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Abstract. We study the optimal design problem of finding the minimal energy con- 
figuration for a mixture of two conducting materials when a perimeter penalization 
of the unknown domain is added. We show that in this situation an optimal domain 
exists and that, under suitable assumptions on the data, it is an open set. 
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1. Introduction 

The problem of finding the minimal energy configurations of a mixture of two con- 
ducting materials has been widely studied in the literature (see for instance Kohn and 
Strang [13] and Murat and Tartar [15]). Denoting by ~ and ~ the conductivities of 
the two materials, and by g~ the prescribed container, the problem consists in finding 
a domain A C Y2 of prescribed volume minimizing the quantity 

(1.1) - f~2 f(X)UA(X)dx 

where f(x) denotes the source density, and UA is the solution of the problem 

- div ((CdA + fllo\A)DU ) = f in 52 (1.2) 
t u = 0 on 052. 

Since for every solution u of (1.2) we have 

/ (alA + t31~\A)IDu[2 dx= / f udx 

the problem can be reformulated by the minimization of E(u, A), where 

(1.3) E(U, A) = fs~ ( a l  A +/31F2\A) [Dul 2 - 2fu dx, 

u varies in H01 (/2), and A varies in the open subsets of J'2. 

* This work is part of the project "EURHomogenization", contract SC1-CT91-0732 of the program 
SCIENCE of the Commission of the European Communities. 
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It is well known that in general the optimal configuration does not exist if we 
only prescribe the volume of the regions occupied by the two materials. On the other 
hand, it is easy to show (see the proof of Theorem 2.1) that an upper bound on 
the perimeter of surmentioned regions gives an extra compactness property which is 
enough to imply the existence of a weak solution for the optimal design problem (1.1) 
which merely belongs to the class of  sets with finite perimeter in [2. 

This paper is concerned with the minimization of functionals of the form 

E(u,A)= fAC~lDul2 +gl(x,u)dx + f~  31Dul2 +g2(x,u)dx +oP(A,[2) 
\A 

where a > 0 and P(A, [2) denotes the perimeter of A in [2. Under suitable growth 
assumptions on gl and g2 we are able to show that the minimization problem 

(1.4) min{E(u,A) : uE  Hi(j2), A C [2} 

has a solution. Moreover, we prove that if (u, A) is a minimizing pair then u is HSlder 
continuous and A is (equivalent to) an open set. 

Our techniques are based on energy estimates, and we follow the methods of De 
Giorgi [4], De Giorgi et al. [5], Giaquinta and Giusti [8], and Ladyzhenskaya and 
Uraltseva [14]. In particular, we do not make any differentiability assumption on the 
functions gl and g2 in (1.4). 

2. Notation and statement of the results 

In all the paper [2 will denote a bounded open subset of R '~, and ce, 3 two real 
numbers with 0 < c~ < 3- For every subset A of [2 we denote by aA(x) the function 
defined for every x E [2 and z E R n by 

aA(X) = alA(X) + 31~2\A(X) 

where for every set E we denoted by 1 E the indicator function of E 

1 i f x E E  
1E(x)= 0 i f x ~ E .  

Finally, we denote by 7"/'~-1 the Hausdorff (n - 1)-dimensional measure in R n. 
Given two Borel functions gl, g2 : ~2 x R ---* R we may consider, for every subset 

A of S2, the minimization problem 

min{ f [aA(x ) lDu ,2+gA(x ,u ) ]dx :  u E H~([2)} (2.1) 

where we set 
gA(X, 8) = 1A(X)gl(X, 8) + I~\A(X)g2(x, "S). 

We assume that gl and g2 satisfy the following assumption: 

(2.2) gi(x, s) > 7(x) - klsl 2 i = 1, 2 

where -f c Ll([2) and k < a)~l, being A1 the first eigenvalue of - -A on $2. 
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It is well known (see for instance Ioffe [11] or Buttazzo [2]) that, if gt(x, s) and 
92(x, s) are lower semicontinuous in s, then problem (2.1) admits at least a solution 
ua. We denote by E(A) the minimum value of problem (2.1). 

The optimal design problem we are interested in is then 

(2.3) rain {E(A) + aP(A, 1"2) : A e A(I2)} 

where ~r > 0, P(A, 12) denotes the perimeter of A in D, and r is the class of all 
subsets of [2 with finite perimeter. For the sake of completeness we recall that the 
perimeter P(A, [2) is defined for any Borel set A C R n by 

P(A,[2) = sup { fAdiV edx  : eECcl( [2 ;Rn) ,  { r  

Theorem 2.1. The minimum problem (2.3) admits at least a solution. 

