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I. Introduction

Many authors have been studying spline-functions the past few years (see
bibliography, non-exhaustive, at the end). The effective use of spline-functions
poses some numerical problems: certain methods turned out to be unstable and
completely impractical, even in simple cases.

First we consider the most elementary example of a spline-function:

Let H?=H"[a, b] be the Hilbert space of real functions with absolutely con-
tinuous (g —1)* and square integrable ¢"™ derivative with the inner product:

(11) (1.8);= i fbi“” ®-g"®de, (=00
j=0a

and let H®=H°[a, b] be the space of square integrable functions with the usual
inner product:

b

(1.2) (h.8)o= [ 1@®)-g@®dt,  (Iflo=(/ 1)
We define @ CH? by:

(1.3) D={fcH?: f(x)=7;, 1=1,..., 0}

where the x,¢[a, b] (x;<Cx,,,) and the 7,6 R are prescribed. We know that the
element gc @ (called a spline-function) satisfying:

(1.4 o9}y = min |79},

exists and is unique (if #=¢). It is composed of pieces of polynomials of degree
2g —1 which agree at the x; up to the (2¢ —2)" derivative (included), and

satisfies: ‘ »
(1.5) o (@)=0"(0)=0, j=g,¢+1,...,2¢~2,
- oV (x)=0, all x¢[x,x,].

Therefore, we can write:

(1.6) o(x)=astayx+ - a7+ 3 A(x—x)%?
o1
with
E if E=o0,
@ =15
o if E<o.
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1t is practically impossible to obtain the coefficients #; and 4; with a good
accuracy by direct resolution (see Carasso [17]) when # or g is large (for example
g=3% or #==30). Even if the 1; and a; have been determined accurately, the form
(1.6) implies loss of accuracy (by subtraction of neighboring numbers) and o ()
computed by (1.6) no longer satisfies the interpolation equations (1.3).

We propose here a general method, based on the properties of orthogonality
of the spline functions. This method has proved to be stable even for a large
number of functionals (see CaArAsso [17—19]). We consider the abstract spline-
functions in a Hilbert space, as introduced by ATTEIA [9, 10, 12].

We shall give three examples of applications treating in parallel the inter-
polating spline-functions and the smoothing spline-functions. ALGOL procedures
corresponding to the most usual spline-functions can be obtained by writing to
the second author.

The proposed method, as particularized in the example given above, is related
to a method proposed by GREVILLE [30] using divided differences.

II. General Interpolating Spline-functions
The functionals:
feHila, b]—f(x)eR

are linear and continuous (¢=1). Hence, there exist unique %;¢H? such that:

ki, Ng=F (%), i=1,...,n.

Let D7 be the continuous linear operator on H? onto H® defined by D?f=j9.
The spline-function o is the element of H? which minimizes |D?g], satisfying

(ki 0)g=7s,  1=1,...,m.

We shall study the problem of the characterization and the construction of the
spline-function in the more general framework introduced by ATTE1A. Let X
and Y be real Hilbert spaces! (which generalize H? and H° respectively) and
Tc#[X, Y], the space of continuous linear operators on X into Y (T generalizes
the operator D).

Consider # linearly independent elements %, &,, ..., &, in X, which span a
(closed) subspace K. As usual, let K+ be the (closed) orthogonal complement of K.

We denote:

r=[ry,...,7,]¢ E=R" (Euclidean space of dimension #),
(2.1) K} ={xeX: (k;, x)x=r;, i =1, ..., n}.
Since:
Kl=x,+Kt, Vx,eK},

K. is a translate of the subspace K1 and is closed. The set K- acts as the set @
defined at (1.3).

We shall call an snterpolating spline function (relative to T, {k, ... k,}and?)
any element o€ K} which satisfies:

(2 [Toly = min, |7 5.

