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Abstract. Robust control which is designed via the Lyapunov approach has been shown to be effective for 
nonlinear uncertain systems. The performance of the controlled systems is studied by the Lyapunov argument. 
We propose to use the comparison principle which is based on the differential inequality to further explore the 
performance of controlled uncertain systems. 

1. Introduct ion 

The quest for robust control that is able to suppress (possibly fast) time-varying uncertainty 
in nonlinear systems has been one major theme in control society for the past two decades. 
One approach by which the control is designed and the resulting performance system is 
analyzed is often referred to as the Lyapunov approach. Two recent surveys on works in 
this area and relevant historical background are [7] and [15]. 

The major controlled system performance that has been proven s~6 far, which includes 
practical stability and others, is deterministic in its nature in the sense that one is able to 
prescribe the performance regardless of the true value of uncertainty. The proof has been 
mainly based on the Lyapunov argument. 

In this article, we propose to adopt the comparison principle which is based on differential 
inequalities to further explore deterministic properties of the controlled systems. This can 
be used to supplement the Lyapunov argument. To specifically demonstrate the use of the 
comparison principle, we work out a few examples which essentially cover all past work in 
this area. 

The Lyapunov approach used for control design can lead to a differential inequality. Its 
solution is often a valid "metric" of the system's (worst case) performance. However, there 
is no available tool to obtain the soludon directly. The comparison principle intends to use 
the solution of a differential equation to provide an upper bound for the solution of this 
differential inequality. If the initial value problem associated with the differential equation 
has a unique solution, then it can indeed serve as this upper bound. This in turn means 
that through the use of this comparison principle, one is able to obtain a good estimate of 
the upper bound of the system performance and hence further explore the deterministic 
properties of the controlled system. 

Two remarks are in order. First, the comparison principle should be a supplement rather 
than a replacement of the Lyapunov argument. This is since one is already able to draw 
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the major system performance (such as practical stability) directly from the Lyapunov 
argument. On the other hand, there is an extra layer of technicality, namely, the need of the 
(preferably analytic) solution of a differential equation, involved in using the comparison 
principle. 

Second, the comparison principle is only based on a differential inequality and the related 
differential equation. Hence there is no way to distinguish the performance of two different 
controlled systems if their differential inequalities are the same. 

2. Uncertain Systems 

Consider the following class of uncertain dynamical systems 

k( t )  = F(x( t ) ,  u(t) ,  t, co), x(to) = xo, (2.1) 

where t 6 R is the "time" (or more adequately: the independent variable), x( t )  E R n is the 
state, and u(t) ~ R m is the control. The system uncertainty is represented by the lumped 
uncertain element co E f2. The only information assumed about co is the knowledge of a 
nonempty set ~ to which it belongs. The uncertain element co can represent a number of 
possibilities [16]. It can be an element of Rq representing constant unknown parameter and 
input disturbance; it can be a function from R to Rq representing unknown time-varying 
parameter and input disturbance; it can be a function from R n x R m x R into R m representing 
nonlinear elements which are diffficult to characterize exactly; it can be merely an index; it 
can also be a combination of all. The function F : R n x R m x R x Rq ~ R n is continuous. 

The control task is to design u, which is possibly state or output dependent, that renders 
the state x( t )  certain desirable performance. A typical example of such performance is 
the practical stability [5] which includes existence and continuation of solutions, uniform 
boundedness, uniform ultimate boundedness, and uniform stability. The performance is 
deterministic in the sense that it is guaranteed regardless of the true value of the uncertain 
element co. 

The Lyapunov approach has been a major vehicle for control design for systems char- 
acterized by (2.1). For a review of the past work in this area, see [7] and [15]. We note 
that although the control design method in some work involves other tools such as the 
Riccati equation [19], the argument that leads to the system performance is still made via 
the Lyapunov "tongue" Thus it is considered appropriate to label this approach this way. 