Proof. Let (Ah) be a minimizing sequence for problem (2.3); then P(Ah, [2) are 
bounded, so that, up to extracting subsequences, we may assume (Ah) is strongly 
convergent in the L~o c sense to some A E A(g2), that is 1Ah ---+ 1A in L~oc([2 ). We 
claim that A is a solution of problem (2.3). Let us denote by Uh a solution of problem 
(2.1) associated to Au; then by (2.2) (Uh) is bounded in H0 l ([2) and we may assume 
it converges weakly to some u E Hol([2). Then 

E(A) < fs~ [aA(x)lDu}2 + 9A(X, U)] dx. 

Recalling the expressions of aA and gA, and applying the Ioffe lower semicontinuity 
result (see Ioffe [11]) to the integrand 

~b(X, 81,82,  Z) = Or81 [Z[ 2 + /~(1  --  81)]Zl 2 -I- 81gl(X , 82) 4" (1 - s l ) g 2 ( x  , 82) 

where x E J), sl E [0, 1], s2 E R, z E R '~, we obtain 

E(A) <_ ./o [aA(X)[DulZ +gz(x,u)] dx = 

= fs7 ~(x, IA,ulDu)dx <_ liminf f ~)(X, IA~,uh, Duh) dX= 
h---*+c~ Js'2 

= lira inf f [aAh (x)lDuh 12 + gAb (X, Uh)] dx = lira inf E(Ah). 
h---~+oo j~,~ h " * + ~  

Therefore, by the lower semicontinuity of the perimeter with respect to L~o ~ conver- 
gence, 

E(A) + aP(A, [2) <_ lira inf [E(Ah) + ~P(Ah, [2)], 
h---*+c~ 

which proves that A is a solution of (2.3). [] 

The main result of the paper is the following: 

Theorem 2.2. Let us assume that gl and g2 satisfy (2.2) and 

(2.4) Igi(x, s)} << C(1 + Isl q) i = 1, 2 
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where q > 2 if  n = 2 and 2 < q < 2n / (n  - 2 ) / f n  > 2. Then, for any set A C ~2, any 
minimizer UA in (2.1) is locally HSlder continuous. Moreover, for every solution A of 
problem (2.3) there exists an open set A such that 

meas(Aa~l) = 0 and P(A ,  f2) = P(74, ~)  = 7-ln-l(OJt N .(2). 

Remark 2.3. By a careful inspection of the proof it is possible to see that Theorem 
2.2 still holds if instead of (2.4) we make the following weaker assumption: 

(2.5) I9~(x, s)l < C(a(x)  + [sl q) i = 1,2 

where q is as before and a E LP(F2) with p > n. However, we have preferred the 
stronger condition (2.4) in order to simplify the estimates we shall obtain in Sections 
3 and4.  

Remark 2.4. Theorem 2.2 can be extended, with minor changes in the proof, to 
mixtures of more than two materials. More generally, (2.3) can be generalized as 
follows: 

: (u, v) ~ H~(D) x BV(D) ,  v(x) ~ K a.e. }, 

where K El0, +cx~[ is a fixed compact set, BVU?)  is the space of all functions in 
with finite total variation, and IDvl(D) is the total variation of v in ~ .  In this 

case, the jump set of the optimal solution v turns out to be equivalent (with respect 
to ~,~-1) to a closed subset C of R~; moreover, v is equivalent (with respect to the 
Lebesgue measure) to a continuous function w : ~? \ C ~ K.  Similar results for the 
class of "free discontinuity problems" have been obtained by De Giorgi et al. [5]. 

Example  2.5. Consider the minimum problem 

(2.6) ZE.A(D)min {P(A, Y2)+ fAh(X)dx + /ug(z)uA dx } 
where UA is the unique solution of the elliptic problem 

- div (aA(X)Du) + 9(x) = 0 in 

u E H01(a'-2). 

It is easy to see that problem (2.5) can be written in the form 

hence it is of the form (2.3) with 

91 (x, s) = h(x) + 2g(x)a gz(x, s) = 2g(x)s. 

