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1. Introduction 

Different variational methods are used as a tool to approximate the solution 
and error-estimates are studied in different norms. The purpose of this contribution 
is to show a generalization which gives errors in different spaces and some special 
applications. 

As a concrete application we shall s tudy the error of the finite element method 
for the Dirichlet problem for the Laplace equation on a Lipschitz domain. About 
other results concerning the finite element method see also [17-23]. 

2. Basic Theorems 

Theorem 2.1. Let H x and H~ be two Hilbert (complex and complete) spaces 
with scalar product (-, ")n, (resp. (-, ")n,). Further  let B (u, v) be a bilinear form 
on H 1 xH2,  uEH1, vEH 2 such that  

(2.1) 

(2.2) 

IB( u, ~)1 ~ c,l[~ll~,ll~ll.,, 

sup lB(u, v)l > C, IIvltH,, 
u E H  1 

(2.3) sup 1B(u, v) l ~ G []ullu,, 
v E H~ 

I lvlla=<l 

with C z > 0 ,  C 3 > 0 ,  C 1<oo .  

Further  let/EH'~, i.e., / be a linear functional on H~. Then there exists exactly 
one element uoEH 1 such that  

(2.4) 

for all v EH~ and 

(2.5) 

B (uo, v) = / (v)** 

liUoli., ~ !t!Ctt-~-~ • 

* This work was supported in part by National Science Foundation Grant 
NSF-GP 7844. 

** ](v) means complex conjugate value to /(v). 
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Pro@ The  proof is adap ted  f rom [2] and  [3]- We present  this proof because 
we shall use a port ion of it  for the proof of the  nex t  theorem. 

1. Because of (2.t), for every  u E H  1 

¢~(v) = B ( . ,  v) 

is a linear functional  on H e with the norm 

I~.ll~ = sup l B (u, v)) ~ C 1 tt~lt-, .  
veH~ 

II~IIH,~-I 
So we m a y  write 

(2.6) (z, V)H ' = B (u, v), z EH~ 

i.e., there exists a mapp ing  R (u) o f / / I  into H e such tha t  

(2.7) ( R (u), V)H" = B (u, v) 

and 

(2.8) I[R (u)[[,, _ . . ,  __< q .  

Obviously R is linear and continuous. 

2. Now let us show tha t  R (Ha) is a closed set in H 2. 

Because 
tIR (u)IIm -= sup I(R(u),  v)l = sup I B(u, v) i , 

v~Ht v(~H, 

by (2.3) we have  

(2.9) II R (u)IIn, => q II"]l-, 
Now let {R (u.)} be a Cauchy-sequence in Hg., then  {u.} is a Cauchy-sequence in 
H 1. In  fact  

II R (u.) - R (u,~)IIH, ---- II R (u.  - -  u~)[I > C~ Ilu. - -  u~,IIH ,. 

I t  follows immedia te ly  tha t  R (H1) is closed. 

3- Let  us now show t h a t  R (H1) = He. I f  this were not so, then because R (//1) 
is a subspace there exists voEH,, (v 0 4=0) such tha t  

0 = (R(u),  vo)u, for all u E H  1. 
But  b y  (2.7) 

( R (u), VO)H, -~ B (u, %) 

and therefore b y  (2.2) there exists u ' E H  1 such tha t  

I B (u', Vo)l > -~C, II"olI., 
and this is a contradiction.  

4. So the  equat ion R(x)  ----y has  a solution for every  yEH~ and (2.9) holds. 
Thus  there  exists a l inear continuous inverse R -~ and 

1 
IIR-IE]H,~H, ~ ~; 

[see e.g. [4], p.168]. 
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5. Let  ]EH~. So we have 
7(~) = (%, ~)~. 

with Vol~' = lit{IH~ and putting uo=R- lvo  we have our theorem, because uni 
queness is obvious. 

