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1. Introduction 

Let X and Y be Banach spaces and let F be a nonlinear mapping of some 
open subset Q of X into Y. Let F have a continuous Frfchet  second derivative 
on D o, the closure of an open convex subset of [J. When F(x) = [/7'(x)]-I exists 
for every x in Do, NEWTON'S method for finding an approximation to a root 
of F is 

. . + l = . . - v ( x . ) F ( x . ) ,  n = o ,  . . . . .  

where x 0 is prechosen. We will not assume the existence of I'(x). Tile purpose 
of this paper  is to s tudy Newtonqike methods of tile form 

x~+x=x,--M(x,)F(xn), n = 0 ,  t . . . . .  

where x 0 is prechosen and M is some, not necessarily continuous, correspondence 
between /2 o and L(Y, X). For a practical problem, such as the simultaneous 
solution of nonlinear equations, NEWTON'S method is usually absurd because of 
the relative impossibility of doing the calculations necessary to find x,+ 1 exactly. 
Any number of expediencies suggest themselves, such as the use of a matr ix  
of difference approximations in place of the Jacobian matrix. Some very ingenious 
algorithms for the solution of this problem are given by  BROYDEN [61 and BROWN 
and CONTE [7]. All the methods suggested there are of the type listed above. 
These two papers abound with excellent numerical examples illustrating the 
imminent practicality of these methods. Many authors have studied methods 
of this type. Among them [8] and [ t t ]  s tudy the method as stated here and the 
bibliography is composed of references in which some variant  of this method 
is studied. Many more could be listed. 

In  [8], the author, by  this approach, obtained a generalization of a theorem 
due to MYSOVSKIH [t2] on the convergence of NEWTON'S method and a con- 
vergence theorem for Newton-like methods. This latter theorem yielded only 
linear convergence. Here we present sufficient conditions on M(x) for the sequence 
of error bounds of the iteration to be of order p, 1 <=p<= 2. 

2. Results 

I t  is convenient to assume that  the reader is familiar with the basic facts 
concerning L(X, Y), the bounded linear operators from X into Y, B(X, Y), 
the bounded bilinear operators from X into Y, and the Taylor  series expansion 
in terms of the Fr6chet derivatives. (See [8, t2].) N(x, r) will denote the open 
ball centered at  x with radius r. cl N(x, r) will be its closure. 
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The  following theorem s t rengthens  a theorem in [9]. 

Theorem I.  Le t  the  following conditions be satisfied: 

(t) For  every  x~Q o, M(x) exists  in L(Y,  X) and IIM(x)II~B. 

(2) For  every  x~Q0, ][F"(x)H < K .  

(3) 0<  IIF(xo)lI ~n ,  for some Xo6~2. 

(4) For  every  x~ '2  o, [I I - F ' ( x ) M ( x ) [ ]  ~ ~ < t. 
B2K *I 

(5) h =  1--(5 < 2 .  

(6) N(xo,r)CY2 o, w h e r e r = B ~ a n d  ~ : 6 + ( t - - 6 ) ~ .  

Then  F has  a zero a, i i ~ - ~ o i l < ~ ,  to which 
o, t . . . .  converges and  the speed of convergence is 

II xo-,, l l  - i=~~'  

x,~+~=x,~ --M(x~) F(x~), n --- 
given b y  

Proo]. Set 
B2K ~n 

~ / o : ~ ,  ho=h,  ~ o : ~ ,  ~ + 1 = ~ ,  h~-- ~ :h~_lo~n_ ~, 

and 
(1 - -  ~) h,, 

Notice t ha t  ~ is a convex  combinat ion  of t and h,,/2 and  is therefore str ict ly 
between zero and  one unless x~----a. We will then take  t > ~ >  0. 

Now , >  Bno~ IIM(~o)ll IIF(xo)ll--> Ilx~- xoll and so xl~N(xo, r). Fur thermore ,  

f (xo) F~" dx llV(xl)tl- + F ' ( x o )  ( x  I - Xo) +dFtt(x) (x  1 - -  x ,  .) 

x0 
B ~ K ff] 

If(Xo) +F'(~o) (--M(~o) F(~o))II + 2 
B2 K ~fo IU-F'(Xo) M(xo)] (F(xo))ll + 2 

B~K~o ~ (a + (~-~) ho) ~o = ~ono = ~ "  0~o + 2 - -  

Assume,  b y  way  of induction,  t ha t  ]Ix k --%][ < r  and ~/i~ IIv<~;)tl for every  k 
and  ~" such t ha t  l ~ k < _ n  and l = < i < n .  

