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ON S Y S T E M S  W I T H  S E P A R A T R I X  C O N T O U R  
C O N T A I N I N G  T W O  SADDLE-FOCI* 

V. V. Bykov UDC 517.938; 517.987.5 

1. I n t r o d u c t i o n  

Let us consider a two-parameter family of C'-smooth (r > 3) dynamical systems X,(z),  z E Ir 3, I~ E R 2, 
which have, for/~ = 0, two isolated equilibrium states O1 and 02 of a saddle type. We assume that a system 
linearized at Ok has the spectrum e~ = {ak + iwk, Tk}, where a,7~ < 0, ala2 < 0, wk ~ 0, k = 1,2, i.e., O1 
and 02 are saddle-loci of different topological types. 

Let Pi be a one-dimensional separatrix of the saddle-focus Oi, and let Wa(Oz) and W~(O~) be two- 
dimensional integral manifolds of the saddle-foci O1 and O~ respectively. 

The class of systems under consideration is defined by the following additional conditions. 
A. The system Xo(x) has a structurally stable heteroclinic orbit F0, which belongs to the transversal 

intersection of W'(O1) with W~(02). 
B. For # = 0, the one-dimensional separatrices F1 and F2 coincide and form a structurally unstable 

heteroclinic orbit F ~ 
C. The quantity r = v~wl/(VlW2) ~ 1, where vi -- -a~/7~ are saddle indices. The condition 

2 2 2 2 c = + :F + 1 - # o 

is satisfied, where e > 1 is a quantity that can be determined by solving the variational equation when 
integration is along the orbit r ~ It will be refined below. 

By virtue of conditions A and B, systems with the properties described above have a separatrix contour 
/: = O1 U O~ U F0 U F ~ in the phase space, and, by virtue of condition B, form a bifurcation set H ~ of 
codimension 2 in the space of dynamical systems with the Ca-topology. 

On the basis of condition C, H ~ is divided into two connection components H ~ and H ~ defined by the 
conditions G > 0 and G < 0 respectively. It is known [6, 8] that already in the case of the homoclinic 
orbit r of the saddle-focus the set of orbits that lie entirely in the neighborhood of F has a very nontrivial 
structure if the saddle index of the saddle-focus is smaller than 1. Moreover, for systems with a separatrix 
loop the saddle index is a topological invariant [2]. However, in the case of a separatrix contour that contains 
a saddle and a saddle-focus, the complicated structure of the set of orbits that lie entirely in the neighborhood 
of this contour is revealed irrespective of the values of saddle indices [3, 9]. It is established in this paper 

that for the systems X0(z) E H ~ in the neighborhood//(/:)  of the contour /:, in addition to the orbits 

F0 there also exists a countable set {F0~) of heteroclinic orbits F0~ along which W~(O1) intersects W"(02) 
transversally. Moreover, H ~ systems with a structurally unstable heteroclinic orbit F0. along which W~' touches 
W~ are everywhere dense. In addition to studying the indicated heteroclinic orbits, we deal with the simplest 
bifurcations connected with the splitting of the structurally unstable heteroclinic orbit F ~ into one-dimensional 
separatrices F1 and F2. In this way, the existence of two bifurcation curves Ix and 12 corresponding to the 
separatrices loops of the saddle-loci O1 and O2, respectively, and intersecting in the countable set {#k} of 
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points pk is established. From this fact and the results of [6, 5, 10], it follows that for the saddle indices ul < 1 
and v2 < I and opposite signs of the divergence of the vector field at the saddle-loci (and this is equivalent to 
the fact that the saddle indices vi of the saddle-foci Oi simultaneously satisfy the same inequalities, namely, 
1/2 < ui < 1 or 0 < vl < 1/2, i = 1, 2), the values of parameters p are everywhere dense in the neighborhood 

of every one of the points/z k. For these parameters, there exist an attractor and a repeller in the system 
Xu(z),  which have a nonempty intersection of closures. One of them contains a countable set of periodic 
motions and the other contains a countable set of completely unstable periodic motions. It should be pointed 
out that the existence of a structurally unstable heteroclinic orbit r0.  along with the orbit r ~ in/4(/:)  means 
the generation of codimension larger than 2, and this implies the impossibility of a complete investigation 
within the framework of a two-paxameter family. 

