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Introduction 

In [ t l ,  13, t4] we have developed the general theory of the iterated deferred 
corrections method (IDC), an extension of Fox ' s  difference correction method. 

In this paper we intend to clarify and illustrate some of the numerical problems 
that  appear when this method is applied in practice. We will deal with nonlinear 
boundary value problems for ordinary differential equations, both with two-point 
and periodic boundary conditions. 

We will not insist on the precise conditions under which the method is valid 
(besides smothness of the data, which can readily be checked), since the research 
on this mat ter  is still in a lively and changing stage as it is shown by the variety 
of existence theorems with different sets of sufficient conditions, which in general 
are either too stringent or too difficult to verify (cf. I2, 7, t0], and references 
therein). 

Let us say that  generally, conditions which are sufficient for the convergence 
of the basic method are also sufficient to ensure the asymptotic improvement 
expected from the IDC method (cf. Ett]). 

We will then concentrate our efforts on explaining how to automate the con- 
struction of the correction terms needed in IDC, and in general on how to imple- 
ment the whole procedure on a digital computer. We hope that  this detailed 
presentation will be of help in the design of programs for other applications of 
the IDC procedure. 

§ 1. The Continuous Problem and its Discretization 

We wilt treat  first the case of two-point boundary conditions, i.e., 

y "  = I(x ,  y,  y ' ) ,  ( t . t )  
y(a)  = O, y(b) = O, 

where / (x ,  y,  z) E C°°([a, b] x R*). 

Non-homogeneous boundary conditions can be reduced to (i . t)  by  a simple 
change of variables. As it  is clear from It t] the smoothness requirement can be 
weakened by  asking / to be in C M for a large M;  this will just complicate the 
technical details without adding any real insight into the problem. 
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Under these hypotheses, if a solution exists it must belong to C°°[a, b]. Let 
us then take D the Banach space of twice continuously differentiable functions 
on [a, b] which satisfy homogeneous boundary conditions and with the norm 

III viii = max (max I vIx)l, ~ max J¢Ix)l)  \xe[a, b] ¢ xE[a, b]' 

The operator F(y) ~ y " - - / ( x ,  y, y') will map D into E ~ C~a, hi. Let us sub- 
divide the interval [a, b] into n equal parts by defining x~----a+ih (i=O, t . . . . .  n; 
h =  (b --  a)ln). 

Let D h be the (n --1)-dimensional linear space of (n + 1)-component vectors V 
with V o = V. = 0, and let E h = R._  1. In D h we consider the norm 

H] VHl --- max ( max tVil, b--a max [V~+I--Vi-I[)' 
\i=l,. . . ,  n- - l '  ' 4 i=l,...,n--1 2h  

and in E h just the maximum norm (11"1[)" 
Now we can define for every rED, wEE the discretization mappings 

~ ~ = {, (~,)},=o,...,,, ~ w  = {w (~,)},=1,...,,-1. 

Finally we introduce the discretized version of F(y)----0: 

[ ~  (Y)]~ = h-~(-  Y~_~ + 2~ - Y~+l) + / (x~, Y. Yi+1~Yi-i_~ 
2h / '  (I .2) 

6 = 1  . . . . .  n - O ,  
which is defined for every Y c Dh. 

For any u~Coo[a, b] ( E  we have the following asymptotic expansion (easily 
obtained by TAYLOR'S formula) 

Ch (qJh u) = q~ F(u) + ~, h 2j - ~ - -  u <~j+~) + g,j  u, u (s), 
j=l (2j+2)! . . . .  ~,4/]] (t.3) 

+ 0  (h~N+l), 
where the functions gsi can be obtained by  reordering 

N , l ~v/ [ ~ .  hi] ]~ U{3) . [ .  U(5) . (U(8))2 ] 

~1~., -o~; t,.~= (2j+~)~ ~(,;+l)j =h , / ,  -Lr + n, It, ~ . ,  + t -  2~3., ] 
(t .4) 

h 6 [ t  u(7) u(~)u(5) . (uO))s 1 
+ L"ST-. ~ + / "  3t7! ÷ t ' " S i - 3 v ] ÷ h 8  . . . .  

I f / ( x ,  y, z) is linear in z then (1.3) can be written explicitly as 

N 

(2j  + 2 )  ! jffil 

Under additional conditions on / we can ensure the existence of a unique 
solution of # h ( Y ) = 0  (for sufficiently small h) and furthermore, if Y(h) is such 
a solution and y*  is the unique solution of (t A) then we have discrete convergence 
of order h z, i.e. 

