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1. Introduction

Different variational methods are used as a tool to approximate the solution
and error-estimates are studied in different norms. The purpose of this contribution
is to show a generalization which gives errors in different spaces and some special
applications.

As a concrete application we shall study the error of the finite element method
for the Dirichlet problem for the Laplace equation on a Lipschitz domain. About
other results concerning the finite element method see also [17-23].

2. Basic Theorems

Theorem 2.1. Let H; and H, be two Hilbert (complex and complete) spaces
with scalar product (-, )y, (resp. (-, -)g,). Further let B(x, v) be a bilinear form
on H, XH,, ueH,, v€H, such that

(2.1) | B(w, 9)| < Cy [ua, [v]a,

(2.2) sup | B(#, v)] = Cy v,
el 21

(2.3) sup | B, v)| = Cy|un,,
o, 21

With Cz>0, C3>0, C1< o0,

Further let f€Hy, i.e., f be a linear functional on H,. Then there exists exactly
one element #,€H,; such that

(2.4) B(uy, v) = f(v) **
for all v€H, and
(2:5) Joals, = 105

* This work was supported in part by National Science Foundation Grant
NSF-GP 7844.

** f(y) means complex conjugate value to f(v).



Error-Bounds for Finite Element Method 323

Proof. The proof is adapted from [2] and [3]. We present this proof because
we shall use a portion of it for the proof of the next theorem.

1. Because of (2.1), for every w€H,

b4 (v) = B (u, 7)

is a linear functional on H, with the norm

Wk = sup | B, )] < C,

' Tl 21
So we may write
(2.6) (2, v)y,= B(u,v), z€H,
i.e., there exists a mapping R (u) of H, into H, such that
2.7) (R(w), 0, = Blu, v)
and
(2.8) | R 0l 1, = C.

Obviously R is linear and continuous.
2. Now let us show that R(H,) is a closed set in H,.

Because
IR (91, = sup |(R), o) = sup | B, 9],
vel, v 2
ffofia, =1 a1
by (2.3) we have
(2.9) IR (#) 1, = Cs | 4], -

Now let {R(u,)} be a Cauchy-sequence in H,, then {u,} is a Cauchy-sequence in
H,. In fact
HR {Mu) —R (um) HH, = {{R (un - um) H Z C3 H%n - umHH,'

It follows immediately that R(H,) is closed.

3. Let us now show that R (H,) = H,. If this were not so, then because R (H,)
is a subspace there exists vy€H,, (vg=0) such that

0=(R(u),vp)y, forall ueH,.
But by (2.7)
(R (%): "’o)l{. =B (u» 7)0)

and therefore by (2.2) there exists #’€H; such that

| B, vo)| Z £Calvola,
and this is a contradiction.

4. So the equation R(x)=y has a solution for every y€H, and (2.9) holds.
Thus there exists a linear continuous inverse R and

1
IIRMI“Hn—’Hl é Ea_
[see e.g. [4], p.168].
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5. Let feH,. So we have
F(v) = (vo, v)m,
with [|ve|y* =|f|g; and putting u, =Ry, we have our theorem, because uni
queness is obvious.

Theorem 2.2, Let the assumptions of Theorem 1 be fulfilled. Further let there
be given the subspaces (closed) M,CH; and M,CH, and let for every vel,

(2.10) sup | B(u, v)| = dy(My, M,) |,
ueM;
flullms1
with 4, (M,, M,) >0, and for every u€M;
(2.11) sup | B(u, v)] Zdy (My, My) [uly,
vEN,
flolime=1

with dg(M,;, M,) > 0.
Let feH, be given, let %, denote element of H, such that

(2.12) B (s, v) =1 (v)

holds for all ve€H, [such an element exists and is unique by Theorem 2.1].
Let there exists w €M, such that

(2.12) et — wller, < 6.