E x a c t l y  as for n = t ,  one obta ins  t ha t  

B~ K ~TZn_I 

and so 

Now 

Hence  

23 

- -  0Cr.- - l~r . , - -  1 = ' Y / n  

IIx~+~-x~ll ~ B ~ .  

~ ,  = 6 + (1 - 6) h ,  (1 - -  6) h k - ,  

~, < ~o and so ~/j+l----~Ti~j = r / i - l ° c i -x~ i<°d+xr /o  - 
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We complete the induction by  noting that  x~+lEN(xo, r) since, 

2 ° lix,+1-x011~- B~j< B~o~¢=B~o'-~+11_~ - < r "  
o 0 

(x~) is a Cauchy sequence since, 

k+m--1  k+m--1  / k + m - - 1  k--1 \ 

i=k  i=k  

= B,7o [ , -  ~o~+" , ->o~+? 1 
t - a 0  j 

= Br/o  c*o ~ ( - ~ - - ~ o )  1 ---o k--,oo> 0, independant of m. 

X is a Banach space, hence complete in the norm topology and so ( x , )  has 
a limit point a. 

g~ oo 
l lx~-- , l l~_BLn,<BnoL='o=B~0 =a forany ~>--0. 

n n '1 - -  oc o - -  

When n =  0, this reduces to Ilxo-~[I < r. 

We finish the proof by  noting that  

IIF(x0ti_-<~<Wo~" ~_~' o, and t lV(x . ) l )~  tlF(~)lt. 

Condition (4) is excessively restrictive. The following is an easy corollary to 
the proof of Theorem a. 

Corollary 1.1. Let  (a), (2), (3), (5) and (6) of Theorem a hold but in place 
of (4) require only that  

(4A) for every n such that  x,~+l=x,~--M(x,,)F(xn) is defined, 

Itz-F'(x.) m(x,,)t  [ <,~ < a.  

Under these assumptions, the conclusions of the previous theorem hold. 

Remark. Corollary 2 might be useful in an a posteriori error estimate since 
the ~ in (4.1) might then be much smaller and easier to estimate than the b in (4). 

One of the defects of this theorem is that,  although for M(x)= ~F'(x)~ -I this 
is a convergence theorem for NEWTON'S method, the error bounds only enjoy 
linear convergence. This is to be expected, however, since under some conditions, 
one can satisfy the hypotheses on M(x) with a linear o p e r a t o r / '  which is inde- 
pendent of x and so the iteration method itself may  be linearly convergent. 
See [9] for theorems of this type. Theorem 2 will remedy this defect, but  first we 
paraphrase a definition from [15]. 

Definition 1. Let (x~) be a sequence in X which converges to an element x* 
of X. If there is a positive real number p and a nonzero constant C such that  

then p is called the order of the sequence and C is called the asymptotic  error 
constant.  
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When we speak of the order of an iteration method,  we will always mean 
the order of the convergent  i teration sequence under  consideration which was 
generated b y  tha t  method.  We will usually speak of the order of the sequence 
of error bounds. Then,  of course, X will be the real numbers  and x* will be zero. 

Theorem 2. Let  (1), (2) and (3) of Theorem t hold and in addition let the 
following conditions be satisfied: 

(4.2) (~(x0) < I ,  where b(x) ----[[I--F ' (x)M(x)[  I. 
Let  p c ( t ,  2] and assume, as long as x ,+ l=x , - -M(x , )F(xn)  is defined, tha t  

B~K~ 
(5.2) h = ~ = ~  < 2.  