[l[ Y(h) --  qohy*][ I = 0  (h~). (t.6) 
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For instance, a sufficient condition for (t.6) is that  ~b h be uniformly stable on 
the family of neighborhoods S~(~ohy*, ~)~{YcDh:  [llY--~hy*[[[ ~Q}, where Q 
does not depend on h; i.e.: for each V1, V~5~(q~hy*, 0) we have 

[[[V 1 -V~II[ < climb(V1) -- ~h(V~)ll, c >  0 independent of h, (1.7) 
(cf. [14]). 

§ 2. The IDC Procedure 

Under the hypotheses of §I it is known that the IDC procedure will give 
improved approximations provided that some correction terms can be constructed 
with sufficient accuracy ([14]). 

These correction terms have to approximate the most significant parts of the 
local truncation error (1.3) [or (1.5)]. We will discuss in detail the casilinear case 
(1.5) since we feel that the general cuasilinear case (1.4) cannot be automated in 
a practicable manner. However we point out that whenever the terms of the 
expansion (1.4) can be reasonably obtained there is no intrinsic difficulty in 
applying the IDC method to this more general problem. 

Let 

Fk[u]=~'h~Jj=1 - i - " ( = J + ~ l + l ~  ( 2 j + ~ ) !  " 

If we evaluate F k for y* instead of u, then we can replace, by using the differ- 
ential equation, the v-th derivative of y* by the (v--2)-th totM derivative of ] 
computed at y*, y*'. In this form the k-th segment of the local truncation error 
becomes 

k 

5=i (2j+2)! (2i+1)! ' 

where /I./ dr ---- / (x, y*(x), y*'(x)). 

According to Theorem 3.3 of [t4], all what is needed is a discrete approxi- 
mation to Fk[y* ] of order h sk+s. We shall consider discrete approximations of 
the form 

$1, (9/~y*) = q)o ~ a,~ (x) /(x,~, y*(x,~), L[ghy* ] (x.,)), (2.2) 
*/=1 

where 
$ 

L[c?hy*] (x) ----h-X ~ b~,(x)y*(xt,), x,---- x +~ ,h ,  x . =  x + ~.h,  
/*=1 

and the 0%, ~. are integers. 

These discrete operators must have the property 

S~ (%~y*) -- ~o~F k (y*) ----- 0 (h'k+~), (2.3) 

dy* L[~hy*] -- -d~- = 0 (h'k). (2.3') 

First of all we point out that  since y* E C ~°, (2.3') can always be achieved by 
taking s = 2 k + t  and all the /~. distinct. The distribution of the abscissae x~ 
around x is of basic importance: more symmetric distribution implies smaller 
truncation error. 
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Once (2.3) is obtained, the method of i terated deferred corrections can be 
described. Taking S o ~ 0, any solutions of the inequalities 

~ h  (U(k}) - -  Sk (U{k-l)) = O (h i N+I ) ,  (k ---- 0 . . . . .  N) (IDC) 

satisfy 
2N 

UChl -- 9bY* = ~h ~. e,k h" + 0 (h2N+2). 
v=2k+2 

We now show how to obtain the S k with the desired property (2.3). 

Lemma 2.1. Let u (t)E C °o and let U be a discrete approximation to u (t) satis]ying 

M 
U - -  9 h u  m_ 9h ~' en (t) h n + 0 (hM+l ) ,  (2.4) 

where the e n (t) E Coo do not depend on h. 

I / M > p  + k -- t then any derivative o / u  (t) o/order ~ k can be approximated 
in terms o/ U up to order h p. 

Pro@ Let L, be a discrete operator of the form 

r+p 
L,E~h ~] (t) = X w, (t) ~ (t + ~,(t) h),  (2.5) 

i = l  

with ai (t) integers. L, maps D, into D. There always exist weights wi(t ) and 
integers xi (t) (depending on r of course) such that  

M 
h-" L, [~h u] dru -- ~, gn (t) h ~ + 0 (h M+I) (2.6) 

dt r *l=p 

(cf. [t]). Moreover, the wi(t ) are independent of h. From L, we can define a 
discrete operator mapping D h into E~, which for simplicity we also call L,, namely 

r+p 
(L,[U]) i :  ~.w,(ti) UO, where t # : t i + ~ i ( t i ) h .  

iffil 

I t  is clear that  for L,[U] to be well defined it is necessary that  all toE[a, hi. 