Further let 4,€M, be such that

(213) B (i, v) =f(v)
for all veM,. Then
. C.
(2.14) [0g — iglly, = {‘l -+ m;)“ d

Proof. 1. First let us remark that there exists exactly one #, fulfilling (2.13)
because of Theorem 2.1.

2. Now let P denote the projector (orthogonal) in H, which maps H, onto
M, and let R be the mapping constructed in the proof of Theorem 2.1, ie.,

(2.15) (R(w), v)y,= B(u, v).

Then let us put Q= PR. Its contraction is obviously a continuous mapping
of M, into M,.
Now let S be a mapping of M, onto M, such that

{2.16) (Su, v)y, = B(u, v)

for every u€M, and v€M,. Such a mapping will be constructed in the same
way as in the proof of the Theorem 2.1 and it is unique.

Let us show that S=P R =Q aiter contraction on M,. We have to verify
(247) (PRu, v)y, = B(u, v)
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for all ueM, and veM,. It is clear that
(PRu, v)y, = (Ru, Pv)y, = (Ru, v)y,= B(u, v),
because of symmetry of P, and Pv=1v for veM,. So let v,€M, be such that
(v, V)g, =F(v) for every v€M,. Obviously v, =P Ru,. So
{2.18) g == S™* P Ruy.
Now we have (1 —w =2)

flg— g =S "PRuy—1g=S*PRw +S*'PRz—~w—2=—2+S*PRz

and therefore

which was to be proved.

3. Hilbert Scales

Let R, be the n-dimensional Euclidean space ® =(x, ..., %), [ = 2 4},
|®| =max{]x;]}. A domain QCR, will be said to be an L-domain [Lipschitz
domain] if there exist numbers «>>0, f>0 and the systems of coordinates
(Bparoens Xy ) = (%, %,,), ¥=1,2, ..., M and Lipschitz functions &, defined on
the cubes |z, ;| <«, 1=1,...,2—1, r=1,..., M, so that each point x of the
boundary £2 could be expressed at least in one system in the form of (,, 4,(#;)),
and for each system the points (x;,a,(,)) are inside (resp. outside) of £ for

a,(%) < %, ,< a,(%,) + B (resp.a,(x;) — < %, ,<a,(x)).

In the paper we shall assume that all domains will be Lipschitz domains.

Let D(£2) denote the set of all functions with compact support in £2, and
continuous derivatives of all orders.

Wi (©) (resp. W (R,)), @20
are the Sobolev fractional spaces on £ (resp. R,). For « an integer we have

(3.1) “M“IZ/V,“(Q) :lkéa”l)k Ul @

where the sum is over all derivatives of order 2 Z«.

The definition in R, is analogous. For «==[a] 40, 0<<a <1, we introduce
the fractional norm due to Arouszajn [5] and Slobodetskij [6].

(3.2) H%H?Vf‘(ﬂ) = ”“”:y,i“!m) -*Inkigialﬁ D* “vay(o)
where
(33) ﬂ% wom = f —{“ﬁ+Z%Ldt dr.

The same definition is valid for 2==R,. In R, we introduce another norm

64 gy = f -+ ol | F(6) (0)do
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where F(u) is the Fourier transform of ». The norms |- |y=1z,y and |- |wgz,

are equivalent (see e.g. [6]). The space Wz"‘ (€2) will be the closure of D(£) in
W*(€2). The space W, will be the dual space to W;* Let us now quote some
results which we shall use.

Lemma 3.1. Let jeﬁ/;“(!)), 3 <a<<$. Then the operator T of continuation
by zero (i.e., (TF) (@) =F(x) for €, (Tf)(x) =0 for ¢2) is alinear continuous
operator from W7{£2) into W¥(R,). See e.g. Lions Magenes [7] and Nedas [1].

Lemma 3.2. Denoting by C(resp. |- |¢) the usual space of continuous functions
(resp. the usual norm in C), we have

(3.5 lleirn = K [uwera)
if a>n/2, see e.g. [8]. We shall use this lemma especially for # =2.
Lemma 3.3. We have

(3.6) e
0Sasyspsfor —§sasy=p=o.

