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Introduction

In numerical linear algebra one meets condition numbers |4 |471] and similar
quantities such as (max |a;;|) |47 and |4,| [4-}|, where A=(a;;) and 4 is the
f-th column of 4. The norms are very diverse,

The problem then is to determine a row- andfor column-scaling of 4 which
minimizes the quantity under consideration.

It is the purpose of this paper to specify a class of such quantities for which
those scalings can be given explicitly. The results will be extensions of some
results in [2]. They will also hold for non-square matrices. All proofs will be
completely elementary.

Also, in some cases where the minimizing scaling cannot be given explicitly,

it can be said how far at most for a certain scaling the quantity under consideration
may be away from its minimum.

Conventions

IR,,, will denote the set of real or complex # X# matrices, m=#, and A will
always be an element of 3%,,,. A7 will denote the transposed of 4. D, and D,
will denote the class of non-singular real or complex m Xm or » xX» diagonal
matrices.

X and Y will always denote real or complex cartesian spaces of dimension %
and m respectively, and with norms |. |; and |. |, respectively.

All of M,,,., D, D,, X and Y will be real or all of them will be complex.

This induces the quantities lub,z(d)= max |4 x|/|x]s and glb,s(d) =
‘,‘Eé‘ﬂ“‘ x)/|x]p for any A€M,

lub,, and glb,,, # and ¢ real numbers or oo, will denote the case that |.|,
and .|, are the Holder p- and g-norm respectively, defined as [x|,=(Z |x,7)V2,
and similarly for g.

|4, = lub,, (4).

| x| will denote the vector whose coordinates are the moduli of the corresponding
coordinates of x; similarly for a matrix |4].

A vector x€X, x =0, will be called a maximizing vector for 4 with respect
to the given norms if |4 #|,/|x[s=1ub,s(A4). Also, x will be called a minimizing
vector if |4 x[,/|x];=glbss(4).

Def. will indicate a definition, Th. will indicate a small or intermediate result.
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1. Monotonic Matrix Functions

Def. 1.1. A vectornorm is called absolute if |x|=||x]]|, it is called monotic
if |2 s|yl= =l (1)
We recall that the properties of absoluteness and monotonicity are equivalent

{cf. [1], Theorem 2, where this property is proved for complex spaces, but the
proof carries over to real spaces).

Def. 1.2. A vectornorm will be called strongly monotonic if it is monotonic and
moreover |x| = |y|a|x| #[y|= |#|<|y].

Th. 1.3. Any Hoélder norm of index <Coo is strongly monotonic.

Def. 1.4, A non negative function ¢ on INCIM,,, will be called left-, reght-,
or two-sided monotonic if for all A€IN either
(1.5) Dy M=M and ¢(DA)=¢(4)max|d;;| forall DeD,
or
{1.6} MDD, =M and ¢(AD)<¢$(4)max|d;;| forall DeD,
or both are satisfied.

Def. 1.7. Moreover we shall say that ¢ is strongly lefi-, vight- or two-sided
monotonic at A if in (1.5) or (1.6) or both the < sign holds as soon as not all|d,;]
are equal.

We list a few obvious properties.
Th. 1.8. If ¢ is left-monotonic then ¢ (4) min |d;;] < ¢ (D A) < ¢ (4) max |d,,].
Th. 1.9. If ¢ is right-monotonic then ¢ (4) min |4;;| < ¢ (4 D) < ¢ (4) max|d,,|.

Th. 1.10. If [ D| =1 and ¢ is left- or right monotonic then ¢ (DA) =¢(4) or
¢ (AD) = ¢(A4) respectively.

Th. 1.11. If all matrices of IR have inverses and ¢ is left- or right-monotonic
on % then the function ¢ defined by y(4) =1/¢ (47 is right- or left-monotonic
respectively.

Theorem 1.12. The functions lub,,; and glb,, are left-monotonic on M,,, if
and only if |.|, is an absolute vectornorm.

Proof. 1f |.|, is an absolute vectornorm then for D€®,,, lub,, (D) =max |d,;|
(cf. [1], Theorem 3). Hence

1D A4 %]
l¢ls

This proves the if-part.