Since L, is linear we can apply it to (2.4) in order to obtain 

M 
h - '  {L, [ U] --  L, [~h ~]} = X h - '  L, [ ~  e~ (t)] h' + 0 (h M +1- , ) ,  

and from (2.6) we deduce that  
M 

o d 'u  h-t  L,[U] -- cph ~ i- = cp~ ~. gn(t) h n + O (hM+t-'), (2.7) 

where ~( t )  is an appropriate combination of g,(t) and d'eo(t) dt* . Therefore, if 
r < M + t - - p  the Lemma follows from (2.7). 

Lemma 2.2. Set g ( x ) = t ( x ,  y*(x), y*'(x)), and G=9ht(x, y*(x), LEghy*]) (see 
(2.2) and (2.3') for the definition of L). Let L,  be discrete operators as in Lemma 2.1 

d, 
approximating h" ~x g, (x) up to the order h 2k+~ ( r = t  . . . . .  2k). 
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Then 

~1 L,i-l(~) (2.8) k --2 L2i(G ) +hq~°l.(x.y*(x). L[%y*(x)]) ® (2j+l)! Sk(~vhY*) = = (2j+2) ! 

satisfies (2.3) (® denotes componentwise multiplication of the two vector argu- 
ments). 

Pro@ According to the remark made in Lemma 2.1 with reference to formulas 
(2.5) and (2.6), the L, exist and they all use the same number of ordinates: 2k + 2. 
In addition 

-- %g  = ¢PhL ® (L[%y*] -- dy* I G ~2-] = 0 (h"k), 

where % [, is a vector whose components a r e / ,  computed at some intermediary 
points. Using Lemma 2.t this leads to the fact that  the L,(G) have the property 

L 1 [G] -- L 1 [~0hg ] = 0 (h~k+l), 

Li[G] --L][%g] =0(h~k+~), ( 1 = 2  . . . . .  2k), 

and also that  

dy* (~)) %/~ (x, y*(x), L[%y*(x)]) -- %t,  (x, y*(x), ~ -  

%[..®(L[q)hy,(x) ] dy* (x))=O(h~k). 

From the definitions we have 

k 

Sk(%y,) - -9  o Fk i-y,] = ~ .  --2 h~ i 

h [9°/z(x,y*(x),L[q;hy*(x)])®L~i-l(G)--~°/~(x,y*,d~)h~i-lg(~i-l)]" 
+ (2j-- I) ! 

The first term of this sum is clearly 0 (h~k+2). The second term can be written as 

cp° /,(x, y*, L[%y*])  ® (L,i_~(G) --h~i-l~°g(2i-1)(x)) 

+ ~v: [/.(x, y*, L [ % y * ] ) - - / , ( x ,  y*, @x*)] ® h'J-Xg:g(Zi-')(x) 

_ i = t ,  

- [ O ( h ~ + ' ) ,  i = 2  . . . . .  k .  

Thus, since there is still a factor h multiplying this last term, it follows that  

S~ (%y*) --  ~v~F~ [3,*] = 0 (h ~h+*) 

as was to be shown. 

In view of the smoothness of all functions involved it is clear that  using 
TAYLOR'S formula the terms 0 ( . )  can be replaced by expansions in powers of h 
(probably containing all powers) up to the order 2N with a final term 0 (h~N+1). 

The numerical problem is now reduced to obtaining, for each k, the weights 
for the operators L of (2.3'), and L" of (2.8). 

9 Numer. Math., Bd, t I 
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§ 3. Computer Generation of Correction Formulae 

The problem of obtaining the weights for formulae of the form (2.8) where 
the individual operators L ~ have the form (2.5) has been studied in Et~. An ALGOL 
program for the basic routine can be found in E6~. 

Therefore our present task is to enumerate precisely the different cases tha t  
appear according to the position of the central point x, and also to describe the 
parameters  at tached to each case. 

As usual, Sk(UC~-I) ) means tha t  wherever y*(xi) appears it must  be replaced 
by  U] *-11. In  this form, Sk(U ~k-l~) is a ( n - - l ) - v e c t o r  whose components are 
linear combinations of the components of U ik-1), with weights depending on k, x i, 
and the coefficients of L~ in (2.8). More precisely, 

i+s~ 

[ s ~ ( u ( ~ - l ~ ) ] ,  = E wj_ ,+ , ,+1  v j  ~k-l~, (i = 1 . . . .  , n - 1) ,  (3.1) 
i=i--t~ 

where it is assumed tha t  the points xi_t, . . . . .  xi+,,, are mesh points in [a, b~. 

As we said above the necessary precision will be achieved if the number  of 
points t i +  s i +  1 = 2 k + 2. In  the symmetric case (s i =  t,) we only need 2 k + I 
points. For instance, the second derivative can be obtained with precision O (h 2) 
using three points if they are symmetrically distributed, but  four will be necessary 
if they are not. 

