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Abstract .  The main goal of this paper is to characterize the weak limits of sequences 
of smooth maps from a Riemannian manifold into S j. This is achieved in terms of 
Cartesian currents. Applications to the existence of minimizers of area type functionals 
in the class of maps with values in S 1 satisfying Dirchlet and homological conditions 
are then discussed. The so called dipole problem is solved, too. 
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The main goal of this paper is to identify the weak limits of sequences of smooth 
maps from a Riemannian manifold into S l with equibounded total variations of the 
gradients. In doing that we have in mind and we aim to study variational problems 
for integrals of the type of the total variation 

(i) f~ 119~(x)l dx 

among maps from some open set /2 of a Riemannian manifold 2(, with or without 
boundary, into S 1, satisfying suitable homological restrictions and boundary condi- 
tions, if O~ is not empty. Typical problems we want to consider are such as mini- 
mizing the integral (1) 
(i) among maps satisfying periodicity conditions as u(x  + 270 = u(x),  i.e. among 

maps from a torus into S z. 
(ii) among maps from S t into S t with prescribed degree and prescribed values on a 

fixed subset S of S 1. 
(iii) among maps u : ,~ ---+ S l with prescribed homology map 

u.  : H1(X,Z)  ) H I ( S I , Z )  ~- Z 

(iv) among maps with prescribed homological singularities, the so-called dipole prob- 
lem. 
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C.N.R. contract n. 91.01343.CT01, and by the European Research Project GADGET. It was partially 
carried out while the first and the third author were visiting the Mathematisches Institut der Universit~it 
Bonn under the support respectively of the Alexander yon Humboldt-Stiftung and of the SBF 256. 



88 M. Giaquinta et al. 

When dealing with the integral (1) in the scalar case, i.e. for maps u : g2 ~ ~,  
it is well known that the natural space to work in is the space BV(J'2, ~) of L 1- 
functions with distributional derivatives which are Radon measures of bounded total 
variation. In fact, modulo passing to subsequences, sequences with equibounded L ~- 
norms and total variations weakly converge to some function u E BV(J2, ]~) and, on 
the contrary, every u c BV(J2, R) is the weak limit of one such a sequence. 

It is also well-known that the class BV(F2, R) can be described as the class 
of n-dimensional rectifiable currents in ~ • 1~ which arise as boundaries of (n + 
1)-dimensional currents defined by integration of (n + 1)-forms over subgraphs of 
functions u, more precisely as the class 

{ Gu := (-1)nOUSGu~IG~, is n-rectifiable, M(Gu) < c~} (2) 

where 

(3) SG~ := { (x,y) E ~2 • ~ l Y < U(X) } 

compare [17] [8] [9] [10]. 
There is still another equivalent way of defining the class BV(I2, ~) in terms of 

the so-called Cartesian currents, introduced and studied in [13] [14], compare also 
[16]. One sees, compare Sect. 3, that BV(J?, 1I~) can be identified as the class 

cart(12 • ~)  := { T E Dn(Y2 • ~ ) IT  is n-rectifiable, OT t_ (S2 x ~) = O, 
(4) 

lr#T= [[~2]],TLdx > O, IITll~ < ~ ,  M(T) < cx~} 

where ~- denotes the linear projection of D • ~ into D, M(T) the mass of T, and 

[[T[[1 := sup{T(C(x , y ) ]y ldx ) [ r  • ]r 1 } 

is the equivalent of the Ll-nonn of u. 
When dealing with variational problems for maps into S l, one can think of lifting 

the problem of functions v with real values by setting 

(5) u = (cos v, sin v) 

and by considering the lifted variational problem. Unfortunately one cannot always 
write a function u E C I ( X , S  I) in the form (5), v E C I ( X , ~ ) ,  an obstruction (and 
in fact the only one, compare Sect. 4) being the non triviality of the homology map 

U. : H I ( X , Z )  ~ H I ( S I , z )  

as the identity map from S 1 into S l shows. We are then forced to work with maps 
with values into $1; but, in this case, it turns out that the three ways of describing 
functions with bounded variation are not equivalent. 

Essentially because of the previous obstruction we cannot define BV-maps  with 
values into S 1 as boundaries of relative subgraphs as the identity map from S 1 into 
S ~ again shows, compare Sect.4. Naively, W e may think of defining BV(~2, S 1) as 
the class of maps BV(~2, ~2) such that u(x) E S l for almost every x C ~.  However 
such a definition is not intrinsic. In fact in this case, while the absolutely continuous 
part of the gradient of u, (Du)~(x) maps T z X  to Tu~x)S l, for the jump part (Du) g 
we may find 

( D u )  J -- 12ju ~ t 
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where u& is the normal to the jump set Ju of  u, but t is not tangential to S ~. 
Alternatively we may consider the absolutely continuous part of  u and try to close 
its jumps in S ~. But soon one realizes that there are several possible ways of closing 
jumps and different sequences may have graphs converging to substantially different 
objects which however have the same absolutely continuous part. Thus whatever is the 
chosen way of closing the jumps in S t of  a function u C BV( f2 ,  ]R 2) with u(x)  E S 1 
for a.e. z ,  this will not allow to identify the limits of  smooth sequences. 

As pointed out and discussed in [14] [131 [16] in connection with the Dirichlet 
integral in the vector valued case, as it is essentially the case if we map into a manifold, 
even a one-dimensional manifold, weak convergence produces in general on one hand 
concentrations which cannot be described in terms of  their projections into J2 and on 
the other hand loss in the limit of  homological properties of  the approximating maps. 
As already showed in those papers a reasonable way of overcoming these difficulties 
is to work in the setting of Cartesian currents. 

Our aim is to illustrate this approach and show how it works in the case of  maps 
of bounded total variation with values into S I. Despite the simple geometric structure 
of the target manifold S t, in the present case, in contrast with the case of  maps with 
equibounded Dirichlet energies, we will have to confront further difficulties due to the 
appearence of  jumps and Cantor parts in the limit. However  we shall see that there 
are strong similarities, if not identity, with the case of  maps into S 2 with bounded 
Dirichlet energies. 

Before briefly discussing our results, let us mention two simple examples which 
may motivate further our approach and clarify the context in which we are going to 
work. 

Example 1 Consider the sequence of smooth maps u(kt)(t) := (cos kt, sin kt) for 0 < 

t < 27r/k and by u k(l)(t) := (1,0) otherwise. Clearly {u~ )} is a sequence of maps with 
equibounded total variation 

i 7r 

which converges weakly in B V ( ( - %  70, IR 2) to the constant map Uo : [ - %  7r] ~ S l, 
uo(t) = (I ,  0); o f  course V(uo) = 0. Also regarding the u~ 1) as maps from S I into S t, 

each ~ 0) has degree 1 while the BV-l imit  is constant, hence of degree zero. ~k 

I f  we instead look at the line integrals over the graphs of the u~l)'s, Gu~), it is 

easily seen that 

G ~) ~ G(~,o) +5o x I[ S 1 11, 5o = Dirac mass at zero 

in the sense of  currents in [-Tr, 7r] x S I , or better in S 1 x S I , the degree of the limit 
is again 1, and computing the total variation of T := G~t,ol + 60 x S 1 in the Lebesgue 
spirit as the relaxed functional 

V(T) := inf{ l im in fV(vk )  lvk E cl([-Tr,  7r], S1), G~ k ~ T} ,  
k---*oo 

then V ( T )  = 27r, compare Sect. 5. 
Consider now the sequence {u(k 2)} defined as ~(k2)(t) := (cos kt, sin kt) for 0 < t < 

4rr/k and as u(k2)(t) = (1, 0) otherwise. Clearly V(u(k 2)) 4rr, deg u(k 2) = 2, but again 
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u ( 2 )  converge weakly in B V  to the constant map uo(t) = (1,0). I f  we instead consider k 
the limit of  the graphs of  the u(kZ)'s we have 

G ~ )  ~ G~ o + 2 6 0 x H S  lB. 

Example 1 shows in a very simple case concentration, loss of  degree and en- 
ergy under B V - w e a k  convergence and how those phenomena are handled by the 
stronger convergence of  the graphs Guk with respect to the BV-convergence of  the 
components of  uk. 

Example 2 Consider the map u(x)  := ~ from the unit disk B(0, 1) of  N 2 into S 1. 

Clearly u ~ WI,P(B(O, 1), S q) for all p < 2. Its graphs has a "hole" over 0 and in 
fact we have in B(0, 1) x S 1 

OG ~__ = -60  x 1[ S 1 ]]. 

Let {uk} be a sequence of  smooth maps from B(0, 1) into S 1 such that 

uk ~ u strongly in LI(B(O, 1), S 1) 

(6) sup/ IDuk(z)l dx < o~ . 
k J B(0,1) 

We shall see that there exists a 1-dimensional current L in B(0, 1) such that 

(7) Guk ~ G ~ + L •  1. 
Ix1 

This time the concentration occurs over a 1-dimensional rectifiable current L with the 
property that OL L B(O, 1) = 6o. Actually we shall see that for every 1-dimensional 
rectifiable current L in B(0, 1) with OL L B(O, 1) = 60, one can find a sequence of  
smooth maps {uk) such that (6) and (7) hold. Notice that instead we have 

37 
uk ~ T~ in BV(B(O,  1),N2). 

This paper is organized as follows. After the two preliminary Sects. 2 and 3, where 
we prove a few simple results to be used later and that 

BV(S?,  ~ )  ~_ cart(S? x ~) ,  

we shall discuss the class cart(S? x S 1) in Sect.4. There we shall prove a structure 
theorem for Cartesian currents T r cart(S? • S 1) and an approximation theorem, 
stating that each T E cart(O x S l) can be approximated by a sequence of  smooth 
maps uk : S? -~ S 1 in such a way that 

(8) Guk ~ T i n D ~ ( 1 2 x S  l) 

M(Guk) - - ~  ,M(T). 