< lub,, (D) —"%%:max]d“] ”‘l‘lx’ﬁl‘ forall »eX, x+0.

To prove the only-if part, we note that absolute norms are characterized by
the fact that | Dy, = ||, for any De®D,, with |D]|=1I and any yeY. Hence,
if |.], is not absolute there exists a D€®,, with | D| =1 such that |[Dyl,> |y|,
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for a certain yeY. There exists a matrix 4¢IR,,, and a vector x€X such that
y=Ax and |y |,=lub,,(A4) x| (cf. 6.1). Then lub,s(DA4)>1lub,s(4) and hence
lub,, cannot be left-monotonic (cf. 1.10).

There also exists a De®,, with | D| =TI such that |Dy|, <|y|, for a certain
y€Y. Put |Dyl|,=|y|/(1+¢). There exists a matrix 4€,,, and a vector xe€X
such that y=Ax and |y|,<<glb,s(4)|x]s(1+&) (cf. 6.3). Hence glb,s(DA)<
glb,s(A4) and hence glb,,; cannot be left-monotonic.

Theorem 1.13. The functions lub,, and glb,; are right-monotonic on M, if
and only if |.[; is an absolute vectornorm.

Proof. If ||.|; is an absolute vectornorm then

WUDsle Myl _ Ik 43l
b — 10 = Bl WD) ="

forall x€X, x=0, and y=Dx.

max [d;]

This proves the if-part.

If |. | is not absolute, there exists a De®, with | D| =1 such that | D x|;> |x|,
for a certain x€X. Put Dx= x'. There exists a matrix 4€M,,, such that |4 x'|,=
tub,,(4) |x’s (cf. 6.1). Then

|4 D7y -~ [[4 # ||z
= lls fi#ls

and hence lub,;(4 D) > lub,;(A4); thus lub,; cannot be right-monotonic (cf. 1.10).

There also exists a De®,, with | D| =1 such that |Dx];<|xs for a certain
xeX. Put [[Dx”ﬂ |xls/(1+¢) and put Dx=2x'". There exists a matrix A€M,,,
such that [4 2’|, <glb,,(4) [[x ls(1-+¢) (cf. 6.3). Hence glb,z(4 D)< glb,s(4). |

As a corollary we have

Th. 1.14. If |. |, and |.[; are Holder norms of any index, the functions lub,,
and glb,,; are two-sided monotonic.

A different class of two-sided monotonic matrixfunctions is given by
Th. 1.15. Any matrixnorm which is obtained by considering an m X# matrix

as element of the m x#n dimensional Cartesian space with an absolute norm is
two-sided monotonic.

Consequently:

Th. 1.16. (X |a;;|P)"*, 1<p=<oco, and in particular the Frobenius norm
Al =VZTa;;]? and the function max |a,;|, is two-sided monotonic on I,,,,.

More generally, but still a special case of 1.15:

Th. 1.17. Ostrowski’s composite norm H, defined by H{A)=h [k, (4,), ..., 2, {4,)]
{cf. [5], 3-1)}, where % is monotonic in the positive orthant (in the sense of [1],

{3.1)) and each %, is absolute, is two-sided monotonic on ,,,. The same holds
for H' defined as H'(4) = H(4").
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2. Equilibration Theorems
Def. 2.1. In the following B will be a matrix with m rows if B is left-multiplied
by De®,,, B will have n columns if B is right-multiplied by De®,,. Also, |.|,
will denote any vectornorm.

Def. 2.2. For any two matrices 4 and B and any two matrix functions ¢
and p we define
#(B, 4) =y(B)[¢(4).
if the right hand side exists.
We then have the following two theorems

Theorem 2.3. Column Equilibration Theorem. If y(B) =max | B,|, (where B;
denotes the 7-th column of B) and ¢ is right-monotonic on 4D, and DeD,, is such
that BD is column-equilibrated in the sense of .|, (i.e. all columns of BD have
equal y-norm). Then

(a) »(BD, AD) =minx(BD, 4 D)

(b) Any matrix D for which the minimum in (a) is attained may be obtained
by multiplying D by a diagonalmatrix whose diagonal elements have equal
modulus if and only if ¢ is strongly right-monotonic at AD (hence in this case
column-equilibration of the argument of y is also a necessary condition for the
minimum to be attained).