Theorem 2.2. Let the assumptions of Theorem I be fulfilled. Further  let there 
be given the subspaces (closed) MxCH x and MsCH s and let for every vEM~ 

(2.to) sup i B(u,  v){ _-__ ds(M1, M s ) M - ,  
uEM1 

{{uiiH~_~l 

with d2(Mt, M~)>0 ,  and for every u 6 M  1 

(2.1~) sup { B(+,, v){ >=,~(M. Ms){{+,{{~, 
veM, 

{l,,llzr,_~ x 
wi th d3 (3//i, Ms) > 0. 

H '  Let [E s be given, let u 0 denote element o f / /1  such that  

(2.t2) B (Uo, v) = 1 (v) 

holds for all vEH s [such an element exists and is unique by  Theorem 2.t]. 

Let there exists ~ 6M~ such that  

(2.t2) {{u 0 --(,0HH ' ~ ~. 

Further let aoEMx be such that  

(2A3) B (4 o, v) = ] ( v )  

for a~ v EM~. Then 
C, ] d. 

(2A4) {[% - V~ol{~ ' _-< [1 + d~(M,, M~) 

Proo/. t. First let us remark that  there exists exactly one u o fulfilling (2.t3) 
because of Theorem 2A. 

2. Now let P denote the projector (orthogonal) in H s which maps H 2 onto 
M s and let R be the mapping constructed in the proof of Theorem 2.1, i.e., 

(2.15) (R (u), v)H, = B (u, v). 

Then let us put Q = P R .  I ts  contraction is obviously a continuous mapping 
of M 1 into M s. 

Now let S be a mapping of M 1 onto M~ such tha t  

(2A6) (Su, V)H, = B(u, v) 

for every u E M  x and vEM,.  Such a mapping will be constructed in the same 
way as in the proof of the Theorem 2A and it is unique. 

Let us show that  S = P R = Q  after contraction on M 1. We have to verify 

(2A7) (P Ru,  V)H ' = B (u, v) 
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for all u E M  1 and v E M ~ .  I t  is clear that  

(P  R u ,  V)H ' = ( R u ,  PV)H ' = ( R u ,  V)H ' = B (u, v) , 

because of symmetry  of P, and P v = v  for v E M z .  So let voEM 2 be such that  
(Vo, V)H" = [(V) for every v EM 2. Obviously v 0 = P R %. So 

(2.t8) 5 o = S - 1 P  R u o .  

Now we have ( % - - ~  =z)  

¢~o--uo = S - I  P R u o - - U o - - - - S 4  P Ro~ + S 4  P R z  --co - -  z =  - -  z + S - 1 P  R z  

and therefore 

II~.o - ~ 0 k  -< a {t + 
c1 I 

- -  d3 (Mt, M~) j 

which was to be proved. 

3. Hilbert Scales 

Let R.  be the n-dimensional Euclidean space x = (x  1 . . . . .  x .) ,  ]Ix[[2 = ~ x~, 
lxl =max{Ixd} .  A domain 12(R.  will be said to be an L-domain ELipschitz 
domain I if there exist numbers ~ > 0 ,  f l > 0  and the systems of coordinates 
(x~. 1 . . . . .  x , . . )  ~ (x'~, x , , . ) ,  r = t .  2 . . . . .  M and Lipschitz functions a, defined on 
the cubes Ix,. i l < ~, i = 1 . . . . .  n -  1. r = ~ . . . . .  M ,  so that  each point x of the 
boundary 12 could be expressed at least in one system in the form of (x'. ,  a,(x' ,)),  
and for each system the points (x~. a,(x'~)) are inside (resp. outside) of 12 for 

a~(x',) < x , , ,  < a,(x'~) + f l  (resp. ay(x'r) - - t 5 <  xr, ~ < a,(x',) ).  

In the paper we shall assume that  all domains will be Lipschitz domains. 

Let D (~) denote the set of all functions with compact support in ~Q, and 
continuous derivatives of all orders. 

