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Abstract. This article gives an early account of the application of ellipsoidal techniques to various problems
in modeling dynamical systems. The problem of control synthesis for a linear system under bounded controls
was selected as the first simple application of these techniques. In forthcoming papers, these results will be ex-
tended to the case where unknown but bounded disturbances are present. Guaranteed sfate estimation—also to
be interpreted as a tracking problem—again under unknown but bounded disturbances will also be discussed.

Although the problem is treated here for linear systems only, the synthesized system is driven by a nonlinear
control strategy and is therefore generically nonlinear. Taking a scheme based on the notion of extremal aiming
strategies of N.N. Krasovski, the present article concentrates on constructive solutions generated through ellipsoidal-
valued calculus and related approximation techniques for set-valued maps. The primary problem, which originally
required an application of set-valued analysis, is substituted for here by one based on ellipsoidal-valued functions.
This yields constructive schemes applicable to algorithmic procedures and simulation with computer graphics.

1. The problem of control synthesis
Consider a control system

@) = f@, x(0), u@®), x@,u@®) e R, <t=1, H
with controls u subjected to a constraint

) EPQ, th=<t=1t,
where ®(¢) is a continuous set-valued function with values ®(¢) € conv®” (the set of all
convex compact subsets of ®™). The function f(z, x, u) is such that the respective set-

valued map
F@t, 0 = J{F¢ x wlu € @@}

is continuous in 7 and upper-semicontinuous in x. Let M € conv®” be a given set. The
problem of control synthesis will consist in specifying a set-valued function U = U, x),
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(U, x) C ®@))—the synthesizing control strategy-—that would ensure that all the solutions
x(t, 7, x;) = x[t] to the equation

O € fit, x(©), U, (D), fo <t =1, 2)

that start at some given position {r, x,}, (7 € [ty, t;], x, = x(7)) would reach the terminal
set I at the given instant of time ¢ = #,—provided x, € M(r, M), where the solvability
set “W(r, M) is the set of states from which the solution to the problem does exist at all.
Here we kept the notation f for the set-valued function defined as f(z, x, W) = {U f(,
x, w)|u € U}.

We presume

W(r, M) # ¢, th <t =14,

The strategy U(z, x) must belong to a class T of feasible feedback strategies, which would
ensure that the synthesized system (a differential inclusion) does have a solution defined
thoughout the interval [1,, 1,].

We now recall a technique that allows us to determine U(Z, x), once the problem satisfies
some preassigned conditons that will be listed below.

For a given instant 7 € [t,, 1), consider the “largest” set ‘W(r, 9N) of states x(7) = x,
from which the problem of control synthesis is resolvable in a given class T. Having defined
W(r, M) for any instant 7, we come to a set-valued function

Wlr] = W(r, M), by = 7 < 1y Wi,] = o.

The following simplest conditions [1] ensure that the function W[r] is convex compact
valued and continuous in ¢.

Lemma 1. Assume that the set-valued mapping F(z, x) is upper semicontinuous in x for
all ¢, continuous in ¢, with F(z, x) € conv®”, and that

5@ 0l <k O, tost=<t,
holds for some k > O and Ah(z) integrable on [#, #,]. Also assume that the graph
gn,F = {(x, »ly € §¢, 0}
of the mapping F(r, ) is convex for all fixed £, < ¢ < #,.
Then for all ¢ € [t,, ;], the relation “W[¢] € conv®” holds, and the function “W[-] is

continuous in 7.

We further assume that W7} € conv®”.
The synthesizing strategy is defined then as the following set-valued map:
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(46) if x € W[r]
U@, x) = 3
{ulf@, x, w) = do(—°|5@, xp}  if x ¢ Wt

Here {° = £°(t, x) is a unit vector that resolves the problem
(@, x) — p(f°| W) = max {¢¢, x) — p¢| WD | I2]] = 1},

where symbol p(f| W) = max{(¢, x)|x € W} stands for the support function of set W
and 3, g({, 7) denotes the subdifferential of g({, f) in the variable f.