By Theorem 2.1, when g E L:(O)  and h E L I ( ~ )  problem (2.6) admits a solution, 
and by Theorem 2.2, when g E L ~ ( ~ )  and h E L ~ ( O )  every solution is (equivalent 
to) an open set. 
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The main tool for the proof of Theorem 2.2 is the following density estimate. 

Proposition 2.6. Let A be a solution of(2.3). Then, for every compact set K C /2 
there exists a constant ~ El0, dist(K, 012)[ such that for every y E K 

lim r/ '-n { J  B aA(X)'Dul2dx+aP(A,B,~(Y))}=O 
r/---*0 r~(y) 

whenever, for some p < ~, it is 

f• aA(x)lDul 2 dx + aP(A, < ~pn-1. Bp(y)) 
p(y) 

The proof of Proposition 2.6 is rather technical; we shall devote to it the last section 
of the paper. 

Proof of Theorem 2.2. The HSlder continuity of solutions of (2.1) follows by Theorem 
3.1 below. In order to show that any solution of (2.1) is equivalent to an open set, let 
us define 

12o = { y  E S2 : p--olim P~-'~ [ f  Bp(u) az(x)}Dul2dx+aP(Z'BP(Y))]=O} ; 

we show that/2o is open. Let xo E 12o, let 

K = {x E S-2 : 2dist(x, 012) > dist(xo,012)}, 

and let ~ > 0 be given by Proposition 2.6. We can find a sufficiently small Po > 0 
with Po < ~ such that 

n--I 

Since for any y E Bpo/2(xo) 

f po'~ n-1 
f..o/.(u ea(x)IDul' dx +o'P(A, Boo/z(y)) < ~-~) ,. 

by Proposition 2.6 we get Bpo/z(Xo) c /20. It is known (see for instance Federer 
[6], 4.5.6) that for any set of finite perimeter, the set function B ~ P(A, B) is 
representable by a measure supported by O'A, where 

O ' A = {  xE12  : l imsupP(A'Bp(x))  § pn-i >0 

and 
P(A, 12) = 7-l'~-l(O*A) < +~. 

In particular, if x E 12o and Bp(x) C~o  C 12 \ O'A, by the isoperimetric inequality 

rain { meas{Bp(x)n A},meas{Bp(x) \ A} } < c(n)P(A, Bp(x)) n/(n-l) =0 
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we infer that either 1A = 1 a.e. or IA = 0 a.e. in Bp(x). Set now 

= {x E ~0 : 1a = 1 a.e. in a neighbourhood of  x}.  

We claim that ~ n - i  ((g2 \ f20)AO*A) = 0. Indeed, O*A c J2 \ f20, and 

(D \ S2o) \ O*A c U S~, 
e>0 

where 

By general results on the differentiation of  measures (see for instance Federer [61, 
2.10.18(1)) we infer 

(2.7) C L aA(X)lDulZ dx >_ zT-t "~-' (S~) 
d ~  

with C depending only on n. By (2.7) we infer that 7- /n- l(Se)  < +oo hence 
meas (Se) = 0 for any e > 0; by (2.7) again we get 7-/'~-I (S~) = 0, and this shows 
the claim. 

The set ] i  is clearly open, and equivalent to A because f2 \ S?0 is negligible. 
Moreover, since OA N ~2 C s \ f2o, we have 

7-/'~-' (g2 N 0]t)  G 7-/'~-' (f2 \ s = n'~- ' (O*A) = P ( A , D )  = P(74, I2). 

On the other hand, for any Borel set C C R '~, it holds (Federer [6], 4.5.5) 

P(C, s2) < 7-i~-'(I2 n OC), 

so that 7-U-'(S2 n 0.71) = P( ) t ,  ~) ,  []  

3. Higher integrability and H61der continuity 

In this section we show that minimizers in (2.1) are locally H61der continuous, and the 
higher integrability property for the gradient holds. The HOlder continuity is obtained 
by using the results of  Giaquinta and Giusti [8] and Ladyzhenskaya and Uraltseva 
[14], which are based on De Giorgi's truncation argument [4]. The higher integrability 
of  the gradient follows by a reverse HOlder inequality as in [8], Theorem 4.1. 

In the next section it will be useful for us to have uniform estimates on u. Hence, 
we assume (up to a rescaling of  the other constants) that tr = 1, and we denote by/C 
the set of  constants {n, a , / 3 ,  C, q}. 

