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Introduction 

In numerical linear algebra one meets condition numbers [[AII []A-11[ and similar 
quantities such as (max [a,i[)[[A-1H and [[Ai[[ [[A-l[], where A = (a,i) and A i is the 
/'-th column of A. The norms are very diverse. 

The problem then is to determine a row- and/or column-scaling of A which 
minimizes the quanti ty under consideration. 

I t  is the purpose of this paper to specify a class of such quantities for which 
those scalings can be given explicitly. The results will be extensions of some 
results in [2]. They will also hold for non-square matrices. All proofs will be 
completely elementary. 

Also, in some cases where the minimizing scaling cannot be given explicitly, 
it can be said how far at most for a certain scaling the quanti ty under consideration 
may be away from its minimum. 

Conventions 

~c2~ will denote the set of real or complex m ×n matrices, m>=n, and A will 
always be an element of ~ , ~ .  A n will denote the transposed of .~. ~,n and ~ 
will denote the class of non-singular real or complex m ×m or n × n  diagonal 
matrices. 

X and Y will always denote real or complex cartesian spaces of dimension n 
and m respectively, and with norms ][. []a and ][. I[~ respectively. 

All of ~X,~n, ~,n, ~ ,  X and Y will be real or all of them will be complex. 

This induces the quantities lub~a(A)=maxtlAx[[Jl[x[~ and glb~a(A)= 
min [A ~ILIII-II~ for any A E~J~m~. 
x*0 

lub m and glb m, p and q real numbers or o% will denote the case that [[. It~ 
and [[. [~ are the H61der p- and q-norm respectively, defined as [[xIlp= (2 [xj[p) l/p, 
and similarly for q. 

[]A [[p = lubpp (A). 
[x[ will denote the vector whose coordinates are the moduli of the corresponding 

coordinates of x; similarly for a matrix [A I. 

A vector xEX,  x4=O, will be called a maximizing vector for A with respect 
to the given norms if [[A xl[,,/[[x[~=tub~,a(A ). Also, x will be called a minimizing 
vector if ][A x[IJ[[x[[a= glb~, ~ ( A ). 

Def. wiU indicate a definition, Th. will indicate a small or intermediate result. 
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1. Monotonic Matrix Functions 

Def. 1.1. A vectornorm is called absolute if N =  lllxl II, it is called monotic 
if lxl < l y t =  tlxl[<][yll (cf. [13). 

We recall that  the properties of absoluteness and monotonicity are equivalent 
(cf. [l], Theorem 2, where this property is proved for complex spaces, but the 
proof carries over to real spaces). 

Def. 1.2. A vectornorm will be called strongly monotonic if it is monotonic and 
moreover Ix I --~ l Yl ^ I x [ * l Y[ ~ I1 x[[ < tlyl[. 

Th. 1.3. Any H61der norm of index <oo is strongly monotonic. 

Def. 1.4. A non negative function ~b on 9X(gX,~, will be called left-, right-, 
or two-sided monotonic if for all A E~X either 

(t.5) ~,,,~ilrX=~ and ¢(DA)<<-¢(A)max]dii  ] foral l  De~)~ 

o r  

(t.6) ~X~n=~X and ¢?(AD)<=~)(A)max}d~i [ forall DE~) n 

or both are satisfied. 

Def. 1.7. Moreover we shall say that  q~ is strongly left-, right- or two-sided 
monotonic at A if in (1.5) or (t.6) or both the < sign holds as soon as not all]dii 1 
are equal. 

We list a few obvious properties. 

Th. 1.8. If ~b is left-monotonic then ¢ (A) min I d,,l <- ~b (DA) ~ ¢ (A) max I d,,I. 

Th. 1.9. If ¢ is right-monotonic then q9 (A) min [d,,] ------- ¢ (A D) ~ ¢ (A) max ld.I. 
Th. 1.10. If [D I = I  and ¢ is left- or right monotonic then 4~(DA) =~b(A) or 

~b (A D) = ¢ (A) respectively. 