Strategy UL, x) reflects the rule of extremal aiming introduced by N.N. Krasovski {2].
Particularly, it indicates that with x ¢ “W[¢] one has to choose the unit vector —{° that is
directed from x to s, namely —f° = (s° — x)||s° — x|| ™!, where s° is the metric projec-
tion of x onto W], After that, Uz, x) is defined as the set of points u® € ®(r), each of
which satisfies the “maximum” condition:

(=20, f(2, x, u%) = max{(—£°, f(z, x, w)|u € C®O}, )
so that U(zs, x) = {u°}. The latter procedures are summarized in map (3).

Lemma 2. Once the conditions of lemma 1 are satisfied and the system (1) is linear in
u, the following assertions are true:

1. The set-valued map U(z, x) is convex compact-valued, continuous in ¢ and upper semicon-
tinuous in x. This secures the existence of solutions to the differential inclusion

i) € f@, x@, U@, x(B)) th <t =1
2. If x, € W[r], for a given 7 € [ty, ?,), then any solution x[¢#] to the system
X(1) € f@t, x(t), U@, x(2)), r=<t=<1t, x7)=1x,
satisfies the inclusion x[z] € W [¢], r < ¢ < 1,, in particular,
x[t,] € W[,] = M.

It is obvious that the crucial element for constructing the synthesized control strategy
U2, x) is the set-valued function W{z]. It is therefore important to define an evolution
equation for “W[r] [3].

Lemma 3. Under the conditions of lemma 1, the set-valued function “W[r] satisfies the
evolution equation

111110 h(W[t — o], U {(x — oF(@t, x)|x e Wt]}) =0, tr=t=<1t -5

with boundary condition

Wit = M.
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Here A("W', “W") is the Hausdorff distance between W', W”" (namely,
W', W) = max{h, (W, W), h_(W', W)}
where
ho(W!, W) = min{r = 0| W" C W' + r§},
A_(W', W) = h (W7 W) are the Hausdorff semidistances and 8§ is the unpit ball in

®R".
The conditions of lemmas 1 and 2 are clearly satisfied for a linear system

X = AOx@®) + u(D), ul)e @@, th<t=<t,. 6)
The evolution equation (S) for determining "W[r] then turns to be as follows:

lim ¢ (W[t — o], [ — A®OW[t] — o®()) = 0, L=t <1 @)

o +0
(here 7 is the unit matrix), and

The aim of this article is to demonstrate that this theory could be converted into con-
structive relations that allow algorithmization and on-line computer simulation. This could
be achieved by introducing a calculus for ellipsoidal-valued functions that would serve to
approximate the set-valued functions of the theory of the above (also see [1], sections 10-12).

It is important to observe that the relations given below do allow an exact approximation
of the solution to the primary problem through ellipsoidal approximations.

We will further concentrate on the linear system (6). By substituting z(f) = S(z, #,)x(t)
and returning to the old notation, without any loss of generality system (6) could be trans-
formed into

x() = u@®), u(t) € ®@), 1o < t < 1, x(t;) € M, ©

where x € R”, ®(t), W € conv®R”, the function @(¢) is continuous in ¢, and the matrix-
valued function Sz, 7;) € ®™" is the solution to the equation

S, 1) = — G, 1)AW®), thst=<1t, St,t) =1

2. The ellipsoidal techniques

In this article, we do not elaborate on the ellipsoidal calculus in its totality, but do indicate
the necessary amount of techniques for the specific problem of control synthesis.
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We will start with the assumption that ®(z) is an ellipsoidal-valued function and that
set N is an ellipsoid—namely,
®@) = E(p@), P(), to =1t =<t
M = &m, M),
where the notations are such that the support function is
p(t18Ga, @) = (¢, a) + ¢ 00"
With det Q # 0, this is equivalent to the inequality
8@, Q) =xeRlx—-a)Q'x —a) < 1}.

Therefore a stands for the center of the ellipsoid and Q > 0 for the symmetric matrix
that determines its configuration.

With sets &(p(1), P(t)), E(m, M) being given, we are to determine the tube “W[¢] for
t < t, under the boundary conditon W[t,] = M = &(m, M). According to the above,
the set-valued function “W[¢] satisfies the evolution equation

lim o m(WIt — o], W] — o&(p@t), PO) =0, to<t=<t, (10)

WIt,] = &@m, M).

