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I. Introduction 

Many authors have been studying spline-functions the past few years (see 
bibliography, non-exhaustive, at the end). The effective use of spline-functions 
poses some numerical problems: certain methods turned out to be unstable and 
completely impractical, even in simple cases. 

First we consider the most elementary example of a spline-function: 
Let  H q = H  q [a, b] be the Hilbert space of real functions with absolutely con- 

tinuous (q - - l )  st and square integrable qth derivative with the inner product: 

q b 

(t.1) (l,g)q = )2 f ll;~ (t) . glib (t) dr, (ll/ll~=(/, 1)~) 
j = O a  

and let H ° =  H ° [a, b I be the space of square integrable functions with the usual 
inner product : 

b 

(1.2) (], g)0 = f / ( t) ,  g(t) dt,  I]/]10= (],/)0~) • 

We define ~ ( Hq by: 

0.3) ~={l~nq: l ( x , ) = , ~ ,  , = 1 . . . . .  ~} 

where the xiC [a, b] (x~< xi+l) and the riE R are prescribed. We know that the 
element a~ q~ (called a spline-function) satisfying: 

(t.4) t lo% = rain I t i% 
1~,~ 

exists and is unique (if n ~ q). I t  is composed of pieces of polynomials of degree 
2 q - - t  which agree at  the x i up to the (2q--2) na derivative (included), and 
satisfies: 

a¢i)(a)-=a(i)(b) = 0 ,  i = q ,  q + t  . . . . .  2 q - - 2 ,  

(I..5) a(~q-n(x)-~O, all x¢[x  1, x~]. 

Therefore, we can write: 

(t.6) a(x) =ao + al x + " "  + aq_l xq-1 -~- .~ ,~i(x --  xi)2+ q-1 
,=1 

with 
i ,  

(~)+ = if ~ < o. 
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I t  is practically impossible to obtain the coefficients a i and it i with a good 
accuracy by  direct resolution (see CARASSO [t 7]) when n or q is large (for example 
q ~  3 or n ~  30). Even if the *~i and a i have been determined accurately, the form 
(1.6) implies loss of accuracy (by subtraction of neighboring numbers) and a(x) 
computed by  (1.6) no longer satisfies the interpolation equations (t.3). 

We propose here a general method, based on the properties of orthogonality 
of the spline functions. This method has proved to be stable even for a large 
number of functionals (see CARASSO [t7--19]).  We consider the abstract spline- 
functions in a Hilbert space, as introduced by  ATTEIA [9, t0, 12]. 

We shall give three examples of applications treating in parallel the inter- 
polating spline-functions and the smoothing spline-functions. ALGOL procedures 
corresponding to the most usual spline-functions can be obtained by  writing to 
the second author. 

The proposed method, as particularized in the example given above, is related 
to a method proposed by  GREVILLE [301 using divided differences. 

II. General Interpolating Spline-functions 
The functionals : 

/~Hq[a, b]-~ l(x3~ R 

are linear and continuous (q~ l ) .  Hence, there exist unique k i t H  q such that :  

(k~, l ) q = l ( x ~ ) ,  i = 1  . . . . .  n .  

Let D q be the continuous linear operator on H q onto H ° defined by  Dq/=] cq). 
The spline-function a is the element of n q which minimizes IIo~llo satisfying 

(ki, a)q=r~, i = t  . . . . .  n. 

We shall s tudy the problem of the characterization and the construction of the 
spline-function in the more general framework introduced by  ATTEIA. Let  X 
and Y be real Hilbert spaces 1 (which generalize H q and H ° respectively) and 
T~ ~ [ X ,  Y], the space of continuous linear operators on X into Y (T generalizes 
the operator Dq). 

Consider n linearly independent elements k 1, k S . . . . .  k, in X, which span a 
(closed) subspace K. As usual, let K ± be the (closed) orthogonal complement of K. 

We denote: 

r = [r 1 . . . . .  r~] ~ E ---- R" (Euclidean space of dimension n), 

(2.1) K~ = { x c X :  (k o X)x=r i, i = 1 , . . . ,  n}. 

Since : 
K ± , = x , + K  ±, Vx, EK~, 

K~ is a translate of the subspace K ± and is closed. The set K,  x acts as the set q~ 
defined at  (t.3). 

We shall call an interpolating @line [,unction (relative to T, {kl ... k~} and r) 
any element aEK, x which satisfies: 

(2.2) IIT~IIY = rain IITxllY. 

1 The same study can easily be transposed into the case of complex Hilbert space 

5* 
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If / = Ta, then : 

(2.3) 

Since: 

(2.4) 

i i&= rain bll . y ~ TK) 

TK~ ----y,+ T K  ±, Vy, E TK~ 

T K  i, is a translate of the subspace T K  ±. I t  is clear that  TK~ is closed iff 
T K  ± is closed. Let  Mr(T) denote the kernel (null space) of T. 

Proposition 2.1. I1 T K  ± is closed and ,N'(T)r,K±={Ox} then, for each rEE, 
there exists a unique spline-/unction a satislying (2.2) which is determined by the 
conditions: 
(2.5) a~K~, 

(2.6) t=Tac(TK±)±.  

Proo[. Since TK~ is closed, there exists a unique/~ TK~ at minimum distance 
of the origin 0y. I t  is the orthogonal projection of 0y on TK~. We have: / ortho- 
gonal to T K  ± and [c TK~. 

Now, since X(T)c~K±---{Ox}, T is one-to-one on K ± and K~: there exists 
a unique a in K~ such that  Ta=/ .  q.e.d. 

