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Abstract. This article gives an early account of the application of ellipsoidal techniques to various problems 
in modeling dynamical systems. The problem of control synthesis for a linear system under bounded controls 
was selected as the first simple application of these techniques. In forthcoming papers, these results will be ex- 
tended to the case where unknown but bounded disturbances are present. Guaranteed state estimation--also to 
be interpreted as a tracking problem--again under unknown but bounded disturbances will also be discussed. 

Although the problem is treated here for linear systems only, the synthesized system is driven by a nonlinear 
control strategy and is therefore generically nonlinear. Taking a scheme based on the notion of extremal aiming 
strategies of N.N. Krasovski, the present article concentrates on constructive solutions generated through eUipsoidal- 
valued calculus and related approximation techniques for set-valued maps. The primary problem, which originally 
required an application of set-valued analysis, is substituted for here by one based on ellipsoidaPvalued functions. 
This yields constructive schemes applicable to algorithmic procedures and simulation with computer graphics. 

1. The problem of control syn thes i s  

Cons ider  a control  system 

k(t) = f ( t ,  x(t), u(t)), x(t),  u(t) E (R n, to < t <_ q ,  (1) 

wi th  controls  u subjected to a constraint  

u(t) E (P(t), to <-- t <_ q ,  

where  (P(t) is a cont inuous set-valued funct ion wi th  values (P(t) E conv(R" (the set of  all 

convex compac t  subsets o f  (R~). The  funct ion f ( t ,  x, u) is such that the respect ive set- 

valued map  

5:(t, x) = U { f ( t ,  x, u) lu E (P(t)} 

is cont inuous in t and upper -semicont inuous  in x. Let  9~ E conv(R ~ be  a g iven  set. The  

p rob lem of  control  synthesis wil l  consist  in specifying a set-valued funct ion q l  = ~ ( t ,  x),  
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('ll(t, x) C (P(t))--the synthesizing control strategy--that would ensure that all the solutions 
x(t, r, x 0 = x[t] to the equation 

fc(t) E f ( t ,  x(t), q.t(t, x(t))), to <<- t < h,  (2) 

that start at some given position {r, xr}, (r E [to, t~], x, = x(r)) would reach the terminal 
set ~ at the given instant of time t = h--provided x~ E ~IZ(r, ~ ) ,  where the solvability 
set W ( r ,  gg) is the set of  states from which the solution to the problem does exist at all. 
Here we kept the notation f for the set-valued function defined as f ( t ,  x, ql) = { U f ( t ,  
x, u)lu ~ ~t}.  

We presume 

~7(r ,  OlZ) ;e 4~, to - t _< tl, 

The strategy 'It(t, x) must belong to a class T of feasible feedback strategies, which would 
ensure that the synthesized system (a differential inclusion) does have a solution defined 
thoughout the interval [to, tl]. 

We now recall a technique that allows us to determine 'It(t, x), once the problem satisfies 
some preassigned conditons that will be listed below. 

For a given instant r E [to, tl), consider the "largest" set ~?(r ,  N~) of states x(r) = x~ 
from which the problem of control synthesis is resolvable in a given class T. Having defined 
'W(r,  gg) for any instant r ,  we come to a set-valued function 

W[r ]  = W ( r ,  ~N;), to --- r _ t~; W[h]  = ~ .  

The following simplest conditions [1] ensure that the function W[r ]  is convex compact 
valued and continuous in t. 

L e m m a  1. Assume that the set:valued mapping 5(t ,  x) is upper semicontinuous in x for 
all t, continuous in t, with 5:(t, x) E conv6l n, and that 

II ~(t, x)II ~ k .  h(t), to ~ t ~ t , ,  

holds for some k > 0 and h(t) integrable on [to, tl]. Also assume that the graph 

grt~Y = {(x, y) ly E ~Y(t, x)} 

of the mapping ~Y(t, -) is convex for all fixed to <- t <_ tl. 
Then for all t E [to, td,  the relation ~,V[t] E conv(R n holds, and the function ~ [ ' ]  is 

continuous in t. 

We further assume that W[ r ]  E conv6l n. 
The synthesizing strategy is defined then as the following set-valued map: 
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~ (P(t) if x E ~7[t] 
'R(t, x) = (3) 

~_ {u I f ( t ,  x, u) = 0 e P( -g°  l ~Y(t, x))} if x ¢ ~,V[t]. 