Obviously,
W] = &m, M) — f " e(p(), P())dr, fo =<t =<1, 1n

so that “W[t] is similar to the attainability domain for system (6), but here it is taken in
backward time; “W{t] is the set of all states x, from which it is possible to steer system
(6) to the set &E(m, M) in time ¢, — ¢ with open loop control

u(r) € ®(7), r=s 7.

It is clear that although &(m, M), &(p(r), P(1)) are ellipsoids, the set “W|z], in general,
is not an ellipsoid.

Therefore, the first problem that arises here is as follows: Is it possible to approximate
W[r], both externally and internally, with ellipsoidal-valued functions?

The answer to the question is affirmative, as will be shown below. We will first state
the results for A(r) # 0 in system (6).

Consider the inclusion

X € A()x + E(p), P, TSI t, x) € &m, M) (12)



362 A.B. KURZHANSKI AND 1. VALY]

with ‘W[r] = W(r, M) being the set of all states x, from which there exists an open-loop
control u(r) € &(p(r), P(1)) that steers the solution from x, into &(m, M).
Denote w(t) € ®", 7 < ¢t = #,, to be the solution to the equation
W) = AOw() + p(t), T=<t=<1t, wt)=nm, (13)
and Wg(r) € ®™" to be the solution to the matrix equation
Ws(t) = AOWs@) + Ws(HA'(?)
~ STIDOISOWs@SOI*ISOPOS®I*S ()
- STIOISOPOSOI"SOWs (SO (0), (14)

Tt

1A

Iy,

Ws(t) = M,
where S(f) is a continuous matrix function

SC): [r, ] = ®™"
with invertible and symmetrical values (the set of all such functions will be denoted as ).
Theorem 1 (internal approximation).
1. The following inclusion is true:

Ew(n), Ws(r)) C WIr] (15)

whatever is the function S(*) € E.
2. The following equality is true:

U &), W(r) = W7, (16)

S(jes

where the symbol X stands for the closure of set X.

Further on, denote W_(¢) to be the solution to the equation
Wot) = AOWL0) + W (DA'@) — n ' OWL0) ~ 7(O)PQ), an
r<t=<t,

Wr(tl) = M’
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where 7(f) > 0 is a continuous scalar function:
w(): [7, 1] = (0, )
(the class of such functions will be denoted as II).
Theorem 2 (external approximation).
1. The following inclusion is true:
W7l C &W(1), Wel(1) (18)

whatever is the function »(*) € II.
2. The following equality is true:

WIrl = () &), W) (19)

w(*)ell
Equations (14)-(17) are obviously simplified under the condition A(f) = O (we further

presume that it holds). It is therefore clear that the set-valued function “W{r] satisfies the
inclusions

&[] = 8(w(r), Ws() C WItl C &wlr), W,(1)) = 87[1], (20)
ty < t =< t,, whatever are the functions S(*) € £, =(*) € II.

Since “W{t] is the solution to the evolution equation (10), the next question arises: Do
there exist any two types of evolution equations whose solutions would be §7[¢] and £§7[7],
respectively?

The answer to this question is given in the following assertion:

fim o 'h,(8lt — o], &[] — o&(p(®), P®)) =0, 1, <t =<1,

&[] = &(m, M). @y
We will say that function & . [f] is a solution to equation (21) if it satisfies the equation
almost everywhere and if it is ellipsoidal-valued (!).

Also consider the evolution equation

11150 o h_(8[t — o], 8[t] — o&(p(t), Pt)) =0, o<1t <t,

&l = &(m, M). 22)

We will define &_[7] to be a solution to equation (22) if it
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& satisfies (22) almost everywhere,
¢ is ellipsoidal-valued and
* is also a maximal solution to equation (22).

The latter means that there exists no other ellipsoidal-valued solution &’[#] to equation (22)
suchthat §_[r] C &€frland E_[f] £ Etl, t, =t < 1.
Each of the equations (21), (22) has a nonunique solution.

Lemma 4. Whatever are the solutions &, {r], &_[r] to the evolution equations (21), (22),
the following inclusions are true:

&.[f] € W] C &,[1, o =t < 1.

Lemma 5. Each of the ellipsoidal-valued functions & "[r] = &(w(r), Ws(2)), (S(*) € L) is
a solution &_[¢] to equation (22).