1 The same study can easily be transposed into the case of complex Hilbert space
5‘
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If f=7To, then:

(2.3) I7ly = min, Iyl
Since:
{(2.4) TK: =y, +TK', VyeTKH

TKL is a translate of the subspace TK+. It is clear that TKL is closed iff
T K+ is closed. Let A°(T) denote the kernel (null space} of T

Proposition 2.1. If TK* is closed and N (T)nK+={0y} then, for each rcE,
there exists a uwigue spline-function o satisfying (2.2) which is determined by the
conditions:

{2.5) ocKE,
(2.6) f=Taoe(TKY)L.

Proof. Since T KL is closed, there exists a unique f¢ 7K+ at minimum distance
of the origin 6. It is the orthogonal projection of 8y on T K}. We have: f ortho-
gonal to TKL and fe TK}L.

Now, since #(T)~KL={0x}, T is one-to-one on K! and K}: there exists
a unique o in K& such that To=/. g.e.d.

It will be shown that TK<L is closed whenever A (T)nK!={0} and the
range Z#(T) is closed.

The determination of f and ¢ will be reduced to the solution of a certain
finite algebraic system. For these purposes some general properties of adjoint
and projection operators are needed.

II1. Operators and Adjoints
For each TeZ[X, Y], the adjoint operator T*c #[Y, X] is defined by:

3-1) (Tx, y)y=(x T*y)x.

It follows that T**=T and

D)t =H(T"); AT =H(T);
BT =H(THE  BITF =H(D])*
We recall the closed-range theorem (Yosina [58], p. 205):
(3.3) R(T) ts closed iff H(T*) is closed.

Let M be any subspace of X. By (3.1), ye(T M)+ iff T*ye ML, which generalizes
A(T)+ = A (T*). Hence,

(3-2)

(3-4) (TM)+=(T* M,
where (T*)™! is the set function inverse,

(3.5) TM=[(T*H™~M*]L,
(3.6) THTM)L=R(T*)n M-+

Further identities are obtained if M is replaced by M+ or T by T*.
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IV. Subspaces and Projections

Let K be any closed subspace of X (not necessarily finite dimensional as in § IT).

Let Q and P be the orthogonal (self-adjoint) projections onto K and K-:
wn R(Q)=K = A(P)
' N(Q)=KL=2%(P).

Defining Je Z[K*, X] by

4.2) Jx=x, VacKL,

then (3.1) yields:

(4.3) J¥=P.

Let T, denote the restriction of an operator I" to a subspace M. Then:
(4.4) Ix.=T],

4.5) Ty = J*T*=PT*,

{4.6) R(Ty.) =T K+,

(4.7) R(T*) =P R(T*).

V. Relations between Subspaces
Again let dim(K)=n with basis {&, ..., k,}. Define Ac¢ Z[X, E] by:

(5.1) A(x) ={(ky, %), ..., (k,, x)], VzeX.

We have:

(5.2) Kl={xcX: Ax=r}.

By (3.1), A*c #[E, X] has the form:

(5-3) A*y=iz§1y,~kp Vy=[y -, yal€E.

Note that:

(5.4) N{A) =KL =R(A*)1,; N (A =K = R(4¥)
R(A) =E =N (4%)*; R(A)E = {0} =H(4%),

(5.5) 34 LK, E].

Let N be an arbitrary subspace of X. The case N=A (1) will be of primary
interest. Assume

{5.6) NoKL ={0,}.

Then N A (4)={0x}, so A maps N one-to-one into E: Therefore
(5.7) JA5 e L[AN,N],

(5.8) dim(N)<#.

Proposition 5.1. If dim (K)=n, dim(N) =g and Nn KL ={0y}, then
dim (K~ANY)=n—q.
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Proof. By (5.4) and (3.6):
(5.9) KnNL=Z(A*) "N+ =A*(AN)"L.

By (5.7), dim(AN)=dim(N)=g and dim ((AN)L)=n—gq.

