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1. Introduction

Let X and Y be Banach spaces and let ' be a nonlinear mapping of some
open subset £2 of X into Y. Let F have a continuous Fréchet second derivative
on £2,, the closure of an open convex subset of £. When I'(x)=[F'(x)]™ exists
for every x in £,, NEwToON’S method for finding an approximation to a root
of F is

X1 =2%, —'(x,)F(x,), n=0,1,...,

where x, is prechosen. We will not assume the existence of I'(x). The purpose
of this paper is to study Newton-like methods of the form

x”+1=x"mM(xn)F(xn)’ ”zor 1) ey

where x, is prechosen and M is some, not necessarily continuous, correspondence
between {2, and L(Y, X). For a practical problem, such as the simultaneous
solution of nonlinear equations, NEwTON’s method is usually absurd because of
the relative impossibility of doing the calculations necessary to find x,,,, exactly.
Any number of expediencies suggest themselves, such as the use of a matrix
of difference approximations in place of the Jacobian matrix. Some very ingenious
algorithms for the solution of this problem are given by BROYDEN [6] and BRowN
and ConTE [7]. All the methods suggested there are of the type listed above.
These two papers abound with excellent numerical examples illustrating the
imminent practicality of these methods. Many authors have studied methods
of this type. Among them [8] and [11] study the method as stated here and the
bibliography is composed of references in which some variant of this method
is studied. Many more could be listed.

In [8], the author, by this approach, obtained a generalization of a theorem
due to MysovskiH [12] on the convergence of NEWTON's method and a con-
vergence theorem for Newton-like methods. This latter theorem yielded only
linear convergence. Here we present sufficient conditions on M {x) for the sequence
of error bounds of the iteration to be of order p, 15p=<2.

2. Results
It is convenient to assume that the reader is familiar with the basic facts
concerning L{X, Y}, the bounded linear operators from X into Y, B{X,Y),
the bounded bilinear operators from X into Y, and the Taylor series expansion
in terms of the Fréchet derivatives. (See [8, 12].) N(x, r) will denote the open
ball centered at x with radius 7. ¢l N(x, ») will be its closure.
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The following theorem strengthens a theorem in [9].
Theorem 1. Let the following conditions be satisfied:
(1) For every xef2,, M(x) exists in L(Y, X) and |M(x)| < B.
(2) For every xe£,, |F"(x)| =K.

(3) O0<|F(x,)| =, for some x,cQ.

(4) For every xe£2y, |[I —F'(x) M(x)| <0 <1.

(
(

5) b= s <2.

)
) h= 1—6
6) N(xg,7)8,, where szl_;{}—gand o =3-+ {1 ——6)% .

Then F has a zero o, |o —x,]<7, to which %, ,=x, —M(x,) F(x,), n=

0,1, ... converges and the speed of convergence is given by
Brna®
% —ol <55
Proof. Set
B2Ky
No="n, hy=h, %o=0, N1 =0, hy=""7— 5” =y1%y—1s
and
1— 8}k
o, = §+ L“_éM)HJ‘— .

Notice that «, is a convex combination of 1 and 4,2 and is therefore strictly
between zero and one unless x,=¢. We will then take 1>a,>0.

Now 7> Bny= [M (%) |[F(%0)] = lx; — %]} @and so x,€ N(x,, 7). Furthermore,

F(sg) +F () (5 — %) + f F/(x) (1 — %, ) dx

sl =
< F(rg) 4 F(x0) (— M) Fleg)] - 227
< [ —F () M{s)) %n+3“°
<ont 2 Kr]o (6+ (1 wé)ho)%_%%__171

Assume, by way of induction, that |x, —%,| <7 and ;= |F(x,)| for every &
and 7 such that 1= k<n and 1<=5j<n.

Exactly as for #» =1, one obtains that

[ = 8y + L =y =,
and so
"xn+1 _“xn" = B"?n'
Now
NP UNSEL LS
Hence

_ = i+1
ap <o and so 743 =7;%; =Ny %1% <A To-
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We complete the induction by noting that x, . ,€N{x,, 7) since,
1—ofti

kLl "
1 — %o = ZB??§< By Zoc’ =B, —
0 0

{x,> is a Cauchy sequence since,

k+m—1 k+m~1. k+m—1 . kB—1 ;
o m— 2l < ZkBm< B, Z;aa’*Bno( REED) oc’)
1= $=

<.

— g

—B [1*“5+”’_1-—u’3+l
Mol 1o, T—ay
k¢t m
— %o (Ol —OC) .
= By 1_‘_’_% ¥.———0, independant of m.

X is a Banach space, hence complete in the norm topology and so {x,) has
a limit point o.