Th. 1.11. If all matrices of ~ have inverses and ~b is left- or right-monotonic 
on ~2~ then the function F defined by ~o(A) ----1/¢ (A -1) is right- or left-monotonic 
respectively. 

Theorem 1.12. The functions lub~a and glb~a are left-monotonic on ~ ,  if 
and only if H-lt~ is an absolute vectornorm. 

ProD/. If l[" H~ is an absolute vectornorm then for D E ~ , ,  lub~(O) -----max I d ,  I 
(cf. [t], Theorem 3). Hence 

UDAxI[~ ~ l u b ~ ( D )  [[Ax]l~ 1~4 xl]~ for all xEX,  x :#0. " Ilxtb -[{-~]W = m a x ] d ' ' l  ][xlb 

This proves the if-part. 
To prove the only-if part, we note that absolute norms are characterized by 

the fact that tlhyl[~--IIyll~ for any D ~  with ]D] = I  and any yEY .  Hence, 
if I[-][~ is not absolute there exists a D¢~),. with]D] = I  such that  ]IDylls> []YII~ 
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for a certain y e  Y. There exists a matr ix A E ~J~,n, and a vector x E X  such tha t  
y = A  x and t[yl]~=lub~a(A)IIx[~ (cf. 6.t). Then lub~p(DA)>lub,~(A)  and hence 
lub~a cannot be left-monotonic (cf. t . t0).  

There also exists a DE~)m with ]D I = I  such tha t  [IDylls< ]IY[]~ for a certain 
yE Y. Put  [tDy[]~ = [[y][~/(l + e). There exists a matrix A E~02~ and a vector xEX  
such tha t  y = A x  and Ib~i]~<glb~a(A)Hx]~(1+e) (of. 6.3). Hence g lb~a(DA)< 
glb~a(A ) and hence glb~a cannot be left-monotonic. [[ 

Theorem 1.13. The functions l u b ~  and glb~a are fight-monotonic on ~0~,~ if 
and only if 11" il~ is an absolute vectornorm. 

P,,oo/. If  II-I~ is an absolute vectornorm then 

tl A ylh lub ~D) -- IIAyII~ , .  , 
llxl[a --liD-~ylla -- 

fora l l  x ~ X ,  x :4=O, and y = D x .  

This proves the if-part. 

If [[. []a is not  absolute, there exists a D E~), with I D [ = I such tha t  ]tD x]~> ltxl[p 
for a certain xEX. Put  D x = x'. There exists a matr ix A E939,~ such tha t  [[A x']t~= 
lub~p(A) llx'l~ (cf. 6.t). Then 

]]A Dx]lc, I]A x'[]~ = lub~(A)  
Ilxlla > -II-~'l-[~ ........ 

and hence l u b ~  (A D) > lub~  (A) ; thus l u b ~  cannot be right-monotonic (cf. t .  ] 0). 

There also exists a with IDI----Z such that IIDxl[ < 11% for a certain 
xEX. Put  [[DxI~: ]txl~/(t+e) and put Dx-----x'. There exists a matr ix  AE~mn 
such tha t  [[A x'[l~< g lb~  (.4) [[x'[[~ (1 + e) (el. 6.3). Hence g lb~  (A D ) <  glb,~ (A). [I 

As a corollary we have 

Th. 1.14. If []. II~ and ]]. lid are HOlder norms of any index, the functions lub~a 
and g lb~  are two-sided monotonic. 

A different class of two-sided monotonic matrixfunctions is given by 

Th. 1.15. Any matr ixnorm which is obtained by  considering art m x n matr ix 
as element of the m x n dimensional Cartesian space with an absolute norm is 
two-sided monotonic. 

Consequently: 

Th. 1.16. (27[aijlP)llP, t__<p__<oo, and in particular the Frobenius norm 
t ]A[~- - - - ] [~ ]*  and the function max ]a{i], is two-sided monotonic on 93~,~,. 