By (5.5}, dim(K~Ni)=n-—gq. g.e.d.
Remark. More generally, dim(K~N4)=dim(K)+ dim(NnK*L)—dim{N)

whenever dim(K)<C oo and dim (N}« oo, The proof is similar.

Proposition 5.2. If dim (K)<< oo and NoKLt={0}, then
(5.10) PNi=KHt

where P is the orthogonal projection onto K+,

Proof. It suffices to show that any element ¢ KL is the projection of an
element x<N-L, i.e. that there exists k¢ K such that A+ e NL.

Let {w,, ..., w;} be a basis for N. By (5.7), {Aw,, ..., Aw,} is a basis for
AN and by (5.5), {4*4w,, ..., A* Aw} spans a subspace H' C K of dimension g.

g
We take k= >, A, A*Aw,, the A, being chosen such that:
=1

g
(iglliA*Awi, wi)sz(k,’w7)X, 7’:1,...,q.

As we have (A*Aw;, w))x=(Aw;, Aw)y, it suffices to take as 4, the solution
(which exists and is unique) of the linear system:

g
(5.11) izlll(Awi,Awi)Ezm(k’, w)y, 71=1,...,¢. q.e.d.
V1. Characterization of the Interpolating Spline-function

Again consider the situation of § II. Thus,
(6.1) TeZ[X, Y], N=W#T);, dim{N)=g¢g and dim(K)=un.
General assumptions are:
(6.2) NoKt={0s} and Z(T) closed.
Without loss of generality,
(6.3} R(T)=Y.

Proposition 6.1. Assume (6.2) and (6.3), then

(6.4) TKY s closed.
Moreover,

(6.5) T K+ =F+,
where:

(6.6) F=T%71K~NL),

{6.7) dim(Fy=n —q.
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Proof.
(6.8) T KL= R(1}.) .

By (3.2), (3.3), (4.7) and proposition 5.2:
(6.9) R(Ti*) = PR(T*)= PN+ =KL,

which is a closed subspace. By (3.3), #(Tk.) is closed. Thus, (6.4) is proved.
By (3.2), 7* 1 exists, Let M=K+ in (3.6):

{6.10) (TKL)L=T*YNLAK)=F,

which yields {6.5), {6.6). Proposition 5.1 implies (6.7). g.e.d.
By (5.9):

(6.11) H=K~NL!=A4*AN)+.

This is useful for calculation. Construct a basis {;, ..., b,_,} for B=(4AN)* CE.
Use (5.3) to define:

(6.42)  h,—A*b,=Y bik;, i=1,...,n—gq, where b,=[b},...,b]cE.
i=1

By (5.5) and (6.11), {4y, ..., k,_,} is a basis for H.

Let
(6.13) Li=T*h, i=1,...,n—q.
Then {f;, ..., f,—,} is a basis for F. By (2.4) and (6.5), T K} is a translate of FL:
(6.14) Fl={yeY: ({;, )y=0, i=1,...,n—q}.
More precisely, by (2.1}, (6.12) and (6.13):
(6.15) T KL= F
with:
(6.16) Er—{yeY: (fop)y=(by e, i=1, o n—g).

The following theorem expresses the complete solution of the minimization
problem:

Theorem 6.2. Assume (6.2) and (6.3). For each vCE, there exists a unique oC X
satisfying (2.2). It is the unique element of X such that:

(6.17) ocK},
n~q
(6.18) To= 3 1l;cF.

The A; satisfy the linear algebraic system:
H—y .

{6.19) > A f)y=b; g, i=1,...,n—q.
i=1

Proof. By (0.9) we can apply proposition 2.1. By (2.6) and (6.5) we have
(6.18). The linear system (6.19) is equivalent to ToeTK} (by (6.15), (6.16)
and (6.18)). q.ed.
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VII. Examples for the Construction of Interpolating Spline-functions
For the effective construction, we can consider four steps:

Step 1. Determination of a basis for H= K~ Nt. By proposition 5.1 it suffices
to find # — g linearly independent elements of K,

(71) ho= D UE;, i=1,..,n—g,
i=1
which are orthogonal to N, where {b,, ..., b,_ } is a basis for B=(4AN)'.