O o0 ) n
lew—ol < B X< Bmy 20 =Bny ', forany mzo.
w ”

When #=0, this reduces to |x, —o| <7.
We finish the proof by noting that
IFx) £ 0, <mee” ——=0, and |F(x,)|——= |F(o)|.

H—> OO n—>00

Condition (4) is excessively restrictive. The following is an easy corollary to
the proof of Theorem 1.

Corollary 1.1. Let (1), (2), (3), (5) and (6) of Theorem 1 hold but in place
of (4) require only that

4.1) for every # such that x,,,=x, —M(x,)F(x,) is defined,
y +1
I —F'(x,) M(x,)]|<d6<1.

Under these assumptions, the conclusions of the previous theorem hold.

Remark. Corollary 2 might be useful in an a posteriori error estimate since
the § in (4.1) might then be much smaller and easier to estimate than the é in (4).

One of the defects of this theorem is that, although for M(x)=[F'(x)]™ this
is a convergence theorem for NEwToN’s method, the error bounds only enjoy
linear convergence. This is to be expected, however, since under some conditions,
one can satisfy the hypotheses on M (x) with a linear operator J” which is inde-
pendent of x and so the iteration method itself may be linearly convergent.
See [9] for theorerns of this type. Theorem 2 will remedy this defect, but first we
paraphrase a definition from [15].

Definition 1. Let {x,> be a sequence in X which converges to an element x*
of X. If there is a positive real number p and a nonzero constant C such that

¥ +1— 2%
”x"——x*“P 1o 0O

C;

then p is called the order of the sequence and C is called the asymptotic error
constant.
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When we speak of the order of an iteration method, we will always mean
the order of the convergent iteration sequence under consideration which was
generated by that method. We will usually speak of the order of the sequence
of error bounds. Then, of course, X will be the real numbers and x* will be zero.

Theorem 2. Let (1), (2) and (3) of Theorem 1 hold and in addition let the
following conditions be satisfied:

4.2) 8(xo) <1, where &(x)=|I—F'(x) M(x)].

Let pc(1, 2] and assume, as long as x,.,=x, —M(x,) F(x,) is defined, that

(5.2) p— B

16<2

62) ry=By(1+ 2, a=8,+(1—0)h2, and N(xp )2y
1

Under these hypotheses, the sequence <x,,) is defined and each |jx, — %[ <<7,.
Furthermore (%, converges to € N{x,, 7y}, F(o)=0 and
211

ﬂx "'GH<B’? =TT

Proof. Since this proof is similiar to the proof of Theorem 1, we will leave
out some details. Set
B2K 1, b

Ne =1, h’0:h! o =0, Np=0, _17My—1, hn:W’anzéft+(1—6n)7'

Exactly as in Theorem 1 one can show |F(x,)| <7,_,2,_1=1,, under the hypo-
thesis that x,c¢£2,, k=#n. Now

1— 3, B2Ky, PR T
°‘n=5n+(——2) =5 0, +Ai‘—5 _;._(__rv_l)zn 1%
b,y Uledbemtnns 5 gomny (e bl
- n—lag—i “p 1

Hence o, << af". We will show by induction that

f--1

[l < o271 for n=1.
)
Equality for » =1 is obvious. Suppose now that

[]of < o=

=0

Then
k—t—l Ld 1 . rd r3 k+1
I] agizagki-ln t <o{pk+ 29 1 p+2)p ——léagpp Ml:—-“a%p +1..1
=0 1=0

Since 1< p=<2.

We see now that
n—1 #n-—1

2pn—l.~i
N =Nn—1%p—1 = Np—2 %y 20(11—1'_7701] x*; <770Hap = OP 4 71’21'

23*
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Hence |x; — x| < Bny<<7, and

%0 — n+1H§BZ ??k<B??(1+ZGE§f’k_I“1) <74.

m4-k—1 2 1 k-1 1
o e
Poss—5al S B 2 i< By 3 a1 = By S o o,
Thus (x,) is a Cauchy sequence and so we can choose some element ¢ to which
{%, > converges.

Now [x,—o|< B Z n;< Bny ( +2 azi""l“l) =7,. In general, for n=1,
1

- - o e 1 B g2pn—1..1
ﬂxn—o'u<Bn§oc2f’” 1< Bpa?t! 1201“2?” Mo = —1‘7%,;:‘1“@?:1)

The last inequality is termwise since

§31
a2pﬁ—1~1+2pn~1(p——1)-j > aﬁp"—l‘1+2pn_1(f)‘l) %P‘> o 31’”_1—14'21’”_1(?"—1) - agpn—i—}—l_l.
F(@)=0 since [F(o)|=1lim|F(x,)|< Blimy,< Bylime**"'~1=0.
” n n

The proof of this theorem yields the following easy corollary.

x
Remark. We could have set 7,—= Y a?*~*By, which is larger.
0

Corollary 2.1. Let all the hypotheses of Theorem 2 hold except (4.2). In the
notation of the proof of Theorem 2 let (4.3) 8,,1=<6,0~", for those values of #
for which x,  ==x, —M{x,)F(x,) is defined.