Here go = fo(t ' x) is a unit vector that resolves the problem 

(e °, x )  - p ( f O l ~ [ t ] )  = max  {(g, x)  - o ( g i W i t ] )  I lie It - 1}, 

where symbol p(eiNv) = max{(e, x) ix E W} stands for the support function of set 
and 0 e g(e, t) denotes the subdifferential of g(g, t) in the variable e. 

Strategy 'R(t, x) reflects the rule of  extremal aiming introduced by N.N. Krasovski [2]. 
Particularly, it indicates that with x ~ %V[t] one has to choose the unit vector _17o that is 
directed from x to s ° namely - e  ° = (s o - x) ll s o - xl1-1, where s o is the metric projec- 
tion o f x  onto a,V[t]. After that, ~ ( t ,  x) is defined as the set of  points u ° E (P(t), each of 
which satisfies the "maximum" condition: 

(_go, f ( t ,  x, u°)) = m a x { ( - e  °, f ( t ,  x, u)) lu  E (P(t)}, (4) 

so that 'R(t, x) = {u°}. The latter procedures are summarized in map (3). 

L e m m a  2. Once the conditions of lemma 1 are satisfied and the system (1) is linear in 
u, the following assertions are true: 

1. The set-valued map ql(t, x) is convex compact-valued, continuous in t and upper semicon- 
tinuous in x. This secures the existence of solutions to the differential inclusion 

So(t) E f ( t ,  x(t), 'R(t, x(t))) to <- t <_ q.  

2. If  x, fi ~¢¢[r], for a given r fi [to, tl), then any solution x[t] to the system 

it(t) E f ( t ,  x(t), °tt(t, x(t))), r <-- t <_ q,  x(r) = x,, 

satisfies the inclusion x[t] E W [t], r _ t _< tl, in particular, 

x[h] E W [ q ]  = 9lZ. 

It is obvious that the crucial element for constructing the synthesized control strategy 
'R(t, x) is the set-valued function W[t] .  It is therefore important to define an evolution 
equation for %V[t] [3]. 

Lemma 3. Under the conditions of lemma 1, the set-valued function W[t]  satisfies the 
evolution equation 

lim h(NW[t - u], U {(x - o~(t, x))ix E %V[t]}) = O, to -< t _< t 1 • (5) 
~r-* + 0  

with boundary condition 

'W[td = ~31Z. 
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Here h('~7', %V") is the Hausdor f fd i s tance  between a#¢,, %V", (namely, 

h(~7', ~ " )  = max{h+('W', 'W"), h_(~7' ,  ~7")} 

where 

h+('W', ~7") = min{r _> 01%V" C "9~7' + r$}, 

h_(~? ' ,  "¢4") = h+('W",  ~ ' )  are the Hausdorff semidistances and $ is the unit ball in 
(R"). 

The conditions of lemmas 1 and 2 are clearly satisfied for a linear system 

So(t) = A(t)x( t)  + u(t),  u(t) ~ (P(t), to <<- t <_ t,. (6) 

The evolution equation (5) for determining ~dT[t] then turns to be as follows: 

lim a - l h ( ~ [ t  - a], ( /  - A ( t ) a ) ' W [ t ]  - a ( P ( t ) )  = O, 
a-~+O 

t o ~ t ----. t I (7 )  

(here I is the unit matrix), and 

W[td = 5 .  (8) 

The aim of this article is to demonstrate that this theory could be converted into con- 
structive relations that allow algorithmization and on-line computer simulation. This could 
be achieved by introducing a calculus for ellJpsoidal-valued functions that would serve to 
approximate the set-valued functions of the theory of the above (also see [1], sections 10-I2). 

It is important to observe that the relations given below do allow an exact approximation 
of the solution to the primary problem through ellipsoidal approximations. 

We will further concentrate on the linear system (6). By substituting z(t) = S(t, tl)X(t) 
and returning to the old notation, without any loss of generality system (6) could be trans- 
formed into 

k(t) = u(t), u(t) £ (P(t), to <- t <_ h ,  x (h )  E BE, (9) 

where x E (R n, (P(t), 9E E conv(R n, the function 6~(t) is continuous in t, and the matrix- 
valued function S(t, q)  ~ ~=xn is the solution to the equation 

S(t, h )  = - S(t, h )A( t ) ,  to ~ t <-- tl, S(tl, q)  = I. 