Theorem 3.1. Let u be a solution of(2.1), and let us assume that gi, g2 satisfy (2.4). 
Then the following facts hold. 
(i) For any open set S2o CC f2 the quantity II~llL~<~0~ is bounded by a constant 

depending only on ]C and IlUllL2(~). 
(ii) u is locally HOlder continuous in ~.  
(iii) Let f2o C C g2, let 7- = dist(J2o, 0f2), and let 
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K = {x E J ? : d i s t ( x , ~ o )  <-- T/2}.  

Then there are constants 7 > 0 and r > 2 depending only on 1C and HUlIL~(K) 
such that 

whenever y E Oo and QR(Y) C K, QR(Y) being the standard n-cube centered at 
y with sides of length R. 

Proof. Let us prove (i). Let y E 12, and let R 6 ]0 ,d i s t (y ,0~) [ .  In Theorem 2.1 of  
[8], it is shown that there are constants 7 > 0 and 0 < 0 < R depending only on K: 
and llUl[L2<a) such that 

fAkolDulZdx<--7{(R--P)-2 fA,  k,R 'u-k]2dx+kZ(measak'R)t-2/n+e} 

and 

where k _> 1/0, 0 /2  < p <_ 0, e = (1 - q/2*), 

Ak,p = {y e Bp(x ) :  u(x) > k}, Bk,p = {y E Bp(x): u(x) < - k } .  

Then, the statement follows by Lemma 5.4 of  [14]. 
Let us prove (ii). We briefly sketch the proof given in Theorem 3.1 of [8]. Let 

~20, T, K as in (ii); there is a constant 7 depending only on K: and ]lUl]LO~(K) such 
that 

and 

whenever  k > --IlulIL~(K), Y e X?o and 0 < p < R < ~-/2. By using the inequality 

fA lU - -  k12 dx < lu - k[ 2 meas(mk.n), max 
k,R Ak'R 

we get 

Lk,~ IDul2dx < [(n- p) 
[- 

7 

Similarly, we get 

7 

- 2  m a x  lu - kl  2 + 1] meas(Ak,R). 
Ak,R J 
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fB [D u l2 d x< 'y [ (R -P) -2 ma x 'u +k l2+I]  meas(Bk'R)" 
k,p Bk~R 

Hence, u belongs to a class/32 which has been introduced in [4] and [14] to prove the 
HSlder continuity of solutions to quasi-linear elliptic equations. The H61der continuity 
follows by Theorem 6.1 of [14]. 
Let us prove (iii). As for (ii), we briefly sketch the proof of Theorem 4.1 of [8]. In 
fact, arguing exactly as in [8], we get the Caccioppoli inequality 

n/2(y) n(y) 

where y E f20, QR(Y) C K, un,y is the average of u in QR(y) and "7 depends only 
on/(7 and HUlI L~C(K). By the Sobolev-Poincar6 inequality 

R -2 lu - UR,u] 2 dy < C IDul 2n/(n+2) dx 
R(Y) R(Y) 

we get 

Hence, IDu] 2'~/('~+2) satisfies a reverse H~51der inequality. By applying Proposition 1.1, 
page 122 of Giaquinta [7] (see also Giaquinta and Modica [9]) we get (3.1). 

4. Blow-up and energy decay 

The proof of Proposition 2.6 is based upon two main ideas. Let A be a solution of 
(2.3), and let u = UA be the corresponding solution of (2.1). Because of the growth 
condition (2.4), we are led to believe that (u, A) is almost minimizing the energy 

B aA(X)lDul 2 dx + P(A, Bp(y)) 
p(y) 

with respect to perturbations with compact support, provided Bp(y) C /2 is sufficiently 
small. The minimality condition can be formulated in terms of the rescaled functions 
Uh and the rescaled sets Ah 

u p , ~ ( x )  = - -  
u(y + px) 

A p , y = { x e B  : y + p x E A }  

in the unit ball B. This leads to Definition 4.1 below.' The second heuristic idea is 
concerned with the behaviour of u in balls Ba(V) where P (A, Bp(y))/p '~-1 is small. 
By the isoperimetric inequality, either Bp(y) N A or Bp(y) \ A are close to the empty 
set. Hence, the diffusion coefficient aA is close to a constant in Bp(y). This suggests 
that u should be very close to an harmonic function, and this gives informations about 
the decay (as p ~ 0 +) of 



(i) 

(ii) 
(iii) 

(iv) 

Then we have: 
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Bp(v) aA(X)lDul2 dx. 