In Sect. 5 we shall deal with the relaxed functional of  general integrals and in par- 
ticular of  the area of  graphs of  maps with values in S L. We shall give an integral 
representation of  the relaxed functional in cart($2 • $1); instead, we shall See that the 
relaxed functional in { u  E BV(S?,R2)[[u(x)[  = 1 a.e. x }  or in LI(~?,S  1) are not 
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integral functionals. Applications to the existence of minimizers under Dirichlet and 
homological conditions will be presented in Sect. 6, while in Sect. 7 we shall discuss 
the so-called dipole problem in the case of  maps with values in S t . 

We would like to thank Michael Struwe who read the manuscript and suggested a few corrections. 

1. Prel iminaries  

In the sequel we shall think of  S t as isometrically embedded in I~ 2 as the unit circle 
St := {(yl ,y2)  C R 2 I (yl)2 + (y2)2 = 1}. We denote by s t ,e2 the standard basis in 
~ 2  by eo, 

e0 :=- - -y2cI  + yl~2~ 

the unit tangent vector which orients S l in the usual anticiockwise way, and by 69 
the volume 1-form on 5 '1 chosen in such a way that 

f o = 2 r c .  

S l 

Let ~ be a bounded domain with smooth boundary in R '~. We denote by 79k(j? • $1), 
1 _< k < n + 1, the space of  all k-forms with smooth and compactly supported 
coefficients in f2 • S 1. If  e l , . . . ,  en, denote the standard basis in It~ '~ and ( x l , . . . ,  x n) 
the coordinates in IR '~, any w E 79k(X2 x S 1) can be written as 

(1) aJ = ~ w,~(x, O) dx  '~ + Z ~?,~(x, O) dx  '~ A 0 =: co ~~ + w (') 

I~l=k lal=k-I 

with 
w,~(x, 0), ~7,~(x, O) ~ C ~ ( O  • S ' ,  ~).  

We use the standard notation for multiindeces: a = ( a j , . . . , a p ) ,  1 < a t  <_ . . .  < 
ap <_ n,  o~i C N, lal := p and d x  '~ := d x  `~, A . .  . A dxap.  

The expression (1) says in particular that the product structure in g2 x S 1 yields a 
canonical splitting of  w as w = w (~ + w (l) where co (~ is a k-form with no differential 
with respect to 0 and w O) is a linear combination of k-differentials which contain O 
as a factor. For convenience we also introduce 

l)k'~ x S ' )  := { ~  e 79k(S2 x S l) I ~ = w(~ 

79k'l(f2 X S 1) 1= {~ E 79k(3Q X S 1) I0.) _ ~ ( I ) }  

so that 
79k(/2 • S') = 79k'~ • SI)079k'J(S2 x SI). 

Similarly the exterior differential operator 

d : Dk(~2 • S ' )  , 79k+1($2 • S ~) 0 < k < n  

splits as the sum 

For a function f C 790(/2 • S 1) 

d = dz +do.  
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dx f (x ,O)= ~ ~fxi dXi, 
i 

Of 
do f (x ,  O) = ~-~ O. 

We note that for 0 < k < n 

and 

G : 79k'~ x S') , Vk+"~ x S') 

d~ : Dk"(g2 x S I) ~ Dk+'"(~2 x S I) 
do : Dk'O(o x S l) , Dk+1'I(s2 x S 1) 

dow = 0 Y~o E Dk'l(f2 • S1). 

The orthogonal projection 7r : Y2 x S 1 --~ J'2, 71-(x, 0 )  = 27 yields a natural injection 

~r # : D k 02) , 79k(~ x S ~) 

by just considering the coefficients f (x)  of  w C Dk(/2) as functions of  two variables 
(x, 0) constant in 0. Of  course f (x)  has compact support in ~ x S 1 since S 1 is 
compact. For the sake of  simplicity in the sequel the injection 7r # will be understood 
and we shall regard forms in ~ as forms in /2 x S 1. Analogously, the projection 
7? : ~ x S 1 ~ S 1 yields an injection from 79k(Sl), k = 0, 1, but in/3k(~2 x SI),  the 
space of  k-forms with bounded and smooth coefficients. In fact, regarding coefficients 
as functions in (x, 0) which are constant with respect to x they will not have compact 
support since ~ is not compact. 

In dealing with k-forms in ~ x S  1, besides considering them as restriction of  
forms in g2 x ~2, it is convenient to introduce the covering map 

i : ~ x R  ~ x S  1 

given by 
fix, t) = (x, cos t, sin t). 

Clearly i defines an isomorphism between smooth functions in K2 x S 1 and smooth 
functions f (x ,  t) in f2 x ~ which are 27r-periodic in the second variable t c IR. Also, 
if f : g2 x S 1 ~ ]R has compact support i n / 2  x S l, then the lift f o i i n / 2  x ]R has 

support in ~ x ]R where ~ C C f 2 .  Denoting by/32k#(~ x IR) the set of  all k-forms with 
smooth coefficients f~(x,  t) which are bounded, 27r-periodic in t and are supported 
in ~ x ]R for some ~CCY2, then the lift 

i # : 7)k(s2 x S ' )  , Bzk~(S2 x ~ )  

yields a bijection between the two spaces. Moreover i # commutes with the exterior 
differential operator and with respect to the decomposition w = ~o (~ + ~(~), and 

sup = sup Ii# l 

Consider now a 1-form c~ on S 1 and denote by j : l~ --~ S 1 the map 

j(t) := (cos t, sin t). 

Then we have j#(a) = f ( t )d t  for some smooth, 27r-periodic function f(t). Set 

Y := Jo I(t) dt, g(t) := [ / ( s )  - Yl & .  
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Then clearly f ( t )  = ]+9 ' ( t )  and we can write j#(&) = f dt+d9. Since g is 27r-periodic 
we can finally state 

(2) a = f 0 +dg.  

Finally it is easily seen that if (2) holds then f is uniquely defined by a and g is 
uniquely defined up to a constant. The previous relation (2), which is nothing else 
the Hodge-Kodaira decomposition theorem in the very special case of  l-forms in S 1, 
gives us a way to decompose forms in D k,I ( ~  x S 1) by just considering the x-variable 
as a parameter (compare [16]). 

Proposi t ion 1 Let w E 79k'1(~2 X SI). Then there exist cO E 79k-I(Y2) and r l E 
"Dk-l '~ x S l) such that 

(3) w = if) A O + dor~. 

Moreover ~ is unique and r I is unique in D~-l '~ x S l) up to a (k - 1)-form in 
X2. In particular (3) gives a unique decomposition i f  we add a condition on r 1 such as 
~(x,  O) = O fo r  0 = 0 or 77(x, y) = O fo r  y = (1,0). 

Proof  For cJ E 79k'l(g2 x S 1) we can write i#(w) as 

i#(~) = y~.  ~ ( x ,  t) dx  ~* A dt 

I~l=k-1 

where w,~(x, t) are smooth, bounded, 27r-periodic, and supported in ~ • ]R for a 
suitable open set L)CCf2. Define now 

and 

271" 

~,~(x) := ~ w,~(x, t) dr, r/a(x, t) = [ov,,(x, s) - cO(x)] ds 

0 

&(x) :=  ~ '  cOa(x)dx a r / ( x ' t ) : = ( - 1 ) k - I  Z r l~(x ' t )dxa"  

I,~l=k-t lai=k-t 

Then clearly c0(x) C Dk-~((2), r/(x, t) E Dk- l '~  x IR) and 

(4) i#(w) = cO A dt + ddl. 

Since the r/a(x, t) are 27r-periodic in t we may think of  r/as a form in 79k- J'~ X S I ), 
thus (4) is equivalent to (3). This concludes the proof as the unicity follows from the 
above construction. []  

A simple consequence of  the previous decomposition theorem is the following 

Proposi t ion 2 Let T E Dk(~2 x S t) be a k-current in ~ • S 1 without boundary in 
$-2 x S l, i.e., OT t_ $2 x S l = O. Then T = 0 if  and only if  

T ( w ) = 0  V ~ E D k ' ~  I) and T ( a ( x ) A O ) = O  V a E / g k - x ( J 2 ) .  

Proof  Split w E Dk(f2 x S l) as w = w (~ +w0), and decompose w el) as in Proposition 
1. We get 
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w = 03(o) + 03(1) = 03(o) + a ( x )  A 0 + do71 = 

= 03(0) _ dx~l + a ( x )  A 69 + d~l 

for suitable c~ E : D k - l ( o )  and 7/E 79k-a'~ x St).  Thus 

T ( w )  = T(03 (~ - dxrl) + T ( a ( x )  A O)  + OTO?) = 

= T(03 (~ - d ~ )  + T ( a ( x )  A 0 ) .  

The result then readily follows as d~7 G :Dk,~ x Sl).  [ ]  

Denoting by Too) the zero component of  T C 7)k(~2 x S ~) 

~(0)(03) :=  T(03(0)) ,  03 : 03(0) + 03(1) 

and introducing the (k - 1)-dimensional current in $2 

1 
L T  := ~ 7r#(T t_ 0 ) ,  

more explicitly 
1 

L T ( a )  := ~ T ( a ( x )  A 0 ) ,  

we are then led to the following decomposition theorem for k-currents in $2 x S j 

Proposi t ion  3 Let  T E 79k($2 x S l) and OTt_$2  x S 1 = O. Then f o r  any 03 
Dk($2 X S ' )  we have 

T ( w )  = T@(03 - d ~ )  + L x ~ S 1 ~(w - dov) 

~l being the f o r m  in the decomposi t ion 

03 = w (~ + &(x)  A 0 + do'q. 