More generally, bu t  still a special case of t A 5 : 

Th. 1.1 7. Ostrowski's composite norm H, defined by  H(A) =h  [h 1 (A1) . . . . .  h,~ (A ~)] 
(cf. [5], 3A)), where h is monotonic in the positive or thant  (in the sense of [I], 
(3A)) and each h{ is absolute, is two-sided monotonic on 932,,. The same holds 
for H '  defined as H'(A) =H(An) .  
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2. Equilibration Theorems 
Def. 2.1. In the following P will be a matrix with m rows if B is left-multiplied 

by DE~,~, B wilt have n columns if B is right-multiplied by DE~)~. Also, If. I~ 
will denote any vectornorm. 

Def. 2.2. For any two matrices A and B and any two matrix functions ~b 
and ~ we define 

~(B, A) =~v(B)/~(A). 
if the right hand side exists. 

We then have the following two theorems 

Theorem 2.3. Column Equilibration Theorem. If w ( B ) = m a x  I[Bi[ b (where B i 
t 

denotes the ]-th column of B) and ~ is right-monotonic on A ~D, and D6~D, is such 
that  B/~ is column-equilibrated in the sense of it (ie all columns of B/5 have 
equal y-norm). Then 

(a) ~ (B/5, A D) ---- rain ~ (BD, A D) 

(b) Any matrix D for which the minimum in (a) is attained may be obtained 
by multiplying/~ by a diagonalmatrix whose diagonal elements have equal 
modulus if and only if $ is strongly right-monotonic at A/5 (hence in this case 
column-equilibration of the argument of ~p is also a necessary condition for the 
minimum to be attained). 

Proo/. (a) I t  is no restriction to assume that D=I ,  i.e. that B already 
is column-equilibrated. Then max [Ieojllv: max ]dii I. max IIBjI/r and ¢ (A D) --< 
(max I d H D ,  (A). 

(b) Tribal. tl 
Theorem 2.4. Row Equilibration Theorem. If ~o (B) -----max II(B%t]  (where (B% 

i _  
denotes the i-th column of B n, i.e. actually the i-th row of B) and ¢ is left-mono- 
tonic on ~ A  and/ss~ ,~  is such that  ]~ B is row-equilibrated in the sense of I1" I~ 
(i.e. all columns of (D B) tt have equal ?-norm). Then 

(a) ~(DB,/5A) ----rain ~(DB, DA) 
DEem 

(b) Any matrix D for which the minimum in (a) is attained may be obtained 
by multiplying D by a diagonal matrix whose diagonal elements have equal 
modulus if and only if ~b is strongly left-monotonic a t /~  A. 

These equilibration theorems just serve to set a pattern. They are actually 
equivalent. They are so trivial that the applications can just as well be proved 
directly. The surprising thing, though, is that the minimizing/5 are determined 
by B only and do not at all depend on A, whereas uniqueness of /5  (apart from 
multiplication by diagonal matrices whose diagonal elements have equal modulus) 
is determined by ¢ and A/5 or/SA only. 

In 2.3, ~(B) obviously is a composite norm of B in the sense of [5~, (SA); 
a slight generalization can be obtained by allowing the norm II" II~ to be a different 
one for each column of B, i.e. ~ ( B ) =   aKI[BG,. Similarly for 2.4. 

2 ruiner. Math., Bd. ~4 
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A few obvious applications of the equilibration theorems are contained in 

Theorem 2.5. Let A be square or non-square. In the case that A is square 
the norm [I-ll* may be any H61der norm or the Frobenius norm. 

(a) ~ (A) = IIA IIoo t[ A-1 [[. or IIA I[~/glbm (A). Then ~ (D A) is minimal if in/~ A 
all rows have equal l-norm. 

(b) n(A) = (max[ a~i[)I[A-111 * or (max[ aiiI)/glbpq(A ). Then n(DA) is minimal 
if in /~A all rows have equal o~-norm. 

(c) n(A) as in (b). Then n(AD) is minimal if in AD all columns have equal 
oo-norm. 

(d) z ( A ) =  ]IA[hI[A-1I[* or IIAItl/glbpq(A ). Then n(AD) is minimal if in A/~ all 
columns have equal t-norm. 

(e) z,(a)=[[A,I[o01[A-l[[* or IIA,IJoo/glbm(A ). Then ~,(/~A) is minimal if all 
coordinates of DAi have equal modulus. 