I t  is clear that  close to the boundary points it will be impossible to use sym- 
metric formulae. If we let .W k to be the set of points x 1 . . . . .  xk, and 9~ k the set 
consisting of the points x,_,+ 1 . . . . .  x,,_l, then these are precisely the sets of 
points at  which unsymmetric  formulae are necessary. We will insist in taking 
in S k (for xiE~ekw~k) all points up to the closest boundary. Thus, each of the 
formulae for points in . ~  will use as base the points x 0 . . . . .  x~k+1, while similarly 
for 9~ k we will use the points x~_2k_ 1 . . . . .  x~. 

The ALGOL program we mentioned above will produce the weights w~ (xi) in 
(3A) provided we give the following information: 

(a) N ---- s i + t~ + 1 : the number  of points; 

(b) N P = s i + 1: (integer) relative position of x i with respect to the left- 
most  base point; 

(c) B:  a N-dimensional array containing (in this case) : 

B1----- 0, 

B~ 4 = h/z (xi, Ui, (L[U])~)](2i + 1) "2j, 

B , i + l = - - l / i ' ( 2 i + l ) ,  ( i = t  . . . . .  k), 

B~k+ o = B N "~  O.  

Here it has been assumed tha t  L[U], the O(h 2k) approximation to 9hY*', was 
already available. This is of course obtained b y  a previous application of the 
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subroutine with: 

(a') N '  ---- s'i + t'i + t ; 

(b') N P '  = s~ + 1 ; 

(C') B 1 = 0 ,  

B~ = 1/h, 

B i ---- O, (~ = 2 . . . . .  N ' ) .  

The values of t~, s'i, ti, si are given in Table ]. The set 5Pk is that  at which 
symmetric  formulae can be used, i.e. ~ =  {x~+ z . . . . .  x,_k}. 

Table t 

~ek ~ ~k 

t$ i k 2 k  + i - - n  
s~ 2k --i k n --i 
t i i k 2 h  + i  + I - - n  
s i 2 k + 1  - - i  k n - - i  

§ 4. Periodic Boundary Conditions 

Let us now consider the following boundary value problem with periodic 
boundary conditions: 

Y" = 7 (x, y) y '  + ~ (x, y) ,  
(4.1) 

y (0) = y (2@, y'(0) = y ' ( 2 @ ,  

for ~o> 0, where 7 and ~ are periodic functions of period 2co in x, i.e., 

7 ( x + 2 ~ o , y ) = 7 ( x , y ) ,  (~(x+2co, y ) = ( ~ ( x , y ) .  

We assume that  (4.t) has a unique periodic solution of period 2(o, and we 
will see how the IDC method can be applied to this case. The interval [a, b] is 
now [0, 2~].  

Everything is as before except that  we have to add a new equation since the 
boundary values, though equal, are unknown. The equation is 

[~h (O)]n = h - 2 (  - On-1 + 2Vn --U1)+~2(Xn, Vn) U1--Un-1 2h +~(x~, u~)=o, (4.2) 

where we have used the periodicity condition: 

P C : /or any integer p: Up = U<p moo ~). 

I t  is this periodicity condition which enable us to use symmetric formulae 
everywhere in the IDC procedure; thus ~ is now the set of all mesh points: 

= {xl ,  . . . ,  x~}. 
If  the functions ~, and 3 satisfy the additional symmet ry  conditions 

7 ( x , y ) = r ( - - x ,  - - y ) ,  i}(x, y ) = - - 6 ( - - x ,  - - y ) ,  (4.3) 

9* 
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then we can reduce the amount of computation by  one-half. In fact, it is clear 
now that  the periodic solution will also satisfy the boundary conditions 

y(0) = --y(¢o), y'(0) ----- --y'(oJ), (4.4) 

and then we can extend it as an odd function to the whole interval [0, 2o@ 
and finally to the whole line by  periodicity. Now Eq. (4.2) and the periodicity 
condition become 

( -  V~- U,-1) 
[ # h ( U ) ] " = h - 2 ( - - U " - x + 2 U ' ~ + U 1 ) + r "  2h + ~ , = 0 ,  (4.5) 

PC':  Up = -- U(pmod,), ( - - n < p < 2 n ) .  