By using this Lyapunov approach, there have been numerous controls proposed for uncer- 
tain systems under different structural and uncertainty conditions. Besides their differences 
at technical levels, generally speaking, the Lyapunov approach starts with the choice of 
a legitimate Lyapunov function candidate V(x,  t). Very often it is sufficient if there are 
KR-functions of rlxlT that bound V(x,  t) from below and above. I A control function is then 
selected. For any given trajectory x(.) of the controlled system, let v(t) = V(x( t ) ,  t). 
The time derivative of v(t) is then analyzed. The control function should contribute a 
negative term to the Lyapunov derivative. It can be further "fine-tuned" to address a num- 
ber of issues/design criteria. These may include, for example, the actuator's bandwidth, 
the prescribed control bound, the desirable ultimate boundedness region, and the specific 
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convergence rate. In general, the derivative of v(t) is upper bounded by the following 
expression 

fi(t) < g(v(t), t), V(to) = vo, (2.2) 

where y(.) is continuous. Ineq. (2.2) is a differential inequality [13]. All previous work in 
this area falls into this expression. 

Remark. In some early work [12], the Lyapunov approach is further labeled as the minimax 
or min-max approach. The reason was that the control design was often carried out in 
two steps. First, one maximized the worst case effect of the uncertainty with respect to the 
Lyapunov derivative. Second, one minimized this maximum effect by an appropriate choice 
of the control function. It was however later found that a mixed (rather than sequential) 
analysis of the uncertainty and control in the Lyapunov derivative might lead to a less 
conservative and hence more general result. This is especially true when there is input 
matrix uncertainty. As a result, one was able to relax the assumption from [2] 

max [1E(w, x, t)II < 1 (2.3) 

to [15] 

1 
mino~n ~-rmn~[E(o~, x, t) + ET(CO, x, t)] =: pE(X, t) > --1. (2.4) 

Here E(w, x, t) stands for the input matrix uncertainty. Thus (2.4) enables one to tolerate 
more input matrix uncertainty. 

Remark. The (often non-unique) solution v(t) of (2.2), although agood "metric" of system 
performance, is however usually not available. There are no existing (systematic) methods 
to solve for v(t) of (2.2). 

Example 1. In the work of Leitmann [14], Chen [4], and Garofalo and Leitmann [10], it 
was shown that for linear uncertain systems under a few different classes of controls, 

I)(t) _< --Ot2HX(t)[I 2 + 0q llX(t)[[ + o~0 (2.5) 

where o~0.1,2 > 0 are constants. Furthermore, there are constants /~1,2 > 0 such that 
fllllX(t)lt 2 __5. v(t) < fl21lx(t)ll 2. Thus IIx(t)[l 2 > fl21v(t) or -IIx(t)II 2 < -f l21v(t) .  

I 
Besides, llx(t)LI _</5~-~v ~ (t). Therefore 

i~(t) <_ -o~2&lv(t) + oq/~-lv~ (t) + o~o 

=: V(v(t), t). (2.6) 

The practical stability of the controlled system has been proven based on (2.5)[ 14]. Garofalo 
and Leitmann [10] also studied the upper bound of the finite time it takes for the state to 
be settled within the uniform ultimate boundedness region. This bound of the finite time is 
much less conservative than the one first studied in [14]. 
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Example 2. In the work of Corless and Leitmann [8], Barmish et al. [2], Ambrosino et 
al. [1], and Pandey et al. [18], it was shown that, under various controls and uncertainty 
conditions, one could reach 

0(t) < -?'3(ltx(t)ll) + k (2.7) 

where ?'3 (-) is a KR-function, k > 0 is a constant. There are also KR-functions yl,2(') such 
that ?'l([Ix(t)ll) < v(t) < ?'z(llx(t)l[). Thus y~l(v( t ) )  <_ Ilx(t)ll and -?'3(?'z-l(v(t)) > 
-?'3(llx(t)ll). We then have 

1)(t) < -y3(? '21(v( t ) ) )  -t-k 

=:  ?'(v(t), t). (2.8) 

Example 3. In Corless and Leitmann [9], it was shown that if the bound of  uncertainty 
was known and hence no adaptation was needed, then 

T)(t) < -y3(IIx(t)ll)  -t- eoe -l(t-t°) (2.9) 

where e0 > 0, 1 > 0 are both constants. There are also KR-functions ?'1,2(') that lower and 
upper bound v(t). Therefore 

~(t) _< -? '3(V~l(v(t)))  + Eo e-l(t-t°) 

=:  ?'(v(t), t). (2.10) 

Example 4. In Chen and Leitmann [5] and Han and Chen[  11], it was shown that either 
under mismatched uncertainty and/or polynomial-type controls, 

~)(t) _ -~,3(llx(t)[I) + y4(llx(t)[[) + ?'5 (2.11) 

where y3.4(') are of  class K R  and t/5 is a constant. (Han and Chen [11] specifically consid- 
ered that ?/3,4(') were both of  polynomial types). There are also K R  functions Yl,2(') that 
bound v(t). Then 

/)(t) _< --?'3(?'2-1(V(t))) --I- ?'4(Yl-I(v(t))) q- ?'5 

=:  F(v(t) ,  t). (2.12) 

3. Differential Inequality and Comparison Principle 

We now study the differential inequality (2.2) to further explore the controlled system 
performance. 