I t  will be shown that  T K  ± is closed whenever X(T)~K±----{Ox} and the 
range ~ (T)  is closed. 

The determination of ] and a will be reduced to the solution of a certain 
finite algebraic system. For these purposes some general properties of adjoint 
and projection operators are needed. 

III. Operators and Adjoints 
For each TE.W[X, Y], the adjoint operator T*EXg[Y, X] is defined by: 

(3.t) (Tx, y)v=(X, T*y)x. 

I t  follows that  T** = T and 

~ (T)  ± = X ( T * )  ; ~(T*)  ± = X ( T ) ;  
(3.2) ~ ( T )  =aCe(T*) ± ~(T*)  = J F ( T )  ±. 

We recall the closed-range theorem (YOSlDA [58], p. 205): 

(3-3) R(T) is closed ill ~(T*) is closed. 

Let  M be any subspace of X. By (3A), yE (TM) ± iff T*yEM ±, which generalizes 
~ ( T )  ± ----- JV'(T*). Hence, 

(3.4) ( T M) ± = ( T*)~I M ±, 

where (T*) ~x is the set function inverse, 

(3.5) T M =  [ (T*)~tM ±] ±, 

(3.6) T* (T M) ± = ~ (T*)  c~ M x. 

Further identities are obtained if M is replaced by  M ± or T by T*. 
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IV. Subspaces and Projections 
Let K be any closed subspace of X (not necessarily finite dimensional as in § II). 
Let Q and P be the orthogonal (self-adjoint) projections onto K and K±: 

(4.t) 

Defining J ~,L¢[K ±, X] by 

(4.2) 
then (3.1) yields: 

(4.3) 

~(Q) = K = JV(P) 

uV(Q) = K  ± =.~ ' (P) .  

J x = x ,  V x 6 K  ±, 

J * = P .  

Let T M denote the restriction of an operator T to a subspace M. Then: 

(4.4) TK~ = T J ,  

(4.5) TK,* = J *  T* = P T*, 

(4.6) ~(TK,) = T K  -L, 

(4.7) ~(TK~*) = P ~ ( T * ) .  

V. Relations between Subspaces 
Again let dim (K) ---- n with basis {k 1 . . . . .  k.}. Define Ac.Lf[X, E] by: 

(5 . t )  A(x) = [ ( k l ,  x)  . . . . .  (kn, x ) ] ,  

We have : 

(5.2) K,l----{xcX: A x=r} .  

By (3A), A*E.Lf[E, X] has the form: 

(5.3) 

Note that  : 

(5.4) 

(5.5) 

VxEX.  

A ' y =  ~, yiki ,  V y = [ y l  . . . . .  y . ] cE .  
i=1 

sl/'(A) = K  j- = ~ ( A * ) ± ;  sV(A) ± = K  = ~(A*)  

~'(A) = E  =Mr(A*)±;  -~(A) ± = {0E} = W ( A * ) ,  

3 (A*)-I (~ 5¢[K, E].  

Let N be an arbi trary subspace of X. The case N = s V ( T )  will be of pr imary 
interest. Assume 

(5.6) K± : {0x} .  

Then N~,# ' (A)={Ox} ,  so A maps N one-to-one into E:  Therefore 

(5.7) 3 A ~ I c d [ A N ,  N], 

(5.8) dim (N) _< n. 

Proposition 5.1. I / d i m  (K) = n, dim (N) = q and N c~ K ± ={Ox} , then 

dim (K~ N ±) = n --  q. 
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Pro@ By (5.4) and (3.6): 

(5.9) K ~  N ± = ~ ( A  *)<"~ N ± = A* (A N) ±. 

By(5.7),  d i m ( A N ) = d i m ( N ) = q  and d i m ( ( A N ) ± ) = n - - q .  
By (5.5), d i m ( K ~ N  ±) = n - - q .  q.e.d. 

Remark. More generally, dim (K<~N ±) = dim (K) + dim (Nc~K ± ) - d i m  (N) 
whenever dim (K)<  oo and dim (N)<  ~ .  The proof is similar. 

Proposition 5.2. I t  dim (K) < oo and N ~  K ± = {Ox}, then 

(5.t0) P N  ± = K  ± 

where P is the orthogonat proiection onto K ±. 

ProoJ. I t  suffices to show that  any element k ' c K  z is the projection of an 
element xEN ±, i.e. that  there exists k c K  such that  k + k ' ~ N  ±. 

Let {w I . . . . .  We} be a basis for N. By (5.7), {Awl . . . . .  A wq} is a basis for 
A N and by  (5.5), {A* A w 1 . . . . .  A* A wq} spans a subspace H'C K of dimension q. 

q 
We take k = ~, 2 i A * A  w i, the hi being chosen such that:  

/ = 1  

i ~ iA*Aw~'wJ  x (k',wl) x,  ? t . . . . .  q. 

As we have (A*Awi ,  Wi)x= (A w i, A wj) E, it suffices to take as hi the solution 
(which exists and is unique) of the linear system: 

q 

(5.11) ~, ~,(Awi,  Awj )E=-- (k ' ,  W~)x, i =1  . . . . .  q. q.e.d. 
i = 1  

VI. Characterization of the Interpolating Spline-function 

Again consider the situation of § II. Thus, 

(6.t) T~.W[X, Y]; N =  X ( T ) ;  

General assumptions are: 

(6.2) N ~ K  ± ={Ox} 

Without loss of generality, 

(6.3) ~ ( T )  = Y. 