W2~ (12)(resp. W~ (R~)), 0c~0 

are the Sobolev fractional spaces on 12 (resp. R,). For a an integer we have 

(3.t) tlullw.~(,) = E ID~-IL(~) 
k < a  

where the sum is over all derivatives of order k ~ ~. 

The definition in R,, is analogous. For ~ = [g] + a ,  0 < a < t ,  we introduce 
the fractional norm due to Arouszajn [5] and Slobodetskij [6]. 

liull,:~.(~) = ~  Mw.E..~(~) + ~  E [tOkuli~vg(~) 
lkl = [~] 

(3.2) 
where 

(3.3) l luko(~)= . i t _~ l .+~  ~ d t d ~ .  
D O  

The same definition is valid for O = R, .  In  R.  we introduce another norm 

(3.4) Ilull~v~l(~.t = f (a + II¢~I12)~ I F(u)(~)I ~ d .  
R,, 
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where F(u) is the Fourier transform of u. The norms I[" llw,~'lfR,l and [I" IIw~,, tR,) 
o 

are equivalent (see e.g. [6]). The space W2~(D) will be the closure of D(Q) in 
W~(~). The space W, -~ will be the dual space to I/V~5 Let us now quote some 
results which we shall use. 

o 

Lemma3.1. Let !EW,~(£2), [ < a < { .  Then the operator T of continuation 
by zero (i.e., (T!) (x) =/ (x )  for acES, (T]) (x) = 0  for x¢/2) is alinear continuous 

o 

operator from W,~(~2) into W2~'(R~). See e.g. Lions Magenes [7] and Ne~as [~- 

Lemma 3.2. Denoting by C(resp. [[. [[c) the usual space of continuous functions 
(resp. the usual norm in C), we have 

if ~ > n/2, see e.g. ~8]. We shall use this lemma especially for n----2. 

Lemma 3.3. We have 

o < ~ < ~ < / ~ < {  or --~<~<=~,~¢/~0. 

fl--~, ~,--~ 
(3.7) lZ -- ~-o~'  v -  t ~ - ~ '  

see e.g. [9]. 

Lemma 3.4. Let -- { ~ ~1 ~ fl~ ~ 0, 0 ~ ~ ~ f12 =< {. Let A be a linear operator 
defined on W2a,, ~(R.) which is a bounded operator from W~a,, X(R.) into W~a,, a(R.) 
and from W~,i(R~) into W~,,a(R.). Then A is also a bounded operator from 

W~'i (R,) into I/V~,, x (Rn), ~<--7~<=fli, i - ~ , 2 ,  where fll~t-~t_ ~t -- ~--~'/3~-- ~, and 

where 
fli--? ~--~, 

lz= fli--dl ' v-- fli--~l ' 

and C does not depend on ~,~ and ~ (see e.g. [9]). 

4. Dirichlet Problem 

Let us solve the Dirichlet problem for the Laplace's equation. 

- -Au=/  
(4A) u ~ 0 on ~2". 

o 

We will be looking for a weak solution, i.e., uEW,~(S2) will be the solution if 

j + ?'-OV- dx= f / v dx i ~  Oil Oxi t: 

for every v ED (/2). 

Now the following theorem holds. 



Error-Bounds for Finite Element Method 327 

o 

Theorem 4.1. Let i 1 - -  ~ < a < ~, then there exists a unique solution in W, 1+" (Q) 
for ever 3, ]EI/V2-1+~(Q) and we have 

S e e  Ne~as [l~. 

Let Q c R .  be a set, then a--neighborhood of Q will be the set E I x  , -ytl < ~, 

D e f i n i t i o n  4.1. We shall say that  a {x) is a proper function if 

a) o~(x) EVC~2(R~). 

b) ~o (x) has compact support. 

c) There exist constants C and L such that  for every/EW~(R~) and h>O,  
there exist C h (k), k = (k~ . . . . .  k~), k i integers such that  

[ x - - h k \ l l  

for every 0=<~gf l_<2,  and if ] has compact support S, then the function 

a~ (x----Si ~h-~h ) - ,  --  - has the support in the Lh  neighborhood of S. Such functions E Ch(k) 
k 

exist. For more information, see [10]. 