§ 5. Computation of the Approximate Solution 
The main characteristics of the IDC procedure are that it yields successively 

more accurate solutions U I~) on a fixed mesh of size h, and that the same type 
of system of nonlinear equations is to be solved at each step, i.e. the system 
corresponding to the simplest 0 (h z) method (t .2). Of course, the correction terms 
Sk(U (k-l)) have to be constructed, but  as we have shown in §3 this can be done 
in a fully automatic way. 

The system (1.2) can be solved by  NEWTON'S method which in turn requires 
the solution of systems of linear equations. Such systems are easily inverted by 
Gaussian elimination since they are tridiagonal (cf. [8, t31). In the periodic case 
(4A) this is not quite the case and some further manipulations are needed in 
order to take advantage of the structure of the resulting equations. We explain 
this below. 

The Frrchet derivative of ¢}h(U) in (1.2) applied to an element EED h, 
E = {E,}, is: 

[~b~ (U) E]i = h-S(-- E i _  1 + 2 E i - -  Ei+I )  + ~ (xi ,  Ui) E i 

+ 7  (Xi, Ui) (Ei+x--Ei-1) (i ~- t . . . . .  n -- 1). (5.1) 
2h 

In the periodic case we have to add (see (4.2)): 

[¢'h(U) E] , ,=h-2( - -  E ._ I  + 2E .  - -El )  + O(x~, U.) E.  

+ 7 (xn Un) (Ex--En-x) (5.2) 
' 2 h  ' 

and to use throughout the periodicity condition on E. If U o is a starting value, 
the Newton iteration for IDC ( k = 0  . . . . .  N) is then described by 

U]'+I = U]" - -  [ ~ ;  (Vl)] -1 {~h (vl") - -  Sk (v(k-1))} , (5 "3) 
or equivalently, 

(a) solve the linear system 

• ~, (V j) E i=  -- {qbh (U i) --  Sk (UCk- 11)} ; (5.4) 
(b) put  

Ui+~= Ui + E~; 

(e) stop when JlEi{[ ~ max(c.h~N+x, t0_t)" (5.5) 
II u ~ l l  - 

where c is a given (small) constant, and l is the machine number length, 

(d) put  U Ikl = U 1+1 0"----last i terate above). 
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i) Solve 

ii) compute 

iii) solve 

iv) compute 

Since 

An obviously good starting vector at the k-th correction (k> 0) is U ° =  U (k-lJ. 

The n ×n  matrix q~ (U) in the periodic case has the following block structure 

Oh(U)= Al l  \An1 Ann/ 

I~nl . .  0 . .  g n ,  n - - 1  a n  n 

where All  is a ( n - - I )  × ( n - - t )  tridiagonal matrix. We are interested in the solu- 
tion of systems of the form 

where E, B are ( n -  t)-vectors. 

In this case the standard Gaussian elimination technique for tridiagonal 
matrices cannot be applied, but  nonetheless we can reduce the inversion of the 
system (5.6) to that  of two tridiagonal systems having A n as their coefficient 
matrices, plus a few matrix-vector multiplications and additions. If we put 

{Cll C12 / 
[ \Cn  C,d 

with the same block structure as that  of ~'h(U), then it is well known (cf. [9], 
p. 78) that  

Cnn = (Ann -- An1 (Al l  A12)) -1, 

Can = --  (AI#A12)  Cnn, 

C~1= _ C2~.A2x A~lX ' (5.7) 

C H =- A ~  1 (I  - -  A l z  C~a ) . 

Therefore the solution of the system of Eqs. (5.6) is given by  

(s.8) 
E ,  = C~x B + Cnn Bn. 

Now we show the steps in which this solution can be computed. 

Ax1D :Ax2; 
C2~. = (A22 --  A~ID)-a; 

A l l  W = B;  

v -= Czl  B = - -  C n n A n l ( A a 1 B )  = - -  C2~Anl  W .  

= A 1 1 [ B  - -  Al l (Cnl  B)] - -  ( A ~ A I ~ )  Cnn B., 

it follows from (i)--(iv) that,  

= W -- (v + C~ 2 B,) D,  

E ,  = v +  C~ B, .  
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The stopping criterion (5.5) can be modified by requiring that  the residual 
be only of the order h 2~+~, thus varying at each step instead of requiring the full 
precision all the time. This has been done in practice with excellent results, 
despite the fact of lacking theory on this point. In any case, this modification 
does not make too much difference due to the high rate of convergence of NEWTON'S 
method, specially with the very accurate initial guesses which are provided after 
the first correction. In other problems, however, it may make a considerable 
difference and it would be worthwhile to study the precise conditions under 
which it is safe to use this weaker stopping condition. I t  will be sufficient to 
show that  the iteration for solving the nonlinear equations (NEwTOS or any other) 
preserves the asymptotic expansions even when prematurely stopped. 