Proposition 6.1. Assume (6.2) and (6.3), then 

d i m ( N ) = q  and d i m ( K ) = n .  

and ~ (T)  closed. 

(6.4) T K ± is closed. 

Moreover, 

(6.5) T K  ± = F  ±, 

where: 

(6.6) V ------- T* -i (K~N±) ,  

(6.7) dim(F) = n  --q.  
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P r o o / .  

(6.8) T K ± = ~ ( 1 ~ )  . 

By (3.2), (3.3), (4.7) and proposition 5.2: 

(6.9) ~(TK~ * ) = P d (  T * ) =  P N ± = K l ,  

which is a closed subspace. By (3.3), ~(I)¢~) is closed. Thus, (6.4) is proved. 
By (3.2), T *-I exists. Let M - - K  ± in (3.6): 

(6.10) (TK±) ± - T* -1 (N±~K) = F ,  

which yields (6.5), (6.6). Proposition 5.1 implies (6.7). q.e.d. 

By (5.9): 

(6.tl) H = K ~ N  -k =A*(AN)  ±. 

This is useful for calculation. Construct a basis {b 1 . . . . .  b,~_q} f o r / 3 =  (A N) £ ( E .  
Use (5.3) to define: 

(6.t2) h i = A * b i = i b ~ k  i, i = t  . . . . .  n - - q ,  where bi=[b~ . . . . .  b'C](e. 
i=1 

By (5.5) and (6.11), {h i . . . . .  hn_q} is a basis for H. 
Let 

(6.13) /~ = T*-Xh i, i = 1 . . . . .  n - q .  

Then {/1 . . . . .  /~_q} is a basis for F. By (2.4) and (6.5), T K ~  is a translate of / ;1 :  

(6.14) F Z = { Y 6 Y :  ( / i , Y ) r = O ,  i ........ 1 . . . . .  n - - q } .  

More precisely, by (2.t), (6.12) and (6.t3): 

(6.15) TK÷ := gJ 
with : 

(6.t6) F ~ - - { y c Y :  ( / , , y ) v = ( b i ,  r)~, i = t  . . . . .  n - - q } .  

The following theorem expresses the complete solution of the minimization 
problem : 

Theorem 6.2. Assume (6.2) and (6.3). For each rcE ,  there exists a unique a ~ X  
satis/ying (2.2). I t  is the unique element o / X  such that: 

(6.17) a~I@, 

(6.t8) r a =  E Ai/ i  cF .  

The )~j satis]y the linear algebraic system: 
n--q 

(6A9) ~, Zi (/i , /j) v =  (bi, r)E, i == 1, . . . ,  n --q.  
i=1 

Pro@ By (6.9) we can apply proposition 2.1. By (2.6) and (6.5) we have 
(6.t8). The linear system (6A9) is equivalent to T a E T K ~  (by (6.t5), (6.t6) 
and (6.18)). q.e.d. 
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VII. Examples for the Construction of Interpolating Spline-functions 

For the effective construction, we can consider four steps: 

Step 1. Determination of a basis for H = K ~ N  ±. By proposition 5.1 it suffices 
to find n - - q  linearly independent elements of K, 

(7A) h i =  ~ ~k j ,  i = i  . . . . .  n - - q ,  
i=1 

which are orthogonal to N, where {b 1 . . . . .  b,_q} is a basis for B =  (AN) ±. 

Step 2. Determination of the ]~-=-- T* -1 (hi) which span F. 
f~--q 

Step 3. We then know that/---- Ta ---- ~ Jti/i- We solve the linear system of 
i=1 

n - - q  equations of theorem 6.2. In practice this system is often well-conditioned 
(symmetrical matrix ( / i , / i )v,  often very sparse, with preponderant diagonal). 

Step 4. We determine acK,  l such that Ta----/. This latter step, which seems 
to be elementary may provide difficulties; whenever possible, one should proceed 
locally when satisfying the conditions imposed on a (when the functionals k i are 
of local type). 

Example 1. Spline-]unctions by Point Evaluation 

First, we go back to the example of § I. 
In order to simplify, we set q =  3. Thus, 

X --- n 3 [a, b~, Y = H ° [a, b], T = 3 3. 

The functionals k~ are defined by: 

(7.2) (k~,/)8----!(x3, i = t . . . . .  n.  

t .  As functionals h i, we can take the functionals 8i s, divided differences of 
order 3 with respect to the abscissae x o x~¢. x, xi+ , ,  x~+~, (i = t  . . . .  , n - - 3 ) :  

(7.3) h, = 8~ = b~. k, + b~+l. k,+l + b~+~. k,+2 + b$ + 3. k,+3 

which effectively take the value zero on JV(T)={polynomials  of degree 2}. 

2. We know that :  
b 

(7.4) f at 
ig 

where ~ is the kernel function of the divided difference. Thus: 

(7.5) a~l= (hi, I )~= (~ ,  I(3))o= (~ ,  Tl)o. 

Hence we have h i=  T * ~ .  
So, {~i  . . . . .  ~rln_3} represents the needed basis for F. We know that: 

I 3 
(7.6) ~( t )  ---- ~G a i [(x -- t)~_]. 

We have k~ (t) = 0 for t¢ [x~, xi+3], and ~ ( t )  is composed of pieces of polynomials 
of degree 2 which agree at the x i, along with their first derivatives. 
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3. We have :  
, - -3 

(7.7) a(3) = ~,  ~,i ~I1i • 
i = I  

Thus, aEH a is composed of pieces of polynomials  of degree 5 which agree at  
the x i up to the four th  der ivat ive  (included). 