M. Giaquinta et al. 

P r o o f  From the proof  of  Proposition 2 we get 

T(03) = T(w (~ - dx~/) + T ( ~  A 69). 

On the other hand 

LT X [[ S 1 ~(03 - d~) = LT • [ I S  1 ~ ( w  (1) --  dor]) = LT  • [IS 1 ]l(ff) A 19) = 

= LT(ff?) [[ S I ~(69) = 27r L T ( & )  = T ( &  A 0 ) .  

[]  

2. Graphs of  functions in BV(12, R) 

Let f2 be a domain in ~ .  To each function u E L 1 ($2) we can associate its subgraph 
defined by 

(1) SG~ := ((x, y) ~ $2 x ~ I Y  < u(x)}. 

We then denote by Gu the n-dimensional current in D,~(~2 x ]~) 
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(2) G~, := ( - 1 ) "  01[ SG~ ~. 

In the case that u is a smooth function, it is easily seen that Gu is just the current 
given by integration of  n-forms in S2 • il~ over the graph of u, given by the formulas 

G~(r  y) dx) = { 4)(x, u(z)) dz 
(3) JI2 

Gu(r y) dx i A dy) = ( -  1) n-~ r  Diu dx 

In fact, if w = r y) dx, then 

dw = ( - 1 )  n by(X, y)dx A dy, 

thus 

u(z) 

(4) Gu(w)=(-1) '~SGu~(dw)=fadx f ~)y(x,y)dy=/~?r 
- - O O  

A 

If  w = r y) dx i A dy, 

thus 
u(x) 

u(x) 
I I  

x ~ / r 
- - 0 0  

has compact support i n / 2  and 

u(x) u(x) 

f f 
- - O G  - - ~  

Thus the second formula of (3) follows at once. 
Let u E BV(S2,~). The relationships between u and Gu defined in (2) are well 

understood, compare [8] [17] [10, Theorem 4.5.9] [7]. For our purposes we recall the 
following facts which we collect as Theorem 1. ,~, .~r. '* 

Denote by Ju the set of  points in ~ for which the approximate limit of u does 
not exist and, for x E J~,, set 

u+(x) := ap lim sup u(y), u_ (x) := ap lim infu(y). 
y.--*x y.--~x 

dw = ( - 1 )  ~-t r A dy, 

The function 
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Theorem 1 Let u E B V ( ~ ,  ~). Then we have 
(i) J~, is countably ( n -  1)-rectifiable. For 7-l'~-l-a.e. x E J~, the approximate tangent 

plane to J~ at x splits ~ into two half-spaces P+ and P -  so that 

ap lim sup u(y) = u.(x) ,  ap lim inf u(y) = u_ (x). 
y----~x y---*x 

YE P + yE P -  

(ii) Denote by ua~ the unit normal vector to Ju oriented so that 

X +  l ] ju  E P + .  

Then the distributional gradient of  u splits into the mutually singular measures 

Du  = (Du) (a) dx  + (Du) (j) + (Du) (C), 

where (Du) (a) is the density of  Du  with respect to Lebesgue's measure, (Du) (j) 
corresponds to the jump part 

(Du) 0) = (u+ - u_)  uj~ dT-I n - l ,  

and finally (Du) (C) is the Cantor part which is singular with respect to Lebesgue 
measure and (Du)(C)(B) = O for  any B with 7-l n -  1 (B) < cx~. In particular ~ n -  l_ 
a .e .  

J~ = {x I ~ t x )  > 0}. 

(iii) SGu is a set of finite perimeter. 
(iv) The current G~ is a rectifiable n-dimensional current with integer multiplicity 

equal 1. Moreover 
G~ = -r(O-SG~,, 1, G~) 

where O- SGu is the so called reduced boundary of SG~ in (2 • ~ and Gu is the 
unit tangent n-vector to O - S G u  oriented in such a way that 

Gu A n ( . , O - S G u )  = el A . . .  A en A e, 

n(., O- SGu) being the inward normal to O- SGu, and e being the unit vector in 
the target JR. 

(v) The inward normal to O - S G u  at (x ,u(x))  is given by 

d( Du,  -1:  '~ ) 
n((x, u(x)), O- SG~) = (x); 

d I] (Du, _s 

in particular for  x G J~ 

n((x, s), O-SG~) = (v j . (x) ,  O) 

for  all s with u_(x)  < s < u+(x). 
(vi) The total variation of  Gu, or mass of  Gu, can be computed by testing Gu on forms 

with coefficients which are constant in t 

M(G~) = sup{G~(w) I w =  E wi(x)dxi  A dt + Wo(x)dx, E w ~ < 1} 
i -  1 i=0 
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or, in other words, 
II G,., II = II (D t,-z n) II. 

In dealing with variational problems for vector valued maps we introduced in [14] 
[13] [16] the so called class of Cartesian currents which may be regarded as a class 
of generalized graphs with almost everywhere tangent plane and without "interior" 
boundaries. In the special case of maps from f2 into ~ we have 

Definition 1 The class of Cartesian currents in f2 • ]~ is given by 

cart(f2 x R) :={T E Dn(f2 x ~)  ] T is n-rectifiable, OT t_ ( ~  • ]~) = 0 

~r#T= ~ , T L d x  > 0, M(T) < c~, IITII, < cr 

where 
II T II, := sup{T(r Y)IY[ dx) [ r E C~(T2 x ~), Ir < 1}. 

In [14] [13] we proved that to any T E cart(~ x ~)  we can associate a function 
UT E BV($2, ]~) such that 

T(r y) dx) = f r UT(X)) dx 
(5) / ,  

IITII1 = J .  luTI dx. 

Actually, in the scalar case as we are dealing in this section, we have that cart(f2 x ~)  
agrees with the space of "graphs" of BV-functions in the sense made precise by the 
next theorem. 

Theorem 2 The map 
G : u  ~G,, 

which associates to each function u the current Gu defined in (2) maps BV(12,1~) 
into cart(J? • ~). Moreover G : B V ( f2 , ]~ ) ~ cart(~ • ~)  is onto and injective. More 
precisely, for every T E cart(~ • IR) we have T = G,~ T, UT being the function in 
BV(f2, ~) defined in (5). 

Proof Given u E BV(O),  the rectifiability of G~, follows from Theorem 1 (i) (iv). 
The computation in (4) yields 

Gu(r y) dx) = f n  r u(x)) dx, 

thus G u L d x  >_ 0, 7r#Gu = [[f2U and JIGs, ~1 = f~luldx, i.e., Gu E cart(f2 • I~). 
Let u, v E BV(f2,  ]~) and G~ = Gv. Then in particular Gu = Gv on forms of the type 
r y) dx, hence 

f n r 1 6 2  Vr E Cc(~2 x ~). 

This obviously implies u = v. 
Finally, let T E cart(/2 • ]~) and let UT E BV(12, ~) be the function in (5). For 

any w E D'~'~ x $1), w = ~(x ,y )dx ,  we have 
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f 
GUT(~) = J~ r UT) dz = T ( ~ ) .  

Next proposition states then that GUT = T. This shows that G maps BV(/? ,  ~)  onto 
cart(/? x IR) and concludes the proof. []  

Proposi t ion 1 Let T be a boundaryless n -dimensional current in /?  x ~ with finite 
mass. I f  T(w) = 0 Vw E Dn'~ x S 1), then 7" = O. 

Proof Clearly, it suffices to show that T(w) = 0 for any w of  the type 

w ( x , y ) = ~ ( x , y ) d x i  A d y  ~ c C ~ ( / ? x R ) , i =  l , . . . , n .  

Set 

r y) := ] _ _  ~(x, s) ds 

:= r  y) dx i. 

As r is bounded and supported in ~ x ] ~  for some ~CC/? ,  ~ belongs to/3'~-1,~ x]~). 
We have 

dy[  = ( - l ) n - l c a  

thus 
d~ = dz~ + ( - l ) n - l w .  

T being of  finite mass, we therefore conclude 

T(w) = ( - 1 )  '*-I [T(d~) - T(dx~)] = ( - 1 )  n T(dx~) = 0, 

i .e .  the claim follows, since dx~ C Dn'~ x ~). 

Remark I The previous two results show that Gu is completely identified by the 
function u E BV(/? ,  I~) and that every T c cart(/? x /~ )  is completely identified by 
the function UT E BV( /? ,  ~)  associated to T by (5). In the next section we shall see 
that this is not anymore true if we replace 1~ by S I. 

We conclude this section by stating a structure theorem for Cartesian currents in 
cart(/? x ]~), which is a simple consequence of  Theorem 1. 

Let T E cart(/? x IR). We know that T = G~, for some u c BV( /? ,  I~) and that 
T = TOM, 1,T) for some n-rectifiable set Ad. Denote by A/l+ the set of  points z E A/t 
at which the tangent plane Tan~A4 is not vertical or equivalently the projection map 
7r restricted to TanzA// has maximal rank. Then by Theorem 1 (ii) 

dTr#11 Y II, , 

We then set 
T (a) := T L M +  

T (j) := T L (J~ x ]R) 
T (c) := T L ( M  \ Ok/[+ U J~ x ~)). 