IW}' (R = ”M”gV,""l(Rn) "M”;V,ﬂ'l(R,,)

(3.7) B=pTy V=g _g
see e.g. [9].

Lemma 3.4. Let —3 <o, <B, <0, 0=, =f,<%. Let 4 be a linear operator
defined on Wp»1(R,) which is a bounded operator from Wf+*(R,) into Wf+=1(R,)
and from W (R,) into W'(R,). Then A is also a bounded operator from

el (R,) into Wged(Ry), o, <y, <Pi, i=1,2, where =72 — 27" and
by Ba—ay

(3.8) HA Hw,?n YRp) > WP Ry = C[HA wa‘v YRy W 1(12,,)}”' [ltA Rw?v‘ae,,)—»WPv‘(R,.s}'
where
_ By !
‘u_ls1’“d1 ! v-ﬂl_“l’

and C does not depend on y, and y (see e.g. [9]).

4. Dirichlet Problem
Let us solve the Dirichlet problem for the Laplace’s equation.

—Au=1Ff

(44) =0 on .

We will be looking for a weak solution, ie., ueﬁ’;“(!)) will be the solution if

7”
ou dv
[2 e s dn=[tvia
2 =1 Q2

for every veD(Q).
Now the following theorem holds.
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Theorem 4.1. Let —§ <<« <<}, then there exists a unique solution in P%;““(Q}
for every feW, 1+*(Q) and we have

"u”WH’“ @ = K “f”W—1+°=(g) .
See Nedas [1].
Let QCR, be a set, then a—neighborhood of Q will be the set E[x, je —y| < a,
yeQl-
Definition 4.1, We shall say that w{®) is a proper function if
2) w (@) W (R,).
b) w(x) has compact support.

¢) There exist constants C and L such that for every feW*(R,) and 2>>0,
there exist C,(k), k==(k,, ..., &), k; Integers such that

- 2w *5)

for every 0=a=f=2, and if f has compact support S, then the function
Z Cu( (_..,H._,) has the support in the L% neighborhood of S. Such functions

8—a
W Rﬂ} =C|f Kwﬁ (&

ex1st For more information, see [10].

Now let us study the finite elements method for solving {(4.1) provided that
FeWE(Q), —3 < B. The method is the following:

For a given %4> 0 let us take the linear space M, of all functions of the type
& _Z Ck (-w) such that g, has its support inside Q and w is a proper

function (Deflmtlon 4.1). Now the approximate solution #, will be such that

a) u,eM,;
b) f( %Z% 2§?)dm=fz‘gkdm
2

for every g,€M,. The integral on the right-hand side is to be taken in the sense
of generalized functions (distributions). Because g, €W,? () and feWf(Q), —§ <p,
the right-hand side makes sense. Also because the form on the left-hand side is
positive definite there exists exactly one solution #,. Denoting by u, the weak
solution of 4.1, we shall be interested in the estimation of the type

o0 — “h“w,ﬁ(m =K-w|f wa‘(a) :
We shall prove the above inequality
(4.2) for —i>a=—1, $>p=21, «—26+3=20, p=(@+1)—2(f—1),

(43) for —i>a=—1, 081, u=a+1+(1—P)3—e, for >0
arbitrary,

G+op

24

(4.4) for ax—1, 0<f<a+2, —3<a, §+20>

2
p=ft20 — AL

—¢g, for £>0, arbitrary.
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By using Lemma 3.2 we have immediately for # =2 (i.e. in the plane) the follow-
ing result
4o — 4c @ =Khn" I ”W,“’ @

—3}>a' > —1, =o' +1—s, £>0, arbitrary. So e.g. using the imbedding
theorem we have

(4.5) [t —wnlciy = CH |1, 4

for £ > 0, arbitrary. It is interesting to compare this result with Laasonen’s [11, 12]
upper bound and Volkov’s [16] lower bound of the rate of convergence of the finite
differences method —five point formula. It is easy to see that we may select the
function (x)eWE~7(R,), 0<n <%, so that we get classical five point formula
(see e.g. [17], p- 305) and the theorem holds in the same sense. So our results
are almost the best possible results with respect to the convergence in C. See
also [13].