The ma t r ix  [ ( ~ ,  ~)o]  has a p reponderan t  diagonal  and we have 

(7.8) ( ~ , ~ . ) 0 = 0  for i-il>=3. 
We solve: 

n--3 
~j(~',., ~ ) o : C , ,  : I  . . . . .  ,~- '~ 

i= I  
(7.9) 
with : 

(7Ao) 
i+3 

c~ = ~. .  b i r~,  i = 1 . . . . .  n - -  3 .  
7=* 

4. We have  obta ined:  
n--3 n--3 

(7.t~) o ~  (x,) = X ~; ~,. (x,); o~,~ (x,) : E ~s" ~ '  (~,). 
i=1 i=1 

[ i- i I<3 l i - j l<3 
The values a (I) (x;), a (~) (xi), i ---- I . . . . .  n, are then determined by integrat ing 3 
t imes the function a (8) and using 3 conditions a ( x i ) = r  i in the neighbourimod 
of x i (in the interval  (x o xi+~) the spline-function, which is a polynomial  of 
degree 5, is exac t ly  de te rmined  b y  the 6 values:  

(7. ~ 2) (~ ( X i )  ' 0-(1) ( X i )  ' ~ ( 2 )  ( X i )  ' (r (Xi+I)  , 0 "(1) (Xi+l ) ,  O'(2) (Xi+I))"  

Example  2. Spline-]unctions by Local Integrals 

I t  happens  frequently,  especially with exper imenta l  measuring,  tha t  we do 
not  know the value of a funct ion a t  a given point,  bu t  can determine its mean  
value over  an interval .  Hence  the  usefulness of the spline-function which we are 
going to introduce:  

X :  H 2 [a, b] ; Y :  H ° Ea, b] ; T :  3 2. 

Define the functionals  k i by :  
t~+l 

(7.13) (k o x)~ --  l .I x(t) dt ,  i : 1, n,  
# 

t i + l - - t i  ~ " . . ,  
Q 

with a<=tx<t2< .. .  < t,+l <:b. 

1. If  ~ (t) denotes an indefinite integral  of x (t), then we have  in fact :  (k o X)x = 
81~, a divided difference of order 1 of ~ with respect  to the abscissae t i, t~+ 1. 

We consider the funct ional  h i defined by :  

(7.14) (h i ,  x)2 = a ~ ,  

where 8 ~  is the d iv ided difference of order 3 of ~ w i th  respect to t i ,  t i+ I , 
t ,+ , ,  t,+ a. We can express 8~ in t e rms  of k,=O~, k,.~l----a]+ 1 and k,+2----0~+2: 

, [ ,  ( ,  , )  , ] 
(7.t5) h i - -  t i+~-ti  ~ ki --  + ki+l + ki+2 ti+a-ti+ 1 t ~ + ~  ti+3-ti+x 

i = t ,  . . . ,  n - - 2 .  
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We have then:  

(7.16) (h i, x)~= 0 when x C dV'(D 2) : -  {polynomials of degree t}.  

Hence {h I . . . . .  h,_z} is a basis of H. 

2. B y  (7.4) we have:  
b b 

(7.17) (~ £ = (h,, x) 2 ---- f ~ (t). ~(3) (t) dt = f ~ (t). x"(t) dt, 
a a 

(h,, x )~=(~,  ~")0= ~ , ,  ~X)o. (7A8) 

Hence : 

(7.~9) 

with ~ defined by  (7.6). 

3. We have:  

(7.20) 

h i - T * ~lJ~ , i : 1  . . . . .  n --  2 , 

n - - 2  

~" = X ~ .  
i = 1  

We see tha t  a (t) is composed of pieces of polynomials of degree 4 which agree 
at  the ti up to the third derivat ive (included). 

VCe have (~/, ~/) 0=  0 when t i - -  i l :> 3- 
We solve: 

n - - 2  

(7.2i) Z ~ i ( ~ '  ~ ) = d i '  i = ] . . . . .  n --  2, 

with 

(7.22) t I + ......... ~ - ri+2] - 
d, ti+,--t,l [tii+izt--~-~r'--(ti]~Zti.~l + )i_i-2--~-) ri~ t l i+a_ti+l  

4. In each interval  Et i, t~+ll we know: 

a(2)(ti), a ~2)(ti+l), a(a)(ti), a(3)(t~+a) and f a(t) dr. 
t~ 

The values a (ti), a'(t~), i : t . . . . .  n + 1, are then determined by  integrating 2 times 
the function a C~) and using 2 conditions ( k ; l a ) = r  ~ in the neighbourhood of t i. 
(In the interval  (ti, ti+l) the spline-function, which is a polynomial of degree 4, 
is exact ly  de termined  by  the 5 values: 

t t÷l 

(7.23) f a ( t ) d t ,  a(ti) ,  a(t~+l), a'(ti), a'(ti+l) ) . 
tt 

Example  3. Fourier Spline-/unctions 

X : H 2 E - - t ,  + l l ,  Y = H ° E - - t ,  + 1 ] ,  T = D  2. 

Let  P0, Px . . . . .  P~-I be the first n polynomials of Legendre, or thonormal  on 

E - l ,  + t 3 :  
+1 

(7.24) f P~(t) . Pj(t) dt  =d,i" 

We define the functionals k~ by:  
+ 1  

(7.25) (k,, x)~ = f ~ - 1 ( 0 "  x (0 dr,  i :  1 . . . . .  n.  
- 1  
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t. We can take  

B y  (7.24) we have 

(7.26) 

2. We have:  

(7.27) 

with : 

h i = k i q  2, i = l ,  . . . , n - - 2 .  