Obviously T decomposes as 

T = T (a) + T (j) + T (C) 
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and the three measures [1T(a) I], II T(j) [[ and [I T(v)II are mutually singular. 
On n-forms of the type qh(x, t) dx  we have 

T(~)(r t) dx)  = f,.) r u(x))  dx 

TO)( ~(x, t) dx) = T(c)(  r  t) dx) = O, 

while we have 

Proposition 2 For any n-form w = r t )dx i A d t ,  i = 1 , . . . ,  n, we have 

T(a)(co) = ( -  1) n ' i  /~7 r  u(x)) ( Diu)a(x)  dx  

u+(x) 

u_(z) 

T(C)(w) = ( -  1) ~- i  f r u+(x)) (Diu)  (C). 

3. The class cart(/2 • S 1) 

The class of Cartesian currents in Y2 • S 1 has been introduced in [14], compare also 
[13] [16] as follows. We consider the class 

cart(s x N z) := {T E D,d j )  x IR 2) ] T is n-rectifiable, OT t_ (j) x R 2) = 0, 

7r#T= ~ K 2 ~ , T L d x  > 0, [I TII,  < ec, M(T) < oc}. 

Then we set 

Definition 1 cart(Y) x S l) := {T c cart(f2 x ~2) ] s p t T c { 2  x S 1 } 

From [14], compare also [13] we know 

Theorem 1 Let T E cart(J) x St), T = T ( M ,  O, T), and let .M+ denote the set of  
points z in .h4 at which the tangent plane Tanz.hd does not contain vertical vectors, 
or, in other words, the Jacobian of  the projection map 7r restricted to Tanz.h,~ has 
maximal rank. Then we have 

(i) There exists a map UT C B V ( O ,  ~2) with luTI = 1 a.e. in $2 such that 

(1) T(r y) dx) = fa r UT(X)) dx Vr ~ C~(f2 • S') 

(ii) ~ n ( j )  \ 7r(.A,4+)) = O, O(z) = 1 7-[ '~ t_ .All+ a.e., and ~,L t_ 2M+-a.e. 

M +  = {(x, y) [ x E ~-(A//+), y = UT(X)}. 

( iii ) T t_ JM+ is the current with component T(o ) given by (1) and first component given 
by 



100 M. Giaquintaet al. 

L T ij L AJ+(r y)) = ( -  1)~-l r  UT(X)) (DiUJT) (~) dx, 

(DiUJT) (a) denoting the absolutely continuous part o f  D iu  j with respect to 
Lebesgue measure. 

(iv) TL.A/[+ = T if  and only if  

11 T II) = 0. 

where I ts denotes the singular part of  the measure It. 

The examples in the introduction show that in general T L (.A4 \ .A4+) is non zero and 
cannot be recovered from T k .A4+, i.e., from UT; in other words, it is impossible to 
describe concentrations of  limits of  sequences of  smooth functions with values in S l 
in terms of  the BV-limits in ]~2. 

In order to understand the structure of  the elements of  cart(j9 x S 1) we shall use 
the covering map 

i : J g x l ~  ~ j 9 x S  1 

and the lift operator i#. 

Proposi t ion I We have 
(i) The lift i# maps cart(j9 x IR) into cart(J9 x $1). 
(ii) I f T  E cart(j9 x S 1) is such that T = i # G u f o r  some u E BV(Jg,IK) then 

(2) UT = (COS u, sin u), 

and 

(3) M(T)  = M(G~,). 

(iii) I f  T, T' E cart(J9 x R) and i#T = i # T ' ,  then 

T '  = q-k#T 

for  some k E Z, where "rk denotes the translation map (x, t) --~ (x, t + 2kTr). 

Proof Let T E cart(j9 • 1I~). Since T has finite mass, it acts on all forms w with 
bounded and continuous coefficients in J9 x ]~, in particular on forms in B~.(J9 • IR). 
Thus i#T E Dn(j9 x Sl). Since 7r o / = 7r, we deduce w#i#T = 7r#T = [ [ jg ]  and 
i#T L dx > O. Finally from I[ An(i)  II = 1 we deduce 

M(i#T) _< M(T);  

on the other hand, taking into account Theorem 1 (iii) of  Sect. 2, we have 

n n 

M(T) = sup{T(w) } w = wo(x)dx + wdx)d~x i A dr, w i _ _ 
i=1  i--O 

n n 

<_ sup{T(w) l w = wo(x , t )dx  + E w i ( x ' t ) g i  A dt, Z w2i <- 1, 
i=1 i = 0  

w E /3~(j9 x lt~)} = M(i#T), 

hence M(T)  = M(i#T). This proves (i) and (ii), as (2) is trivial. 
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Let us finally prove (iii). Denote by UT and UT, the BV-funct ions associated to T 
and T t in such a way that T = GuT and T ~ = GUT,. Since i#T  = i#T ~, then T and T '  
agrees on all forms with coefficients which are independent of  t, thus DUT = DUT,, 
i.e., uT --UT, = C E/tL On the other hand (cos UT, sin uT) = (cos UT,, sin UT,) for a.e. 
x, hence c = 2kTr for some k E Z. []  

Remark 1 We notice that in fact the proof of  Proposition 1 (iii) yields also 
(iii) I I f  T,  T ~ E cart(12 • ]~) and Ui#T = UioT,, then 

T t = T k # T  

f o r  some k E ~. 

We now ask whether the lift i# is onto, equivalently whether every T E 
cart(12 • S l) can be written as i#Gu for some u in BV(12,  R), and whether each 
T E cart(12 x S t) is the "boundary" of  an (n+  1)-dimensional current in 1"2 • S I . The 
two questions are closely related and, as we shall see, actually equivalent. 

Let us start from the second question which needs to be made more precise, 
in fact even for smooth maps u from I2 into S l, Gu is never the boundary of  an 
(n + 1)-dimensional current. In this context it is convenient to replace "subgraphs" by 
"relative subgraphs". Thus we fix for instance the constant map u0 which maps every 
point in I2 to the point (1,0) E SICI~  2 or 0 = 0, /9 being the angular variable in S 1, 
and we ask whether for every T E cart(12 • S l) there exists an (n + 1)-dimensional 
current S in ~2 x t., ~1 such that 

(4) T - G ~  o = ( - 1 ) n 0 S .  

Again the answer to this question is negative as thefol lowing simple example shows 

Example 1 Consider the smooth map 

u : S 1 >S  1, u(O) := 0 

or equivalently 
x 

u : S 1C~ 2 , S ICl~ 2, u (x ) :=  
tzl" 

Similarly we could consider u(x)  := ~ from the anulus BR \ B~CI~ 2, 0 < r < R, 

into S 1. Clearly the graphs of  u and uo do not bound any region in S 1 x S 1. Notice 
that Gu is a Cartesian current in (B1 \ {0}) x S 1 but not in Bl x S I. In Bl x S 1, Gu 
has non-zero boundary. 

There is a homological obstruction to (4). Of course for any exact form a = d/3, 
e 79n-2(12), we have 

T ( a  A 6)) = OT(3 A (9) = 0 as 

c~ A 6) = dfl A O = d(/3A O). 

However, i f  (4) holds, we must also have 

T ( a ( x )  A (9) = (T  - G~,o)(~(x) A 69) = ( - 1 )  n O s  A O) = O, 

i.e., 
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(5) T(a(x )  A O) = 0 

for all closed (n - 1)-forms a in f2, dcr = 0. Clearly (5) does not hold for the current 
Gz, in Example 1 above, but it is the only obstruction to (4). In fact we have 

Theorem 2 Let T E cart(f2 x S1). Then 

(6) T - G~, 0 = (-1) '~ O S  

f o r  some S E 73n+l(J'2 x S 1) i f  and only i f  

(7) T(c~(x) A O) = 0 Va e 7Y~-I(T2) with d~ = O. 

Proof  It suffices to show that, assuming (7), we can construct S so that (6) holds. 
Let w E 7Y~+1(12 x $1). Using Proposition 1 of  Sect. 1 we decompose cv uniquely 

as 

w = ff; A O + do77 

where ~ E 79n(12), ~7 E 79n'0(12 X S 1) and ~(x,0) = 0. As & = f ( x ) d x ,  f ( x )  E 
C~(J-2), we can find, compare e.g. Theorem 2 of  [6] a smooth vector field b = 
(/31 . . . .  ,/3n) such that 

b E Ct(/2)  ;1 C~ b = 0 on cOD 

(8) div b = f - f o  in f2 

where f o  denotes the mean value of  f in f2. Setting 

n 

/3 := ~-~( -1) i - l /3 i (x  ) dx i 
i=1 

we then find 
if; = f o d x  + &3 

and we define ~ E �9 x S 1) by 

in ~ ,  

(9) 
A 

S ( ~ )  := TO7 + (-1)~/3 A ~9 + fs~ x l d x  I A (9). 

We claim that S is well defined, i.e., it does not depend on the solution b of  (8). 
Suppose in fact that if; = f n d x  +d~,  ~3 E C1.(12) M C~ fl = 0 on 0f2 be another 
decomposition of  ~. Then d(t3 - / 3 )  = 0 , / 3 - / 3  = 0 on 0S2 and we can find a sequence 
{_/3k) of  forms in 79n-1(/2) such that d/3k = 0 and flk converge unifomly to/~ - ~ in 
;2. From 

0 = T(3k  A O) ~ T((/3 - ~) A O) 

we then deduce T(fl A 69) = T(~  A 69). 
In order to prove (6) it suffices now, by Proposition 2 of  Sect. 1, to show that 

T - Guo and ( - 1 ) n ( g s  agree on 73n,~ • S l) and on forms of  the type a A 69, 
E :Vn-l(/2). 