(6.2) r~=B~  t + . ~ , e  ~p~-1-1, e = d o + ( t - - d o ) h / 2 ,  and N(xo, r2) (D o. 
I 

Under these hypotheses, tile sequence (x.> is defined and each Hx. --Xoll < r~. 
Furthermore (x,~) converges to a~N(x o, r~), F ( a ) =  0 and 

~2p--1--1 

Pro@ Since this proof is similiar to the proof of Theorem ], we will leave 
out  some details. Set 

Ba K ~ln hn 
~ o ~ ,  ho=h,  °~o----~, ~/,~=°t--1~7~-1, h . =  ~ - - ~  , 0 % = ~ , ~ + ( 1 - - ~ . ) ~ - .  

Exac t ly  as in Theorem t one can show ][F(x.)][ ~ . _ ~ , , _ x : B ~ ,  under  the hypo- 
thesis tha t  xkcE2 o, k ~ n .  Now 

B2K~n (1 - -  6n-x) hn- 1 c%... 1 ~. = 6. + (~ - ~") h. _ ~. + _ ~. + .. _ 
2 2 2 

= (~n-1 6n-lP-1 + (~1 --(~.--1)2hn--10~n--1 < O._lO~n_ lp-1 _~ (I - - (~- - l )2h- - I  O~p-ll 

= ~ . - Y . : I  =~-~. 
Hence ~ <  ~o ~". We will show by  induct ion tha t  

[Io~o'<O~p"-~-I for n > ~ .  
i=O 

Equal i ty  for n : t is obvious. Suppose now that  

k 
H ~0 '-<- ~ F  -~. 
i=0 

Then 
k+l  k 

_2pk+l--t 

Since ~ < p ~< 2. 

We see now tha t  
n--1 n--1 

~n = 7In--1 0On--1 = ?In--20¢n--20(n--1 = ?~0 H 0~i < ~0 H 0~0P' <~ ?]00¢~ p"- I -1 ,  ,b ~ ] .  
i=0 i--0 

23* 
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Hence ]Ix1 --  xoll B o< r~ and 

0 1 
m+h- - I  ra+k--I  ~- -1  

- ~ 2 p r ~ + t - 1  

~ 0 

Thus <x.) is a Cauchy sequence and so we can choose some element a to which 
(x.> converges. 

Now ~ ' - 1 - 1  =r~ .  In general, for n=>l, 
o 

llx, _ a l l <  B~t E o~2p,-l_l < B~lo~,t~-l_l Z ot~l,,,-l(t,_l)i B~lo: ~p'-1-1 
- -  1 - -  ~ p ~ , - l ( p - 1 )  • n o 

The last inequality is termwise since 

~,p.-1--1+2pvt-l(p--1).~-~.~ ¢A02 t~-1-- 1+ 2 P"-I {P-- 1)~t~lP ' - 0  .~ O~ ~Pn-I - - I+2Pn-I (Pt - -1 ) :~  p'*+1-1-1. 

F(a) = 0 since IIF(~)II = lira [IF(x-)ll --< B lim ~/, =< B ~/lim a '  t"- '-~ = 0. 

The proof of this theorem yields the following easy corollary. 

Remark. We could have set r , =  ~. ~P*-IB~/, which is larger. 
0 

Corollary 2.1. Let all the hypotheses of Theorem 2 hold except (4.2). In the 
p--1 notation of the proof of Theorem 2 let (4.3) ( ~ n + l ~ ( ~ . a n  , for those values of n 

for which x,~+ 1 = x,~ --  M(x,)  F(x,) is defined. 
Under these assumptions, the conclusions of Theorem 2 hold. 

Remark. As we remarked after Corollary 1.t, Corollary 2.t may be useful for 
a posteriori error estimates, since we may  then be able to satisfy (4.3) with a 
larger p than (4.2). 

I t  is perhaps worth noting that  if M(x,~)=M, independent of n, and satisfies 
the hypothesis 4.2, then F ' ( a ) M = I .  

Corollary 2.2. Under the hypotheses of Theorem 2 or Corollary 2.t the sequence 
of error bounds of the iteration method x ,+ l=x , - -M(x , )F (x ,~  ) is of order p. 

O~ 2 p n - 1  - -  1 

Proo/. Set b , = B ~  ~_~(~-~)*t~-~" 

bn+x [1 - -  0¢ (:0-1) 21t"-1] p ~$p"--I 
b.~ --  ,_~ l~-~l**-  ~ , - - ,  (B~) 1-~ . - . o g  ~ - I ( B ~ ) , - ~ .  