Definition 4.1. Let uu C Hi(B), Ah C B, Ah > 0. We say that (Uh, Ah) are 
Ah-asimptotically minimizing if the following condition is fulfilled for any compact 
set K C B: for any bounded sequence (Vh) C HI(B) with supp(vh -- Uh) C K and 
any sequence of sets Ch C B with AhACh C K,  we have 

fib aAh(X)[DUhl2+ AhP(Ah,B) <_ fB aca(x)lDvhlZ + ,~hP(Ch,B)+~h 

for a suitable infinitesimal sequence rlh. 

The following theorem is concerned with the behaviour of asimptoticaUy minimizing 
sequences. 

Theorem 4.1. Let Ah > 0, uh E Hi(B) ,  Ah C t3. Assume (uh,Ah) is ~h- 
asimptotically minimizing and 

BaZh (X)[DZth[2 dx +/~hP(Ah, B) is bounded; 

Uh --+ u weakly in Hi(B) ;  

1A h ~ 1A in LI(B) and )% ~ +c~; 

IDUhl 2 is locally equi-integrable in 13. 

(a) uu ~ u in H~oe(B); 
(b) AhP(Ah, Bp) --~ O for any p < 1, either A = 0 or A = B, and u is harmonic on 

B. 

Proof. Let us prove (a). By the local equi-integrability we infer 

(4.1) lira f laA~ (X)[Duh[ 2 -- aA(X)lDuhl2l dx = 0 h--o+c~ JK 

for any compact set K C B. Now, we choose a function r E Clc(B) such that 
0 < r < 1 and we compare (uh, Ah) with (~h, Ah), where fih = (1 -- r + r We 
get 

fBaAh(X)lDuh'2 dx ~ jBaAh(X)'D~th[2 dx + 77h- (4.2) 

By convexity 

(4.3) fB  aAh(X)[Dfthl2 dx << fB  aAa(X)l(1 - ~p)DUh + r 2 dx + ah <_ 

with  (7 h infinitesimal. Therefore, (4.1), (4.2) and (4.3) yield 

lim sup f CaA(x)IDuhl z dx < fB  Caa(x)lDul2 dx" 
tt--~+oo J B 
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On the other hand, the lower semicontinuity with respect to weak topology of H I ( B )  
implies 

l iminf f ff)aA(x)IDuhl 2 dx > - -  ] eaA(X)]Oul 2 dx. 
h--.--~+cx~ JB JB 

Hence, 

hlim+~ fBeaA(X)lDUhl2 dX = /B ~baA(x)'Dul2 dx, 

and since ~b E C~(B) is arbitrary, this implies the strong convergence of Uh tO U in 
H:oc(B). 
Let us prove (b). Since )~h --* +C~ and the energies are bounded by some constant c, 
the inequality 

C 
P(Ah, B) < )---s 

implies the convergence of the perimeters to 0. By semicontinuity, P(A, B) = O. 
Hence, either A = 0 or A = B. We assume that A = 0 (the other case is analogous). 
Then, the isoperimetric inequality in balls (see for instance Giusd [10]) implies 

meas(Ah)<--c(n)(-~hh) 'V(n-l) 

for h large enough. Hence, denoting by Xh(fl) the outer trace of Ah on 0/3p, we have 

fO1 (f~ ) (c~n/(n--1) 
Bo Xh(p)d~"[ n - I  dp <_ c(n) \.~h,] 

Let us fix p C]0, l[. Possibly passing to subsequences we can find a sequence ph such 
that p < Ph < (1 + p)/2 and 

fO " " dT"-[n-1 )~h X.h(Ph) ---> O. 
Bp h 

Comparing Ah with Ah \ Bph, using the inequality 

P(Ah \ Bph, B) ~ P(Ah, B \ eph ) + f Xh(Ph) dT"~n-1 
do Bp h 

and using the fact that (Uh, Ah) is asimptotically ),h-minimizing, we easily find 

lim .Xh P( Ah , B ph ) = O, 
h---*+cx~ 

hence ),hP(Ah, B n) --~ O. Finally, given any function ~p E C1(B), with supp(cp) C B o, 
comparing uh with f~h = Uh + qo we find 

fBp aAh (X)'DUh'2 dx < /Bp aAh (X)',l)~h'2 dx + rlh - 

Passing to the limit as h ~ +oo and dividing both sides by/3 we get 

fB lDU]2 dx <_ /B 'D(u + ~)'2 dx, 
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Since ~v E C~(B) is arbitrary, this implies that u is harmonic in B. [] 

The following decay theorem is crucial in the proof of the density estimate. The 
proof is achieved by contradiction, by making use of Theorem 4.1. 