Let w E 79n'~ • $1). We have ~o = r  dxw = 0 and d~ = dow = doo 
with ~(x, 0) := w - w(x, 0). Since rl(x, O) = 0 
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S(dw) = T(r]) = T (~  - w(x, 0)) = T(w) - _fo r  0) dx = 

= ( T  - G , 0 ) ( w ) .  

Let ce E Dn-l(Y2). We have d(a  A (9) = da  A 69. Therefore the definition of  S yields 

Z ( d ( a  A 69)) = T ( ( - 1 ) ' a  A O) = (-- 1)'~T(a A 69) = ( -  1)n(T - G,~o)(a A 69) 

as Guo(a A 69) = 0 since uo is a constant map. Therefore 

( -  1)'~ OE = T - G~ o. 

Theorem 3 Let T C cart(Y2 x S 1) be such that T ( a  A ~9) = O fo r  all a E D"-I(Y2)  
with da  = O. Then there exists u E BV(J2,11~) such that 

and in particular 

i#Gu = T, 

M(G,,) = M(T).  

Proof Consider the current E defined in (4.7) for which 

T - Guo = ( - 1 )  n 0 E .  

From [19, 26.28] there exists a function .~ : g2 x S I ~ ,  .~ E BVloc(J2 x S l) such 
that for any smooth function .f : ~ x S 1 ---* ~ with compact support the following 
holds 

S(~(z, O) dz A O) = f ~(z, O) ~(x, O) dT-t ~§ 
. I  

(10) r~xSl 

/o/? = dx f (x ,  t) [7(x, t) dt 

where in the last term we have set 

f ( x ,  t) := f (x ,  (cos t, sin t)), 

Moreover again from [19, 26.28] 

O(x, t) := ~(x, (cos t, sin t)). 

IDOl = ]10G II. 

Thus a ~  being rectifiable, a ~  = 7 ($ ,  O, 8 ) ,  we infer that 

IDOl =07"t"t ._S 

where 0 is an integer valued function. From this we deduce that 

0(x,  t)  = r0 + g(x, t) 

where r0 is a real number and 9 is an integer valued B V  function. Clearly f and g 
are 27r-periodic in t, and g E BVIor x (0,270). 

Consider the function u(x)  C BVloc(g2, ~ )  defined by 
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u(z) := g(z, s) ds 

and the (n + 1)-dimensional current S~, given by 

u(x) 

, s ( (x,t)exAet):= f f  (x,t)et. 
o 

We have, compare the computations in the beginning of Sect. 2 

Gu - Go = ( -1)  ~ OS~,, (11) 

and we claim that 

(12) 

M. Giaquinta et al. 

/ [?(X, ~tT(X)) --  f ( x ,  0)] dx = ( T  - Gu0)(f(x, 0) dx)  = 

(13) f ( -  1) n 0S( f (x ,  O) dx)  = 2?,(fe dx  A dO) = fo (x ,  O) .0(x, 0) dx dO. 

~ •  1 

We then denote by e(x) the point in [0,270 such that (cos e(x), sin e(x)) = UT(X) and 
rewrite (13) as 

or  

dx [g(x, t) - ~to,e(x)j(t)] f t ( z ,  t) dt = 0. 

From the last equality we deduce that 

dx [9(x, t) - ~to,e(x)~(t)] ~(x ,  t) dt = 0 

for all ~o of class C ~c with compact support in x,  2It-periodic in t and such that 

f0 2~ ~(x, t) = 0 Vx, dt 

and, consequently that for almost every x in /2  

i# S= + ro ~ ~2 • S I  ~ = ~ .  

From (11) and (12), as i#Go = G= 0, we conclude 

i#Gu = i#Go + (-1)'~i#OS= = G= o + ( - 1 ) n 0 S  = T; 

in particular M(G~,) = M(T). Therefore the total variation of u in t'2 is finite and, 
consequently, by Poincar6 type inequality (compare e.g. [19, 6.4]) u C B V ( I 2 ,  R).  
To prove (12) we observe that for any smooth function .f(x, 0) with compact support 
by Theorem 1 we have 
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g(x,  t) = c(x) + X[0,a~)j(O, 

in particular c(x) is integer valued. 
Integrating the last equality with respect to t in [0, 27r] we then get 

fo 2~ u(x) := 9(x,  t) dt = 27r c(x) + g(x) 

and finally 

dx  f ( x ,  t) g(x,  t) dt = dx  f ( x ,  t) (c(x) + Xto,e(x)l(t)) dt = 

= dx f ( x ,  t)  d t  = S ~ ( i # ( f  d x / x  0) )  

taking into account the periodicity of  f in t. [ ]  

Summarizing Theorems 2 and 3 we have 

Theorem 4 Let T E cart(/2 • $1). Then the following three claims are equivalent 
(i) T(o~ A (9) = 0 Va  E 79~-1(Y2) with doz = 0 
(ii) T - Guo = ( - 1 ) h O E  for  some ~ E 79n+1(/2 • S 1) 
(iii) T = i#G~ for  some u E BV(Y2,  ]~). 

Suppose now that [2 is simply connected. Then we know that the first De Rham 
cohomology group is zero, HIDR(/2; I~) = 0. By duality then the (n - 1)-cohomology 
group with compact support is zero, H ~ - l ( / 2 ; ~ )  = 0; therefore any closed (n - 1)- 
form a is a differential. Thus for a with dce=  0, there is /3  E :Dn-2(Y2) such that 
a = d/3, and as we have seen 

T ( a  A O) = T(d( f l  A 69)) = OT(fl  A O) = O. 

Hence we conclude at once 

Corol lary  1 Let 12 be simply connected. Then f o r  any T E car t (~  • S 1) there exist 
an (n + 1)-current S E 79n+1(/2 • S t) and a function u E B V ( / 2 ,  ~ )  such that 

T - Guo = ( - 1 ) n  0 Z: and T = i#Gu.  

We are now ready to discuss the structure of  the currents T in cart(Y2 • $1). As our 
discussion is of  local nature we may assume that 

(14) T = i# Gu 

for some u E BV(Y2,  R). We also know that 

T = r ( M ,  0, T), 

the zero component of  T agrees with the zero component of  T t_.M+, i.e., T acts on 
forms of  the type r y ) d x ,  r  y) E C ~ ( t 7  • $1), as 
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f 
T( r  y) dz) = ]n  r  UT(Z)) dx 

where UT E BV(~2, ]1{2), luT] = 1, is the function associated to T and defining AJ+, 
and finally that 

UT = (cos u, sin u). 

Thus we only need to find out how T acts on forms of  the type r y)dx i A dy j, 
r  y) 6 Cc~(~  x ~2), i = 1 , . . . ,  n, j = 1,2. In order to do that we introduce the set 
of points of jumps and concentrations of T defined as 

d~-# }] T ][ 0}. 
Jc(T) := {x E Y2 I dT..[n_ 1 (x) > 

We also define 
A4 (Jr := (.M \ .M+) N (Jc(T) • S t) 

M (C) := M \ (M+ u Jut (J~)) 

and 
T (a) := T L A,4+ 
T (Jc) := T L .All (Jc) 

T (c) := T u A4 (c) 

Trivially A/t is the disjoint union of  .M+, .All (Jc) and .M (C) 

.All = M +  u M (a~) u M (c) 

a n d  
T = T (a) + T (Jc) + T (C). 

From e.g. [13] [14], compare Theorem 1, we know how T (~) acts on all forms, and 
that T (Jc) and T (C) are completely vertical, i.e., 

T(JC)(~) = T(c)(~) = 0 

on horizontal forms, that is on forms of the type w = r y) dx. 

Theorem 5 (St ruc ture  theorem,  par t  I) Let T E cart(Y2 x Sl). Then locally (12) 
holds and we have 

(15) Jc(T) = Ju. 

In particular Jc(T) is countably (n - 1)-rectifiable in ~ and, still locally, 

(16) 
T(a) ~ f~(a) 
T(c) _ : p(C) 

- -  5 0 t . x  u 

also the three measures [] T (a) H, II T(Je) [I and I[TT (C) II are mutually singular. 

Moreover for any form of the type r  i A dyJ, r  E C~(Y2 x ]t{2) we 
have 

(17) 

T(a)(r y)dx ' '~ A dy j) = ( - 1 )  n - i / n  r UT(X))(DiUJT) (~) dx 

T(c)(r y)~x;' A dy j) = ( -  1) n-i  I n  r  UT(X)) d(D~uJ ) r 
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In particular the density z9 is equal to 1 on Ad+ and A4 (c) respectively ~n-a.e. and 
[(DuT)(C)[-a.e. 

Proof First we observe that T (a) ~ ,-~(a) = ~# ~ ,  as T = i# G~,. From (3) of  Proposition 1 
(ii) we then deduce 

d r .  IIT II (x) - d r .  II G~ II (x) 
dH,~-I dHn-1 

from which (15) and therefore the first part of  the claim follows at once. 
The second part follows easily applying the chain rule for the derivatives of  the 

composite function UT = (cos u, sin u), compare [20] [21], see also [2], which states 
that in the sense of  measures 

DUT = (-- sin u, cos u) Du on 32 \ J~,. 

In fact, for instance for ~ := r  y)dx i A dy 2, we have 

T(C)(w) = G~C)(i#w) = ( -  1)'~-i .fo r  cos u(x),  sin u(x)) cos u(x) (Diu) (c) = 

= (-  1)'~-~ fa r UT(X)) (O~u~) (c). 
[ ]  

The previous theorem says that both the absolutely continuous part and the Cantor 
part of  the Cartesian current T are still identified, as in the scalar case, by the function 
UT. But in general this does not hold for the jump-conce~ntration part T (Jc). 