Step 2. Determination of the f,=T*"1 (h ) which span F.

Step 3. We then know that f=To= 2_, A; f;. We solve the linear system of
fe=l
n —g equations of theorem 6.2. In practice this system is often well-conditioned

(symmetrical matrix (f;, f;)y, often very sparse, with preponderant diagonal).

Step 4. We determine o€ K} such that To={. This latter step, which seems
to be elementary may provide difficulties; whenever possible, one should proceed
locally when satisfying the conditions imposed on ¢ (when the functionals %; are
of local type).

Example 1. Spline-functions by Point Evaluation

First, we go back to the example of § I.
In order to simplify, we set g=3. Thus,

X=H[a,b], Y=H°'a,b], T=D>

The functionals k; are defined by:

(7.2) (B, Na=F(x,), i=1,...,n.

1. As functionals %;, we can take the functionals &2, divided differences of
order 3 with respect to the abscissae x;, %;,4, %;49, %05, (E=1,...,0—3):
(7.3) hy=03 = b} ki kAT kB Ry

which effectively take the value zero on A"(T) ={polynomials of degree 2}.
2. We know that:

(7.4 5f =1 w0 f9 at

where ¥, is the kernel function of the divided difference. Thus:

(7.5) 8 1= ki, a=(Fs, [P)o= (¥, T)o-

Hence we have h;= T*¥,,
So, {¥,, ..., ¥,_,} represents the needed basis for F. We know that:

(7.6) W) = 5; 03(x — 2]

We have ¥, (f) =0 for £4[x,;, 7,5}, and ¥;{f) is composed of pieces of polynomials
of degree 2 which agree at the x;, along with their first derivatives.



A General Method for the Construction of Spline-Functions 73

3. We have:
n—-3
(7.7) D=3 L¥.
i=1

Thus, ocH? is composed of pieces of polynomials of degree 5 which agree at
the x; up to the fourth derivative (included).
The matrix [(¥;, ¥)),] has a preponderant diagonal and we have

(7.8) @, Plo—0 for |i—1] =3
We solve:
n—3
(7.9) le,-(Y’,-,?l’j)(,:c,«, T=1,...,8—3%
j=
with:
i+3 .
{7.10) c;= 2 b, i=1,...,n—3.
f=i
4. We have obtained:
n—3 n—3
(7.11) o (x,) :.Z LY (x);  oW(x)= Z A (x).
i 5i<s i 5ika
The values ¢ (x;), 6P (x,), =1, ..., n, are then determined by integrating 3

times the function ¢! and using 3 conditions ¢(x;)=7; in the neighbourhood
of #; (in the interval (x;, #,;,) the spline-function, which is a polynomial of
degree 5, is exactly determined by the 6 values:

(7.12) o(x), a® (%), 0@ (x)), 0 (x;44), 6V (%,14), 6P (%,44)).

Example 2. Spline-functions by Local Integrals
It happens frequently, especially with experimental measuring, that we do
not know the value of a function at a given point, but can determine its mean

value over an interval. Hence the usefulness of the spline-function which we are
going to introduce:

X=H?a,b]; Y=H"[a,b]; T=D2
Define the functionals %; by:

7751

1 .
(7.13) (ki,x)zzzm’f 2O dt, i=1,...n,
§
with a<t<ty< o+ <t ;<b.
1. If £(f) denotes an indefinite integral of x(¢), then we have in fact: (%;, %)y ==
81&, a divided difference of order 1 of & with respect to the abscissae ¢;, #;,,.