(f) g ( A ) =  IIAI[~/I[A[I*. Then n(DA) is minimal if in /~A all rows have equal 
l-norm. 

(g) n(A)=IIA[h/I[AI[*. Then z(AD) is minimal if in A/~ all columns have 
equal t-norm. 

Proo[. (a) B = A, II. I~ = It-Ill; (b) B = A, It-I~ = If-It*; (c) B = A, tl. l~/= II. tI~; 
(d) B = A ,  il-lit = II" 111; (e) B = A  o it-II~ = ii-lip; (f) B = A ,  II. Itv-----II" I11; (g) B = A ,  
tl. II~ = If. II1. II 

Obviously, [2], Theorem II  a, corollary, is a consequence of 2.5 (a). However, 
a generalization of [2], Theorem I Ia  itself, too, can be easily proved directly: 

Th. 2.6. If n(B, A ) =  IIBIL II/-1L and B h a s  n o  row consisting entirely out 
of zeros, then rain ~(D B, D A ) = IllA-111B I L . 

Dean 

P,oot. UlA-~I IBI It® does not change when A and B are left-multiplied by 
DE~), (note that  re=n) .  We may therefore assume that in each row of B the 
sum of the moduli is t. Now, if e,  denotes the n-dimensional vector with coordi- 
nates I only, then e ,  is a maximizing vector with respect to the oc-norm of any 
non-negative matrix with n columns. Similarly %. Therefore, since I BI %=% 
if B has p columns, 

TII/-ll 1 BI II® = IliA-l[ I Bl epll~ = Ill/-lI e ,  lt~ = 1111-11 II~ =-[IA-111~ =~(B, A). II 

3. Approximate Minimization 

In view of the special form of ~v in the equilibration theorems, these theorems 
give conditions for the minimizing/~ only for a limited class of condition numbers. 
From [2], Lemma I and the subsequent remarks it is seen that in other cases the 
Perron-eigenvectors of certain matrices play a role, and hence it cannot be ex- 
pected that the minimizing D can, in general, be easily determined. 

Therefore we ask in those cases how well equilibration performs. In this 
respect we have the following obvious Theorems 3.1 and 3.3 : 
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Theorem 3.1. Let B be any matrix and let ~p satisfy 

(3.2) p max ][ B Dill, =< W (B D) _< q max I1 B Dil[~ 

where p and q are independent of DE~. .  If ¢ is right-monotonic on A ~ ,  and 
/gE~.  is such that  B/~ is column equilibrated in the sense of II. IL then 

~(B/~, AD) < q -  inf u(BD, AD). 
= p he~)n 

Theorem 3.3. Let B be any matrix and let v/satisfy 

(3.4) p max [I ((O B) n) il[~, <= ~ (D B) <= q max II((D a)H)il[~, 

where p and q are independent of De~,, .  If ~b is left-monotonic on ~ A  and 
/~e~,,, is such that DB is row-equilibrated in the sense of It" tit, then 

n(/~B, DA) < ~ -  inf n(DB, DA). 
p DE~)m 

Application: 

Theorem 3.5. Assumptions as in 2.5. Also, let ~ (A) = I~A t1,1A-~il * or ITA I[~ tl A-x I1" 
or ]IA llJglbpq (A) or t]A HF/glbpq (A). Then 

(a) ~(bA) is no more than a factor Vm- away from its minimum if in /~A all 
rows have equal 2-norm. 

(b) x (A/~) is no more than a factor V n away from its minimum if in A/~ all 
columns have equal 2-norm. 

Pro@ (a) B =A, tl" II, = ]]" ll~; max I](BH)~II, _<_ ]IBIi, < IlBb__< (1~) maxll(Bn)j]I,. 
(b) B = A ,  ]l-I[~ = [[" [[2; max I[B;I[~ _-< IIBtI~ < IIBI[~- < (V ~) maxtlB][[2. II 

4. Applications to Symmetric Scaling 

As a corollary of the results in the previous section we have 

Theorem 4.1. Let ~(P)=IiPii2iiP-tlI2 for any non-singular n × n  matrix P. 
Then, if P is positive definite and hermitean, 

~e(P) ~ n rain n(DHpD) 
DEan 

if in P all diagonal elements are equal. 