Let us compute T (de) on the n-form w := r  y l  y2)dxiAdy2. Using Proposition 2 
of  Sect. 2 we find 

T(Jc)(cv) = i# Gu t_ (Ju • ~)(w) = 
u+(x) 

= ( - 1 ) n - ~ I (  I r176 c~  (x)dHn- 'LJ~" 
u _ (x) 

For every x denote by p+(x) and k(x) respectively the real number and the non 
negative integer such that 

u+(x) = p+(x) + 2k(x)rr, 0 < p+(x) - u _ ( z )  < 27r; 

also denote by 7u_(x),u§ the oriented arc of  5 '1 which connects the points i(u_(x)) 
and i(p+(x)). Then we can write, taking into account the periodicity of  r 

u§ 

f r  cos s, cos s sin 8) ds 

u_(x) 
p+(x) u+(z) 

= f r coss, sins) cossds+ f r sins) cossds= 

u_(x) p+(x) 

= f r  y l  y 2 ) d y 2 + k ( x ) j  q~(x, yl, y2)dy2" 

~ u _  (~c),u+(x) S 1 
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Therefore we can conclude 

T ( J C ) ( w ) = ( - 1 ) n - i /  ( / r  uJ~# ( x ) d ~ n - l  L J~+ 

(18) "~-(~)'"+(~) 

+ (-l)'~-~ f k ( x ) (  f r  ua ~ ( z )d~n - l  L j~,. 
s 1 

Consider now the (n - 1)-dimensional current in Y2 

1 
L~ c) := ~ 7r#(T uc) L e).  

For w := r i we find 

L~) (w)  = T(J~)(w A 69) = ~ ~#~u ~ A O) = G~) (C(x)~x  ~ A dt)= 

(19) = 2---s r247 - u_(x))Ju7 dTi n-1 L J~ 

where J~ is the tangent (n - 1)-vector to Ju oriented in such a way that (19) holds. 
As the component  Ju;, i being the multiindex which complements i, is given in terms 
of  the normal uj,~ by 

c 1 ' n - i  U Ju~ = ( . - )  dui 

we finally get 

27r r  - u_(x ) )  lJj~i dT-L n-I  L Ju = 

(20) = ( -  1) n - i  r ~b(x) k(x)  tJj~ i dT~ n -  1 L Ju+ 

(_1)  n - i  
f r  - u_(z)) uj~i dT-I "~-1 L Ju. 

+ 2---~ 

Let us denote by /Z  the subset of  the countably rectifiable set J~ on which k(x) > 1 
with orientation Z: given by the orientation of 3~ chosen in such a way that (17) 
holds, and let us define 

L(T C) := T(s k(X), E) 
(21) 

L(~ ) := r(J,~,p+(x) - u - ( x ) ,  Ju). 

Taking into account that L(T go) has finite mass, we can collected our information on 

L(T Jc) as 

Proposi t ion  2 The (n - 1)-dimensional current L(T Jc) in ~ is locally the current 
integration over the rectifiable set Ju with real density u+(x)-  u_(x). It can be splited 

(c) as the sum of the integer rectifiable current L T and the current L~ ) integration over 
Ju but with real density p§ - u(x). 

From (18) and Proposition 2 we now readily deduce 
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Theorem 6 (Structure theorem, part I I )  The jump-concentration part o f  a current 
T E ca r t (~  • S l) splits into the sum 

(22) T (~ = T (c) + T (]) 

where T (C) takes into account the concentration part and is given by 

T (c) = L ~  ) • [i S I 

where L(T c) is the rectifiable (n - 1)-dimensional current defined in (21 )1 and T (j) takes 
into account the jump part and is defined by 

T(J)(r y ) d x  i A dy j )  = ( - 1 )  n - i  r  j ua~i(x)dT-[ n-I  t__ Ju 

u ( ~( _ ),u+(x) 

Remark 2 In conclusion we see that every T C cart(Y2 • S l) has the same struc- 
ture of  the elements in cart(Y2 • IR), i.e. of  functions in BV(Y2,  I~), apart from the 
concentration term L ~  ) • S 1. However  there is an important difference. The jump- 
concentration term T (Jc) cannot be written in terms of  the BV-funct ion UT associated 
to T and the decomposition (22) is well defined only in terms of u; moreover one 
cannot separate the sets of  integrations of  T (j) and T (c). 

Remark 3 We point out the similarity, and actually the formal equivalence, between 
the structure theorem in cart(Y2 • S l) and in cart2'l(Y2 • S z) which is the space of  the 
limits of  sequences of  graphs of smooth maps with equibounded Dirichlet 's energies, 
compare [15] [14] [16]. 

Remark 4 We observe that, in the case that the function UT associated to T c 
cart(Y2 • S 1) is in Wl'l(Y2,]~2), it is not difficult to deduce that T must have the 
form T = G~, v + L • S j, in fact in this case no jump can occur, but only boundaries 
of G~ T to be compensated by OL • ~ S  Z ~. Consequently, every T E cart(Y2 • S l) 

37 with uw = ~ must have the form 

T = G  ~ _ _ + L •  

where L is a 1-dimensional rectifiable current in ~2 with O L L  B = 60 • S ~. 

We conclude this section by proving that, not only limits of  smooth functions from 
~2 into S 1 with bounded variations give rise to Cartesian currents in c a r t (~  • St) ,  but 
also that every T E cart(Y2 x S 1) is the limit of  such a sequence. This way we fully 
answer the initial question of identifying limits of  smooth maps with equibounded 
total variations. 

Theorem 7 (Approx imat ion  theorem)  Let T E ca r t (~  • Sl) .  Then there exists a 
sequence o f  smooth maps Vh E CCC(~2, S 1) such that 

G ~  ~ T 

weakly in the sense o f  currents in [2 x S 1 and 
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M(G~h) ) M ( T )  

Proof Using Whitney 's  covering argument, we can write s as the union of  dyadic 
cubes Q(xj,  rj) in such a way that the doubles Q(xj, 2rj) are still inside s do not 
overlap more than cl(n) times, and for which the radii r j  are approximately equal to 
the distance of  Q(xj, rj) from 0[2, i.e., 

c2(n) < dist(Q(xj,rj),  0s < c3(n). 
rj 

For each j we choose a simply connected domain /2 j  with smooth boundary in such 
a way that Q(xj, 3 r j ) cc s  (for instance we can take as s the cube 
Q(xj, 2rj) with rounded edges), and we note that there is q, = q,(n) such that 

3 
diam (Q(x, -~rj) > 7 dist (x, 0/2) 

Applying Corollary 1 
BV(s R) such that 

3 
Vx E Q(xy, ~ry). 

and Theorem 1 we then find for each j a function uj E 

i#Guj = TL( /2 j  x S l) 
(23) 

M(G~j )  = M(T t_  (s • S~)). 

For l = 1 ,2 , . . .  and x E Q(xj,  3 ~?~j) set 

3' dist (x, 0s (24) uj,e(x) := uj  * ~ (x )  e(x) := -~ 

where ~ is a standard mollifier. From [3], [22], we then deduce for g ---+ c~ 

3 
(25) Guy,e ~ Gu~ in Q(xj, ~?'j) X ]~, 

and also we can find pj E (�88 3rj) so that 

(26) M(G~3. e t_ Qy x ]R) ~ M(Guj  t_ Qj  x IR) 

where we have set Q3 := Q(xj, pj). Moreover, if Qi  N Qk is non empty we have 

(i# Gu~ -- i# Guk) t_ ((Qj fq Qk) • s l )  -- 0. 

Thus, by Proposition 1 (iii), we deduce that uj - uk is an integer multiple of  27r, and 
consequently also uj,e - uk,e is an integer multiple of  27r. 

From the above we conclude that the maps from [2 into S 1 given by 

ve := (cos uj,e(x), sin uj,e(x)) for x E Qj  

are well defined and smooth for all L Also from (24) and (25) 

G, e L Qj  x S 1 = i# (Guj,g L Qj X 1~) ~ i# (Guj L Qj  • JR) = T [_ Qj • S 1 

and from (26) and (23) 
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M(Gve t_ Qj • S 1) = M(Guj,e t_ Qj • l~) ~ M(Guj L Qj • ~)  = M ( T  t_ Q j  x s1) .  

The proof of the theorem is then easily completed by observing that the covering 
{Qj}, /~j : :  Q(xj ,p j ) ,  is locally finite. [] 

4. Relaxed energies 

Let us begin by considering the area functional for maps u from a bounded domain 
S2 of/~n into S 1 

,A(u,/2) := f ~//1+ IDu] 2 dx. 

g2 

In the same spirit of Lebesgue's area for continuous functions, the relaxed area of 
graphs in /2  • S t is given for T E 79,~(/2 • S t) by 

(I) A(T,/2) := inf{ l im~f  I V/1 +]Dukl z dx lu  k E Ct(/2, S ' ) ,Guk --~ T}.  

J2 

An immediate consequence of the approximation theorem in Sect. 3 is that 

(2) ,A(T,/2) = ~f M(T) if T E cart(/2 • S 1) 
L + ~  otherwise 

Taking into account the structure theorem for Cartesian currents in 5"2 x S ~, we can 
also write for T E cart(S2 x S 1) 

(3) .A(T. ~ ) =  f V/I + ,(Du)(a)[ z dx+ / , (Du) (C) ]+  f d[[ T (Jc) II. 

12 ~2 

In particular we see that .A(T,/2) is a local functional. 
Similarly we may consider the relaxed area of the "graphs" of LCfunctions 

u : S2 ~ S t, defined by 

(4) .A(u,/2) := inf~liminfl, k~o~ Js~f i l +  IDuk]2 dx l u k e  Ct(/2, Sl),uk---* u in L t }. 