§ 6. Numerical Examples 
In what follows we present some of the numerical experiments we have per- 

formed. They have been computed in double precision arithmetic on a CDC 3600 
computer (84 binary digits ~ 2 4  decimal digits) at the University of Wisconsin 
Computing Center. 

The first equation we consider is 

y " - -  (1 --y~)y'--4y ------ -- 5 sin t -- cosat (6.1) 

with the boundary conditions 

y (0) = y  (2z~), y'(0) =y'(2z~), 

which has the periodic solution y*(t)=sint. 
We present in Table 2 the maximum absolute errors 

elk)(h)= max [U!*)(h)--y*(t3[, (k=o . . . . .  8), 
i=l,...,n 

for 
h 1 = 2zr/20, hz = 2~r/40, h 8 = 2~/80. 

This is one case in which the symmetry conditions (4.3) are satisfied (as they 

0 3.2(--3) 8.0(--4) 2.0(--4) 
1 5.8(--5) 3.7(--6) 2.3(--7) 
2 1.4(--6) 2.2(--8) 3.5(--10) 
3 3.5(--8) 1.4(--t0) 5.6(--13) 
4 9.8(--t0) 1.0(--12) 9.6(--t6) 
5 4.4(-- 11) 9.8(-- 15) 2.4( -- 18) 
6 2.4(--12) 1.3(--16) 7.2(--21) 
7 2.4(--12) 1.8(--18) 2.5(--23) 
8 t.5(--13) 4.1(--20) 1.6(--24) 

Table 2 

k h 

2~/20,~0.32 2~/40 ,'-.,0.16 2~/80,~0.08 

will be in all the Lienard type equations), and we have computed only on the 
half period [0, z~] using the appropriate boundary and periodicity conditions. 
Symmetric formulae are used everywhere. As usual the notation a .b ( ~  c) means 
a . b × l O ~ q  
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In order to check the asymptotic behavior of the successive corrections we 
have computed the ratios e(k)(hi)/eIk)(hi+l), (i = i ,  2), which, according to the 
theory should be equal to (hJhi+l)~k+~= 22.+~. 

In Table 3 we present the computed ratios together with the exact ones. For 
k=<6 the behavior is very nearly as predicted while for k > 6  it becomes slightly 
erratic. If we go back to Table 2 we find the reason for this deviation in the fact 
that  we are working within the roundoff level of about 1 0  -34. 

Table 3 

v ratios 

2~ 2~ 
1~ t~b-/ 2~"+~ 

0 4 4 4 
t 16 15.7 16 
2 63 63.7 64 
3 250 250.0 256 
4 1,042 980.0 1,o24 
5 4,o84 4,490.o 4,096 
6 18,oo0 18,500.o 16,384 
7 72,000 t33,000.0 65,536 
8 25,625 3,700,000.0 262,144 

The simplest fourth order method (say COLLATZ'S Mehrstellenverfahren [5], 
p. 164, cf. (7.2) of this paper) will behave similarly to our method for k = t ,  
and from Table I we deduce that in order to achieve an accuracy of about t 0  -22 

it would require a 16,000 point mesh! We have achieved this accuracy with 
40 mesh points and 7 corrections. We have sistematically used as starting values 
(for computing U (°)) a linear combination of the boundary values. On the average 
it takes about 3 Newton steps in order to obtain U ~°) to the desired accuracy. 
After this the deferred corrected values U (~) are generally obtained with only 
one Newton iteration since we use very accurate starting values (i.e. U(k-1)). 
Therefore if we count the number of right hand side evaluations and that  of the 
evaluation of the partial derivatives /y,/y,, then the fourth order method of 
COLLATZ will take (assuming that 5 Newton corrections are necessary) 15 × 16,000 
= 240,000 function evaluations in order to reduce the discretization error below 
t0 -~. With our procedure we needed 30×40~- t ,200  function evaluations in 
order to achieve the same precision. Of course we have to add the work of pro- 
ducing the correction terms and that  of solving the systems of linear equations. 
In this last respect we have to compare the number of operations needed to 
solve three 16,000 xt6,000 tridiagonal systems against those necessary to solve 
ten 40 × 40 tridiagonal systems. Since the inversion of a n × n tridiagonal system 
takes 6n divisions and multiplications, and 3 n additions then we see that  in the 
first case (n ---- t 6,000) 432,000 operations will be necessary while in the second 
case only 3600 are required. 