Now let us study the finite elements method for solving (4.t) provided that  
/E}}~ B (Q), - - {  <: ft. The method is the following: 

For a given h > 0 let us take the linear space M h of all functions of the type 

gh = ~ C(k) m ...... -~ - - -  such that  g~ has its support inside ~ and o) is a proper 

function (Definition 4.t). Now the approximate solution u h will be such that  

a) - : M h ;  

Kl 

for every ghEM h. The integral on the fight-hand side is to be taken in the sense 

of generalized functions (distributions). Because gh EIPV~ ~ (Y2) and / EW~a (Q), - -  { < t ,  
the fight-hand side makes sense. Also because the form on the left-hand side is 
positive definite there exists exactly one solution u h. Denoting by u o the weak 
solution of 4A, we shall be interested in the estimation of the type 

ttuo- < K .  h.ll/lk , , 

We shall prove the above inequality 

(4.2) f o r - - } > ~ = > - - t ,  { > f l a t ,  ~ - - 2 f l + 3 ~ 0 ,  / z = ( 0 ¢ + t ) - - 2 ( f l - - t ) ,  

(4.3) f o r - - i > a - - > - - l ,  O<__fl<=l, / ~ = c ~ + t + ( l - - f l ) { - - e ,  for e > 0  

arbitrary,  

(4.4) for a ~ < - - I  0_~fl--<*¢+2, a 2+~  ' _ , _ - ~ < ~ ,  { + 2 ~ > ( I + ~ ) ~  

={+2~ (I+~) 2+~  e, for e > 0 ,  arbi trary.  
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B y  using L e m m a  3-2 we have  immedia te ly  for n = 2 (i.e. in the plane) the  follow- 
ing result  

ll-o - -~11~,~, =< K h"ll/llw,,,'~,~ 

- -  ½ > ~'  > - -  1, if' = 0( + t_ - -  e, e > O, arb i t rary .  So e.g. using the imbedding 
theorem we have  

(4.5) [l%-,,~ll~,,, --< c h~-.lltllw._~c,~ 

for e > O, arbi t rary .  I t  is interest ing to compare  this result  with Laasonen 's  [11, t2]  
upper  bound  and Volkov 's  [t6] lower bound  of the  ra te  of convergence of the  finite 
differences m e t h o d - - f i v e  point  formula.  I t  is easy  to see t ha t  we m a y  select the 
function oJ(x)EWz~-'(R,),  0 < ~ / < { ,  so tha t  we get classical five point  formula  
(see e.g. [t7], p. 305) and the theorem holds in the same sense. So our results 
are a lmost  the best  possible results wi th  respect  to the  convergence in C. See 
also [ t 3 ] .  

Another  interest ing case for n = 2 is the case ]----O, 0 is a Dirac function. 
Then the solution is the Green function. We see tha t  the convergence is of order 
h½- ~ in L z . For  the one dimensional  case and special trial function see [14]. We have  
shown a very  special case. Wi th  obvious changes in the  approach which we used 
it  is possible to s t udy  nonselfadjoint  equations,  equat ions wi th  noncons tan t  
coefficients, higher order equat ion and sys tems of equations.  

5. Some Lemmas  

L e m m a  5.1. Le t  /EW2~(R,, ), 0--<__~_--<fl. Denot ing  /j,a(x)=/(x+ha), ] la l l= l ,  
we have  

(5.1) 
where 

Ill - l,,,~ll~c~,,)~ K .  h.  Iltllw,a(R=> 

/z <: min [1, fl - -  x] .  