Proof. (a) It is no restriction to assume that D=1, i.e. that B already
is column- equlhbrated Then max |BD,|,= max]d,,l max |B,], and ¢(4AD)<
max]di Ao 4).

(b) Trivial. |

Theorem 2.4, Row Equilibration Theorem. If (B) = max |(BY),], (where (BY);
i

denotes the j-th column of B¥, i.e. actually the j-th row of B) and ¢ is left-mono-
tonic on D,,4 and DeD,, is such that D B is row-equilibrated in the sense of |. |,
(i.e. all columns of (D B)¥ have equal y-norm). Then

(a) %(DB, DA) =min»(DB, DA)
DeDpy

(b) Any matrix D for which the minimum in (a) is attained may be obtained
by multiplying D by a diagonal matrix whose diagonal elements have equal
modulus if and only if ¢ is strongly left-monotonic at DA.

These equilibration theorems just serve to set a pattern. They are actually
equivalent. They are so trivial that the applications can just as well be proved
directly. The surprising thing, though, is that the minimizing D are determined
by B only and do not at all depend on A4, whereas uniqueness of D (apart from
multiplication by diagonal matrices whose diagonal elements have equal modulus)
is determined by ¢ and AD or DA only.

In 2.3, w(B) obviously is a composite norm of B in the sense of [5], (3.1);
a slight generalization can be obtained by allowing the norm |. |, to be a different
one for each column of B, i.e. ¢ (B)= max | B,j},;- Similarly for 2.4.

2 Numer. Math,, Bd. 14
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A few obvious applications of the equilibration theorems are contained in

Theorem 2.5, Let 4 be square or non-square. In the case that A is square
the norm [. [* may be any Hélder norm or the Frobenius norm.

(@) %(4) =]A|, JA* or [4],/glby,(4). Then (D 4) is minimal if in D 4
all rows have equal {-norm.

(b) #(4) = (max|a;,|} |[4* or (max|a,;])/glb,,(4). Then % (D A) is minimal
if in DA all rows have equal co-norm.

(c) #(A) as in (b). Then %(4 D) is minimal if in 4D all columns have equal
0o-norm,

(d) »(4) =|A[[|4* or |4];/glb,,(4). Then x(4 D) is minimal if in 4D all
columns have equal 1-norm.

(€) #;(a) =[Ao [A* or |4,],/glbs,(A). Then 2, (DA) is minimal if all
coordinates of DA, have equal modulus.

() %(A) =|4|o/|4|*. Then »(DA) is minimal if in D4 all rows have equal
1-norm.

(g) =(4)=]Al/|A*. Then =(4 D) is minimal if in AD all columns have
equal 1-norm.

Proof. (a) B=A4, |.},=[.l; 0) B=A4, |.|,=]|.|o; () B=4, |.|,=]|
ﬁ Bﬂ‘i: Hﬂ-ﬂy Il @ B =4, [ L=11ps 0 B=4, |, =1} @ B

Obviously, [2], Theorem IIa, corollary, is a consequence of 2.5 (a). However,
a generalization of [2], Theorem IIa itself, too, can be easily proved directly:

llm

Th. 2.6. If %(B, A) =|B|,[47|, and B has no row consisting entirely out
of zeros, thenlr)n%n #(DB,DA)=||47Y|B||»-
€Dn

Proof. ||A7||B| |, does not change when 4 and B are left-multiplied by
De®,, (note that m ==n). We may therefore assume that in each row of B the
sum of the moduli is 1. Now, if e, denotes the #-dimensional vector with coordi-
nates 1 only, then e, is a maximizing vector with respect to the co-norm of any
non-negative matrix with # columns. Similarly e,. Therefore, since | B| e,=e,
if B has p columns,

1472 Bl o =147 B| €l =147 enlo = |47 o = [A o =(B, 4). |

3. Approximate Minimization

In view of the special form of g in the equilibration theorems, these theorems
give conditions for the minimizing D only for a limited class of condition numbers.
From [2], Lemma I and the subsequent remarks it is seen that in other cases the
Perron-eigenvectors of certain matrices play a role, and hence it cannot be ex-
pected that the minimizing D can, in general, be easily determined.