2. C o n s t r u c t i n g  Successor  M a p s  

A system of differential equations in the neighborhood of the equilibrium state of the saddle-focus type 
can be written as 

it = - u z  - wy + f i x  + f2y, 
~1 = wx - vy + glx + g2Y, (2.1) 
Z--'Z, 

where fi, g~ E C ~-1 and f~(0, 0, 0) = g~(0, 0, 0) = 0, i = 1, 2. 

L e m m a  2.1 [6]. There exist changes of coordinates and time after which the functions fi  and gl in system 

(2.1) satisfy the conditions 

.f/(x, y,O) = gi(x, y,O) = fi(O, O,z) = gi(O, O,z) = O. (2.2) 

Let us now pass to cylindrical coordinates 

X - -  p COS ~0, 

Then system (2.1) assumes the form 

y=psincp~ z = z .  

= - v p  + FI(p. . z).  
i. = + F2(p. z ) )z .  

where, by virtue of (2.2) and [1, 10], F1, F2 e C "-1 and ~im ~ F,(p, ~, z) = 0, Fi(p, ~, 0) = 0. Since w # 0, it 

follows that in a sufficiently small neighborhood of O we can change the time dv = (w + F2)dt and pass, in 
this way, to the system 

= (M-1(1 -[- r (2.3) 
~ = 1 ,  

where 

R(p,~,  O) = r ~, 0) =- 0, lim OR(p, ~, z) Op = O. ~i..m ~ R(p, ~o, z) = ,--.olim ~(p, qo, z) = 0, ,--o (2.4) 

Following [7], we shall consider the system of integral equations 

= + (2 .5)  

where to > 0, and by virtue of the last equation of system (2.4), ~pCt) = qo0 + t. We can show [7] that for 
0 < t < to and for all sufficiently small po and zl the system of integral equations (2.5) has the unique solution 

pCt) = to, 
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which, at the same time, is the solution of system (2.3) and which passes, for t = 0, through the point 

Mo(po, zo,~o), where zo = ~.(O, to, po,~o,Z 0 and, for t = to, through the point M~(p~,zz,qaz), where pl = 
~(0, to, po, ~0, z~), ~ = ~0 + to. Using the method of successive approximations and properties (2.4), we can, 
just as is done in [6], make the form of the functions ~ and ~ more precise. 

L e m m a  2.2. The solution of the boundary value problem (2.5) can be represented as 

p(t) = poe -vq~ + p=(t, to, Po,~o, Zz), (2.6) 
z( t )  = zze ('-to)l~' + z,,(t, to, po, ~o, zz), 

where, for t = to, we have the estimates 

iip=ll + [[akp= [ o~p .- o~a~ 

and, for t = 0, the estimates 

o'<=o I IO':: o.:: 
IIz<,ll + o,<,o ~ I + I ot~ + -~-o~ I <- M e - < " - * ~  

k = z,2, (2.w) 

k = z,2, (2.8) 

Here ,, = min(v /w ,  1/w) and e is a certain sul~ciently small number. 

It follows from the form of the right-hand sides of system (2.3) and from the properties (2.4) of the 

functions R and ~ that  there exist sufficiently small 6, ~, and d such that  the area elements 

& = { ( p , z , ~ )  I v~ -- 0,1p - p'I < 6, I~1 < a} ,  

s o = { (p ,~ ,~ )  I Ipl < a, Izl = d}, 

where 0 < p" < ~, 0 < d < d, are local secants for the orbits of system (2.3). Therefore, setting V~o = 0, zl = d 
in relations (2.6), and, in addition, t = to in the first relation and t = 0 in the second, we obtain, with due 

account of the fact that  ~ = ~0 + to, the parametric representation of the mapping To: So ~ S o written in 
the form 

P = poe-v'l='(1 + XI(pO,~)), (2.9) 
z0 = de-'~i~'(Z + x2(p0, ~)), 

where, on the b~is  of (2.7), (2.S), we have 

IIx, II + IIo' <,1o'  I+  <- M , < ' - * ~  : 