I t  will perhaps be fairer to compare IDC with the rational successive extra- 
polation method of BULIRSC~I and STOER [3], or with the Hermite-Ritz type 
methods of CIARLET, SCHULTZ, and VARGA [4], but  unfortunately there is not 
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enough numerical information available at the present time to make such com- 
parisons possible. 

Next we consider the following van der Pol equation with a harmonic forcing 
term y , ,  1 too 1o . 

-~ (1 _ ye) y, % _8_~y __. _~ sm t, (6.2) 

and with periodic boundary conditions in the interval [0, 2z~]. 

URABE and REITER [t 5] give an approximate solution to (6.2) in the form 
of a trigonometrical polynomial with ten terms, which they can prove to be 
accurate up to  195 × 10 -9. 

We have applied the IDC method with h=~/40 ,  N = 9 ,  and the discrete 
solution thus obtained is shown in Table 4, together with that  of URABE and 
REITER. They coincide up to nine significant figures. We point out that  our 
values coincide with those of the 8-th correction up to 17 significant figures. 

If U Ik) (h) and U Ik) (h/2) are the discrete solutions corresponding to the steps 
sizes h, h/2 (at the points of the coarsest mesh), then an estimate of the error 
is given by  (cf. [t3], p. 5t) 

II u ~  (h/2) - ~h y*[[--~ II v l , i  (h) - uik~ (h/2)It 
1 - (½pk+, (6.3) 

When used in this case with h=~]20  we obtained for k = 9  

IIu/9> (~/20) - ~ , y * l [ "  2.3 × t 0  -is 

which tends to confirm our contention that  U ~°) is accurate to at least t 7 signi- 
ficant figures. The computing time for obtaining both U O)(h) and U ~9) (h/2) was 
t 5 seconds. 

Other numerical examples on one- and two-dimensional problems can be 
found in [ t t - - 1 ) ] .  

§ 7. Gaining h 4 per Correction 

In [6] it has been observed that  if the basic discrete method q~h has order p 
(stable, etc.), then p orders in h can be gained at  every deferred correction by 
taking appropriate segments in the expansion of the local discretization error. 
In this Section we will explain how this can be implemented in the present 
situation. For  simplicity we only consider problems of class M (see [8], Chapter 7) 
with unique periodic solutions: 

y "  = /(x,  y) ,  

y(O) = y (2o~) = 0, (7.t) 

w > 0 ,  / ( x+2~o ,y )=/ (x , y ) ,  / y > 0 .  

For  the discretization we use the fourth order method discussed in [8]: 

I-'/'h (U) ] ,  = h - e ( _  U,_I  + 2 V', - -  U,+O 
(7.2) 

+ r b [ t ( x , _ ~ ,  u,_~) + tol(x,  u~) +/(x~+~, u ~ + o ]  = o ,  (i = 1 . . . . .  n - I ) ,  

which satisfies, for any smooth solution of (7.t), 

he] ~ -,- 0/]t2N+l~ 
t F ( u ) + ~ t ( j + , )  (2 j+ , )  ( 2 j ) , , - ~ " "  ' (7.3) 
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Table 4 

t23 

t i Uff ) Urabe -Re i t e r  

7.854--2 3.9624226006960437353(--t) 3.96242260445(--t) 

1.571 -- I 5.1534099533631665963(-- 1) 5.15340996134(-- 1) 

2.356-- 1 6.3163730874287509246(-- 1) 6.31627309558(-- t) 

3. t 42 -- t 7-4423854998715199410(-- 1 ) 7.442385504 l 0(-- f) 

3.927-- 1 8.5232011535289333850(-- t) 8.523201 t 5183(-- t) 

4.7 t 2-- 1 9- 55o4030473230497847 ( -- 1 ) 9- 550403o4063 ( -- I ) 

5.498-- 1 1.0516056160497768358(%, O) 1.05160561535 (%, O) 

6.283-- ! t.t4127565385t9426575(%,0) 1.14127565367(%.0) 

7-069-- l 1.2233768124349275611 ( + O) 1.22337681302( %. O) 

7.854--1 1.2973139589330727289(÷0) 1.29731396009(%,0) 

8.639-- 1 t .362579484036001 t t 93(%,0) 1.36257948519(%-0) 

9.425 -- 1 t .41875929t4791505432( %, O) 1.41875929216( %. O) 

1.021%.0 1.465535537t 545680504(%, 0) 1.46553553728(%,0) 

1 .t00%,0 t .5026861750989436638(%-0) 1.50268617470(%-0) 