2. The  e l l ipsoidal  t echniques  

In this article, we do not elaborate on the ellipsoidal calculus in its totality, but do indicate 
the necessary amount of techniques for the specific problem of control synthesis. 
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We will start with the assumption that (P(t) is an ellipsoidal-valued function and that 
set OlZ is an ellipsoid--namely, 

(P(t) = g(p(t) ,  P(t)), to <~ t "< tl, 

= g ( m , M ) ,  

where the notations are such that the support function is 

o(el~(a, O)) = (e, a) + (f, Qe) a/2. 

With det Q ~ 0, this is equivalent to the inequality 

g(a, Q) = {x ~ (Rl(x - a ) ' Q - l ( x  - a) <__ 1}. 

Therefore a stands for the center of the ellipsoid and Q > 0 for the symmetric matrix 
that determines its configuration. 

With sets g(p(t) ,  P(t)), 8(m, M)  being given, we are to determine the tube W[t] for 
t _ q under the boundary conditon W[td = 01Z = g(m, M). According to the above, 
the set-valued function W[t] satisfies the evolution equation 

lim a-~h(W[t - a ] ,  % V [ t ]  - ag(p(t), P(t))) = O, 
a ~ + O  

to < t < tl, (10) 

%V[tl] = g(m, M). 

Obviously, 

%V[t] = g(m, M) - f /~ g(p(7"), P(7"))dT", to -< t < h, (11) 

so that W[t] is similar to the attainability domain for system (6), but here it is taken in 
backward time; Wit] is the set of all states xt from which it is possible to steer system 
(6) to the set g(m, M) in time h - t with open loop control 

u(r) fi (P(7"), t < r < ta. 

It is clear that although g(m, M), g(p(t),  P(t)) are ellipsoids, the set XV[t], in general, 
is not an ellipsoid. 

Therefore, the first problem that arises here is as follows: Is it possible to approximate 
%V[t], both externally and internally, with ellipsoidal-valued functions? 

The answer to the question is affirmative, as will be shown below. We will first state 
the results for A(t) ~ 0 in system (6). 

Consider the inclusion 

~ A(t)x + g(p( t ) ,  P(t)), 7" < t < tl, x(tl) E ~,(m, M)  (12) 
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with W[r] = W(r,  9g) being the set of all states x~ from which there exists an open-loop 
control u(t) ~ 8 (p ( t ) ,  P( t ) )  that steers the solution from xT into g(m, M). 

Denote w(t) ~ 6l n, r <- t < tl, to be the solution to the equation 

~v(t) = A(t )w(t)  + p(t) ,  r < t <_ tl, w(h)  = m, (13) 

and Ws(t  ) ~ 6l nxn to be the solution to the matrix equation 

l~s(t ) = A( t )Ws( t  ) + Ws(t )A' ( t )  

- S- l ( t )[S( t )Ws(t)S( t )] l /2[S( t )P(t)S( t )]V2S-l( t )  

- S - l ( t ) [S ( t )e ( t )S ( t ) ]m[S( t )Ws( t )S ( t ) ] l l2s - l ( t ) ,  (14) 

r < - t < - h ,  

Ws(tl)  -= M, 

where S(t)  is a continuous matrix function 

S(') :  [T, tl] ~ (~n×n 

with invertible and symmetrical values (the set of all such functions will be denoted as ~). 

Theorem 1 (internal approximation). 

1. The following inclusion is true: 

g(w(r) ,  Ws(r))  c W[rl  (15) 

whatever is the function S(') ~ E. 
2. The following equality is true: 

I,.J g(w(r) ,  Ws(r))  = W[r] ,  (16) 
s(.)~ 

where the symbol 3£ stands for the closure of set 3£. 

Further on, denote W,~(t) to be the solution to the equation 

lJV,~(t) = A(t)W~(t)  + W,~(t)A'(t) - 7r- l ( t )W,( t )  - 7r(t)P(t), (17) 

r < t < tl, 

Wr(tl) = M, 
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where ~rq) > 0 is a continuous scalar function: 

7r('): [7, t l]  "+ (0, 00) 

(the class of such functions will be denoted as rl). 

Theorem 2 (external approximation). 