Definition 1. [13] If w(9 ,  t) is a scalar function of the scalars 9 ,  t in some open connected 
set D, we say a function ~( t ) ,  to _< t < i, ~ > to is a solution of the differential inequality 

~(t) <_ w(~(t), t) (3.1) 

on [to, {) if ~ ( t )  is continuous on [to, i) and its derivative on [to, i) satisfies (3.1). 
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THEOREM 1 [13] Let w(¢, t) be continuous on an open connected set 59 e R 2 and such 
that the initial value problem for  the scalar equation 

~)(t) = w(g)(t), t), ~b(t0) = q~0 (3.2) 

has a unique solution, g O ( t )  is a solution of(3.2) on to < t < {and  7t(t) is a solution o f  
(3.1) on to < t < {wi th  ~(to) < c~(to), then ~ ( t )  < ¢( t )  for to  < t < {. 

Instead of exploring the solution of the differential inequality (3.1), which is often not 
feasible, Theorem I suggests to study the upper bound of this solution instead. The theorem 
can be applied directly to study (2.2). 

THEOREM 2 Consider the differential inequality (2.2). Consider also the scalar equation 

i'(t) = y ( r ( t ) ,  t), r(to) = Vo. (3.3) 

Suppose that y ( . )  is continuous on an open connected set 59 6 R 2. Suppose also that f o r  
some constant L > O, the function y( . )  satisfies a Lipschitz condition 

IF(v1, t) - F(v2, t)l < LlVl - v2[ (3.4) 

for  all points (vl ,  t), (v2, t) e 59. Then any function v(t)  that satisfies the differential 
inequality (2.2)for to < t < { satisfies also the inequality 

v(t)  < r( t)  (3.5) 

f o r  to < t < L 

Proof: Since the function y(-) satisfies a Lipschitz condition, the initial value problem 
ofk = y(r, t), r(to) = vo has a unique solution. The result follows by using Theorem 1. 

Remark. The main result of this theorem, which can be described as the comparison 
principle [3, 20] since it invokes the comparison of two solutions, can be used to supplement 
the Lyapunov analysis used in other literature (see, e.g., [8]) for analyzing the system 
performance. Since (3.3) is a first-order ordinary differential equation, it is often possible 
to solve it analytically. This is considered advantageous to study the performance of the 
controlled system, which is related to v(t). 

Remark. The differential equation (3.3) can be directly constructed by the differential 
inequality (2.2) which is the direct consequence of the Lyapunov analysis. Hence all 
one needs to use the comparison principle is the upper bound of the Lyapunov derivative. 
However, we stress that the uniqueness requirement should be observed for otherwise there 
is no existing proof which shows v(t)  < r(t).  That is, it is possible that v(t)  > r( t)  if the 
solution of (3.3) is non-unique. 

Remark. Suppose the solution r is given by, in the general form, 

r = r(t; vo, to). (3.6) 
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Suppose also that yl(llx(t)lD <_ v ( t )  where Ft(') is of  class KR, then llx(t)tl < Y l l ( V ( t ) )  
and by v ( t )  < r ( t ) ,  we have 

Ilx(t)ll < y l - l ( r ( t ;  Vo, to)). (3.7) 

This shows the upper bound of  IIx (t) II. The controlled system performance can be estimated 
by using this bound. 