However, it turns out that in this case .~, is not local, i.e. A(u, .) is not a measure in 
/2. 

Proposition 1 The following facts are equivalent 
(i) u e B V ( / 2 ,  [u(x)l = I a.e. in/2 
(ii) f4(u,/2) < c~ 
(iii) There exists T E cart(S2 • S t) such that UT = u in S2. 

Proof Suppose that (iii) holds. From the approximation theorem there is a sequence 
{uk}CCl(/2, S t) such that 

Guk ~ T, M(Guk) ~ M(T). 

Therefore uk ~ u strongly in L ~, and the semicontinuity of the mass yields 
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A ( T ,  S?) < lim infM(G~k) = M(T) .  

On the contrary, if {ujc}cCI(S?,S~) ,  uk --~ u in L l, is such that ~ ( u , s ? )  = 
l iminfM(G~k),  then G~ k converge weakly to some T c cart(T2 x S 1) and 

k--*  o o  

M(T) _< lira infM(G~k) = ) ( u ) .  
k - - * o o  

This proves that (ii) is equivalent to (iii). 
From Theorem 1 of Sect. 3 it follows that (iii) implies (i). Therefore it remains to 
show that (i) implies (iii). 
Let u C BV(g?,  ]I~2), ]U[ ---- 1. For/3 E (0, 5)  we set 

E1 := {x I u2(x) ~ sin/3} 

E2 := {x [ UI(x)  < -- COS/3} 

E3 := {x ] u2(x) < - s i n / 3 }  

E, := {x I > cos/3}. 

For almost every/3 E (0, ~) we have 

f IDol = 0 
OEi 

i = 1 , 2 , 3 , 4 .  

Therefore, defining for one 

for x E E1 

for x r E2 

for x e E3 

for x E E4 

s u c h a / 3 f i  : s  

cos~(x)  := u l ( x ) , ~  <_ r <_ rr - 

sin ~(z) := u2(x), rc - 3 <- ~(z)  <_ rc +/3 

cos ~2(x) := ul(x) ,  rr +/3 < ~(x) _< 2rr - / 3  

sin f~(x) := u2(x), 2rr - / ~  _< fL(x) < 27r + fl 

we deduce that fi belongs to B V ( f 2 ,  IR), 3 _< ~(x) < 3 + 27r. To conclude the proof 
it suffices now to take as T the Cartesian current i#Gr 

From Proposition 1, (2) and (3) we deduce 

Proposi t ion 2 A(u)  is finite if and only i f  u E B V ( f 2 ,  IR2), I~1 = t. Moreover, for 
u C BV(S?,  1R2), [u[ = 1, we have 

.2l(u, S?) = inf{M(T) ] T E cart(s? x $1), UT = u} = 

= f v/l +l(Du)(o)12 dx + f l(Du) c)l+ 
~2 ~2 

+ i n f { / d l l  r(Jc) II I T E cart[S? x Sl)such that UT = U} 
J 

From Remark 1 Sect. 3 and the structure theorem we also deduce 

Proposi t ion 3 Let T, T ~ E cart(f2 x $1). We have UT = UT, if and only i f  there exists 
an integer rectifiable (n - D-dimensional current L in X? such that 
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T -  TI = L • [[ S '  ]]. 

Combining Propositions 1 and 2 we finally find the following representation formula 
for the relaxed area with respect to the L~-convergence. 

Theorem 1 Let u E BV(J?,  IR2), ]u I = 1. Then 

:4(u,j?)= f +l(Du)(~ dx + f l(Du)(C)l+ 
X2 S'2 

T(Jc)  § (5) + 27r inf{M(• T L) I L integer rectifiable with O L t_ J? = 0} 

where T is any current in cart(J? x S l) such that UT = U. 

Note that L ~  ~) is the current integration on J~, but with in general a real density. 

Of course, if it happens to exist a T E cart(j? x $l) ,  UT = U, such that L(T Jc) is an 
integer rectifiable current, then we have (compare [15] for the case of  maps into S 2) 

~ (u ,  g2) = M ( T  (")) + M(T(C))+ 

(6) + 27r inf{M(L) { OL x [IS z ] = - O ( T  (a) + T(c))}. 

In the special case of the function u : J?C/~ 2 --~ S l, u(x)  = ~-~, we deduce from 

Remark 4 Sect. 3 that 

- x f l  x {Zdx+27cR ~ t ( - (~  L , BR)  = 1 + {D-(~-f{ 
BR 

- X f i X 2 . A ( - ~ , B R \ B ~ ) =  a + I D ~ I  dx r > O ,  

13R\Br 

in particular 

- X - X - . Z "  

O < r <  1. 

- 2 ;  - -  X This shows that .A(i--~,-) is not subadditive, i.e., .A(i--~-) is not a measure in J?. 
In the same way as previously we can deal with general smooth integrands of the 

type f ( x ,  u ,p)  such that 

(i) f ( x ,  u ,p)  is convex with respect to p 
(ii) ]Pl -< f ( x , u , p )  <_ c0(1 +}p{) 
(iii) the so-called recession function 

is well defined. 
Setting 

f ~ ( x , u , p )  := lim p o f ( x , u ,  P )  
Po --~0+ PO 

Po f ( x ,  u, 1,p/po) if Po > 0 
F(x ,  u, Po, P) = I. f ~ ( x ,  u, p) if Po = 0 
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we may define for each T c cart(S2 • S l) the parametric integral 

(7) ~(T, 22) = / F(x, y, T) dll T II. 

As it is standard, see e.g. [7] [12], using a well-known theorem by Reshetnyak [18], 
and the approximation theorem of Sect. 3, we infer 

Theorem 2 .T(T, f?) in (7) is the relaxed functional o f f  f(x,  u, Du) dx. 
f2 

Of course 

f D ' ( a )  / (Du)~C)I)I(Du)~C),+ .~(T,  22) = f ( x ,  1IT(X), ( U )  ) dx  q- fc~(gg, UT(X), I ( D u )  (c) 

f2 f2 

(8) + f F(x, y, W (Jc)) dll T (JC) II. 

We leave to the reader the formulation of analogous results to the ones of this section 
in the general case of integrable 5c(T, 22). We only remark that the last term in (8) 
can be written in terms of the functions u E BV(22, JR) for which locally T = i# Gu 
as 

u (x),u+(x) 

where s s k(x), J ,  and "),.,_(~),~+(~) have the same meaning as in Sect. 3 and r is 

the 1-vector orienting S ~. 

5. Variational problems 

The results of Sect. 4 allow us to readily solve variational problems in a weak sense, 
i.e., in suitable subclasses of cart(S2 • S L),for integrals of the type 9C(T, 22) considered 
in the end of Sect. 4. In fact those integrals, and in particular the area, are lower 
semicontinuous with respect to the weak convergence of currents with equibounded 
masses and coercive in cart(22 x S 1). 

For instance let us consider the Dirichlet problem in o(2, which in analogy with the 
BV-case consists in the following. Given a bounded domain O, ODDS), for example 
a normal e-neighbourhood o f /2 ,  and a smooth function u0 : ~ ---+ S l, equivalently 
To = G~ o c cart(~ • $1), find a minimizer of .T'(T, ~ )  in the class 

cartTo(~ x S 1) := {T C cart(~ x S l) [ (T - T0) L (~  \ f2) x S 1 = 0}. 

Then we get 

Theorem 1 There exists a minimizer of .~(T, 22) in cartTb(~ z $1). 

Note that, if we assume uolo ~ to be extended to ~ = 22~ constantly along the normal 
to 022, by retracting 22~ to 22 and applying the approximation theorem of Sect. 3, we 
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can always find a sequence of  smooth maps Uk : f2 ~ S 1, with uk = uo on 0S2 such 
that 

Gukt~ + Guol~\r  ~ ~ T E c a n a ~ 0 ( ~  • S 1) 

and 
.T(G~kta +G 01~\~) , Y ( T , ~ ) .  

Maybe more interesting is the fact that we can minimize integrals of  the type .T'(T, Y2), 
as for instance the mass, in classes of  mappings with prescribed homology or degree 
maps. 

Suppose that X is a compact  oriented Riemannian manifold without boundary and 
let u : X ~ S l be a smooth map. It is well known that the map u# which maps any 
1-dimensional cycle [[ C 11 in X into the 1-dimensional cycle u#[[ C ]1 in S ~ defines a 
map u ,  between the real (integer) homology groups of degree 1 of  X and S 1 

u. : H1(X,H) , H ~ ( S t , H )  ~- H, u . ( [C] )  = [u#C] 

called the homology or degree map. Assuming C regular, by means of Poincard duality 
which associates to C a (n - 1)-form so that 

f ~ 7 = f w c A r l V r l E D ' ( X )  
c x 

we see that 

u#~C](,/) = UC]I(u#rl) = { w c  A u#~ = G,Awc A ~) VO I )  I(X).  
d 

X 

Similarly, for every Cartesian current T E cart(X,  S 1) the matrix of periods 

1 
2-~ T(w A O) w E 7T~-I(X)  dw = 0 

defines a homology map 

T ,  : H I ( X , ] I ~ )  ' H I ( S I , ] I ~ )  

as follows. Consider a 1-dimensional normal cycle S and its regularization S~, 0 < 
e < 1. The normal current S~ is homologous to S [10, 4.1.18] and can be written as 

Sdw) = f ws~ A t,d 
d 

x 

where ws~ is a smooth closed (n - D-form in 2 '  [10, 4.1.12]. Thus T. is given by 

1 
T,([S])(r/) := ~ T(ws~/x rl) W/E 7 ) ' (S ' ) .  

Actually 7", defines a map between the singular homology groups 

T,  : Hi  (X,  Z) , H I  ( S  1 , 7/.) ~ Z. 