1. The following inclusion is true: 

'W[d c 8(w(r), W.(r)) (18) 

whatever is the function 7r(') fi II. 
2. The following equality is true: 

~dT[r] = N 8(w(r), W~(r)). (19) 
~r(.)~II 

Equations (14)-(17) are obviously simplified under the condition A(t)  - 0 (we further 
presume that it holds). It is therefore clear that the set-valued function ~ [ t ]  satisfies the 
inclusions 

g-[ t]  = 8(w(t), Ws(t))  C W[tl c 8(w(t), W~(t)) = 8+[0,  (20) 

to < t < tl, whatever are the functions S(') E ~, 7r(') E II. 
Since ~¢~[t] is the solution to the evolution equation (10), the next question arises: Do 

there exist any two types of evolution equations whose solutions would be 8 - [0  and 8+[0, 
respectively? 

The answer to thi¢ question is given in the following assertion: 

lira a - l h + ( g [ t  - a] ,  g [ t ]  - a g ( p ( t ) ,  P ( t ) ) )  = O, 
a -~ + 0 

to ~ t < tl ,  

8[t,] = 8(m, M). (21) 

We will say that fimction 8+[t] is a solution to equation (21) if it satisfies the equation 
almost everywhere and if it is ell ipsoidal-valued (!). 

Also consider the evolution equation 

lim a- lh_(~[ t  - tr], ~[t] - aS (p ( t ) ,  P( t ) ) )  = O, 
a-++O 

to < t < t l ,  

g[q] = 8(m, M). (22) 

We will define 8_ [t] to be a solution to equation (22) if it 
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• satisfies (22) almost everywhere, 
• is ellipsoidal-valued and 
• is also a maximal solution to equation (22). 

The latter means that there exists no other ellipsoidal-valued solution 8'[t] to equation (22) 
such that ~_[t] C 8'[t] and 8_[t] ~ 8'[t], to - t _< t;. 

Each of the equations (21), (22) has a nonunique solution. 

Lemma 4. Whatever are the solutions 8+[0,  8 - [0  to the evolution equations (21), (22), 
the following inclusions are true: 

8_[t] C ~ [ t ]  C g+[t], to --< t --< q. 

Lemma 5. Each of the ellipsoidal-valued functions 8-[ t ]  = 8(w(t), Ws(t)), (S(') E r.) is 
a solution 8_ [t] to equation (22). 

Lemma 6. Each of the ellipsoidal-valued functions £+[t] = 8(w(t), W~(t)), (Tr(') E II) is 
a solution 8+ [t] to equation (21). 

To conclude this section, we underline that the tube %V[t] can be exactly approximated 
by ellipsoids--both internally and externally--according to relations (16), (19). To achieve 
the exact approximation, it is necessary in general to use an infinite variety of ellipsoids 
(actually, a countable set). The given approach (see also [4]) therefore goes beyond the 
suggestions of [5] and [6], where the sums of two or more convex sets were approximated 
by one ellipsoid. 

The ellipsoidal approximations will now be used to devise a synthesized control strategy 
for solving the problem of the above. This strategy will guarantee the attainability of the 
terminal set ~ in prescribed time. 

3. Synthesized strategies for guaranteed control 

The idea of constructing the synthesizing strategy ~( t ,  x) for the problem of the above 
was that ~( t ,  x) should ensure that all the solutions x[t] = x(t, r, xO to the equation 

J(t) E qt(t, x(t)), r --< t --< q, 

with initial state x[r] = x~ fi %V[r], would satisfy the inclusion 

x[t] ~ "W[t], r <- t <_ h. 

and would therefore ensure x[h] ~ OE. 
We will now substitute for %V[t] one of its internal approximations g_[t] = 8(w(t), 

W(t)). The conjecture is that once "t,V[t] is substituted for by 8_[t], we should just copy 
the scheme of section 1, constructing a strategy ~_( t ,  x) such that for every solution 
x[t] = x(t, r, x~) that satisfies the equation 
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x[t] ( ~ _ ( t ,  x[t]), ~" _< t < tl, 

the following inclusion would be true: 

x[t] E g_[t] ,  ~" <_ t < tl, 

and therefore 

x[t l]  E g ( m ,  M )  = 9175. 

x [ d  = x .  