We shall consider on S O the polar coordinate system (p, 0) induced by the cylindrical system, introduced 
earlier, in the neighborhood of O. In this case, every value of ~ from the interval [2~rn, 2r(n + 1)) can be 
identified with the value of the polar angle 0 = ~ - 27rn. We introduce on So the Cartesian coordinates 
(u, ~), where ~ = zo and u = po - p' .  Let ~// be a surface that  is transversal to Fi in the neighborhood 
of the saddle-focus Oi and Sol (So2) be a surface transversal, also in the neighborhood of Oz (O2), to the 
two-dimensional manifold W~(Oz) (W"(O~)). Let M ~ = Fi (3 S ~ Moi = P0 N Soi, LI(M~ and Ll(M0i) be 
neighborhoods of these points. We introduce in//(MOO the coordinates (~, u~). The successor maps To~: 
Soi ~ S ~ TI: S o ~ S ~ and T2: S0~ ~ S0z are defined along the orbits of the system in the neighborhood of 
every saddle-focus Oi, i = 1,2, and in the neighborhood of the segments of the orbits Fo and F ~ bounded by 
the points M ~ M ~ and Mo2, M0z respectively. It follows from the general theorems of differential equations 
that the mapping T2 can be written as 

ui = F , (u~ ,~ ,~ ) ,  (2.11) T2 : ~, F2(u2, ~ ,  #), 
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where ~ - A r 0 and, by virtue of condition A, OF~(o,o,o) 0(~,~) ,,~=~=o = o,,~ ~ 0. Therefore we can solve the second 

equation in (2.11) for u~ and obtain 

~, = .1 (~ ,  ~ ,  u), 
U2 -" a2 (~ l ,  ~2, ~ ) ,  (2 .12 )  

where a ,(~, ,~, /~)  are sufficiently smooth functions and ~ko,0,.) # 0, i = 1,2, j = i + 1 (mod 2). In order to 

obtain relations that  will define the mapping T0i, it is necessary to replace P0 and zo in (2.9) by P~i + ul and 
~i, respectively, where P~i is the distance from Oi to one of the intersection points of the orbit ro on the area 
element ~00 = 0. Replacing then the coordinate ul by the corresponding expression from (2.12) and solving 
the second equation obtained for ~i, we shall have for the mappings (~1, ~2) ~ (pi, r which we shall denote 
by T0~ as before, the relations 

~, = ~;,(1 + a,(~x, ~,, ~) )e- '~ ' (1  + X~,(~, ~,  ~,, ~')), 
, ~, = de-~"/~ + X~(~,~o.#)), (2.13) 

j = i + l (mod  2), i = 1,2, where, by virtue of (2.12) and the relation p0~ = p~ + u~, instead of (2.10) we have 
the estimates 

~ I1 11+ IIx,,ll + I1~11 + * I1~11 < Me-("'-'h*', 
8 ~ 2i 8 t' 2i I1 11 _< = - - ,  l l x 2 d l + l l ~ l l +  Me-( ' - 'h* ' ,  i = l , 2 j  i + l ( m o d 2 ) , k  1 2. 

(2.14) 

It follows from the expressions obtained that  the mapping To~ is defined on the set ao = /1 •  where 

Ii = (0 < ~ < ~), i = 1,2, and the set all = Tolao is the range. Hence, the mapping T21 = To~ t o T0x: 
So2 ~ Sox is defined on alz and maps a12 onto all .  Each of these domains is a set bounded,  by virtue of 
(2.13), by two spirals that  twist at the point Moi. One of the boundary curves a n  (ax2) is a connection 

component w1(O2) e W"(O2) Iq S o (w2(Ox) e W~ N S ~ that  consists of points such that  none of the 
semiorbits, beginning at w~(02) (w2(O1)) as t ---* - o o  (t --* oo), have any other points of intersection with S o 