Lemma 6. Each of the ellipsoidal-valued functions & *[f] = §(w(z), W,(1)), (x() € I) is
a solution &[] to equation (21).

To conclude this section, we underline that the tube “W{r] can be exactly approximated
by ellipsoids—both internally and externally—according to relations (16), (19). To achieve
the exact approximation, it is necessary in general to use an infinite variety of ellipsoids
(actually, a countable set). The given approach (see also [4]) therefore goes beyond the
suggestions of [5] and [6], where the sums of two or more convex sets were approximated
by one ellipsoid.

The ellipsoidal approximations will now be used to devise a synthesized control strategy
for solving the problem of the above. This strategy will guarantee the attainability of the
terminal set M in prescribed time.

3. Synthesized strategies for guaranteed control

The idea of constructing the synthesizing strategy U(z, x) for the problem of the above
was that U(, x) should ensure that all the solutions x[¢] = x(z, 7, x,) to the equation

X € U@, x(), 7T=<t=<t4,
with initial state x{r] = x, € W[r], would satisfy the inclusion
x[t] € W[t], T<1t=1t
and would therefore ensure xfz,] € ON.
We will now substitute for “W[r] one of its internal approximations &_[f] = &(w(?),
W()). The conjecture is that once “W[¢] is substituted for by & _[r], we should just copy

the scheme of section 1, constructing a strategy U_(z, x) such that for every solution
x[t] = x(¢, 7, x,) that satisfies the equation
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ele U x[f]), T=t=s¢t, xl71==x, x €8&_[1, (23)
the following inclusion would be true:

x[t] € &_[z], TStS<t, 24)
and therefore

xft] € &m, M) = M.

It will be proven that once the approximation &_[¢] is selected “appropriately,” the
desired strategy U _(z, x) may be constructed again according to the scheme of map (3),
except that “W[z] will now be substituted for by &_[r], namely,

&(p(®, P) ifx e &.[1]
U_¢, x) = 25)
p&) — POPU, P~ ifx ¢ &§_[1,
where ¢ = 9,d(x, &_[t]) at point x = x(z), which is the unit vector that solves the problem

0, x) — p( | €_[1) = max{(, x) — p¢ | &) | I£]] = 1}. (26)

The latter problem may be solved with more detail, since &_[¢] is an ellipsoid. Indeed,
if s° is the solution to the minimization problem

s = arg min{|[(x — 9)I| | s € E_[1], x = x(®)}, 27
then we can take

0 = x(t) — s°
in map (25).

Lemma 7. Consider a nondegenerate ellipsoid & = &(a, Q) and a vector x € &(a, 0); then
the subgradient £° = d,d(x, &(a, Q)) can be expressed through £2 = x — s% ||x — s°||,

L=0+20 N x-a) +a,
where A > 0 is the unique root of the equation k(M) = 0, with
R =@+ 20 )7~ @), Q7T+ 20D — @) - L.
Assume a = 0. Then the necessary conditions of optimality for the minimization problem

lx — sll =min, (5, Q%) =<1
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are reduced to the equation
~x+ s+ N0 s =0,

where M is to be calculated as the root of the equation (A) = 0, (@ = 0).
Since it is assumed that x ¢ (0, Q), we have A(0) > 0. With A — oo, we also have

@+ 20 Y, 7T+ 2@ H ) - 0.

This yields (A} < 0, X = A« for some A« > 0. The equation A(\) = O therefore has
aroot A’ > 0. The root A is unique, since direct calcalation gives A’(A) < O with A > 0.
The case a # 0 can now be given through a direct shift x — x — a.

We will now prove that the ellipsoidal-valued strategy U _(z, x) of map (25) does solve
the problem of control synthesis, provided we start from a point x, = x(7) € &_[7]. In-
deed, assume x, € &_[7] and x[r] = x(t, 7, x,) 7 < ¢ < 1, to be the respective trajectory.
We will demonstrate that once x[¢] is a solution to equation (23), then we will have inclu-
sion (24). (With isolated trajectory x[¢] given, it is clearly driven by a unique control
u[t] = x(t) a.e. such that u[f] € @(r)).