365 

x~ ~ g - [ r ] ,  (23) 

(24) 

It will be proven that once the approximation g_[t]  is selected "appropriately" the 
desired strategy 'tt_(t,  x) may be constructed again according to the scheme of  map (3), 
except that 'W[t] will now be substituted for by g_[ t ] ,  namely, 

~ g ( p ( t ) ,  P ( t ) )  if x E g_[t ]  
= (25)  

~ _ ( t ,  x )  ~_p(t) - P( t )e° (e  °,  P( t )e°)  -1/2 i f x  ~ g_[t] ,  

where to = axd(x ,  g_[t]) at point x = x( t ) ,  which is the unit vector that solves the problem 

(e °, x) - p(e ° I g _ [ t ] )  = m a x { ( e ,  x) - p(e I g _ [ t ] )  I lie II -< 1}. (26) 

The latter problem may be solved with more detail, since g_  [t] is an ellipsoid. Indeed, 
if s o is the solution to the minimization problem 

s o = arg min{l l (x  - s)ll I s ~ g_[ t ] ,  x = x(t)}, (27) 

then we can take 

e ° = x ( t )  - s o 

in map (25). 

l_emma 7. Consider a nondegenerate ellipsoid g = g(a, Q) and a vector x ~ g(a,  Q); then 
the subgradient e ° = Oxd(x,  g(a,  Q)) can be expressed through go = x - sO/ I lx  - s°II ,  

s o = ( I  + X Q - 1 ) - I ( x  - a)  + a ,  

where X > 0 is the unique root o f  the equation h(X) = O, with 

h(X)  = ( ( I  + X Q - 1 ) - t ( x  - a) ,  Q - 1 ( I  + X Q - 1 ) - l ( x  - a))  - 1. 

Assume a = 0. Then the necessary conditions of  optimality for the minimization problem 

IIx - s II = min ,  ( s ,  Q-is) <_ 1 
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are reduced to the equation 

- x  + s + k Q - l s  = 0, 

where k is to be calculated as the root of  the equation h(k) = 0, (a = 0). 
Since it is assumed that x ~ g(O, Q), we have h(O) > O. With ~ ~ ~ ,  we also have 

((I + kQ-1) - l x ,  Q- l ( I  + XQ-1)- lx)  ~ 0. 

This yields h(~,) < 0, k _ k,  for some ~. > 0. The equation h(k) = 0 therefore has 
a root Xo > 0. The root Xo is unique, since direct calcalation gives h'(k) < 0 with X > 0. 
The case a ~ 0 can now be given through a direct shift x --* x - a. 

We will now prove that the ellipsoidal-valued strategy ~t_ (t, x) of map (25) does solve 
the problem of control synthesis, provided we start from a point x~ = x(r) E g_  [~']. In- 
deed, assume x~ 6 g_  It] and x[t] = x(t, ";, x 0 7" < t <_ tl to be the respective trajectory. 
We will demonstrate that once x[t] is a solution to equation (23), then we will have inclu- 
sion (24). (With isolated trajectory x[t] given, it is clearly driven by a unique control 
u[t] = J(t) a.e. such that u[t] E 6~(t)). 

Suppose, on the contrary, that the distance d(x[t,], g_[t . ])  > 0 for some value t. > r. 
Since x[~-] E g_[ r ]  and since d[t] = d(x[t], g_[t])  is differentiable, there exists a point 
t** E (r, t.] such that 

d 
d~ d[t]lt=,** > 0, d[t**] > 0. (28) 

Calculating 

dit] = max{(g, x(t)) - p(f I g-[t])l lie II ~ 1}, 

we observe 

d d[t] = d ~ [(go, x[t]) - p(golg_[t])], 

and since fo is a unique maximizer, 

_ 0 d d d[t] = (f °, .~[t]) - ~ O(f°l g_[t])  = (e °, u[t]) - ~ [(g0, w(t)) + (go, w(t)fo)l/2] 
dt 

where g_[t]  = g(w(t), W(t)). 
For a fixed function S('), we have g_[t]  = g(w(t), Ws(t)), where w(t), Ws(t) satisfy 

the system (13), (14), (A(t) - 0). Substituting this into the relation for the derivative of 
d It] and remembering the rule for differentiating a maximum of a variety of  functions, 
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_ 1  ddt d[t] = (go, u[t]) - (go, p(t)) 2 (go, Ws(t)go)-l/2 

• (fo, S-l(t)([S(t)Ws(t)S(t)]l/2[S(t)P(t)S(t)]l/2 

+ [S(t)P(t)S(t)]l/2[S(t)Ws(t)S(t)]l/2)S-l(t)f°), 

or due to the Bunyakovsky-Schwartz inequality 

d d[t] < _(go, p(t)) + (fo, e(t)eO)l/2 + (eo, u[t]), 
dt 

where 

u[t] E g(p(t), P(t)) 

and 

u[t] E ~_(t ,  x). 