Theorem 4.2. Let K C $2 be a compact set, and let 6 = dist(K, 032). Then, there are 
constants "~ > O, 0 > 0 satisfying the following condition: for any solution A of  (2.3), 
any ball Bp(y) with y E K and p E]0, ~/2[, denoting for  simplicity by u the solution 
ua, the inequalities 

(i) f aA(x)lDul 2 dx + P(A,  Bp(y)) < .ypn-I 
.I B p(Y) 

(ii) 

imply 

B + Bp/2(y)) <_ aA(x)[Dul 2 dx P(A,  
p/Z(Y) 

Proof. We argue by contradiction. If the statement were not true, it would be possible 
to find a sequence of solutions Dh of (2.3), sequences 7h, Oh converging to O, balls 
Bph(Xh) with Xh E K and Ph E]0,6/2[, such that, denoting by wn the solutions of 
(2.1) corresponding to Dh, the following inequalities hold 

P~<~Oh[/Bph (Xh) aDu(X) 'Dwhl2dx+P(Dh'BPh(Xh))]  ' 

B n--1 aDh (X)]Dwhl 2 dx + P(Dh, Bph (Xh)) = "Thp h , 
ph (Xh) 

B aDh(X)IDWh P(Dh, Bph/2(Xh)) > 12 dx + 

ph/2(Xh) 

> aVh(X)[Dwh [2 dx + P(Dh,  Bph(Xh)) 
ph (Xh) 

We claim that Wh is bounded in H01 (32). Indeed, by (2.2) and the Poincard inequality 
we infer 

E(Dh)+ P(Dh, S2) >_ a / lDWhl2 dx + / "~dx- k / [whI2 dx 

>- (a-k/A,) f LDwhJ2dx+ fs "~dx 

Since k < aA1 and E(Dh)+ P(Dh, (2) < E(J2), the claim is proved. By Theorem 
3.1 we infer that Wh is locally equibounded in/2.  
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We now rescale (Wh, Dh) in the unit ball B by setting 

1 
Vh(y)=Wh(Xh+phy), A h = { y c B  : Xh+phyEDh} ,  A h = - - .  % 

Moreover, we define 
Vh - -  ~Jh 

Uh = - - ~  

were Vh is the average of Vh in B. Now, we claim that u~, Ah, Ah satisfy the 
hypotheses of Theorem 4.2. Indeed, we have 

Ph < ~h~fh, 

(4.4) ./~ 2 aAh (3:)lDUhl dx + AhP(Ah, B) = 1, 

IBi/2aAh (X)iD.hi2 dx'i'i~hP(Ah,',12) ~ (-~) n-I/2. 

In particular, we can assume with no loss of generality that Uh weakly converges 
in HI(B) to u and 1A h converges in Lt (B)  to 1A. We have to check that (Uh, Zh) 
are Ah-asimptotically minimizing, and IDuhl 2 is locally equi-integrable in B. Let 
K C B ,  ~ ' (u~, A h) as in Definition 4.1. We define 

v~ = v T ; ~  + ~ ,  ~ ( x )  = ~;~(~ - ~), 
Ph 

Then, the minimality of (Wh, Dh) and (2.4) yield 

X 3: -- X h 
D'h= : - -  E A'h}. 

Ph 

- ~"P;:-" [ f-J'.h(:.) a~(3:) iD~l'  a3: + P(D~,B..(xh))] > 

' [s aD~(.)iOwhl'a~+P(D~,S3.,.(x,<))-- 
7hPh #h (Xh) 

- C f (") + IWhlq + lWlhlq)dX] = 
J Sph (Xh) 

= ]~ aAh(x)IDUhl 2 dx + AhP(Ah, B) 

2 C~np~ C J~ (rwhl~ + lw' lq)dx ' 
~h "/hp~ - |  ph (Xh) 

where wn = meas(B). Since Ph/% <_ Oh ~ 0 and Wh is locally equibounded in Y2, 
we need only to verify that 

Ih - - 1 / B  /B "wph I iw, le & =  Ph iGledz 
Ph (:r'h) ~fh 

is infinitesimal as h --~ +co. Indeed, since v~ = x / ~ u ~  + 9h, we have 
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Ih <_ 2q-lph')'~/2-1 f lUhl q dx +2 q-lwnph ]Vhl q. 
JB % 