Example. Because (b.> is order p, it does not follow that  the true error 
sequence <e.) is of order p. If K is a positive number and Kne, ,=  b,~, then 

en+ x b . +  x KPnP 
#. --  K (n+t)  " b--~ ' which diverges for p :> t .  

If b,de,, converges to some finite limit, say L, then L ~ t and 

e~+ L __ en+x b n + l  bP > L p _  t 
~.~ ~.+, ~ e.~ .- .oo 

times the asymptotic error bound on <b.}. 
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I t  might  be said tha t  Corollary 2.2 ensures tha t  the i teration method  of 
Theorem 2 is of quasi-order p. The two types  of order are, by  the remark above, 
equivalent  when (b~/e~) has a finite limit. 

When we let M(x)=F R (x), a r ight  inverse for F'(x), we obtain a s t rengthened 
version of a theorem due to MYSO¥SKIH on the convergence of NEWTON'S method.  
We call the method x~+x=x ~ --FR(x,)F(x,~ ) NEWTON'S method  even though  the 
name should perhaps be reserved for the case when M(x~)F'(x~)=I, since in 
t h a t  case the method  is easily shown to be of order 2. 

The method considered here has a computa t ional  advantage,  however, since 
when x , + l =  x~--FR(x~)F(x~) is defined, properties of the right inverse make it 
equivalent  to the i teration F'(x~)(x,+ 1 - -x~)=F(x~) .  

Corollary 2.3. Let  (t), (2), (3) hold and assume tha t  ]'R(x) exists on £2 0, with 
HFR (x)]] ~ B 1 uniformly on Q0- Assume also: 

(5.3) h = B~K~ 1 < 2, 
oo FL3 

Under  these hypotheses,  NEWTON'S method,  with initial point  x o, defines a 
sequence (x~} which converges to a, a root  of F .  li -x0it < r3 and 

lla - x lt < 

Pro@ F R (x) clearly satisfies (4.2) with d (x) ~ 0 and p---- 2 so the result follows 
from Theorem 2. 

Condition (4) is sufficient to ensure the existence of I~(x), but  we must  
augment  conditions (5) and (6) to ensure tha t  conditions (5.3) and (6.3) are met.  

Theorem 3. Let conditions (t), (2), (3), (4) hold and in addit ion assume the 
following: 

B~K~ 
(5.4) h - -  ( ~ S ~ i  < 2. 

B~ 2 [ ~ ]  gk-1 and  N(x o, r4)(Qo. (6.4) r4 = t -- ~ o 

Under  these hypotheses I'R(x ) exists and  NEWTON'S method,  with initial 
point  x o, defines a sequence of elements of N(x o, r4) tha t  converges to a a root  
of  F .  a n d  

1--~ t - • 

Pro@ [II--F'(x)M(x)[I < a  < t  and so, by  a well-known theorem [12, p. t 7 t ]  
[F'(x)M(x)] -1 exists with norm not  more than  t / ( t - - ~ ) .  Hence 

F R (x) = M(x) [F'(x) M(x)]-I 

exists with norm not  more than  B~=B](t--¢9). The result now follows from 
Corollary 2.3. 
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3. Concluding Remarks  

In  general, i t  seems difficult  to say much  regarding the uniqueness of the 

root  a t ha t  our theorems ensure. If M(a) has the p roper ty  tha t  i t  is a lmost  a 

left  inverse for F'(a), i.e., III -- M(a)F'  (a) l[ < 1, then,  we can show tha t  a is un ique  
in the largest  set t ha t  is s tar- l ike wi th  respect  to a and on which F' is cont inuous  
and []I--M(a)F'(x)II< 1. Here,  we mean  tha t  a set S is star-like wi th  respect  

to a, if for every  p c S  the  segment  joining p and a is contained in S. BROWN 

and COMTE [7] have  a numerica l  example  in which NEWTON'S me thod  and a 
m e t h o d  of the type  proposed here converge to different roots f rom the same 

init ial  est imate.  

The author wishes to thank Professor KENNETH M. BROWN of the Cornell Uni- 
versity Department  of Computer Science for pointing out an error in the original 
s tatement of Corollary 2.2, as well as other helpful comments. 
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