For the case x ~ g_(w(t),  Ws(t)), the last relation gives us 

d 
d[t]l,=,** = o,  

which contradicts inequality (28). 
What follows is the assertion. 

Theorem 3. Define an internal approximation g_[t] = g_(w(t), Ws(t)) with given param- 
etrization S(t) of equation (14). Once x[r] E g_[r]  and the synthesizing strategy is cR_(t, x) 
of map (25), the following inclusion is true: 

x[t] E g _ [ t ] ,  r _ t _ t l ,  

and therefore 

x[tl] E g(m, M). 

The ellipsoidal synthesis thus gives a solution strategy q.t_ (t, x) for any internal approx- 
imation g_[t] = g_(w(t), Ws(t)). 

With x ~ g_[t] ,  the function ql_(t ,  x) is single-valued, while with x E g_[t] it is multi- 
valued (ql_(t,  x) = g_[t]),  being therefore upper-semicontinuous in x, measurable in t, 
and ensuring the existence of a solution to the differential inclusion (23). 

We will now proceed with numerical examples that demonstrate the constructive nature 
of the solutions obtained above. 



368 A.B. KURZHANSKI  AND I. VALYI 

4. Numerical examples 

We take system (12) to be four-dimensional and study it between the initial moment to = 0 
and the final moment tl = 5. 

Since the ellipsoids appearing in this problem are four-dimensional, we present their 
two-dimensionalprojections. The figures are divided into four windows, and each shows 
projections of the original ellipsoids onto the planes spanned by the first and second, third 
and fourth, first and third, and second and fourth coordinate axes, in a clockwise order 
starting from bottom left. The drawn segments of coordinate axes corresponding to state 
variables range from -10 to 10 according to the above scheme. In some of the figures, 
where we show the graph of solutions and of solvability set, the third, skew axis corresponds 
to time and ranges from 0 to 5. 

Let the initial position {0, Xo} be given by 

X 0 = 

and the target set ~ = g(m, M) by 

m i l l  
and 

0 0 
M =  0 1 

0 0 

at the final moment tl = 5. We consider a case when the right-hand side is constant: 

A(t) - I ° 1°11 - 1  0 0 
0 0 0 
0 0 - 4  

describing the position and velocity of two independent oscillators. The restriction u(t) E 
g(p(t),  P(t)) on the control u, is also defined by time-independent constraints: 
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p(t) - 

P(t) = 
0 0 o 

0 1 ' 
0 0 

so that the controls do couple the system. Therefore the class of feasible strategies is such that 

T = {~t(t ,  x) l ' t t ( t ,  x) c g(p(t), P(t))}. 

The results to be presented here we obtain by way of discretization. We divide the inter- 
val [0, 5] into 100 subintervals of equal lengths, and use the discretized version of equa- 
tions (13) and (14). Instead of the set-valued control strategy (25), we apply a single-valued 
selection: 

u(t, x) = (-j p(t) 

~_p(t) - P(t)f°(f °, P(t)e°) - i n  

i fx  E g_[t] 

if x ~ g_[t], 
(29) 

again in its discrete version. 
We calculate the parameters of the ellipsoid g_[t] = g_(w(t), Ws(t)) by choosing 

S(t) = P-1/2(t), 0 <_ t <_ 5 

in equation (14). 
The calculations give the following internal eUipsoidal estimate 8_(0) = 8(w(0), Ws(O)) 

of the solvability set ~7(0, 0E): 

w(0) = 

I 4.2371-) 
1.2342 | 

_2.6043 / , 
-3 .1370)  

and 

Ws(0) = f 
31.1385 0 0 0 1 

0 31.1385 0 0 
0 0 12.1845 2.3611 " 
0 0 2.3611 44.1236 
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Now, as is easy to check, x0 E g_[0], and therefore theorem 3 is applicable, implying that 
the control strategy of map (25) steers the solution of inclusion (23) into 9E, producing 