We consider the functional %4, defined by:
(7.14) (h;, %)p=03&,
where 62£ is the divided difference of order 3 of & with respect to ¢;,¢,,,,
tiratirs. We can express &8¢ in terms of k;=0}, k;,1=0},, and k; ,=8},,:
(745) A= ti+:—h‘ h‘+:—te ki — (ti-l—siti+1 + ti+21"ti)ki+1+7i;—;£7;; kiia
i=1,...,n—2.
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We have then:
{7.16) (B;, x)y==0 when «xc ¥ (D? = {polynomials of degree 1}.

Hence {Ay, ..., h,_,} is a basis of H.
2. By (7.4) we have:

b b
(7.17) 036 = (hy, x)y=[ W, (&) - EO(t) dt = [Wi(8) - x" (1) dt,
(7.18) (hiy %)= (F;, 5" )o=(F;, Tx)q.
Hence:
(719) hy=T*¥,, i=1,...,n—2,
with ¥; defined by (7.6).
3. We have:
n—2
(7.20) o' =21
i=1

We see that o (f) is composed of pieces of polynomials of degree 4 which agree
at the ¢; up to the third derivative (included).

We have (¥, ¥)e=0 when |i —7] =3.

We solve:
o 2
(7.21) 2, )=d,;, i=1,..,n—-2,
=1
with
1 1 1 1 1
022) 4= o (o T et i el

4. In each interval [¢,, ¢,,,] we know:

ti41

o @ (t,), o'® (iv1)s o' (AR o' (¢;+1) and f"(t) dt.
t

The values o (t,), 6'(¢;), ¢ =1, ..., n +1, are then determined by integrating 2 times
the function ¢® and using 2 conditions (k/|o)=7, in the neighbourhood of ¢;.
(In the interval (¢;, £;,,) the spline-function, which is a polynomial of degree 4,
is exactly determined by the 5 values:

tig1
(7.23) z~f o(f)dt, a(t), oltire), o'(4), G’(tﬂd))’
Example 3. Fourier Spline-functions
X=H*~1, +1], Y=H'[—1, +1], T=D2

Let B, B, ..., B,y be the first # polynomials of Legendre, orthonormal on
[—1, +1]:
(7.24) [ B - B(t) dt =46,;.

We define the functionals %; by:

(7.25) (E;, %)s m:j:'lP-‘l(t) cx(yde, i=1,... n.
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1. We can take
hi=Fki,, i=1,...,n—2.
By (7.24). we have
(7.26) (h;, x)3=0 when xec A(D?).
2. We have:

+1 +1
(727) (b 2a= J Bea ) %O dt = [ Quia () ¥ ()4t =(Qusa, T %),

i=1,...,n—2,
with:
1

Qi) = :f (w—8) Py (u) due.

The f,¢Y are thus represented by the Q,,; (=1, ..., —2) which are poly-
nomials of degree ¢ + 13 satisfying:

Qi (E1)=0;,,(£1)=0.
3. We have:

(7.29 f= 0" =2 2400,

Thus, the solution is a polynomial of degree » -+ 3 which can be written in the form
n+3

n—1
(7.20) 7= 2 rin B0+ L7 B)
(the 7; are the given numbers: (&,, 0)xy=7;, 1 =1, ..., n).
The solution ¢ satisfies ¢’'(41)=0"""(4-1)=0.
In order to determine the 4;, we solve the linear system of dimension » —2:

n—2
{7.30) Ellj(QjJrl»QiJrl):"H»w t=1,...,n—2.

Note that (Q;,,,Q;1)=0 for |i —j| > 4.
If R, () designates the second primitive of Q,,,(f) which is orthogonal to
F, and F,, then:

(731 o) =n B+ RO + T 2 Real).

VIII. General Smoothing Spline-functions
Let us go back first to the introductory example of § I: If the given values 7,
comprise errors (experimental or otherwise) it is not necessary to satisfy exactly
the relations f(x,)=r;, ¢ =1, ..., n.
On the contrary, it is more interesting to make a compromise between the
approximation of the data characterized by:

7

(8.1) E(f) = X (f(x) —r)®

and the smoothness of the solution characterized by:
b

(8.2) S =/ (f9())2ds.

a

1
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Let
(83) M(y=S(f)+eE(f) with o> 0.

