Jointly published by Elsevier Science S. A., Lausanne and Akad~miai kiad6, Budapest

J.Radioanal.Nucl.Chem.,Letters 201 (3) 205-211 (1995)

 A 109 $Cd/109m$ Ag GENERATOR

M.S. Mansur, A. Mushtaq*, A. Muhammad**

Nuclear Chemistry Division, Pakistan Institute of Nuclear Science and Technology, P.O. Nilore, Islamabad, Pakistan

**Institute of Chemistry, Punjab University, Lahore, Pakistan

> Received 28 June 1995 Accepted 12 July 1995

Sorption of Cd and Ag by a cation exchange resin has been studied at different molarities of nitric acid. The sorption capacity of Cd on a cation exchanger has been determined. A ¹⁰⁹Cd/^{109m}Ag generator is suggested, based on the sorption of Cd on AG 50W-X8 organic cation exchanger at 0.01M $\mathtt{HNO_3}.$ \cdot $\mathtt{v2mAg}$ is eluted with 0.2M NaCl, physiologically compatible for human use.

INTRODUCTION

Ultrashort-lived radionuclides offer an advantage over those with longer half-lives for visualizing veins, chambers of the heart and certain organs with gamma-cameras and *scanners.* Because venograms and angiograms are usually completed within a minute after the injection of the

^{*}Author for correspondence.

radionuclide, the use of ultrashort-lived radionuclides is possible and has the advantage that repeat studies can be performed quickly because the radioactivity from a previous injection would decay away rapidly. The short half-life of the nuclide would further reduce the radiation exposure to the patient. Radionuclides with ultrashort half-lives could be used either with the bolus injection technique or with the continuous infusion technique.

Radionuclides with such short half-lives are most easily obtained by decay from a long-lived parent radionuclide, the daughter being separated from the parent by elution from a generator¹. Several routes for the production of 109 Cd have been reported in the literature, namely proton, neutron and α bombardment of $Ag^{2,3}$, as well as proton bombardment of In⁴. In a nuclear reactor ¹⁰⁹Cd is produced via the ¹⁰⁸Cd(n, γ)¹⁰⁹Cd reaction or 107 Ag(n, γ)¹⁰⁸Ag $\frac{\beta^{\text{-}}97\%}{2.4 \text{ m}}$ ¹⁰⁸Cd(n, γ)¹⁰⁹Cd⁵. We have developed a preliminary method for obtaining $109m_{Aq}$ $(T = 39.6 \text{ s})$ from long-lived parent 109 Cd $(T = 453 \text{ d})$ radionuclide⁶.

EXPERIMENTAL

Reagents and instruments

Cadmium oxide and silver nitrate (E. Merck) of purity over 99.9% were used as target materials. AG 50W-X8 (50-100 mesh H^+ form) was obtained from Bio-Rad and the other reagents were of analytical grade. The radioactivity was measured by γ -ray spectrometry using a coaxial Ge-detector coupled to a Canberra Series 85 multichannel analyzer.

Irradiation

Known quantities of natural CdO targets were sealed in quartz ampoules and cold welded in aluminium cans. The irradiations were carried out inside the core of the 9 MW swimming pool type PARR-I reactor for a total of 30 d at a neutron flux of $\sim 2x10^{14}$ cm⁻² s⁻¹. Short irradiations of a few hours were carried for the production of 110m Ag by irradiating AgNO₂ in a similar manner as described above.

sorption of Cd and Ag

Irradiated CdO was dissolved in 1M $HNO₃$, evaporated to dryness and finally a solution was prepared in distilled water. 5 ml of the aqueous solution of known molarity of HNO₃ containing 1 mg Cd ml⁻¹ was shaken at room temperature with 100 mg of resin for 60 min. The supernatant was separated after centrifugation and I ml was counted for $11\overline{5}$ Cd (492 keV 10.2% and 527 keV 33%). Neutron irradiated AgNO₃ was dissolved in distilled water. The above mentioned procedure was adopted for measurement of the distribution coefficient of Ag, except that the concentration of Ag was kept at 0.06 mg ml^{-1} . $110m_{Ag}$ activity was determined by using peaks of 657 keV (95%), 764 keY (22%) and 885 keY (73%).

The distribution coefficient was calculated by the formula.

$$
K_{d} = \frac{a}{a_{o} - a} \cdot \frac{v}{m}
$$

a = activity sorbed on the ion-exchange resin, a_{0} = initial activity in solution, $v = volume of the aqueous phase in ml$, m = mass of the ion exchange resin in g.

MANSUR et al.: A ¹⁰⁹Cd/^{109m}Ag GENERATOR

Ion-exchange capacity of the resin

About 3 g of AG 50W-X8 (50-100 mesh H^+ form) cation exchange resin was placed into a glass column of I cm diameter and conditioned with 5 bed volumes of the 0.001M HNO₃ solution. The solution containing 5 mg ml⁻¹ of Cd was passed through the column and 1 ml portions of eluate were collected for the quantitative determination of cadmium breakthrough.