Pro@ P can be written as AHA, AE~IX,,, and obviously in A all columns 
have the same 2-norm. Also z(P) = (n(A)) 2. Now apply 3.5 (b). ]l 

This theorem has obvious applications to the matrices arising from least 
squares problems and from discretized elliptic differential equations. In the former 
case it is remarkable that  only the smaller dimension of the m x n  matrix of the 
least squares system enters 4.t, and since in this case n usually is not very large, 
symmetric scaling for equal diagonal elements can be considered as reasonably 
optimal. 

The theorem reminds the reader to a result in [3], where it is proved that  if 
in P all diagonal elements are equal and P has Young's "property A",  then 

2* 
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n(P) = min n(DnPD). Thus particularly in the case of discretized differential 
DE~)n 

equations our theorem may fall far behind the result in [3]. However, just in 
the case of lacunary systems we can improve 4.t considerably. 

We first have the following lemma, which may also have a wider interest. 

Th. 4.2. Let A be an m ×n  matrix with at most q non-zero elements in any 
column or at most q non-zero elements in any row. Then [tA I [~  (Vq) max If(AH),II~ 
or tIA 112__< (Vq) max tIAjII2 respectively. 

Proo]. I t  is sufficient to consider the case of at most q non-zero elements in 
a column since IIAnH2 = IIA II•- Then 

iIaxlt: = ~l~i a, ixj z<<- ~ (ll(an)'II:~"Ix] I~) ~ (In~axlI (an),t!:) ~ ~(Oixil~' 

where ~.~*) indicates that  the summation index j assumes only those values for 
which a , i . 0 .  Hence • Y, COixil~<=qlixg II 

i y 
In some interesting cases this theorem performs remarkably well. E.g. for 

the Dirichlet problem on a square for A u =0 ,  where f lu  is approximated by 
{u(x +h, y) +u(x--h, y) +u(x, y + h) +u(x, y--h) --4u(x, y)}/h ~, a positive de- 
finite symmetric matrix arises with diagonal elements 4 and at most 4 elements - - I  
and further zeros on each row. This matrix is known to have a largest eigen- 
value ~ 8  (cf. [4~, p. 230), and hence its 2-norm is approximately equal to 8. 
Our 4.2 gives (VS) (V ~0) -- 10. Admittedly, this result is not as good as the upper 
bound 8 which is derived from Gershgorin's circle theorem. This is not surprising, 
however, since for hermitean matrices our 4.2 actually is a consequence of this 
theorem, as is easily verified. But 4.2 can be used for non-symmetric matrices also. 

We now have the following refinement of 4.1. 

Theorem 4.3. Assumptions as in 4.1. If, moreover, P has at most q non-zero 
elements in any row then 

~(P) ~ q  min ~¢(DnpD) 

if in P all diagonal elements are equal. 

Proo]. Let  A be any n×n matrix such thatQ =AHA has at most q non-zero 
elements in any row and column. Then HA ]]~ = ]lQ]]z<_ (Vq) max ][Q/II~ (cf. 4.2). Also 

H A A hence < A A Since has at q , J = ( , )  i, Iq,]]=ll  il[~l[ ilia" " Qi mostqnon-zeroelements ,  
IIQi[t~ G q max [~li[[~. Therefore, [[A [Is K (Vq) max IIA,[[~. 

Now writing P----AriA, we have [[A DIt~; (Vq) max [IA D,tlv Since P has equal 
diagonal elements, all columns of A have equal 2-norm. Therefore ~(A) 
(Vq)min~t(AD) (cf. 3A). II 

5. Uniqueness  of Minimizing Scaling 

Assertions 2.3 (b) and 2.4(b) say that under circumstances the matrices D for 
which ~ (BD, A D) or ~ (D B, DA) is minimized, are essentially unique. 