Proo/. We shall prove  it for the norm W~ ~,1 (R~). We have  

- -  f . . .  + f . . .  ~ C  f h~, ' l lx l t~" l (~+ l lx l t~)71F( . t ) l *d~,  
l lxhll>x l l~ht]~l l lxh l l< l  

+ c' f ( i +  II~II~) " II~II ~'. h~"IF(/)l 'dx 
llxhll_~1 

h > 0 there exists 

and  
2/, + 2~ _-< 2fl. 

L e m m a S . 2 .  Let  /EIgV2~(£2 ), } < f l < { .  Then for every  

[,Elfid~(/2), such t ha t  [h-----0 in a h-neighborhood of [2" and 

(s.2) IlL, -/11,,,,,,,~,~) <-- K h,' I I / l l~ ,~  
where 

#_--<min[l, t - - x ] ,  O~<~=<fl. 
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Pro@ Because 1 a ~ < f l < ~  we m a y  use L e m m a 3 . t  and take / as a function 
in W~a (R_,) with support  in ~ .  Because $2 is a Lipschitz domain using the common 
approach of parti t ions of unity,  we m a y  write 

l = ~ h ,  lit&,,, < c Illllw,~ 

with h e I~a (~) and either the support  inside 12 or (/i)~h E lYV~ ~ (so2) and (]i)~t, ( x ) =  0 
for x in a h-neighborhood of/2". Using the previous lemma, we prove the state- 
ment.  

Lemma 5.3. Let  ~o(x)EW22(R,) with compact  support.  Fur ther  let 

( - )  = z c,,o  

where k = (/~ . . . . .  k~) and the k i are integers and ga has compact  support  (i.e. 
5.3 is finite sum). Then there exists K independent  of h such that  

Ite~ (x) llw:c~.~ <= s,: (5.4) 

Pro@ t.  Let  us take 

(5.5) 

where 

K 1 = sup llY.Ck o~ ( ~ -  k) IIw;(~:) 
ck lie c k  ~ ( ~ -  k)I lw;  (~) ' 

0 o =E[x,, Ix,I < ~]. 

Let us show tha t  K 1 < c¢. Let  us take M, the set of those k, such tha t  the 
o9 (x--k) ,  for k EM are linear independent  on D °. Then every g = ~ C k eo ( x - - k )  
can be writ ten on D O in the form 

g = Z c ; , ~  (x - k ) .  
h E M  

Because of the compact  support  of (o, the set M is finite. To prove K 1 < 0% 
we m a y  restrict ourself to the case when 

(5.6) II E c k  ~ (~  - k)II~v;(~:) = a 

and kEM. If  K I were 0% then because of compactness, there must  exist {C~'} 
such tha t  

II Z ct ,  ~ (x  - k )w,~: )  = o 
and 

11 E c~< o~(~ - k )  llw;(,~:) ---- t .  

This would obviously be a contradiction. 

2. Let  us now take 

(5.7) 

where 

(x - -kh  I 

K h = sup x - -  k h 
ck 2 C , , ~ ( ~ )  wi(a~) 

.(2° = E[x,, Ix,} < l h]. 
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It  is easy to see that 
Kx 

(5.8) K~ <__ ~ - .  

3- Because of the compact support of g~ (x) we have 

(5.9) IIg, (x)ll~V:(R,) = ~ Ilgh (x)ll~,'; (altk)) 

k 

where 

with the sum finite. Obviously we have 

= Kh Ilghllw;IR.I 

and because of (5.8), our lemma is proved. 