Therefore we ask in those cases how well equilibration performs. In this
respect we have the following obvious Theorems 3.1 and 3.3:
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Theorem 3.1. Let B be any matrix and let y satisfy
(3.2) pmax”BD hL=v BD)<qmax]]BD I,

where p and ¢ are independent of De®,. If ¢ is right-monotonic on 4D, and
De®,, is such that BD is column equilibrated in the sense of |.[,, then

#(BD, ADy< % inf x(BD, AD).
P DeDn
Theorem 3.3. Let B be any matrix and let ¢ satisfy
(3.4) pmax [((DB)*),]l, <w(DB) <qmax ((B)H)l,

where p and ¢ are independent of De®,,. If ¢ is left-monotonic on 9,4 and
De€®D,, is such that D B is row-equilibrated in the sense of |. |, then

»(DB,DA)< 4 inf %(DB, DA).
DeDp

Application:

Theorem 3.5. Assumptions as in 2.5. Also, let #(4) = |4 |, JA7Y|* or |4 |- [|4-|*
or |A]y/glb,,(4) or JA#/glbse(4). Then

(a) %(DA) is no more than a factor }/m away from its minimum if in DA all
rows have equal 2-norm.

(b) #(AD) is no more than a factor Jx away from its minimum if in AD all
columns have equal 2-norm.

Proof. (a) B=4, |.|,=|.[p; max li (B | = | Bl < | Bl < (ym) max }(BY)[;.

(0) B=A, |.|,=[-l <|BL= Bl = (fn) max|B . |

4, Applications to Symmetric Scaling
As a corollary of the results in the previous section we have

Theorem 4.1. Let »(P) =] P|y|P~1|, for any non-singular #x# matrix P.
Then, if P is positive definite and hermitean,

%(P) < min % (D" PD)
DeDu

if in P all diagonal elements are equal.

Proof. P can be written as A% 4, AeM,,,, and obviously in 4 all columns
have the same 2-norm. Also %(P) = (x(4))%. Now apply 3.5(b). |

This theorem has obvious applications to the matrices arising from least
squares problems and from discretized elliptic differential equations. In the former
case it is remarkable that only the smaller dimension of the m X# matrix of the
least squares system enters 4.1, and since in this case # usually is not very large,
symmetric scaling for equal diagonal elements can be considered as reasonably
optimal.

The theorem reminds the reader to a result in [3], where it is proved that if
in P all diagonal elements are equal and P has Young’s “property A”, then

2%
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%(P) = min % (DY PD). Thus particularly in the case of discretized differential
DeDn

equations our theorem may fall far behind the result in [3]. However, just in
the case of lacunary systems we can improve 4.1 considerably.

We first have the following lemma, which may also have a wider interest.

Th. 4.2. Let 4 be an m X#n matrix with at most ¢ non-zero elements in any
column or at most ¢ non-zero elements in any row. Then [4[,< (Jg) max [(4%),],
or |A[,=<(Vq) max|4], respectively.

Proof. 1t is sufficient to consider the case of at most g non-zero elements in
a column since 49|, = [4[,. Then

[45f =2 |2 e w2 (AR 20 17) = (max | (47).5) T 2O

where ¥ indicates that the summation index § assumes only those values for
which a;;40. Hence 3 2@z, 2<qx[}. |
~ &

In some interesting cyases this theorem performs remarkably well. E.g. for
the Dirichlet problem on a square for 4u =0, where A is approximated by
{(x+hy) +u(x—h,y)+ulx, y+h) +u{x,y—h) —4u(x, y)}/#2, a positive de-
finite symmetric matrix arises with diagonal elements 4 and at most 4 elements —1
and further zeros on each row. This matrix is known to have a largest eigen-
value ~8 (cf. [4], p. 230), and hence its 2-norm is approximately equal to 8.
Our 4.2 gives (J/5) (J/20) =10. Admittedly, this result is not as good as the upper
bound 8 which is derived from Gershgorin’s circle theorem. This is not surprising,
however, since for hermitean matrices our 4.2 actually is a consequence of this
theorem, as is easily verified. But 4.2 can be used for non-symmetric matrices also.