(S~ Geometrically, the mapping To, acts as follows. Any segment I~,(~j) = {(~1,~2) I~j E Ij,~i = const}, 

i = 1, 2, j = i + 1 (mod 2), passes on S ~ j = i + 1 (mod 2), into a spiral under the action of T0j and, 

under the action of Tol into a segment of the ray whose origin and terminus are on the boundary of all 
(Fig. 1). Thus  we can suppose, formally, that  ~rl~ is fibered into segments of rays or1, = 1..I To~I~,(~j) or 

spirals r = I.J To~I~j(~i) so that ,  under the action of the mapping T21, every spiral on S o passes into the 

corresponding segment of the ray on S~l and the segment of the ray passes into a spiral. 
O O  

Representing [~,, co) as 12 Iik, i = 1, 2, where Ilk = [r(k - 1/2), r (k  + 1/2)), we find, by virtue of the 
n 

second relation of (2.12), that  Cro can be represented as the union of an infinite number  of strips O'okl or ~rok2 
that  accumulate  at the straight line ~2 = 0 or ~1 = 0 respectively. Each of these strips is the image of the set 
Ij •  under  the action of the mapping 

T / : ~ j = ~ . / ,  ~i=de-*'/'O'(l+xi2(~j,~oi,#)), j = i + l ( m o d 2 ) ,  i = 1 , 2 .  

The image of the boundaries of cr0kl under the action of T0i are spirals belonging to int a t / a n d  under the action" 
of Toj segments of rays whose endpoints lie on the boundary spirals al i  (Fig. 2). 

Along with the polar coordinates on S O we shall use Cartesian coordinates, namely, (z ,y)  on S O and 
(u, v) on S ~ Then,  with due account of condition B, the mapping TI: U(M ~ ~ L/(M ~ can be represented 
in the Cartesian coordinates as 
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r', 

F i g .  1 

where Det (D) = [D[ ~ 0, E(p) = (pa, p2). 
The action of the linear part of the mapping 2"1 is equivalent to the composition of transpositions, i.e., 

the rotation of the axes of coordinates and a change of scales. Therefore, after a change the reference point for 
the angular coordinates and a change of the scale, we can assume, without loss of generality, that  D(x, y, #) 

in (2.3) can be represented as 

DO:,y,u)= o + " "  (2.16) 

[ \ 
where the dots mean  smooth functions which tend to zero as z,y -.-, O. We denote (D(z,y)-  D(0,/~)) [ ] 

x 
\ Y / 

by F(z,y,t~ ). Obviously, F ( 0 , , ) -  0, OF(o,o,~) aF(0,0,u) ( ~ )  a= = ov  - 0. We make the change of coordinates. \ Y / = 

( z  ~ + D(0,/~)_lF(r /01,#)and return to the old notations. Then the mapping T1 becomes linear. It is easy 
k y / 
to verify that  this change of coordinates does not change the principal terms of the mapping  Tm in (2.12) and 
preserves the degree of its smoothness. Introducing a new notation for the polar coordinates on S o and S O 

and setting p = pl, ~1 = ~o + 7r(n - 1/2), and r = P2, ~02 = r + 7 r (m-  1/2), respectively, on the basis of (2.14), 
(2.16), we find that  in polar coordinates, for # = 0, the mapping Ta: (p, ~o) ~ (r, ~o) can be represented as 

r = arctan ( ~ -  tan (~o)). 
(2.17) 
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3. Heterocllnic Orbits of Saddle-Foci 

The question concerning the structure of a set of orbits that lie entirely in b/(s is closely connected 
with the behavior in b/(/:) of two-dimensional manifolds W'(OI) and W~(O2) of the saddle-loci O~ and 02 
respectively. Let us consider the possibility of the existence of other orbits, different from F0, belonging to 
the intersection of the two-dimensional manifolds W*(O1) and W"(02). We shall restrict our consideration 
to orbits that belong to W'(Oz) N W~(O2), each of which has one point of intersection with S0~, i = 1, 2. 

Lemma 3.1. For p = O, along with the orbit I'o, there also exists a countable set {Fol} of orbits Fol E 
W'(  01) N W"( 02 ), i = 1,2, ..., along each of which W'(  01) intersects W~(O2) transversally if the quantity G 
defined by condition D ezceeds zero, and the systems in ~ that have, in addition to the set {Fo~} of structurally 
stable orbits Fo~, an orbit Fo. along which W'(OI) touches W"(Oz) are everywhere dense if G < O. 