Another interesting case for #==2 is the case f=6, 8 is a Dirac function.
Then the solution is the Green function. We see that the convergence is of order
h#—%in L,. For the one dimensional case and special trial function see [14]. We have
shown a very special case. With obvious changes in the approach which we used
it is possible to study nonselfadjoint equations, equations with nonconstant
coefficients, higher order equation and systems of equations.

5. Some Lemmas
Lemma 5.1. Let feWf(R,), 0=« <pf. Denoting f,q(®) =/ (x +%a), |a|=1,
we have
(5-1) I _fha”w,OK(R,.)éK - ”f“W,B(R,.)
where
p=minf4, f—al.
Proof. We shall prove it for the norm W**(R,). We have
[0 —Tlipaimg = J (4 @)% (1 — X2 (f) ()| dce

= [t [o-2C [ BP0+ |2P)* | F(H|2da

flerjzr  Jeafsl flehli<1

+C [ (44| o 5| F(f)]2
[l rll=1
and
2u+2a=28.

Lemma 5.2. Let jteVzﬂ (2), 1<p<$. Then for every h>0 there exists
fhel/f’;‘ (£2), such that f, =0 in a A-neighborhood of £" and

(5-2) Bffs —f HW,“(.Q) =Knw Hf nwf’(rz)

where
p=min[1,f—a], O0Sa=p.
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Proof. Because § < f<§ we may use Lemma 3.1 and take { as a function
in Wp(R,) with support in Q. Because £2 is a Lipschitz domain using the common
approach of partitions of unity, we may write

f=2t Hfiuwf’ =C IVHW?

with {,»EP%’;*B (£2) and either the support inside 2 or (f;),, erﬁ () and (f)),, () =0
for @ in a A-neighborhood of £°. Using the previous lemma, we prove the state-
ment.

Lemma 5.3. Let w (@) eW2(R,) with compact support. Further let
x—kh
(53) & (x) :Z Crw (‘7‘“)

where k==(%, ..., ,) and the &, are integers and g, has compact support (i.e.
5.3 is finite sum). Then there exists K independent of 4 such that

(5.4) ln @)z = 5 Jen @) e -
Proof. 1. Let us take
|2 Crw{x—E)lwion

6-5) Ky = S0P s Cwla— W) lay

where
Q) =Elx,, 1%1 <3].

Let us show that K, <C co. Let us take M, the set of those %, such that the
o (2 —k), for k€M are linear independent on Q9. Then every g= 2, Cp, @ (x —k)
can be written on 29 in the form

keM
Because of the compact support of w, the set M is finite. To prove K, < oo,
we may restrict ourself to the case when

(5.6) |2 Cro®—E)|

ez =1

and keM. If K; were oo, then because of compactness, there must exist {C¥}
such that

122 Choo (@ — K)wian =0
and

122 Ciw (@ — K) lwgpap =1-

This would obviously be a contradiction.

2. Let us now take

“ chw hz )
H Ckw(w h ) “Wuﬂ;‘.)

=E[x;, |2;] < $h].

W3 (24)

(5.7) Ky =sup

where
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It is easy to see that
K

(5.8) K=

3. Because of the compact support of g, (®) we have
(5.9) lgn (@) fivs e = g g () [fg caney
(5.10) le @)y = % len @) vz @z 00y
where

D) =F [z, [ 25" < 1]

with the sum finite. Obviously we have

len @)z ) = K3 gl (20
and because of (5.8), our lemma is proved.