We know that the element s¢ H? (which we shall call smoothing spline-function)
such that:

(8.4) M(s) = min M()

exists and is unique (for n=¢). Once again, it is composed of pieces of poly-
nomials of degree 2¢ —1 which agree at the x; up to the (2¢ —2)™ derivative
(included). It also satisfies (1.5) and can be written according to {(1.6).

We shall study now the problem of the characterization and the construction
of the spline-function s within the more general framework already used in § II:
Using the same notations as in § II. we shall call again smoothing spline function
(relative to T, {ky, ..., &}, {r1, ..., 7,,} and g > 0) any element s¢ X which satisfies
(generalizing (8.4)):

(8.5) M(s) = 1}1&1 M(x)
with: )
(8.6) M(x)=|Tx|% + Qi§1((ki' X)x —74)%

Let Z=XxE the Hilbert space with inner product:

(8.7) (71 2a)z=(y1, Yalvt+olen, e With z=[y;,e1], =[5, ¢].
Let L be the continuous linear operator on X into Z defined by:
(8.8) Lx=[Tx Ax)eZ,
where A is defined by (5.1).
Define acZ by

{8.9) a=[8y, 7],
where 8y is the origin of Y. Then
{8.10) M(x)=|Lx—al}.

So, we want to determine s¢ X such that:
(8.11) |]Ls—a|[z=1:'£1)1{1 |Lx—al,.

Proposition 8.1. If LX is closed and A (T)~ KL ={0y} then, for each v c E, there
exists a unique spline function seX satisfying (8.11) which is determined by the
condition

(8.12) Ls—ac(LX)L.

Proof. We want to determine p=Ls of LX at minimum distance of acZ.
The subspace LX being closed, the solution p exists and is unique: it is the
projection of acZ upon LX; thus p is entirely characterised by

p—ac(LX)L,

(8.43) pelX.



A General Method for the Construction of Spline-Functions 77

By the hypothesis:
{8.14) N(T) K- = A (T)n N (4) ={0«},

L is a one-to-one operator. So, there exists a unique sc¢ X such that Ls=4. q.e.d.

It will be shown that LX is closed whenever A (T)~KL={0s} and %(T)
is closed. The determination of p=_Ls will be reduced to the solution of a finite
algebraic system.

Proposition 8.2. Assume {6.2) and (6.3); then

(8.15) LX =GL
where

(8.16) G=N(L¥%),
(8.17) dim (G)=n —q.

Proof. Let z={zy, 2] an element of Z.
By (3.1) we have

{8.18) L¥g=T*zo4pA%2;.

Thus by (3.2) and (3.3):

(8.19) L*Z2=R(T*)+R(A*)=NL++K.

From proposition 5.2, it follows immediately that:

{8.20) Ni+K=X.

As Z(L¥)=X, according to the closed range theorem (3.3)

(8.21) LX isclosed,

and by (3.2),

(8.22) LX =%(L) = A (L*)+.

It remains to be shown that G = A°(L*) is of dimension # —¢: In fact, we have
L*z=0 iff x=T*zy =— g+ A*z;, which is possible only for an element x such
that

(8.23) x¢T*Yn pA*E=N1nK=H

which is of dimension # —g¢ (proposition 5.1). As T* and A* are one-to-one, the
kernel G of L* is of dimension #» —g and we can take the following basis:

(8.24) g;:{f,-. —QZR], f=1,...,n—¢q
with f,;=T*"1h; and b;==A*"1}, (by (6.12) and (6.13)). q.ed.