(h i, x ) . ,=0  when xC dV'(D2). 

+ 1  + 1  

(h i, x)~ = f Vi+l (t) • x(t)  d t =  f Qi~l ( t ) .  x"( t )  d t  = (Qi+l, Tx)0,  
--1 --1 

i = 1 ,  . . . ,  n - - 2 ,  

1 

0.~(t)  = f (u t) P,+,(.) d . .  
¢ 

The /i~ Y are thus represented b y  the Qi+l (i = 1 . . . . .  n - 2 )  which are poly- 
nomials  of degree i + 3 satisfying: 

0i~1 (~  1)= Q~+I(± t )=0 .  
3. We have:  

n--2  

(7.28) / = a"(t)  = Y, hi Qi+l (t). 

Thus, the solution is a polynomial  of degree n + 3 which can be wri t ten in the form 
n--1  n + 3  

(7.29) a(0 = Z ri~l P~(t) + Y y~ v~(t) 
i : 0  i = n  

(the rj are the given numbers :  (k,, a ) x =  r i, /' = ! . . . . .  n). 

The solution a satisfies a " ( ±  t ) = a ' " ( ±  1 ) = 0 .  

In  order to de termine  the hi, we solve the linear sys tem of dimension n -  2: 
f t--2 

(7.30) Y, 2 j ( Q i + l , O ~ + 0 = q + ~ ,  i = l  . . . . .  u - 2 .  
i=1 

Note  tha t  (Qi~ 1, Qi~ l )=O for I i - i l  > 4. 
If Ri+~(t ) designates the second pr imit ive of Qi+l(t) which is or thogonal  to 

P0 and P1, then:  
n- -2  

(7.31) a(t) = r  a Po(t) -~-r 2 Pl(t) + Z hi R i l l ( t )  • 
i = 1  

VIII. General Smoothing Spline-functions 

Let  us go back first to the in t roductory  example  of § I : If  the given values r i 
comprise errors (exper imental  or otherwise) it is not  necessary to satisfy exac t ly  
the relat ions / (xi) = r i, i = 1 . . . . .  n. 

On the contrary ,  it is more  interest ing to make  a compromise  between tile 
approx imat ion  of the da ta  character ized by:  

,"7 
(8.t) e(l)  =,__2;1 (l(x') - ~,:)2 

and the smoothness  of the solution character ized by:  
b 

(8.2) S (1) = f (/(ql (t) )S d t. 
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Let 

(8.3) M(/) = S ( t )  +eE(/) with ~ >  O. 

We know that  the element s e n  q (which we shall call smoothing @line-/unction) 
such that:  

(8.4) M(s) = min M(/) 
IEHq 

exists and is unique (for n ~  q). Once again, it is composed of pieces of poly- 
nomials of degree 2 q -  i which agree at the xi up to the (2q--2) no derivative 
(included). I t  also satisfies (1.5) and can be written according to (t.6). 

We shall study now the problem of the characterization and the construction 
of the spline-function s within the more general framework already used in § II : 
Using the same notations as in § II. we shall call again smoothing @line/unction 
(relative to T, {k 1 . . . . .  k,,}, {r I . . . . .  r,} and e > 0) any element sEX which satisfies 
(generalizing (8.4)): 

(8.5) M(s) = min M(x) 
xEX 

with: 

(8.6) M ( x )  = liT xll  + Q,X x ( ( k .  X)x - r,)2. 

Let Z =  X x E the Hilbert space with inner product:  

(8.7) (zx, Z~)z= (Yl, Y2)v+e(el, e~)E with z l =  [y~, eli, z2= [Y2, e~]. 

Let L be the continuous linear operator on X into Z defined by: 

(8.8) Lx  = [Tx, A xJcZ, 

where A is defined by  (5.1). 

Define acZ by 

(8.9) a = [0v, r] ,  

where 0y is the origin of Y. Then 

(8.ao) M ( x )  = l i t  x - all . 

So, we want to determine s~ X such that :  

(8.t 1) IlLs - alt z = Min IlL x - all z. 
xEx 

Proposition 8 . 1 . / / L X  is closed and M"( T) ~ K ± = {Ox} then,/or each r E E, there 
exists a unique spline /unction sEX satis/ying (8.tt) which is determined by the 
condition 
(8.t2) Ls - -ac (LX)  ±. 

Pro@ We want to determine p = L s  of L X  at minimum distance of acZ. 
The subspace L X  being closed, the solution p exists and is unique: it is the 
projection of aEZ upon LX;  thus p is entirely characterised by  

P --aE(LX) ±, 

p c L X ,  
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B y  the hypothesis :  

(8.t4) JF (T)  ~ K ± = sV(T) ~ JV(A) = {Ox}, 

L is a one-to-one operator .  So, there exists a unique s~X  such tha t  L s = p .  q.e.d. 
I t  will be shown tha t  L X  is closed whenever  sV'(T)~K±={Ox} and ~ ( T )  

is closed. The  de terminat ion  of p = L s will be reduced to the solution of a finite 
algebraic sys tem.  

Proposition 8.2. Assume (6.2) and (6.3); then 

(8.t 5) 
w h e r e  

(8.t6) 

(8.~7) 

L X =  G ± 

G = w ( L * ) ,  

dim (G) = n - -  q. 

Pro@ Let  z = [Zy, z~l an e lement  of Z. 

B y  (3.1) we have  

(8.t8) L*z = T * z y + e A * z e .  