Proof. Since wx(O2) (w2(O~)) is the image of the segment ~2 = 0 (~1 = 0) under the action of mapping To~ 
(To2), it follows, by virtue of (2.13), that in polar coordinates w~(02) and w2(O~) can be described by the 
equations 

p = Coi(i + a,(~l,O,O))e-~("("-l/2)+~)/w'(1 + X~'~(~,, O,(P)), 

where 

~ = de-C.C.-m)+.)/~l (1 + x~(~,,  0, ~o)), 

r = Co2(1 + as(0, ~2, 0))e -'~('('-')/2+q')/m (1 + X~(0, ~2, r 

~2 = d:C.C.,-,m+~,)/~(1 + x~(o,  ~2, r 

(3.1) 

Xls(~l,0,qo) = X,j(~l,0,qo + r ( n -  112),0), 

x,"X0, 6,, r  = x,X0,~2,r + ~(r~ - 1/2),0), co, = p + 0 . :~ '~  

and 0~i is the angle of rotation of the coordinate system relative to the cylindrical system introduced earlier. 
It is obvious that the points of intersection of the orbit r0~ e W'(O~) N W~(O2) with S o belong to 

wl(O2) N Taw2(Oa), and therefore the coordinates of each of these points are defined by the equation resulting 
from (2.17) upon replacement of p and r by their expressions from (3.1) in the first equation and the subsequent 
replacement of the angular coordinate r in the resulting relation by its expression from the second relation 
in (2.17). Hence we have 

c02(1 + a2(O, ~2, O))e-~('~("~-ll2)+"~cu'~(a't~*)lm(1 + ...), 

Cox(1 + a 1 ( ~ 1 , 0 ,  O))e-~(Ir(n-1/2)+~o)/~ai(1 "31- ...)~/~--2 COS 2 ~O + )t 2 s i n  2 ~0, 

~1 = de -(~*+'~(n-xl2))l~l (1 + ...), 
(3.2) 

~ = de(aret~n(a2tan~+~r(m-l/2))/wl(1 Jr ...), 

where the dots mean terms which smoothly tend to zero as n, m ---, oo. After taking logarithms of both sides 
of Eq. (3.2), we get 

" - -  (V2/V1)" (W2/Wl) " m = (~,,I(.,,~)c - 01~ + fCO), (3.3) 
where C = ln(~o~/~Ol), 

f(O) = (v2/Vl). (w - 2/wz)arctan ()~2tan O) + In(C A-z) cos 20~ 2 sin 2 0 + ...), (3.4) 

and the dots mean terms, smooth with respect to 0, which tend to zero as n, m ~ r After the differentiation 
of f(a) and simple transformations, we obtain the equation 

v,(~'+~) 2u2~ 2_ v,(~4-I) ~,_~2 
cos(20) + ~ sin(20) + ... (3.5) 

CO1 ('02 ('131 CO1 
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for determining the values 0 corresponding to the extrema of the function f(O) - 0/~. After introducing the 
quantity e = (A 2 + 1/$2)/2,  we find that  for G > 0 Eq. (3.5) has no roots and, consequently, the right-hand 

side of Eq. (3.3) is a monotonic  function of 0, whereas for G < 0 Eq. (3.5) has two roots 0 ~ and 0 ~ for which 
the function -O/Tr + f(O), which appears on the right-hand side of Eq. (3.3), has two extrema.  