Lemma 5.4. Under the same assumptions as in Lemma 5.3 we have for 0 =<fl ~ 1 

) 
Prool. By Lemma 3.3 we have 

= /g  V 

and 

and so 

llghllw~:(~.~ --< - ~  ] [gh l lw: (~ . )  • 

6. Rate of Convergence of the Finite Element Method 

In this part we shall s tudy the method described in Part 4 using the results 
of Part 2. By using Lemma 5.4 we have in (2A 0) and (2.t t) d2 ~ C h a, d~ >_ C h a, for 

B (u, v) = :  ~ Ou Ov 

o o B 
for Hx=W~x+a(f2), H~=I~2-  (f2), tfl] <½" By [{] (2A), (2.2) and (2.3) ho|ds. 
Now let fl -->0, c¢ => 2fl, ~ < ½ and ]¢Vf2-1+~ in (4A). Then by Theorem 4.t we have 

Iluollw.~,<,~ __< g II/llw,---,,¢o~ 
and 

o 

Using Lemma 3.1 we may continue u o by zero in /~ .  Then uoEV¢~ +~(f2.) with 
compact support in ~ .  Using Lemma 5.2 for g =f l  and the basic property of 
proper function co and Lemma 5.2 once more we may construct 

I *  
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such that  

I1~o - g~li~1+~.lc~., ~ c h ~-p  tflh;_l+~t~ ~ 

for 0 ~ ~ < ½, fl ~ ~, ~ --/~ < t. Using Theorem 2.2 we have 

which is (4.2). To obtain (4.3) (i.e. 0~ f l~< t )  we use another approach to obtain 
sharper results as in the analogous approach for (4.2). By definition we have 

(6.2) B(u~- -u  o, v) = 0  for every vEM h. 

From 6.t we have 

(6.3) II-~ - -ollw;<~ - c :e I f / i l w ~ , + ~ ,  • 
o 

Because W21 (Q) (W2-1+~(Q), 0 ~} ,  < ½, there exists VE W21+r(Q) such that 

(6.4) B (V, s) ------- f (u h -- %) s dx  

o 

for every s E IV21-~ (~2) and using Theorem 4. t 

(6.5) IlVllw;+?¢~ ~ c II-~ - -o l lL.~) .  

So by the basic property of M h and Lemma 5.2 we have 

V = K  + Z ,  KEM h 
and 

(6.6) I l Z l l w , . ~  - c I l V l l w ; . c ~ >  • h~. 

By (6,2) we have [in our case B(u, v) =B(v ,  u)] 

B (u~ - -  Uo, V) = B (u~ - Uo, z ) .  (6.7) 
But using (6.4) we have 

(6.8) 

Therefore 

( u h - , o ,  v)  llu, = --olIL,(./- 

Using (6.6), (6.5), (6.3), we have 

(6.9) [[u~ --  UollL,(a) < C h ~+~ l[/[[w#+~ca). 

Using Lemma 3.4 and (6.3) and (6.9), we have 

{ ) II/llw;-'+~l~l IItlt~r'+~/~, (6.to) Iluh - u01Wc~ --< c(h=),, h ~+='-0 = ch=+,c~-,,  

and this is nothing else than (4.3). 

Now let ]EV~2 -~', ½ > ~ > 0  in 4.1, then by analogous arguments in the pre- 
vious we obtain 

(6.1 t ) II-h - .  II~.~ ~ ~ c h -~ II ! 11~,--1-. c~ 
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a n d  

(6A2) 

w i t h  

a n d  so  we  h a v e  

il u,  - -  ~11~;~, ~ C II '* - -  '~11,~;-~'~, IIZlIw,~+~,~ 

(6A3) [tu, ', - -  '~ lt,',';,,~ --~ C '~-~' l l / l lw~- ' -~ '~ h" -~ '  = C h " - *~ '  ll/ll,~,-'-~'C~> • 

U s i n g  L e m m a  3-4 for  (6.11) a n d  (6A3) we  o b t a i n  

II"~ - ~tl~,,,~c~ =< c II/tl~;-,-~:~ (h-~) ,£~ (h~-~y -~=~ - = c II/ll~,-~> h ' - ~ +  ~-~:-~ 

a n d  th is  is e x a c t l y  (4.4). 
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