Unfortunately, these circumstances - -  strong monotonicity of ¢ - -  usually 
cannot easily be verified. 
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There are norms for which strong monotonic i ty  of glb (and for the usual 
condition numbers  this is the impor tan t  case) is rare:  

Th. sA. I f  ¢(A)  =f[tiA-,ll~ then  ¢ is not  s t rongly r ight-monotonic  at  a un- 
less all rows of A -1 have  equal l -norm.  If  ~b(A)---l/t~l-llh then  ~b is not  s t rongly 
lef t-monotonic a t  A unless all columns of A -I have  equal  t -norm.  

However ,  for m a n y  other practical ly impor tan t  norms glb is s t rongly monotonic  
for an overwhelming major i ty  of matrices A (even if A = B), e.g. 

Th. s.2. (a) I f  ¢(A)=alllA-1l[1 and A -t  has a max imal  column (i.e. a column 
whose i -no rm equals ][A-1[[1) wi thout  an element 0 then ~b is s t rongly right-  
monotonic  a t  A. 

(b) If  ¢(A)=t/1IA-111® and A-1 has a max imal  row (i.e. a row whose t -no rm 
equals I[A-~I[~) without  an element 0 then ¢ is s t rongly lef t-monotonic at  A. 

Also: 

Th. 5.3. I f  ~b(A)---- e/lla-~[I *, II. II* a norm as in 1.t5, then  ~b is s t rongly right-  
and lef t-monotonic a t  A if the  norm on the m x n  dimensional space (cf. 1.t5) 
is s t rongly monotonic  (m and n are now equal). 

For  other  norms the  following result  has some relevance: 

Theorem 5.4. (a) I f  ~b(A)----glb~p(A), II" lia s t rongly monotonic,  and A has a t  
least one minimizing vector  x o wi thout  a coordinate  0 then  ¢ is s t rongly r ight-  
monotonic  a t  A. 

(b) If  ¢(A)----glb~a(A ), [I.I]~ strongly monotonic,  and A has  at  least one 
minimizing vector  x 0 such tha t  A x o has no coordinate 0, then ¢ is s trongly left- 
monotonic  a t  A. 

Proo[. 

(a) glb~a(AD)-=min [IADx[I~ - -  min-%-i---llA xll~ ~ IlAx0[l~ _llAxoll~maxldi~[ 
,*0 Ilxl~ ,*o liD- x]~ - -  IID-Xxol~ < ' - ~ o l ~  

if no t  all ]d. l  are equal. 

IlDAxol[~ I~A -o tl~ max i d .  I (b) g l b ~ ( D A ) = m i n  tlDAxlt~ < < - -  

if no t  all tdii[ are equal, lI 
The  difficulty, of course, is to know whether  the condition on x o is satisfied. 

Although the author  cannot  prove this, he believes tha t  a t  least in the case 
tha t  ¢ ( A ) =  a/l]A-~llp, t < p < o o ,  the set of matr ices  tha t  do not  sat isfy the con- 
dition, has measure  0 in the set of all matrices. He  can prove, however,  t ha t  
if ¢ (A)= t/l[A-~l[p, t<1)<oo, and A-1 is a positive matr ix ,  then A satisfies the 
conditions of 5.4. This shows at  least tha t  the set of matrices satisfying 5.4 has 
posit ive measure,  so t ha t  one certainly cannot  trust t ha t  there is any  real f reedom 
left in choosing the scaling mat r ix  if one wants  to minimize ~. 

Another  question, of course, is what  f reedom one is likely to gain in this 
respect  if it is only required to get s within a given factor  (e.g. 2 or n) f rom its 
min imum.  
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6. Appendix 

In  this appendix we mention and prove a few results on the existence of 
matrices with given maximizing or minimizing vectors or given images of such 
vectors. 

Theorem 6.1. For  any  xEX, x ~0,  and any  yEY and any  pair of norms there 
exists an A EgJ/,,~ such tha t  y----A x and x is a maximizing vector for A. 