4. Case Study--I 

Consider Example 1. The differential equation 

k ( t )  = - o t Z f l z a r ( t )  + e q f l l l r 1 ( t )  + Oto, r(to) = Vo, (4.1) 

belongs to the second type of the Abel equation [21]. The right-hand side satisfies the 
Lipschitz condition 

~. o -1_1 /2  
( - -~2f121r l  q- ~ l f l l l r ~ / 2  + Oto) - -  (--ot2f121r2 -I- t~lPl  "2 + 0t0) 

_< m a x  Ctgfl21q- C~lflllr -1/2 lrl - r21 (4.2) 
r>_r>0 Z 

=: L[rl  - r2[ 

where L < oo and r > 0 is any constant. We now only consider vo > r and r ( t )  for all 
t 6 T where T is the time internal within which r (t) >_ r.  The solution of  (4.1) is given by 
[171 

r ( t )  = r 2 ( t ) ,  (4.3) 

where 7(t) is such that 

(Y( t )  - ra) ra = C ( ~ ( t )  - rb) r~ exp[(rb -- ra)( t  -- to)], (4.4) 

cqf l l l  + ~/ot}/3~ -2 + 4a2f121ao 

ra :=  2a2fl~_ 1 , 
(4.5) 

~1~; -1 - X/oliN -2 + 4~2~-1~0 
rb := 20tZf121 , (4.6) 

. l/2 
C := tv°  - ra)ra (4.7) 

(Vlo/2 - rb)rb " 

For any ~ > 0, ~(t) -- ra < ~ for all t > to + T (vo ,  ~)  where 

1 C ( r a  - rb + ~)r~ 
T(Vo,  ~) --  - -  In (4.8) 

r~ - - rb  ~ra 
This in turn will provide an alternative estimation of  the finite entering time for uniform 
ultimate boundedness (cf. [14, 10]). 
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5, Case S tudy- - I I  

Consider the case in Example 2 with 

?'l (llxll) = Plllxll p, ×2(llxli) = 97211xll p, ?'3(llxll) = ~)3 Ilxll p, (5.1) 

where ~31,2,3 > 0, p > 0 are constants. A similar problem is also considered in other 
literature (see, e.g., [6]). The differential equation used in the comparison principle is given 
by 

^ 

i'(t) = -ri~r(t) +k,  r(to) -= vo. (5.2) 
?'2 

Note that ?'(.) is globally Lipschitz. The solution of (5.2) is give by 

r(t)=(Vo-)'2k~ [ ~3 3 ] '2k ~3 / exp - (t - to) + =-?'3 " (5.3) 

Therefore, 

Ilx(t)ll p < ~,llr(t) 

1 ( 732k'~exp[_g~2z(t t o ) ] +  ~ k (5.4) "7" V O - -  - -  ^ ^ 
?'i ~ I L ?'3 ?'i?'3 

o r  

~)2k_ 1 ( '0)] 
- -  < "7- VO--  llx(t)llP ~3 ?'~ ~ / L ?'3 

for all t > to. Let 

r / :=  \ 731--~3: (5.6) 

Then if vo > @2/~3)k, one can guarantee that ltx(t)II p - +  ~P exponentially where the rate 
of convergence is )32/~33. Furthermore, for any x > 0, there exists 

^ h k ) 
?'3, [ ? - ~  +K. 

T = =-m -=--- (5.7) 

such that 

(?t  > 

for all t c [to, to + T]. Thus if Vo > @2/~33)k, then 

1 ( V o - ~ ' 2 k ~ e x p [ - Y - - ~ 2 ( t - t o ) l + ( ? 2  k+tc ' )exp[-~-~z( t - to)]  
Y-~" ~33 } L ~3 k,?'lY3 } L ?'3 

>_-7- v o -  - ^ ^  
?'I Y3 } L ?'3 ?'17'3 

(5.8) 

(5.9) 
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for all t E [to, to + T]. This is equivalent to saying that 

or 

[ l ( v  ° }92k) .7__7_k + tel ex p }92 r 1 
Y1Y3 J L ~3 IIx(t)ll p (5.10) 

El (~ v°-}93 I ~--2-2 k'1+ }92 k + x ] llP exp r -  }92 ( t - t ° ) ]  > 'lx (t ) L P}93 - (5.11) 

for all t 6 [to, to + T]. Therefore x( t )  exponentially converges to 0 for any t 6 [to, to + T]. 
The rate of convergence is }92/P}93. Since T is also the finite entering time for uniform 
ultimate boundedness, this implies that x ( t )  enters the region exponentially. Note however 
there is no guarantee that x ( t )  ~ 0 (either exponentially or not) for all t > to. 