Suppose, on the contrary, that the distance d(x[#:], 6_[z.]) > O for some value t» > =
Since x[7] € &_[r] and since d[r] = d(x[t], &_[t]) is differentiable, there exists a point
tw € (7, 1+] such that

%d[t]ltzt** >0, d[t] > 0. 28
Calculating
dir) = max{(¢, x0) — o€ | 1| ll¢]| = 1},
we observe
4 at = 2 (@, x) - o] 61D,
and since £ is a unique maximizer,
D a1 = @, 5 - 2 @1 8_12) = @, ult) — (@, wi) + @ WO

where &_[f] = Ew(), W(1)).

For a fixed function S(-), we have &_[f] = &m(r), Ws(r)), where w(z), Wy(r) satisfy
the system (13), (14), (A(z) = 0). Substituting this into the relation for the derivative of
d[f] and remembering the rule for differentiating a maximum of a variety of functions,
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&1 = @, i) — @, p) - 5 @, W)™

- (€%, STHOUSOWs (SO SP@)SH]>
+ [SOPOSOIISOWs(0)S11DS ™ (1)e%),

or due to the Bunyakovsky-Schwartz inequality
dan = -, pa) + @, PO + @, ),

where

ult] € 8(p(r), P()
and

ulf] € U_(, x).

For the case x ¢ &..(w(t), Ws(1)), the last relation gives us
d
7 d[r]‘,=;** =0,

which contradicts inequality (28).
What follows is the assertion.

Theorem 3. Define an internal approximation &_[r] = &_(w(¥), Ws(t)) with given param-
etrization S(7) of equation (14). Once x[7] € &_[7] and the synthesizing strategy is U _(¢, x)
of map (25), the following inclusion is true:

x[f] € &_11, T<t<t,
and therefore
x[t,] € E(n, M).

The ellipsoidal synthesis thus gives a solution strategy ‘U _(z, x) for any internal approx-
imation &_[f] = &_(w(r), Ws()).

With x ¢ &_[z], the function U _{¢, x) is single-valued, while with x € & _[r] it is multi-
valued (‘U _(z, x) = &_[r]), being therefore upper-semicontinuous in x, measurable in ¢,
and ensuring the existence of a solution to the differential inclusion (23).

‘We will now proceed with numerical examples that demonstrate the constructive nature
of the solutions obtained above.
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4. Numerical examples

We take system (12) to be four-dimensional and study it between the initial moment #, = 0
and the final moment 7, = 5.

Since the ellipsoids appearing in this problem are four-dimensional, we present their
two-dimensional projections. The figures are divided into four windows, and each shows
projections of the original ellipsoids onto the planes spanned by the first and second, third
and fourth, first and third, and second and fourth coordinate axes, in a clockwise order
starting from bottom left. The drawn segments of coordinate axes corresponding to state
variables range from —10 to 10 according to the above scheme. In some of the figures,
where we show the graph of solutions and of solvability set, the third, skew axis corresponds
to time and ranges from O to 5.

Let the initial position {0, x,} be given by

and the target set WM = &(m, M) by

0
s
m=1s
0
and
1000
o100
M=10601 0
000 1

at the final moment ¢, = 5. We consider a case when the right-hand side is constant:

oy
OO0

Aty =

co bl o
OO0
o= oo

-4

describing the position and velocity of two independent oscillators. The restriction u(¢) €
&(p@®), P()) on the control u, is also defined by time-independent constraints:
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0
p@t) = g )
Lo
(1.0 0.0
PO=100 1 0|
L0 0 0 1

so that the controls do couple the system. Therefore the class of feasible strategies is such that
T = {UE 0|UE, x) C &(p®), PO}

The results to be presented here we obtain by way of discretization. We divide the inter-
val [0, 5] into 100 subintervals of equal lengths, and use the discretized version of equa-
tions (13) and (14). Instead of the set-valued control strategy (25), we apply a single-valued
selection:

p@) ifxe8_[1]
u(t, x) = 29)
p(t) — POOOUC, P02 ifx ¢ &_[1],

again in its discrete version.
We calculate the parameters of the ellipsoid §_[f] = &_(w(t), Ws(?)) by choosing