Under these assumptions, the conclusions of Theorem 2 hold.

Remark. As we remarked after Corollary 1.1, Corollary 2.1 may be useful for
a posteriors error estimates, since we may then be able to satisfy (4.3) with a
larger $ than (4.2).

It is perhaps worth noting that if M(x,)=2M, independent of %, and satisfies
the hypothesis 4.2, then F'(o) M =1.

Corollary 2.2. Under the hypotheses of Theorem 2 or Corollary 2.4 the sequence
of error bounds of the iteration method x, ,=x,—M(x,)F(x,) is of order 2.
o2pn1-1
1 —alp-D 2
bppy | [1—ap—D2%lp 29
bE T 1—ab-DE B

Proof. Set b,= By

“(Bp)'Tt —> o7t (By)'?

Example. Because <b,> is order p, it does not follow that the true error
sequence {e,> is of order p. If K is a positive number and K#ne,=b,, then

bntr ___ bniy | EPwP : ;
@ = Kmti) & which divergesfor p>1.
If b,/e, converges to some finite limit, say L, then L=1 and
fpt1 _ fnt1 bpyy .ég 1
eh bpry BB e n—oo

times the asymptotic error bound on {b,>.
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It might be said that Corollary 2.2 ensures that the iteration method of
Theorem 2 is of quasi-order p. The two types of order are, by the remark above,
equivalent when (b,/e,> has a finite limit.

When we let M (x)==I5(x), a right inverse for F'(x), we obtain a strengthened
version of a theorem due to MYsovsKiH on the convergence of NEWTON’S method.
We call the method «x,,,=1x, —Ix{%,)F(x,) NEWION'Ss method even though the
name should perhaps be reserved for the case when M{(x,)F’'(x,)=1, since in
that case the method is easily shown to be of order 2.

The method considered here has a computational advantage, however, since
when x,,,=x, —I%(%,) F(x,) is defined, properties of the right inverse make it
equivalent to the iteration F'(x,) (%, .., —%,) =F(x,).

Corollary 2.3, Let (1), (2), {3) hold and assume that I, (x) exists on £2,, with
|1 (#)] < B, uniformly on £2,. Assume also:

(5.3) h=BjKn<2,

(6.3) ry=Byn > [3] ' and N(xg,75) (8.
(1]

Under these hypotheses, NEwToN’s method, with initial point x,, defines a
sequence {x,> which converges to g, a root of F. |0 — xy| <7; and
Ei

2
lo =] < Bim 17

-

Proof. I'z (%) clearly satisfies (4.2) with §(x) =0 and p==2 so the result follows
from Theorem 2.

Condition (4) is sufficient to ensure the existence of I;(x), but we must
augment conditions (5) and (6) to ensure that conditions (5.3) and (6.3) are met.

Theorem 3. Let conditions (1), (2), (3), (4) hold and in addition assume the
following:

BK
(5.4) b == Ti’:zgng < 2.
By a]hit-
(6.4) ro= s H and  N(xg, 7) € 2.
1]

Under these hypotheses Ip{x) exists and NEwToN's method, with initial
point x,, defines a sequence of elements of N(x,, #,} that converges to o a root
of F. o —x,| =7, and 5 ]2,,_1

Bin [5
1— 0 1_[]1]2"'

"0’—an< 2

2

Proof. |I —F'(x) M(x)| <6 <1 and so, by a well-known theorem [12, p. 171]
[F'(x) M(x)]™ exists with norm not more than 1/(1— ). Hence

Ty (%) =M (%) [F'(x) M (%)]™

exists with norm not more than B,=B{(1—J). The result now follows from
Corollary 2.3.
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3. Concluding Remarks

In general, it seems difficult to say much regarding the uniqueness of the
root ¢ that our theorems ensure. If M(s) has the property that it is almost a
left inverse for F’(0), i.e., |[I —M (o) F'(0)| <1, then, we can show that ¢ is unique
in the largest set that is star-like with respect to ¢ and on which F' is continuous
and |[I —M(o)F'(x)|<1. Here, we mean that a set S is star-like with respect
to o, if for every p¢S the segment joining p and ¢ is contained in S. BRowN
and ConTE {7] have a numerical example in which NEwToN’s method and a
method of the type proposed here converge to different roots from the same
initial estimate.

The author wishes to thank Professor KENNETH M. BRowN of the Cornell Uni-
versity Department of Computer Science for pointing out an error in the original
statement of Corollary 2.2, as well as other helpful comments.
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