Since uh is bounded in Hi(B) ,  by the Poincarr-Wirtinger inequality the first term is 
infinitesimal. Since Wh is locally equibounded, Oh is a bounded sequence and also 
the second term is infinitesimal. 
Now, we show that for any t El0, 1 [ there is r > 2 such that 

(4.5) s u p { ~  IDuhi"dx:hEN}<+oc 
t 

In particular, [Duh[ 2 will be locally equi-integrable in B. By (3.1) of Theorem 3.1 
we get a constant 7 > 0 such that 

p(Y) [ \ d O2p(Y) 

for any h E N, and any n-cube Qp(x) with 

dist(x, K) <_ 5/2, 0 < p < 6/2. 

By an elementary covering argument, we get 

f / Btoh(~h) [Dwhl" dx c(n.t)~, jB,h(.~) 

so that 

Bt IDvhi" dx <- c(n ' t )7  IDvhl 2 dx + P~h 

and 

2 t  [Duhl~ dx < c(n,t)'y { 1 +  ( Ph ,~ r~ 
- j 

Therefore (4.5) follows by the first inequality of (4.4). By Theorem 4.1 we infer that 
u is harmonic and either A = 0 or A = B. Let us assume that A = 0 (the other case 
is analogous). Since IDul 2 is a subharmonic function (see for instance Giaquinta [7], 
page 80) by the second inequality of (4.4) we get 

fl s 'DuiZ dx <- ~3 ( 2 ) n ~ IDui2 dx = ( 1 )  n s aA(X)iDui2 dx <- 

< liminf f aAh(x)lDuhl2dx < . 
h----++oo J B  

On the other hand, by Theorem 4. I we know that 

SB IDuh -- + Bl/2) --+ Dul 2 dx khP(Ah, 0 
1/2 

as h ---+ +cx), hence the third inequality of (4.4) yields 
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t3 /z~/2 'Du[2 dz = fB~/2 aa(x)lDul2 dx 

= lira f aAh(x)]Duhl 2dx > 
h~+~ JB1/z 

and this is a contradiction. []  

By using Theorem 4.2 iteratively, we are able to show that if 

p,_n[ f aA,Dul2 dx + P(A,  Bp(y))] < ~  and 
k d Bp(y) 

for ~ > 0 sufficiently small, then 

f aA,Du[Z dx + P(A, Bp(y))] 
L d Bp(y) 

converges to 0 as p --, 0% 

P < ~  

Proposition 4.3. Let K, 7, 0 be given by Theorem 4.2, and let A be a solution of(2.3). 
Let y E K, let us denote by UA the solution of(2.1) and 

Let 

f 
F(p) = ] aA(x)lDu] 2 dx + P(A, Bp(y)). 

JB p(y) 

= dist(y, 03'-2) A "7 A 21/2-n70. 

Then, if F(p) < ~p~-I for some p C]0, ~[ we get 

F(r/) < 2n- t /27pn- l (~ )  n-l~2 

lim @-'~F(q) = O. 
,r/-~o 

v~l e]o,  p]. (4.6) 

In particular, 

Proof. Let us assume that F(p) < ( p n - i  for some p c]0,  ~[. Since F is nondecreasing, 
in order to prove (4.6) we need only to show by induction on j E N the following 
inequality 

FOTj) < ,,/pn-1 , rlj = 2-J p. 

The inequality is trivially true i f j  = 0. Let us assume that it is valid for j ;  in particular, 
we have 

A little computation shows that 

~ < ,.,/pn-1 rJ__! 
0 
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if p < 2t/2-'~07. Hence, by our choice of (, if OF(rlj) < rl'~ then 

F(rlj+t)<F(rlj)<~<,ypn-t(ff-~) r~-'/2 

On the other hand, if OF(rlj) > 0~, by Theorem 4.2 we infer 

( ~ )  n-t/2 / _ .  , ~ - t / 2  
F(r/j+t) < F(rlj) < Tpn-' ~ )  , 

and this achieves the proof. [] 

Proof of Proposition 2.6. The choice of ~ in the statement of Proposition 4.3 can be 
uniformly made with respect to y E K for any compact set K C Y2. Hence, the 
conclusion is proved by taking 

= dist(K, 0~)  A 7 A 2t/2-'~70, 

where 0 and 7 given by Theorem 4.2. [] 
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