SO =P 2pn, 0=<st=<5

in equation (14).
The calculations give the following internal ellipsoidal estimate &_(0) = &(w(0), W(0))
of the solvability set “W(0, OM):

4.2371

1.2342
—2.6043 |’
—3.1370

w(0) =

and

31.1385 0 0 0
0 31.1385 0 0
0 0 12.1845 2.3611
0 0 2.3611 44.1236

W (0) =
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Now, as is easy to check, x, € £_[0], and therefore theorem 3 is applicable, implying that
the control strategy of map (25) steers the solution of inclusion (23) into I, producing

0.0264
4.9512
4.0457
-0.0830

x[5] =

as a final state.
Figure 1 shows the graph of the ellipsoidal-valued map &_{7], ¢ € {0, 5] and of the solu-
tion of

x[1] = A@xle] + u(t, x{]), 0=sr=<5 x0] =x 30)

where we use u(t, x) of equation (29).

Figure 2 shows the target set M = E(m, M) (projections appearing as circles), the solva-
bility set &_[0] = &W(0), W(0)) at the initial moment ¢ = 0, and the trajectory of the
solution of equation (30).

In the next example, we show by way of numerical evidence what can happen if the ini-
tial state x, does not belong to the ellipsoidal solvability set &_[0]. Leaving the rest of
the data to be the same, we change the initial state x; in such a way that the inclusion

X € &_{0]

is hurt, but “not very much”, taking

]

X9

N O o=

Though theorem 3 cannot be used, still we apply equations (29) and (30). Analogously
to figure 2, figure 3 shows the phase portrait of the result. The trajectory of the solution
to equation (30) is drawn with a thick line, as long as it is outside of the respective ellip-
soidal solvability set, and with a thin line if it is inside. The drawn projections of the initial
state are inside, except one (upper left window). As the illustration shows, at one point
in time the trajectory enters the tube &_[¢], the thick line changing into thin. After this
happens, theorem 3 does take effect, and the trajectory remains inside for the rest of the
time interval. In this way, we obtain

0.0255

4.9528

4.0215 |~
—0.1658

x[5] =

as a final state.
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mn

i

Target Problem

Figure 1. Tube of ellipsoidal solvability sets and graph of solution.

The above phenomenon indicates that

1. the initial state must be inside the solvability set W(0, o), that is,

Xg € WO, M) \ &_[0],

since it was possible to steer the solution of equations (29) and (30) into the target set

2. in this particular numerical example, the control rule works beyond the tube &_[f].
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4 =} Target Problem

&
<

Y

7

/

o

e

Figure 2. Target set, initial ellipsoidal solvability set, and trajectory in phase space—initial state inside.

In the third example, we move the initial state x, further away, so that the control rule
does not work any more (figure 4):

Xo =

LFC I o B 2N
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i hat} Target Probiem

/ Pt D W

\U
\,,._///

Figure 3. Initial state outside, “‘but not far away.”

(
N

and obtain as final state

0.0460
4.9150
3.3668
—0.5540

x[5] =

Figures 5 and 6 show the effect of changing the target set. We take the data of the first
example except for the matrix M in the target set N = &(m, M) by setting the radius to be 2:
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i = Target Probiem

A
—/

D
\\‘\m

J

@

N
v

Figure 4. Initial state outside, “far away.”

I
coo
oo s O
or OO
rooco

resulting in a final state

0.5875
4.8914
3.0158
-0.0536

x[5] =
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¢ =)
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Figure 5. Graph of solution for larger target set.

The switching of the control, due to the specific form of equation (29), is clearly seen
in figure 7 and later in figure 8.

Taking again the data of the first example, we allow more freedom for the controls, chang-
ing the matrix P(¢) in the bounding set @ = &(p(r), P(?)) again by setting the radius to be 2:

p) =

[ R R I SN
SO PO
SO0
PO OO
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Figure 6 Phase-space representation for larger target set.
with a final state

0.0235
| 4.9565
AWI=1 40536
~0.1308

Numerical simulations were made on a SUN SparcStation. Calculation of the function
& (D, 0 = t < 3, the application of the control (29), (30), together with drawing onto
the screen, takes less than half a minute,
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Figure 7. Graph of solution for larger controls.
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