitivity factor and one 
without. Minimizing the sensitivity factor in this case means we want to minimize the "ob- 
jective functional": 

G = J + ot , (57) 

where J is given by equation (56), subject to equation (55). This time np is taken as 40 
and the weighting factor ot is set to 0.01. Let u* and t7 be the optimal controls of the prob- 
lems (55) with equation (56) and (55) with equation (57), respectively. A plot of  these 
is shown in Figure 3. Note that unlike Example 1, u* and t7 are not very different. Let 
J(u*) and J(t~) be the values of  J corresponding to u* and t], respectively. We observe that 
t7 manages to reduce the size of  ~ " k although J(fi) = 0.74234 > J(u*) = 0.73043. See 

! 

Table 3. 
Recall that u* and t7 are obtained with a = 0. We take them to be the base controls and 

proceed to vary the value of a. The results obtained are plotted in Figure 4. Although for 
negative values of a J(ti) is slightly greater than J(u*), there are some significant gains 
for positive values of a. The results for some selected values of a are shown in Table 4. 
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Table 3. Optimal solution for Example 2. 

Problem Objective J a-~-aJ 

(55) with (56) 0.73043 15.029 
(55) with (57) 0.74234 0.00533 

Table 4. Varying a for the solutions of Example 2. 

a J(u*) J(u-) 

-0.005 0.78511 0.82886 
-0.002 0.72904 0.76099 
0.003 0.94100 0.83393 
0.005 2.0325 1.2118 
0.006 3.4421 1.9135 

5. Conclusions 

In this paper, we consider a class of optimal control problems in which some of the coeffi- 
cients are not known exactly. The aim is to find a control which minimizes the objective 

functional, and at the same time makes it less sensitive to the changes in the values of 

these coefficients. To solve this problem, a new problem is formulated so that the new 
objective functional consists of the original objective functional and a term which measures 
the sensitivity of the original objective functional with respect to the changes in the values 

of these uncertain coefficients. The gradient formula for the new objective functional is 

derived. On this basis, a computational method is proposed. For illustration, two examples 

are solved using the proposed method. 
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