Thus  b y  (3.2) and  (3.3): 

(8.t9) L * Z = #~( T*) + ~ ( A  *) = N ± + K .  

F r o m  proposit ion 5.2, it follows immedia te ly  tha t :  

(8.20) N ± + K = X .  

As ~ ( L * ) = X ,  according to the closed range theorem (3.3) 

(8.2t) L X  is closed, 

and  b y  (3.2), 

(8.22) L X  = ~ ( L )  = W(L*) ±. 

I t  remains  to be shown tha t  G = dlP(L *) is of dimension n - -q :  In  fact,  we have  
L*z = 0 iff x = T*zy  = - - ~ "  A*z~, which is possible only for an e lement  x such 
t h a t  

(8.23) x~ T* yc~ ~ A * E=N±c~ K = H 

which is of dimension n - - q  (proposition 5.1). As T* and A* are one-to-one,  the 
kernel  G of L* is of dimension n - - q  and  we can take  the  following basis:  

(8.24) g , =  [ ] , , ~ ] ,  i = 1  . . . . .  n - - q  

wi th  [ i =  T*-Xhi and b i = A * - l h  i (by  (6.t2) and (6.13)). q.e.d. 

Theorem 8.3. Assume (6.2) and (6.3). For each rc E there exists a unique solution 
sc X satis[ying (8. t l )  which is the unique element o/ X such that: 

~t--q 

(8.25) Ls - -a  = ~xtti  gjcG. 

The #i satis/y the linear algebraic system: 
n--q 

(8.26) ~_t~J (gi, gi)z = - -  (a, gi)z, i = t . . . . .  n -- q. 
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Pro@ By proposition (8.2), ~(L) is closed and we can apply proposition (8.t). 
The condition (8.25) follows from (8.12) and (8.15). The linear system (8.26) is 
equivalent to 

(8.27) p = L s  = ~, # J g i +  a ~ G ±. q.e.d. 
i = l  

IX. Examples for the Construction of Smoothing Spline-functions 

The steps I and 2 of § VII remain unchanged. 
n--q 

Step 3'. We know that g = p - - a  = ~ f f igi  where the /~i satisfy the linear 
i = l  

system (8.26). 
We recall that  

t (bj, bi) E (9.t) (g# gi)z = (ti, l,:)r + 7 
and by (8.9) and (8.24): 

(9.2) - -  (a, g i )z= (r, b i) ~ . 

The matrix (&, gi)z is often very similar in form to the matrix ( / i , / i )v  and is 
usually well-conditioned. 

n--q 

Step 4'. The equation p = L s  = a  + ~ ffig~ yields both 
i = 1  

(9.3) T s  = X I~i 1, 
i = 1  

and 

( 9 . 4 )  A s = r - -  ~ ~/~¢ bi. 

Thus, we are exactly at the same point as at step 4 of § VII for obtaining s. Note 
that  s is always of the same form as a (simply corresponding to different values 
of ri). 

We return to the examples presented in § VII, using the same notations. We 
shall indicate briefly the modifications for step 3'. 

Example  1. Spline-/unctions by Point  Evaluation 

We obtain the #i by solving the linear system: 

(9.5) j~=lflkj k = 1  . . . . .  n - -3  

with 

(9.6) 

where 

[i+3 -̧~ if j < i ~ _ i + 3 ,  
(9.7) b•-- , _  / H ( * k - * d  , 

[;* otherwise. 

(These are the coefficients of the divided difference (7.3).) 
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Note tha t  the matr ix flkj satisfies: 

(9.8) / 3k j=0  when Ik-il>=4. 
We have : 

n--3  

(9.9) s'"(t) = Y, i~j ~ (t) 
/ = 1  

and 
t n - -3  

(9.10) (k i, S)x = s ( x  3 = r , - -  e j=-ElPJb~' i =  1, . . . ,  n. 

Example 2. Spline-/unctions by Local Integrals 
We obtain the/~j  by  solving the linear system: 

(9.11) ~ flk~tzi=dk, k = 1  . . . . .  n - -2 ,  

where the fi~i are computed by (9.6) with (see (7.22)): 

1( if i-- i (ti+a-tj) (t i ~ - t i )  
- - 1  1 1 + i f  i = i + l  

(9.t2) b~= tJ~3--t] lJ+3--tJ+l ti+2--1;) 
1 if i : j + 2  (ti+ ~ -  tj) (tj ~ -  tj +x) 

0 otherwise. 

Note tha t  tile matr ix  flkj has the same general form as the matr ix (~Pk, }P/)o: 

(9.t3) 

We have 

(9.t4) 

and 

(9.15) 

f l ~ i = 0  when ]k - - i [=>3 .  

n--2  

s"(t) = Y, m ~,(0 
i = 1  

/g+l n- -2  

(k,, S)x - t, . _  t, f s (t/ dt = r, - -  ; ; 6  . i  ; ,  
tg 

i = l ,  . . . , n .  

Example 3. Fourier Spline-/unctions 
We obtain the/~i  by  solving the linear system: 

n - - 2  

j~__flkil~i:rk+~, k : t  . . . . .  n - -2 ,  (9.t6) 

with:  

(9.t7) flkj =- (Qk+l, Qi+I) for k 4=]" 

We have : 

(9 . /8)  

and 
t 

flkk = (Qk+l, Qk+l) ---o • 

n--2 

s"(t) = Y, m "  Q~+l(t), 
, = 1  
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and  
+1 

t ( k o s ) x =  f Pi_l(t) s ( t ) d t = r  i, for i = 1 , 2 ,  

(9.t9) +~ 

[(k,, s)x -- f P,-I(t) s (0 d t = r, 1 -- ~ . tz~_, .r i ,  for i = 3 , 4  . . . . .  n .  
--1 

The solution s (t) can be wr i t ten :  

n--1 n+3 
(9.20) s(t) = rlP0(t ) + r2P~(t ) + Z s,+lPi(t) + ~, Y; Pi(t) 

i~2  i=n 

with s" ( i t ) -~s" ' ( : ] : l )=O,  or else in the form: 

n--2 

(9.2t) s (t) = r t P0 (t) + r z P1 (t) + X /2 ;  Ri+ x (t). 