Preparation of $109 \text{cd} / 109 \text{m}$ Ag generator

A glass filter column (1 cm ϕ x 15 cm) was filled with 3 g AG 50W-X8 (50-100 mesh H^+ form) and washed with 0.01M HNO₃. 709 CdNO₃ (485 MBq g⁻¹ Cd) was acidified to a molarity of 0.01M H_{NQ_3} and fed onto the column. The column was washed with 10 ml of 0.01M HNO₃. A total of 160 mg Cd was loaded onto the column. The generator of $109m$ $_{\rm Ag}$ was prepared after 20 d of the target irradiation. During this period nearly all of the 115_{Cd} activity had decayed.

RESULTS AND DISCUSSION

The sorption of Cd and Ag from $0.001M - 10M HNO_3$ solutions on a cation-exchange resin is shown in Fig. I. The adsorbability of Cd(II) decreases with increasing molarity of HNO₃. At high concentration of HNO₃ between 5-10M, the distribution coefficient is 1. Maximum K_d value was measured at the lowest molarity (0.001M) of $HNO₃$ used. Sorption behavior of Ag(1) is quite similar as observed in the case of Cd(II). The present results essentially confirm earlier measurements⁷ carried out in $0.1M - 4M HMO₃$ solutions.

Fig. I. Sorption of Cd(II) and Ag(I) on AG 50W-X8 (50-100 mesh) cation exchanger

The exchange capacity of the cation exchanger as determined in the present work for Cd at $0.001M HNO₃$ was 230 mg Cd g^{-1} of the resin. Strong sorption of Cd on the cation-exchange resin was observed when it was loaded in $0.001M$ HNO₃ solution. However, the elution yield of $109m_{Ag}$ was very poor, hemce a 0.01M HNO₃ solution was used for the loading of Cd on the column, which gave reasonably good separation of 109m Ag from 109 Cd. The

elution of 109m Ag was tested with distilled water, dilute HCl and HNO_2 solutions. Desorption of 109m Aq was not possible with the above mentioned solutions, however, NaCI solutions were successfully employed for the elution of 109m Ag, leaving 109 Cd on the column. The solubility of AgCI in solution containing chlorine ions has been the subject of several investigations^{8,9}. As the 109m Aq, grows, it is dissolved in NaCl and thus eluted. 109m_{Ag} comes off carrier-free as AgCl or AgCl₂ in a saline solution physiologically compatible for human use. A reasonably good yield of 109m Ag and minimum leakage of 109 Cd was observed by using 0.1M NaCI. At an elution rate of 4 ml min⁻¹, the yield of 109m Aq varied from 40-70%. The leakage of 109 Cd was checked after 30 min of elution, when all of the eluted 109m Ag activity had decayed and the parent-daughter equilibrium of 109 Cd/ 109m Aq was attained. Leakage of Cd was also confirmed by measuring the 933 keV (1.3%) γ -energy of 115m Cd (T = 44.6 d). Long durations of counting were practiced for the determination of Cd contamination by measuring 109m Ag or 115m_{Cd}. More than 3 liters of 0.1M NaCl was passed through the column for the desorption of 109m Aq in a period of 2 months. The amount of Cd in the eluate increased after passing 500 ml of eluent. To keep the leakage of Cd up to a level of 10^{-4} $\frac{2}{4}$ ml, a scavenger column of 300 mg AG 50W-X8 (50-100 mesh H^+) was attached in tandem with the generator. The scavenger column was replaced by a new one after the passage of 200 ml of eluent. The performance of the generator described would be more useful, if no-carrier-added 109_{Cd} parent were used, and this would also eliminate any risk of cadmium metal poisoning.

210

REFERENCES

- I. Y. Yano, H.O. Anger, J. Nucl. Med., 9 (1967) 2.
- 2. P.P. Dmitriev, I.O. Konstantinov, N.N. Krasnov, At. Energ., 22 (1967) 310.
- 3. F.J. Haasbroek, G.F. Burdzik, M. Cogneau, P. Wanet, Excitation functions and thick target yields for $Ga-67$, $68Ge/68Ga$, $Cd-109$ and In-111 induced in natural zinc and silver by 100 MeV α -particles. Council for Scientific and Industrial Research (Pretoria), Report FIS 91 (1976).
- 4. F.M. Nortier, S.J. Mills, G.F. Steyn, Appl. Radiat. Isot., 47 (1991) 1105.
- 5. N.N. Krasnov, Yu.G. Sevastjanov, Int. J. Appl. Radiat. Isot., 30 (1979) 783.
- 6. G. Erdtmann, W. Soyka, The Gamma Rays of the Radionuclides, Verlag Chemie, New York, 1979.
- 7. F.W.E. Strelow, Ruthild Rethemeyer, C.J.C. Bothma, Anal. Chem., 37 (1965) 106.
- 8. G.S. Forbes, H.I. Cole, J. Am. Chem. Soc., 43 (1921) 2492.
- 9. K.H. Lieser, Z. Anorg. Allgem. Chem., 292 (1957) 97.