This theorem has no immediate parallel for minimizing vectors:  

Th. 6.2. If  n ~ 2  it is not  true tha t  for any  pair of norms and any  xEX, x =~0, 
there exist an A EgX,~ and a yEY, y ~0,  such that  y = A  x and x is a minimizing 
vector for A. Neither is it true tha t  for any yEY,  y ~=0, and any  pair of norms 
there exist an A E ~ J ~  and an xE X, x ~= 0, such tha t  y = A x and x is a minimizing 
vector for A. 

This implies tha t  the mapping  A in 6.1 cannot  be required to be injective 
(i.e. to have an inverse). However:  

Theorem 6.3. For  any  xEX, x=~O, and any yEY, y=~O, and any  pair of 
norms and any  e > 0  there exists an A E ~ J ~  such tha t  y----A x and [[A xHj[[xll~< 
(1 +e )  glb~a (A). 

Proo] o[ a.1. Let L be any linear functional on the var ie ty  of scalar multiples 
of x. Now extend L to the whole of X without  increasing the norm of L (Hahn- 
Banach theorem). Then x remains a maximizing vector of L. Finally, define A 

Lt 
by  A t = z ~ y  for all rEX. [1 

Proo[ o/6.2, first part. Provide X and Y with the H61der l -norm and 2-norm 
respectively. Let  A E~J~,~ have rank n (since otherwise g l b ( A ) = 0 ) .  Take x =  
(1, 0, 0 . . . .  )n and x ' = ( 0 ,  1, 0 . . . .  )n. Then ][x+2x'[11=l+[2 ]. If  Ax'_]_Ax then 
[[A x + 2A x'[[~ behaves as p +q22,  p and q positive constants (since A x' and A x 
cannot  vanish), for small values of 2 and hence x is no minimizing vector. If  

(A x'j_A x) then IIA x +2A x'[[2 <--<_ [[A xi[ 2 for some values of 2 4=0, and again x 
is no minimizing vector. [] 

Proo] o/ ft.2, second part. Provide X and Y with the H61der 2-norm and 
oo-norm respectively. Let  AE~)2,~. have rank n (since otherwise g i b ( A ) = 0 ) .  
Take y = (t, 0, 0 . . . .  )n, and suppose tha t  y = A  x. Since A has rank n, there 
certainly is an x'EX such tha t  y ' = A  x' =~0, but  has first coordinate 0. Then 
[[y +2y'[[oo is constant  for small values of 2. However,  [Ix + 2 x ' [ [ ~ >  [[x[I 2 for some 
small values of 2. Hence, x is no minimizing vector. [[ 

Proo] o/ 6.3. Let Y' be any  n-dimensional subspace of Y which contains y. 
Then there exists a mapping B:  Y ' -+X such tha t  x = B y  and y is a maximizing 
vector  for B (cf. 6.1), but  this mapping m a y  be singular. In  any neighbourhood 
of B there exist non-singular mappings B' : Y'-,'-X. Thus for any 7 > 0 there exists 
a non-singular B '  such tha t  I[ B'y  -- By[~< 7 [[ BY][a and lub a ~ ( B ' ) <  (t + 7)luba ~(B). 

Now take ~ < t. Then for any  p and qEX with Iiq--PI[a<TIIPI[a there exists 
a non-singular mapping C: X---~X such tha t  l u b a a ( C - - I  ) < 7  and Cp=q. In- 
deed, we can take C - - I  such tha t  (C - - I )  p -----q - - p  and p is a maximizing vector 
for C - - I  (cf. 6A); the non-singttlarity follows from lubaa (C - -  I) < 7  < t. Hence 
C -x exists and lubaa(C-a ) < t /( l--~/) .  
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A p p l y i n g  this  w i th  p = B y  = x and  q = B ' y  we get  

(i) x = C - l B ' y ;  

(ii) lub¢~(C-1B ') < l u b ~ ( B )  (t + ~ ) / ( t  - -~ ) .  

Hence  

II:vlh t a 1+~/ = g l b , ~ ( ( C _ l B , ) _ l ) 1 +  7 
[[x[~ - -  lubt/~(B ) < l u b ~ ( C - 1 B  ') 1--~/ 1--  7 

Thus ,  if ~1 is smal l  enough,  A = (C -x B ' ) - I  satisfies all  r equ i rements .  II 
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