Acknowledgement. The authors are greatly indebted to Prof. M. ATTI~IA (Toulouse), 
C. CARASSO (Grenoble), Prof. T. N. E. GREVILLE (Madison) and J. L. JOL¥ (Grenoble) 
for their stimulating interest and valuable comments. 

B i b l i o g r a p h y  

1. AHLBERG, J. H., and E. N. •ILSON: Convergence properties of the spline fit. J. 
Soc. Ind. Math. 11, 95- - t04  (1963). 

2. --  --,  and J. L. WALSH: Fundamenta l  properties of generalized splines. Proc. 
Nat. Acad. Sci. (USA) S2, t 4 t 2 - - t 4 t 9  (1964). 

3. Orthogonality properties of spline functions. J. Math. Analysis and ap- 
plications 11, 32t--337 (1965). 

4. -- --, and J. L. WALSH : Convergence properties of generalized splines. Proc. Nat. 
Acad. Sci. (USA) 84, 344--350 (t965). 

5. -- -- -- Extremal, orthogonality and convergence properties of multidimensional 
splines. J. of Math. anal. and appl. 12, 27--48 (1965). 

6. -- -- -- Best approximation and convergence properties of higher-order spline 
approximations. J. of Math. and Mech. 14, No. 2, 23t--244 (1965). 

7. -- -- The approximation of linear functionals. J. SIAM, Num. Anal. 3, No. 2, 
t 73-- t82 (t966). 

8. AHLtN, A. C. : Computer algorithms and theorems for generalized spline inter- 
polation. SIAM National Meeting, N.Y., June  7 - 9 ,  1965. 

9. ATTEIA, M. : Generalisation de la d6finition et des propri6t6s des ,spline-fonctions ~. 
C. R. Acad. Sci. Paris 260, 3550--3553 (t965). 

1o. -- Fonctions-spline g6n6ralis6es. C. R. Acad. Sci. Paris 261, 2t49--2152 (1965). 
t 1 .  - -  Existence et d6termination des fonctions spline ~ plusieurs variables. C.R.  

Acad. Sci. Paris 262, 575--578 (1966). 
t2. -- Th6orie et applications des fonctions-spline en analyse num6rique. Th~se, 

Grenoble (t966). 
t 3. -- Sur les fonctions-spline g6n6ralis6es. 5~me Congr~s de t 'AFIRO, Lille 27 juin - -  

1 er juillet t966. 
14. BIRKHOFF, G. ,  and H. L. GARABEDIAN: Smooth surface interpolation. J. Math. 

and Physics 39, 258--268 (1960). 
t 5 .  -- ,  and C. DE BOOR: Error bounds for spline interpolation. J. of Math. and Mech. 

13, No. 5, 827--835 (Sept. 1964). 
1 6 .  - -  -- Piecewise polynomial interpolation and approximation. Approximation of 

functions, H. L. GARABEDIAN (ed.), pp. 164--t90. Amsterdam: Elsevier 1965. 
7. CARASSO, C. : M6thodes num6riques pour l 'obtent ion de fonctions-spline. Th~se de 

3~me Cycle, Universit6 de Grenoble, 28 mars t 966. 



A General Method for the Construction of Spline-Functions 8t 

18. -- Construction num6rique de fonctions-spline. V~me Congr~s de I 'AFIRO, Lille 
27 j u i n - -  1 er juillet 1966. 

19. -- M6thode g6n6rale de construction de fonctions-spline. Revue frangaise d' in- 
formatique et de Recherche op6rationnelle 5, t 19-- t27 (1967). 

20. CURRY, H. B., and I. J. SCHOENBER6: On Polya frequency functions IV: The 
spline functions and their limits. Bull. Amer. Math. Soc. 53, I 114 (t947). 

21. BOOR, C. DE: Bicubic spline interpolation. J. Math. Phys. 41, 212--218 (t962). 
22. -- Best approximation properties of spline functions of odd degree. J. Math. Mech. 

12, 747--750 (1963). 
23. -- ,  and R. E. LYNCH: On sptines and their minimum properties. J. Math. Mech. 

15, 953--969 (1966). 
24. GOLOMB, M., and H. WEINBERGER: Optimal approximation and error bounds. In  

"On numerical Approximation",  R. E. LANGER (ed.), pp. 117--190. Madison: 
The Univ. of Wisconsin Press t959. 

25. -- Lectures on theory of approximation. Argonne National Laboratory. Appl. 
Math. Division (1962). 

26. GREVtLLE, T. N. E. : The general theory of osculatory interpolation. Trans. of the 
Acturial Society of America 45, 202--265 (t944). 

27. -- Subtabulaga8 por minimas quadrados de diferengas finitas. Bol. Inst. Brasil. 
Atuaria 2, 7--34 (1946). 

28. --,  and H. VAUGHAN: Polynomial interpolation in terms of symbolic operators. 
Trans. Soc. Actuar. 6, 413--476 (1954). 