It is easy to see that" the difference of values of the right-hand side at the endpoints  of the interval 
[-7r/2, 7r/2] is equal to r -  1 + ..., where r = (ul/u2)" (wa/w2). Then,  if the quant i ty  r # 1 is an integer, then 
the left-hand side of ~'(n, rn, r) = n - mr  assumes all integer values, and, for every integer k, there exists a 

countable set of pairs (niCk), rni(k)) such that ~'(n;(k),mi(k), r )  = k, i = 1,2, .... Hence there exist at least 
k - 1, and, for G > 0, exactly k - 1, values 01, 0 - 2, ..., 0k-l, each of which is a solution of Eq. (3.3) for 

the countable set of pairs of integers (m~(k),nii(k)), i E Z, j = 1,2,. . . ,k - 1. If r = p/q is rational, then, 
by virtue of the fact that  for any integer I and for coprime p and q the relation qi -- pj = I is satisfied for 
an infinite set of pairs (i , j) ,  the  set {l/q, l E Z} is the range of the function ~'(n ,m,r) .  Taking into account 

that f(~r/2) - j ' ( -~r /2)  = r - 1, r = k + p'/q, where k is the integer part of r and p' is the  numerator  of the 
fractional part,  we obtain the existence of (k - 1)q + p' roots 0j for k > 0 and q - id roots for k = 0, each 
of which is associated with a countable set of pairs (ml, nl) of integers. Finally, for an irrational r we get an 
everywhere dense set on the interval [-~r/2, ~r/21 of the values of 0 that  are roots of Eq. (3.3). Thus, for any 
values r there exists a countable set of pairs ( m ,  nO, for each of which Eq. (3.3) has a solution 0~. In this 
case, for G > 0 every root Oi is simple and every simple root 0~ is associated with the heteroclinic orbit F0i 
belonging to the transversal intersection of W*(O 0 with W~(O~). Thus, if G > 0, then the first part of the 
lemma is proved. 

Let us prove the second part  of the statement of the lemma. It suffices to show tha t  for any one of the 
I I ! l values 0 ~ i = 1,2, and an~r r = ulw2/(t,2w~) there exist arbitrarily close r ' =  ",~2/("2o'1) and r~ a n d ,  such 

that  the relation n -  r~m -- (w~/(~ ~ ) 0 - 0 ~  + f(O ~ is satisfied. We take as r ~ the rational number  p/q that  
is arbitrarily close to the original r and has a sufficiently large denominator  q. Then,  as was already noted, 
there exists a number  l' such that  the inequality I'/q < ( w ~ / ( ~ ) O  - 0~ + f(O ~ < (l' + 1)/q is satisfied, 
and, for the infinite set {mi} of values, rnl ~ c~ as i -+ oo. From the fact that  l'/q and (l' + 1)/q are values 
of the functions ~ ' - (n j ,  mj ,  r ' )  and ~-+(nj, mj,  r~), O~/Or = - m ,  and the derivative with respect to r of the 
right-hand side of Eq. (3.3) is bounded,  by virtue of (3.4), by a certain constant K,  it follows that  there 
exists r"  ---* r '  as rn, ---* oo for which ~'+(ni, mj, r") > (w~/(u~r)C - O~ + f(O~ Consequently, there exists 

r '  < r* < r",  which is arbitrarily close to  r ,  for which one of the values 0 ~ or 0 ~ is also a root of Eq. (3.3). 
We have proved the lemma. 

We say that  the heterodinic  orbits ro~, defined in the lemma given above, are "one-drcuit"  orbits because 
the arcs of these orbits intercepted by the secants S01 and Sos and lying in the neighborhood of the orbit 
r ~ consist of one connection component.  Since rol belong to the transversal intersection of W'(01) with 

W"(02), we can define the separatrix contour s = O1 U O2 U F ~ U r0i, which satisfies all initial conditions A-  

C. Hence, the neighborhood/g(s  C / g ( s  also contains the countable set {r~i} of "two-circuit ~ heteroclinic 

orbits F~ belonging to the transversal intersection of W'(Oa) with W"(02). Every one of these orbits has, in 
the neighborhood of F ~ two disconnected components intercepted by the secants S01 and S02. Reasoning by 
induction, we obtain the existence of a countable set {FJ' } of heteroclinic orbits F j~ E W'(O 0 f3 W"(02) of 
any number of circuits k. In addition, the validity of the following s ta tement  can be established in the same 
way. 