Theorem 8.3. Assume (6.2) and (6.3). For each rc E there exists a unique solution
se X satisfying (8.11) which is the unique element of X such that:

n—q
(8.25) Ls—a= Zly, g;<G.
=
The u; satisfy the linear algebraic system.:

n—q
(8.26) ’_gllli(g;‘»gi)z=—(“» £z, t=1,...,n—¢.
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Proof. By proposition (8.2), Z(L) is closed and we can apply proposition (8.1).
The condition {8.25) follows from (8.12) and (8.15). The linear system (8.26) is
equivalent to

n—gq
(8.27) p=Ls= Zlyf g+ acGt. g.ed.
s

IX. Examples for the Construction of Smoothing Spline-functions
The steps 1 and 2 of § VII remain unchanged.

n—g
Step 3'. We know that g=p —a= ) u,g; where the g, satisfy the linear
i=1

system (8.26).
We recall that

(9:1) (&, &)z =1 )y + 5 (5 b
and by (8.9) and (8.24):
(9:2) —(a, 8)z=1(r, b))g-

The matrix (g;, g;); is often very similar in form to the matrix (f;, /), and is
usually well-conditioned.

n—q
Step 4. The equation p =Ls=a -+ 2, u, g; yields both
i=1

n—q
9:3) Ts=2uf;
and
n—q
(9.4) As:r—-—{)— 3 uibi.

Thus, we are exactly at the same point as at step 4 of § VII for obtaining s. Note
that s is always of the same form as ¢ (simply corresponding to different values
of 7,).

We return to the examples presented in § V1I, using the same notations. We
shall indicate briefly the modifications for step 3.

Example 1. Spline-functions by Point Evaluation
We obtain the u; by solving the linear system:

n—3
(95) j;lﬂk//tjzck, k:1,...,77/—3
with
1 pigg

(9.6) Bri =, ¥o+ ?;1 by b5,
where

48 ifj<i<i+3,
(97) b; o kg'(xk“M)

ki

0 otherwise.

(These are the coefficients of the divided difference (7.3).)
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Note that the matrix f8,; satisfies:

(9.8) Br;j=0 when |k—j|=4.

We have:

(9.9) s"( Zu,

and

(9.10) (k;, )y =s(x)= %; wibs,  i=1,...,n.

Example 2. Spline-functions by Local Integrals
We obtain the u; by solving the linear system:

n—2
(9.11) Zlﬂk,yj:dk, k=1,...,n—2,
=

where the 8,; are computed by (9.6) with (see (7.22)):

1
(tiva=1) (i r2—1))

o ) i =

i =g

(9.12) bi=={ fite™h \Mita—™litn © fiah
1 e
if = 2
Grro—t) (b 1) I
0 otherwise.

79

Note that the matrix f,; has the same general form as the matrix (¥, ¥),:

(9-13) Brj=0 when |k—j|=3.
We have

n—2
(9.14) wm:;mwm
and

it

n—2e
1 1 ; .
(915) (ki,S)X—':*“——’——A‘/‘ s(t)dt:ri_?Z”fb;’ 'L‘—"l,...,’ﬂ.
j=

12 w‘*l_t;
t

Example 3. Fourier Spline-functions
We obtain the u, by solving the linear system:

n—2
(9.16) glﬂkit“i:”kﬂ' E=1,...,n—2,

with:

(917) Bri=Qrs1,0Qj41) for k=g and By, = (Qry1> Qprd) —-

We have:
n—2
(9.18) s”(t) zgllh' *Qi1(0),
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and
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+1
(k,.,s)xmflg_l(z)s(t)dzzr,., for i=1,2,

(9.19) +1

(k,-,s)XzfF;_l(t)s(t)dt:r,.—«——;—-yi_z-ri, for i=3,4,...,n.
]

The solution s (f) can be written:

1 n+3
(9.20) s{) =nE ) +rH@#+ Zzsi-!—lpi(t) + ; 7 B(t)
with s''{4-1)=1s""(41)=0, or else in the form:
n-—-2
(9:21) s() =rB() +r ) + glm Ri1().
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