TO see this, it suffices to consider an approximating sequence of  smooth maps 
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Gzt k ~ T 

and observe that for any cycle S 

l , 
uk* ( S ) ( O )  = ~ G~ k (~os A 0 ) .  

We note in particular that if {Tk}ccart(2d x S l) is a sequence which converges to 
T C cart(2~ • S l) and all the Tk 's  have the same homology map T. ,  then also 
T.  = L#.. Therefore we get at once 

Theorem 2 There is a minimizer o f  .T(T, X )  in the class 

{T  E car t (X x S ' )  I T.  = T.}  

:F. being a prescribed homology map, and even in the class 

{T  C cart(,Y • S 1) [ 7". = T . , ( T  - To) m ( S  • 51) = 0} 

where To is a given current in cart(X' • S 1) with To. = T .  and E is a smooth open 
domain o f  2d. 

6. Minimizers with prescribed singularities 

In this last section we deal with the problem of minimizing the total variation of maps 
which are constants near infinity, with values in S l, and have prescribed homological 
singularities, i.e., we deal with the so-called dipole problem, compare [4] [5] [1] [15] 
[14] [16] [11], for the case of  Dirichlet integral. 

Let F l , . . . , / ' k  be a finite family of  (n - 2)-dimensional curves in R '~ which 
are simple, oriented, closed, smooth, and do not intersect each other. Let u " R '~ \ 
k 
U Fi---~S 1 be a smooth map which is constant near infinity. For x C Fi, i = 1 , . . . ,  k, 
i=1 
we consider the 1-dimensional sphere Sl,~ of  radius e around x in the oriented 2- 
dimensional orthogonal plane to Fi at x. Of  course for ~ sufficiently small, depending 
on the family of  the Fi, S~,r does not intersect any Fj for j : / i ,  for x C Fi and for 

k 
all i. As u is regular in 1R n \ U Fs, the degree of the map 

8=1 

Uls~, ~ : S~,~ , S 1 

is a well defined integer and a trivial homotopy argument shows that it does not 
depend on the radius e, provided e is small, nor on the point x C F~ for each fixed 
F~. We call such an integer the degree o f  u at x E Fi with respect to the orientation 
F~ of Fi. 

Given now k integers dl . . . .  , dk, our problem is to minimize for instance the 
integral total variation 

f k ( I )  ~-(u) := IDul dx,  ~2 := ~'~ \ u F~ 
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in the class E of  smooth maps u : ~2 - - ,  S 1 which are constant, say u0, in a neigh- 
bourhood of  infinity and such that 

deg (u, Fi) = di for i = 1 , . . . , k .  

In order to tackle this problem we first observe, compare [14] [16], that the singulari- 
ties of a map u G E are in fact described by the integer rectifiable (n -2) -d imens iona l  
current 

k 

P := ~-~ di [[ Fi ]]. 
i=1 

In fact we have 
k 

Proposit ion 1 Let u �9 1~ n \ U=l.= F~ --+ S 1 be a smooth map with .~(u) < ec. Then 

deg(u, Fi) = di, i = I , . . .  ,k,  i f  and only if  

1 
(2) 2-~ O~r#(G~, t_. O) = P. 

Proof Set 
1 

P(u) := O~#(G~ u 6)) 

k 
and denote by C~ an e-neighbourhood of  F = U Fi, OC~ smooth, e small. Since u 

i=1 
is regular on OC~ we have 

Thus 

O(G. L_ (Ce x Sl)) = OG~ t_ (C~ x S I) + G~Ioc~ in R ~ x S'. 

1 1 
(3) P(u) = - ~ 0 7 r # [ ( C ~ u ( C ~  • SI))  u 6)] - ~-~rTrrC#(GuloC~ ur ) ) .  

Since 7r#(Guloc~ t_ 6)) is an (n - 2)-dimensional normal current and the mass of  

~r#[Gu t_ (CE • $1))t_ 6)] tends to zero as e ~ 0, we infer from (3) that P(u) is a 
locally flat chain, see [10] for the definition. The constancy theorem, see [10, 4.1.31], 
then yields 

k 

~(~) = ~ ~'~ ~ r~ 
i=l 

where ri are in principle real numbers. We shall now show that in fact r~ = d i ,  and 
this will complete the proof of  our claim. 

Consider an (n - 2)-form w on Pi and extend it constantly in the normal direction 
to Fi in a small cylinder C~ 0 := _Fix B~ 0 and with compact support in C2~o := Pi x B2~o 
in such a way that 1~i x B2~o does not intersect Fj  for j ~ i. For each x E /1/ we 
obviously have 

1 
U#[[ Sz,e ]](6)) = di 

hence for r < r 
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1 1 
ri [[Fi ]](w) = P(u)(~) = - ~  GuloC~(~ A O) + ~ (Gu L Cr x Sl)(d~ A 0)  = 

= --27cl w(x) u#(O) + ~ (Gu I_ C s  • s l ) ( d w  A O )  = 

F Sx,e 
1 

= d~ U F~ B(w) + ~ (G~ L C~ x S~)(dx A (9). 

As the second term in the last expression tends to zero as e ~ 0, we deduce that 
ri = di, and also that (G~ L C~ • St)(dw A O) = O. [] 

On account of  Proposition l our problem can be now formulated as the problem of 
minimizing 5C(u) in the class 

k 1 
Ep := {u C C ' (N n \ U=I FiS ) IG~ = Guo in a neighbourhood of  infinity, 

1 
Oyr#(Gu L O) = P 

Theorem 1 We have 

inf f ]Du[ dx = 27r min{M(L) [ L integer rectifiable (n - 1)-current in I~ n 
uEE J 

12 
with (gL = P} = 27r M(L0), 

where Lo is the integer rectifiable (n - 1)-current in S( n of least area spanning P. 

Proof First we note that L0 exists, compare [10]. 
Let us prove that for all u C E,  equivalently u c Ep ,  

IDu I dz ~ 2rr M(L0). 

12 

As in [1] this follows by a simple use of  the coarea formula. In fact we have 

12 R n S1 

S 1 S l 

since for the slice of  the current ]R n by the map u, or equivalently for the current 
T(U -1, 1, ~), ~ being the natural induced orientation on u-l(y) ,  we have 

0 < ]~n, u, y '>= P. 

To prove the opposite inequality we consider the current T C carqoc(s x S ~) defined 
a s  

(4) T := Gu0 + L 0  x S I. 
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Denoting still by .T the relaxed of  the integral (1) to Cartesian currents, compare 
Sect. 4, we have 

.T(T) = 27r M(L0). 

From the approximation theorem of  Sect. 3, compare also the observation following 
Theorem 1 of  Sect. 5, we now deduce the existence of  a sequence of  smooth maps 
U k  C: CI( ,Q,  S1), U k  = UO near infinity such that 

G,, k ~ T  inD,,~(Y2• l) 

(5) Muxs1(G~k)--+Muxsl(T) V U c c I R  ~ 

Y(G~ k) ~ Y(T) 

To conclude the proof it suffices to show that 

(6) G~ k ~ T in/)~(IR ~ x S l) 

In this case in fact we also have 

i.e., 

OGuk ~ OT, 

k 
69) ~ OLo = Z di ~ Fi ~, 07r#(G~ k L 27r 

i=1 

and, since 
k 

07r#(G~ k L 69) 27r = E r i ~ F ~ R '  r i e Z ,  
i=l 

we conclude that for k large 

1 
07r#(Gue t_ 0) = P. 

Let us prove now that the first two claims in (5) imply (6). This is an immediate 
consequence of  the following result concerning general vector valued measures. 

Suppose that 
#~ --~ # 

in some open set O C ~  n, for simplicity with smooth boundary 0s and that for the 
total variation we have 

Thus regarding the measures #k and p as measures in R n we have 

(7) Pk ~ # in Nn. 

For the reader's convenience we give a brief stretch of  the proof of  (7). Consider the 
set/2s of  points x in O with dist (x, 0 0 )  < e. We may assume that l#l(0~2e)= 0 for 
a.e. ~. Then it easily follows that 
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Choose  then funct ions  X~ which  are ident ical ly  1 in ~2~, with compac t  support  in 3"-2, 
and converg ing  to the character is t ic  funct ion Xga of  f2. As  spt (Xo  - X & ) C f 2  \ f2~, 

we  then see that 

(#k - #)  ( (Xo - x ~ ) f )  

is un i fo rmly  small  with respect  to k for  e sufficiently small  and ]f l  -< 1. This  yields 
easi ly (7). [ ]  

No te  that we  have  also p roved  

C o r o l l a r y  1 The current T := Gu0 +L0  • S 1 E cartloc(f2 x S 1) is a minimizer o f  ~ ( T )  

in the class o f  Cartesian currents in carhoc(f2 • S l)  such that T = G,, o in U • S 1, U 
being a neighbourhood o f  infinity in 1R n, and 

1 
2re 07r#(T L O) P. 

We also remark  that Corol la ry  1 impl ies  also the known fact that the set E is not  
empty ,  i.e., g iven  any finite fami ly  o f  ( n - 2 ) - d i m e n s i o n a l  curves /~ i  in IR n, i = 1 , . , . ,  k, 
as previously ,  and any set o f  integers di ,  i = 1 , . . . ,  k, then there exists a funct ion 

k 
u C C'I(IR ~ \ i__Ut/7/, s t ) ,  u constant  near  infinity such that d e g ( u ,  F 0  = d i ,  for  any 

i =  l , . . . , k .  
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