Lemma 5.4. Under the same assumptions asin Lemma 5.3 we havefor 0 S <1
K\
(5-11) les @)lpa+8m,y = (_;;) llgs () lwe (-
Proof. By Lemma 3.3 we have

ﬂghﬂw,”& gy = lg n’vlv,‘« YRy I “;V,‘ Y(Rw)

p=1—4, v=4

and
and so

KI’
th”WIjﬂ (Rn) =G lealws (za) -

6. Rate of Convergence of the Finite Element Method

In this part we shall study the method described in Part 4 using the results
of Part 2. By using Lemma 5.4 we have in (2.10) and (2.11) d, 2 CHP, dy = CHP, for

ou av
“ v) fZ 8x, 8.4:.

for H, = W‘*‘""(Q) H,=W2-5(Q), |l <%. By [1] (2.1), (2.2) and (2.3) holds.
Nowlet =20, « =28, a < § and f€W,71**in (4.1). Then by Theorem 4.1 we have

[4olwaraay = K | lyrrram
and

“oeﬁlzlﬂ(g) .

Using Lemma 3.1 we may continue %, by zero in R,. Then o, €WRAT*(02) with
compact support in . Using Lemma 5.2 for « =f and the basic property of
proper function w and Lemma 5.2 once more we may construct

& =2 G o[*5 "

)eme
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such that
o — g’*HW.’*””‘ E=C aad i HW,‘”“(Q}
for 0Sa<$, B=e, «a—pf<1. Using Theorem 2.2 we have
(6.1) ot — 24 HW,’*ﬁ @=C B2 | f HW;H“(Q)

which is {4.2). To obtain (4.3) (i.e. 05 =1) we use another approach to obtain
sharper results as in the analogous approach for (4.2). By definition we have

6.2) B (t), — g, v) =0 for every v€M,.

From 6.1 we have

(6.3) lets — stallwzi@) = C 1 [l 200y -

Because WH(Q) W17 (Q), 0=y < %, there exists V€ W2+7 () such that
(6.4) B(V,s) =nf (14, — 1) s d®

for every SGVZI_V(.Q) and using Theorem 4.1

(6.5) "V”W}W(m = Cluy, — a1, -

So by the basic property of M, and Lemma 5.2 we have
V=V-+2Z, VeM,

and

(6.6) 4 "W.‘(-O) =C “V"W,”J’(g) .
By (6.2) we have [in our case B(u, v} = B{v, u)]

(67) B(uy — ty, V) = B (1, — 4, 2)-
But using (6.4) we have

(6.8) B(w, — g, V) = Ju, — gl 0)-
Therefore

N, — o[ 2y = B (y, — 4y, Z) = C |y, — tholwy |2 |
= Cllw, — thollLyioy B [ Flwrva )
Using (6.6), (6.5}, (6.3), we have
(6.9) o, — to|ly2y = C B2 [ Flgmrsaay
Using Lemma 3.4 and {6.3) and (6.9), we have
(6-10) ”“h - “o"wf‘(n) = C(ha)p : (hwa)l"ﬂ "f "W;'lw(a) =Cpri=h "f "W;1+°‘(n)

and this is nothing else than (4.3).
Now let feW}=% 4 >a>0 in 4.1, then by analogous arguments in the pre-
vious we obtain

(6.11) e, — %”W}"“(.Q) =Syt i ”W;‘l‘“(ﬂ)



332 I. Babuska:
and
(6.12) et — e = Clots — #lp-aa) 12 lwrraie)
with
4 ”W,“‘“(.Q) < | — e, BT 0<y<3}
and so we have
(6.13) ot — #lwp iy = CA|f nw;'l"“ () W= C If ”W,‘l“"(ﬂ} .

Using Lemma 3.4 for {6.11) and ({6.13) we obtain

B A-a—f y
[ — llppia) = C | Flhyi-aggy (== (B 7*) T~ W2y 7

—%a 98(1“;‘;’)‘

and this is exactly {4.4).
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