29. -- Interpolation by generalized spline functions. SIAM Review 6, 483 (1964). 
30. -- Numerical procedures for interpolation by spline functions. Math. Res. Center, 

United States Army, The Univ. of Wisconsin, Contract No. DA-t t-022-ORD- 
2059. MRC Techn. Summary report, 450, january 1964. J. SIAM, Num. Anal. 
1, 53--68 (1964). 

31. --,  and I. J. SCHOENBER6: Smoothing by generalized spline-functions. 
32. JOHNSON, R. S.: On monosplines of least deviation. Trans. Amer. Math. Soc. 96, 

458--477 (1960). 
33. JoL¥, J. L. : Utilisation des Fonctions-spline pour le lissage. V~me Congr~s de 

I 'AFIRO, Lille, 27 juin-ler juillet t966. 
34. -- Convergence des fonctions-spline (h parattre). 
35. -- Th6or~mes de convergence pour les fonctions-spline g6n6rales d ' interpolation 

et d 'ajustement.  C. R. Acad. Sci. Paris 264, Ser. A, 126--128 (t967). 
36. LAURENT, P. J. : Propri6t6s des fonctions-spline et meilleure approximation au 

sens de SARD. Cycle de conf6rences de la chaire J. yon NEUMANN, 1965/66, 
Universit6 libre de Bruxelles. 

37. -- Th6or~mes de caract6risation en approximation convexe. Colloque sur la 
th6orie de l 'approximation des fonctions. Cluj (Roumanie) -- t 5--20 septembre 
t967. Mathematica 10 (33), I, 95 - -1 t t  (t968). 

38. -- Repr6sentation de donn6es exp6rimentales ~ l'aide de fonctions-spline d'ajuste- 
ment et 6valuation optimale de fonctionnelles lin6aires continues. Colloque: 
Probl~mes fondamentaux de calcul num6rique Prague, 11 -- 15 septembre t967. 
Aplikace Matematiky 13, 154-- t62 (1968). 

39. REINSCH, CH. : Smoothing by Spline Functions. Num. Math. 10, t 77--t  83 (1967). 
40. SARD, A.: Linear approximation. American Mathematical Society (1963). 
41. SCHOENBERG, I. J . :  Contributions to the problem of approximation of equidistant 

data by analytic functions. Par t  A. Quart. Appl. Math. 4, 45--99 (1946). 
42. -- ,  et A. WHITNEY : Sur la positivit6 des d6terminants de translations des fonctions 

de fr6quence de Polya avec une application au probl~me d' interpolation par 
les fonctions ,spl ine, .  C. R. Acad. Sci. Paris 228, 1996--t998 (1949). 

43. -- -- On Polya frequency functions. I I I .  The positivity of translation deter- 
minants  with on application to the interpolation problem by spline curves. 
Trans. Amer. Math. Soc. 74, 246--259 (1953). 

44. -- Spline functions, convex curves, and mechanical quadrature. Bull. Amer. Math. 
Soc. 64, 352--257 (1958). 

6a Numer. Math., Bd. 12 



82 P.M. ANSELONE and P. J. LAURENT : Method for the Construction of Spline-Functions 

4 5 .  - -  

46. -- 

47. -- 

48. -- 

49. -- 

50. -- 

5t. -- 

On interpolation by spline functions and its minimal properties. Proc. of the 
Conference on Approximation theory, Oberwolfach, Germany, August t953. 
Address given at SIAM, Conference on approximation. Gatlinburg, Tennessee, 
October 24 (t963). 
On best approximation of linear operators. Kon. Nederlandse Akad, van Weten- 
schappen, Proceedings, Series A, 67, t 55--163 (t964). 
On trigonometric spline interpolation. J. of Math. and Mech. 13, No. 5, 795-- 
825 (Sept t964). 
Spline interpolation and best quadrature formulae. Bull Amer. Math. Soc. 70, 
No. t, 143--148 (1964). 
Spline functions and the problem of graduation. Proc. Nat. Acad. Sci. 52, 
947--950 (1964). 
Spline interpolation and the higher derivatives. Proc. of the Nat. Acad. Sci. 
81, No. t, 24--28 (t964). 

52. -- ,  and T. N. E. GREVILLE: Smoothing by generalized spline-functions. SIAM 
National Meeting, N.Y., June 7 - 9 ,  1965 (Preprints). 

53. - On monosplines of least deviation and best quadrature formulae. J. SIAM. 
Anal. 2, 144-- t70 (t965). 

54. -- On monosplines of least square deviation and best quadrature formulae II. 
J. SIAM, Num. Anal. 3, No. 2, 321--328 (t966). 

55. ~rALSH, J. L., J. H. AHLBERG, and E. N. NILSON: Best approximation properties 
of the spline fit. J. Math. Mech. 11, 225--234 (1962). 

56. -- -- -- Best approximation and convergence properties of higher-order spline 
fits. Amer. Math. Soc. Notices 10, 202 (t963). 

57. WEINBERG~R, H. F. : Optimal approximation for functions prescribed at equally 
spaced points. J. of res. of the N.B.S. 68 B, No. 2, 99-- t04  (t961). 

58. YOSIDA, K.: Functional  analysis. Berlin-Heidelberg-New York: Springer 1965. 

Dr. P. M. ANSELONE 
Mathematics Department 
Oregon State University 
Corvallis, Ore. 97330 
USA 

Dr. P. J. LAURENT 
Universit~ de Grenoble 
Facult6 des Sciences 
Botte Postale 7 
F 38 Saint-Martin d'H~res, France 