I. 257 %, 0 1.5476787916609334819( + O) t. 54767879162( %, O) 

1.335%.0 1.5555137095835258572(%.0) 1.55551370998(%.0) 

t.414 %, 0 1.553692297 t 048942046( %, O) 1.55369229763 ( %- O) 

t.492%.0 1.54238t0084053333689(%,0) t.54238100891 (%. O) 

t. 571%. 0 t. 5217972758382629244(%, O) 1.52179727598(%. O) 

1.649%-0 1.49220047343055284t 5 ( % - 0 )  1.49220047335 (%, 0) 

1.728%.0 1.4538837660937926858(%, 0) 1.45388376596(%,0) 

1.806%.0 1.4071671341186187147(%,0) t.40716713422(%.0) 

1.885%.0 1.352391759564278470t(%.0) 1.35239175986(%.0) 

t.963%.0 t.2899158696896060739(%,0) 1.28991586988(%.0) 

2.042%- 0 1.2201120556730175483 (%, O) t .22011205562(%. O) 

2.t21%-0 1.1433660227549478985(%,0) 1.t4336602229(+0) 

2.199%.0 1.0600766787699503660(%. O) 1.06007667796(%. O) 

2.278%-0 9.7065742875395943760(-- I) 9.70657427897(-- 1) 

2.356%-0 8.7553851O371O6O81987(-- I) 8.75538509848(-- 1) 

2.435%-0 7.7517017490694281833(--1) 7.75t7017479t(--t) 

2.513%.0 6.7002648878560959839(--I) 6.70026488951(--1) 

2.592%-0 5.6060949932125796088(-- 1) 5.60609499487(-- t) 

2.670%-0 4.4745347547697359724(-- 1) 4.47453475469(-- 1) 

2.749%-0 3.3t12890t2t03t270064(--t) 3.31128901088(--1) 

2.827%-0 2.1224586883197804486(--1) 2.12245868751(--1) 

2.906%-0 9.1456497808009O63465(--2) 9.14564980230(--2) 

2.985%-0 --3.0544002728320957938(--2) --3,05440022857(--2) 

3.063%-0 --1.5301799423412943239(--1) --1.530t79937t0(--1) 

3.t42%.0 --2.75t88tt31550988t206(--1) --2,75188112987(--1) 
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If  we let  F s (u) be as before 

s+l  

.= ( j + l )  ( 2 j + a )  " ~ ) s . h  ', (7.4) 

and  ob ta in  S k (U), (k = 1 . . . . .  ), such t h a t  

Sk (q~h Y*) - -  ~ °° F,k (Y*) ---- O (h**), (7.5) 

then  the  IDC procedure  will p roduce  a p p r o x i m a t e  solut ions U I*) wi th  the  p r o p e r t y  

UIk) - -  ~hY* = 0 (h 4 k+4). (7.6) 

This  m e t h o d  was i m p l e m e n t e d  on the CDC 3600 compute r .  Double  precision 
was employed  th roughout ,  a n d  use of the  pe r iod ic i ty  was made  as i nd i ca t ed  in §4. 
Numer ica l  resul ts  for 

y , ,  = ya _ sin x -  (t + sin~'x), 

y (0) = y(z  0 = O, (7.7) 

which has  the  per iodic  solut ion y ( x ) =  sin x, are p resen ted  in Table  5. There  
we have  combined  the  m a x i m u m  absolu te  errors  e(k)(hi), for h i - - - - 2 - i × ~ / t 0 ,  
i = 0 ,  t ,  2, 3, wi th  the  ra t ios  (when meaningful)  r ~ =  elkl(hi)/e(kl(hi+l). In  th is  
case the  exac t  ra t ios  should  be  equal  to r k =  24.+4. The  agreement  is qui te  r emark -  
able.  The  t o t a l  c o m p u t a t i o n  t ime  for the  four s tep  sizes a n d  some add i t iona l  
c o m p u t a t i o n  m a d e  to  check the  a s y m p t o t i c  e s t ima te  (6.3) was 33 seconds. 

Table 5 

k e 1 r 1 e z  r 2 e z r 3 e 4 r 

0 1.2(--5) 16.2 7.4(--7) 16 4.6(--8) 16 2.9(--9) 16 
t 4.2(--9) 262 1.6(--1t) 258 6.2(--14) 258 2.4(--t6) 256 
2 2.2(--t2) 4,400 5.0(--16) 4,167 1.2(--19) 3,429 3.5(--23) 4,096 
3 3.2(--15) 50,000 6.5(--20) 26,000 2.5(--24) -- -- 65,536 
4 1.8(--17) t,200,000 1.5(--23) . . . .  1,048,576 
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