Systems, that  have a structurally unstable heteroclinic orbit P j~ of any number  of circuits along which 
W~(O~) touches W"(02) are everywhere dense in H02. 
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4. Bifurcations of Homoclinic  Orbits  

Lernma 4.1. In the plane of parameters # = (g1,#2), there ezists a bifurcation curve 11 (12) such that for 
g E It (g E 12) there ezists a one-circuit separatriz loop FI (F2) of the saddle-focus 01 (0~). Every one of 
these curves is shaped as a spiral that twists to the point (0, 0). 

Proof. It is obvious that the existence of the loop of the saddle-focus O1 (O2) is equivalent to the fact that 
T-Xw2(O0 (Tlwx(02)) passes through the origin on the secant S[ (S ~ (recall that the point (0,0) on S ~ Con 
S ~ is the first intersectionpoint of F1 with S O (F2 with S~ By virtue of (2.15), the first point of intersection 
of Fx with S ~ has Cartesian coordinates (g~,/J2) and the equation of w2(O1) is defined by the first relation 
of (2.13) for ~1 = 0. Therefore, replacing ~2 in the first relation of (2.13) by its expression from the second 

relation of (2.13) and substituting ~x = 0, gx = P, cos r #~ = p~, sin r where p~, = ~ + #22, and then solving 

the resulting equation for p~, we get the parametric representation of the bifurcation curve l~ in the form 

11: p~, = c02e-'~r + R2(r r ~ (2rrN, cr (4.1) 

where, by virtue of (2.14), 

IR(r + IdR~ldr + Id2R21dr <_ Me -('-')~1"~. 
Similarly, the equation of the bifurcation curve 12 is defined by the relation 

12: p, = cole-~('+~(1 + Rl(~a))" X/,X 2 cos2~ + l/A2 sin 2 ~, 

where 

(4.2) 

(4.3) 

E (27rN, co), IR1(~)I + IdR,/d~l + Id2R1/d~21 < Me -(x-`}~. (4.4) 

We have proved the lemma. 

Theorem 4.1. For every'two-parameter family X~(z), Xo(z) e H ~ there ezists, in the plane of parameters 
#, a countable set {/~k} of points #k, for each of which the dynamical system in 11(s simultaneously has a 
homoclinic orbit of the saddle-focus Ox and a homoclinic orbit of the saddle-focus 02. In this case, when 
Xo(x) E H ~ at each point it k the curves Ix and 12 are in the 9eneral position, whereas when Xo(x) E H ~ there 
ezists, for any family X , ( z ) ,  an arbitrarily close X ' ( z )  for which there ezists a point f~ E I1 f312 corresponding 

to the tangency of the curves 11 and 12. 

Proof. The simultaneous existence of homoclinic orbits of the saddle-foci O1 and 02 means that the curves 11 
and 12 have the points #k in common. Obviously, for each of these points the right-hand sides of expressions 
(4.1) and (4.3) must assume the same values. Since we obtain (4.3) using transformation (2.17), each of the 
valu~ ~ e [2~n, 2,~(n + 1)) and r e [l~m, 2~(m + 1)) is connected by the relation AZ2cot ~ = cot r or, if we 
set r = 2rrrn + 0, by the relation 

{ arccot(A-2cot ~), if ~ E [2rrn,2~r(n + 1/2)), (4.5) 
0 = arccot(A-2cot~) + r, if ~o E [2r(n + 1/2),2r(n + 1). 

Equating the right-hand sides of relations (4.1) and (4.3) and considering ~ modulo 2rn, we get an equation 
for 0: 

~2e-~C,--+.-oco, CZoot~W~(1 + h2Cm, O)), 
(4.6) 

4,e-'('"+'))/~' (1 + kx(n,O)). ~/~ cos2 0 + 1/~2 sin~ O, 

where ~x = col e-~''~/'~, Rx(n, 0) = Rl(rrn+O), k~(m, O) = R2(rm+arccot(A-'cot 0)). After taking logarithms 
of both sides of relation (4.6), we get an equation that has the form (3.3), where the expression for f(O) differs 
from the principal term in (3.4) by quantities of order e -('~-')~'q'~ , e -('2-~)"q"n. Repeating verbatim all 
arguments that we used when proving Lemma 1, we arrive at the statement of the theorem. 
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