We now have the following refinement of 4.1.

Theorem 4.3. Assumptions as in 4.1. If, moreover, P has at most ¢ non-zero
elements in any row then

%(P) g_q]l)reli:&x(D”PD)

if in P all diagonal elements are equal.

Proof. Let A be any # X# matrix such that Q = 4% 4 has at most ¢ non-zero
elements in any row and column. Then J4[; =|Q.< (Jg) max |Q], (cf. 4.2). Also
=(4,%4;, hence |¢;;] =4[z ]4,]z- Since Q; has at most ¢ non-zero elements,
108 = max l4,1. Theretore, [A1,= (1) max A .
Now writing P =4 4, we have |4 D|,< (J/g) max||4 D,[,. Since P has equal
diagonal elements, all columns of 4 have equal 2-norm. Therefore »(4)<

(yg) minx(AD) (cf. 3.1). |

5. Uniqueness of Minimizing Scaling
Assertions 2.3 (b) and 2.4 (b) say that under circumstances the matrices D for
which %{BD, A D) or »{D B, DA) is minimized, are essentially unique.
Unfortunately, these circumstances — strong monotonicity of ¢ — usually
cannot easily be verified.
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There are norms for which strong monotonicity of glb (and for the usual
condition numbers this is the important case) is rare:

Th. 5.1. If ¢(4) =1/|4"|,, then ¢ is not strongly right-monotonic at A un-
less all rows of 471 have equal 1-norm. If ¢ (4) =1/|4 7|, then ¢ is not strongly
left-monotonic at 4 unless all columns of 472 have equal {-norm.

However, for many other practically important norms glb is strongly monotonic
for an overwhelming majority of matrices 4 (even if 4 = B), e.g.

Th. 5.2. (a) If ¢(4)=1/]471], and 4! has a maximal column (i.e. a column
whose 1-norm equals |4-1],) without an element O then ¢ is strongly right-
monotonic at 4.

(b) If ¢(A4) =1/}47Y, and A7 has a maximal row (i.e. a row whose 1-norm
equals |471|,) without an element O then ¢ is strongly left-monotonic at 4.

Also:

Th. 5.3. If ¢(4) =1/[474|*, |.|* a norm as in 1.15, then ¢ is strongly right-
and left-monotonic at A if the norm on the m x# dimensional space (cf. 1.15)
is strongly monotonic (m and % are now equal).

For other norms the following result has some relevance:

Theorem 5.4, (a) If ¢(4) =glb,4(4), |.|s strongly monotonic, and 4 has at
least one minimizing vector x, without a coordinate 0 then ¢ is strongly right-
monotonic at 4.

(b) If ¢(4)=glb,s(4), ||« strongly monotonic, and 4 has at least one
minimizing vector x, such that A x4 has no coordinate 0, then ¢ is strongly left-
monotonic at 4.

Proof.

e (4 Dx “u__ (4 ] 14 % [l [EEAM
(2) glbgg(4D) =min =p ™ = min s S5y < Tl 4]

if not all |d;;| are equal.

IDAxh _ [DAxls _ A7k
b = Tab < Tl M4l

if not all |d;;| are equal. |

(b) glb,(D4) =min

The difficulty, of course, is to know whether the condition on x, is satisfied.
Although the author cannot prove this, he believes that at least in the case
that ¢ (4) =1/]47Y,, 1< p<<oo, the set of matrices that do not satisfy the con-
dition, has measure 0 in the set of all matrices. He can prove, however, that
if ¢(A)=1/]A7],, 1<<p<<oo, and A is a positive matrix, then 4 satisfies the
conditions of 5.4. This shows at least that the set of matrices satisfying 5.4 has
positive measure, so that one certainly cannot frust that there is any real freedom
left in choosing the scaling matrix if one wants to minimize ».