I 0.0264-) 
4.9512 l 

x[5] = 4.0457 | 
-0.o830j 

as a final state. 
Figure 1 shows the graph of the ellipsoidal-valued map g_[t], t E [0, 5] and of the solu- 

tion of 

)?[t] = A(t)x[t] + u(t, x[t]), 0 -< t _< 5, x[0] = Xo (30) 

where we use u(t, x) of equation (29). 
Figure 2 shows the target set fig = ~(m, M) (projections appearing as circles), the solva- 

bility set 5_[0] = g(w(0), Ws(O)) at the initial moment t = 0, and the trajectory of the 
solution of equation (30). 

In the next example, we show by way of numerical evidence what can happen if the ini- 
tial state Xo does not belong to the ellipsoidal solvability set g_ [0]. Leaving the rest of 
the data to be the same, we change the initial state Xo in such a way that the inclusion 

Xo ~ 8_[0] 

is hurt, but "not very much", taking 

X 0 ~ 

Though theorem 3 cannot be used, still we apply equations (29) and (30). Analogously 
to figure 2, figure 3 shows the phase portrait of the result. The trajectory of the solution 
to equation (30) is drawn with a thick line, as long as it is outside of the respective ellip- 
soidal solvability set, and with a thin line if it is inside. The drawn projections of the initial 
state are inside, except one (upper left window). As the illustration shows, at one point 
in time the trajectory enters the tube ~_ [t], the thick line changing into thin. After this 
happens, theorem 3 does take effect, and the trajectory remains inside for the rest of the 
time interval. In this way, we obtain 

I 0.0255-) 
4.9528 | 

xL51 = 4 .0215 [ ' 

-0 .1658. ]  

as a final state. 
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~ Target Problem 

Figure 1. Tube of ellipsoidal solvability sets and graph of solution. 

The above phenomenon indicates that 

1. the initial state must be inside the solvability set ~,V(0, 0g) ,  that is, 

Xo ~ w(0, ~ )  \ ~_[0], 

since it was possible to steer the solution of equations (29) and (30) into the target set 
0E, and 

2. in this particular numerical example, the control rule works beyond the tube E_ [t]. 
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Target Problem 

( 
\ j; 

Figure 2. Target set, initial ellipsoidal solvability set, and trajectory in phase space--initial state inside. 

In  the third example, we move the initial  state Xo further away, so that the control rule 
does not  work any more  (figure 4): 

X 0 ~ 



ELLIPSOIDAL TECHNIQUES FOR DYNAMIC SYSTEMS 373 

~_J Target Problem 

J 

Figure 3. Initial state outside, "but not far away" 

and obtain as final state 

I 0o,60  
4 . 9 1 5 0 |  

x[5l = 3.3668 / 

-0.5540_) 

Figures 5 and 6 show the effect of changing the target set. We take the data of the first 
example except for the matrix M in the target set ~Z = g(m, M) by setting the radius to be 2: 
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r~  Target Problem 

\ 

/ 
j /  

Figure 4. Initial state outside, "far away." 

M = 

o o o 

0 4 
0 0 

resulting in a final state 

- 0 .5875-)  
= | 4 . 8 9 1 4 |  

x[5] | 3.0158 / . 
- 0 . 0 5 3 6 )  
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~ Target Problem 

J 

Figure 5. Graph of solution for larger target set. 

The switching of the control, due to the specific form of equation (29), is clearly seen 
in figure 7 and later in figure 8. 

Taking again the data of  the first example, we allow more freedom for the controls, chang- 
ing the matrix P(t) in the bounding set 6 ~ = g(p(t), P(t)) again by setting the radius to be 2: 

p(t) 
0 4 
0 0 
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Target Problem 

( 
L 

/ 
/ 

/ 

Figure 6 Phase-space representation for larger target set. 

with a final state 

I oo235  
4.9565 [ 

x[51 -- 4 . 0 5 3 6 [  
-0.1308) 

Numerical simulations were made on a SUN SparcStation. Calculation of the function 
8_(t) ,  0 _< t _< 5, the application of  the control (29), (30), together with drawing onto 
the screen, takes less than half  a minute. 
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~ Target Problem 

Figure 7. Graph of solution for larger controls. 
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Figure 8~ Phase-space representation for larger controls. 