6. Case StudymIII 

Consider again the case in Example 2 with ×x(llxll) = }9111xll p, yE(llxll) = }9211xll p, 
y3(llxtl) = }9311xll 2p, where }91,2,3, P > 0. Therefore, 

}932 
y3(yz--l(v)) = ~-72v . (6.1) 

2 

The differential equation 

f ( t )  = }93r2Ct~ --~-~ , ,  + k, r(to) = Vo (6.2) 

belongs to the scalar Riccati equation type [21]. Since the right-hand side of (6.2), which 

is continuous, is negative for any r > ,/-~-, the solution remains finite. Let us denote ¥ Y3 
the region in which r will remain by ~ .  The right-hand side then satisfies the Lipschitz 
condition 

+ k /  < Llr l  - r21 (6.3) 
~, r2 k - - ~ 2  2 2 - -  

where 

L := max }93 r,,r2~7-¢. }92 [rl + r2[ < ~ "  (6.4) 

The solution of (6.2) is given by [17] 

k exp{2[C + a( t  - to)]} - 1 
r ( t )  = (6.5) 

a exp{2[C + a( t  - to)]} + 1 
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where 

1~'3k av0 ( ~ )  + 1 

a = v  Y~' C - - a v o  ( ~ )  - 1 

The state x(t) is then upper bounded by 

( ~2~/. ~ ~ 1/p exp{2[C + a(t - to)]} - 1 ] l/p 
llx(t)ll _< \ ~ ]  exp{2[C + a(t - to)]} + 1 

J 

/ ^ j~ \ ~/P 
Y2 The right-hand side of (6.7) approaches as ,  

(6.6) 

(6.7) 

7. Case Study--IV 

Consider the case in Example 3 with Yl(ltxll) = ~l tlxll p, Yz(Ilxlt) = ~211xlI p, Y3(llxll) = 
~3 IIx liP, ~1,2,3, P > 0. The solution of the differential equation (by letting 8 = ~'3/~'z) 

i'(t) = -Sr(t)  -k- Eo e-t(t-t°),  r(to) = vo, (7.1) 

which is unique since the right-hand side of (7.1) is globally Lipschitz, is given by 

{ e -8('-'°) (vo - -~-l) + e-l(t-t°)~7-l' if8 • l, r(t) e-~(t-t°)vo + e-St el%o(t -- to), i f8 = I. (7.2) 

This in turn shows the exponential convergence of x (t) to 0 for all t > to if 8 ~ L The rate 
of convergence is 

1 
~_ = - min{& 1}. (7.3) 

P 

The above statement can be easily checked since Irx (t)II -< ;'~I/PrI/p (t) and hence 

l e_a(t_to)[e_(~_D(t-to) ( ,o ) l /p 
IIx(t)ll _< ~-'~ - vo - 

+e-(~ -~(t-t°) ~ (7.4) 

_< Le-gt-to), 

where L < ~ is a constant. When in most of the cases both p and 8 are fixed, the 
maximum rate, that is, 8/p, is obtained by choosing l > 8. We also note that the exponential 
convergence analysis does not hold for I = 8. 

Computer simulations were performed to demonstrate the behavior of  r(t) .  In (7.1), we 
choose eo = 1 and l = 1.1. All other coefficients in (4.1), (5.2), (6.2), and (7.1) are chosen 
to be 1. The initial condition v0 = 10. The results are shown in Figure 1 (line 1 for (4.1), 
line 2 for (5.2), line 3 for (6.2), line 4 for (7.1)). 
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Figure 1. Behavior  o f r ( t ) .  

8. Conclusions 

The comparison principle is based on the differential inequality that is the result of the 
Lyapunov argument. Since the major performance result such as practical stability can be 
proven solely based on the Lyapunov argument, it seems reasonable to only anticipate that 
the comparison principle may supplement the Lyapunov argument. Furthermore, the use of 
the comparison principle specifically requires the initial value problem associated with the 
differential equation to have a unique solution, there may be domains of uncertain systems 
and controls that the comparison principle can not reach while the Lyapunov argument can. 
On the other hand, the technical level involved in using the comparison principle is usually 
a first-order ordinary differential equation whose closed-form solution is often available. 
The solution will help the designer to further explore the characteristics of the (especially 
transient) performance. Thus the current method is considered to be a valid addition to the 
Lyapunov approach. 
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Notes 

1. By a KR-function ;e : R+ --~ R+, we mean y(0) = 0, V(') is strictly increasing, and l i m r ~  g(r) = oo. 
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