Another question, of course, is what freedom one is likely to gain in this

respect if it is only required to get » within a given factor (e.g. 2 or u) from its
minimum.



22 A. van der Sluis:

6. Appendix

In this appendix we mention and prove a few results on the existence of
matrices with given maximizing or minimizing vectors or given images of such
vectors,

Theorem 6.1. For any x€X, x==0, and any y€Y and any pair of norms there
exists an A€M, , such that y =4 x and x is a maximizing vector for 4.

This theorem has no immediate parallel for minimizing vectors:

Th. 6.2. If » =2 it is not true that for any pair of norms and any x€X, x =0,
there exist an 4€9R,,,, and a y€Y, y =0, such that y =4 x and x is a minimizing
vector for A. Neither is it true that for any y€Y, vy =0, and any pair of norms
there exist an 4€IN,,,, and an x€ X, ¥ &0, such that y =4 x and « is 2 minimizing
vector for 4.

This implies that the mapping 4 in 6.1 cannot be required to be injective
(i.e. to have an inverse). However:

Theorem 6.3. For any x€X, x50, and any y€Y, y=0, and any pair of
norms and any e>0 there exists an 4€M,,, such that y=A x and |4 x| /[x],<
(146)glbas (4).

Proof of 6.1. Let L be any linear functional on the variety of scalar multiples
of x. Now extend L to the whole of X without increasing the norm of L (Hahn-
Banach theorem). Then x remains a maximizing vector of L. Finally, define 4

Lt
by At=+— y for all teX. |

Proof of 6.2, first part. Provide X and Y with the Holder 1-norm and 2-norm
respectively. Let A€k, have rank » (since otherwise glb(4)=0). Take x=
(1,0,0,..)% and 2'=(0,1,0,...)". Then |x+Ax'|,=1+]|A|. If A2’ | Ax then
|4 % + AA %’|l, behaves as p +¢ 42, p and g positive constants (since 4 x" and 4 x
cannot vanish), for small values of 4 and hence x is no minimizing vector. If
(A’ | Ax) then [|[Ax 4+ A4 #'|, < |4 x|, for some values of 1==0, and again x
is no minimizing vector.

Proof of 6.2, second part. Provide X and Y with the Hoélder 2-norm and
oco-norm respectively. Let A€R,,, have rank » (since otherwise glb(A4)=0).
Take y=(1,0, 0, ...)#, and suppose that y =4 x. Since 4 has rank #, there
certainly is an x'€X such that y’=4A4 =0, but has first coordinate 0. Then
|y + 2|, is constant for small values of A. However, [x +A#'[,> ||x|, for some
small values of 4. Hence, ¥ is no minimizing vector. |

Proof of 6.3. Let Y' be any n-dimensional subspace of Y which contains y.
Then there exists a mapping B: Y’ — X such that x =By and y is a maximizing
vector for B (cf. 6.1), but this mapping may be singular. In any neighbourhood
of B there exist non-singular mappings B': Y’ —X. Thus for any 5 > 0 there exists
anon-singular B’ such that | B’y — By|;<n | By|s and lubg, (B') < (1) lub,,(B).

Now take 5 <<1. Then for any p and ¢eX with |g—p|s<n|p|s there exists
a non-singular mapping C: X—X such that lub,,(C —I) < and Cp=gq. In-
deed, we can take C —I such that (C —1I) p =¢ —p and p is a maximizing vector
for C —1I (cf. 6.1); the non-singularity follows from lubg,(C —I) <% <1. Hence
C1 exists and luby, (C) <1/(1—29).
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Applying this with p =By =x and ¢=DB'y we get
(i) x=C1By;

(ii) lubg, (C1B%} < lubg, (B) (14+n)/(1—n).

Hence

12l 1 1 147

[#ls = Tubge(B) = Tubsa(C1BY) 1—g —

noy 1
glbe, ((CB)) {11

Thus, if # is small enough, 4=(CB’)? satisfies all requirements. |
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