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1. Introduction 

This paper gives some bounds for 

1 

(t) E.(/) ----- f w(x) l(x) dx-- ~ w,,,kl(x.,k) 
--1 k = l  

in the case when w (x) is an even function of x, positive and Lebesque integrable 
over ( - - l ,  l). The x~,~ ( n = l ,  2, 3 . . . .  ; k : t ,  2 . . . . .  n) are the n zeros of the 
polynomial p .  (x) of degree n which is a member of the sequence {p~ (x)) orthogonal 
over the interval ( - - t ,  1) with respect to w (x), and the w~, k are the corresponding 
weights. The function /(z) is assumed to be an analytic function of z, regular 
in [z[ < 1 + 2 e  where e > 0 ;  that  is, 

(2) / (z)= 1.[<t+2.. 

The above assumptions on /(z) make it possible to obtain bounds on E .  (/) 
which depend only on the modulus of / on some set in the region of regularity 
of /, such as a contour enclosing the strip ( - - t ,  t);  bounding E .  (/) in this 
manner is often easier than bounding a 2n ' th  order derivative of / in (-- 1, t). 

The convergence of the quadrature scheme (t) with / as in (2) is studied 
by  KRYLOV [•]. DAVIS (see e.g. [2]; which gives references to DAVlS'S papers) 
appears first to have effectively used the fact that  the error E .  (]) is a linear 
functional in 1, and thereby obtained some very sharp bounds of the form 
g .  (l)_~*. VII i n  the case w (x) = t .  

The work of DAvis was extended by HAMMERLIN [3]; HAMMERLIN, in con- 
sidering quadrature formulae requiring equi-spaced abscissae xn, k, concentrated 
o n  obtaining general expressions for an which are easy to evaluate. 

WlLF [4] also considered the case of w(x)=t.  For the particular norm 
co 

[[/[[ = (k~=o[ak[a)~ WILF chose his x., h and w., k such that ~ was a minimum for 

each fixed n. He thus obtained a new class of integration formulae. 
MCNAMEE [5] gave a somewhat different procedure of bounding En (]) for 

the case w ( x ) =  t, His method depends on expressing the error in the form of 
a contour integral 

E,,(t) = 2-~ f l(z) q,,(z) dz; 
¢ 
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expanding q,,(z) in powers of t/z, approximating q,,(z) by  the dominat ing term 
of this expansion on a contour C far from the origin, then minimizing the 
modulus of the resulting integrand with respect to a particular family of contours C 
(e.g. a family of concentric circles with center at  the origin). 

The bounds we shall obtain are as easy to evaluate as those of the above 
authors. In  addition, they all make use of the fact tha t  E,,(/) in (1) neither 
depends on a2k+x ( k = 0 ,  t,  2 . . . .  ) nor on a o, a S . . . . .  a2.-=.  I t  follows from this 
tha t  the bounds obtained b y  DAVIS I, HAMMERLIN z and McNAMEE 3 can (at least 
in theory) be made sharper. 

We shall also determine the sign of E .  (/) and show that  E .  (]) tends to zero 
monotonically for the class {/} for which a2k is of the same sign for all k suf- 
ficiently large, 

2. General  Deve lopments  

p.(x) is assumed to have the properties described in the introduction above;  
we shall also require in this section tha t  k . ,  the coefficient of x" in p. (x), be 
positive. 

For  n ~  t consider the contour  integral 

I f w(x)/(z)p,,(x) dz (3) J =  2~i  ~ ( z -x )p . ( z )  
c 

where the contour  C is the circle of radius 1 + e about  z =  0 and x is any  point 
in - - t  < x <  t. Employing Cauchy's  theorem of residues we find tha t  

n 

(4) J = w (x) ](x) - w (x) p,,Cx) ~, l(x.,k) 
h=l ( x - x . , k )  p.(x.,k) 

since under  our assumptions on w(x), the zeros x.,~ of p.(x) are distinct and 
located in the open interval ( - -1 ,  I). 

In tegrat ing (4) with respect to x over ( - - t ,  t) we have 

1 

(~) E.(/) =f~(~)/(~) d~- y ~.,~/(~.,~) 
--i k=1 

1 DAVIS puts  / (z) = ~ 0t k U k (z), where U~ (x) belongs to the  sequence of Chebyshev 
k = 0  

polynomials orthonormal over ( - - t .  1) with respect to Vt--x 2. Thus his estimate 

2 The author is grateful to the referee for pointing out that  in his latest paper 
[Num. Math. 7, 232--237 (1965)] HAMMERLIN has in fact replaced II/11 by inI l i t--all  
where a is a suitable polynomial. 

s McNAMEE'S expression for E• (l) can be altered to 

1 f 1 {! --I-] (--z)  
E.(i) = ~ J 3- (z) - - P . - I O  )} q. (z) dz. 

c 

The polynomial Pn x(z2) of degree n - - t  in z = can for example be chosen so that  
[~g(z)+t(--z)]--p".-_l(x')[ takes on a minimum value on a particular contour C. 
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where w,,,~ are the positive weights given by  

1 

(6) Wn, k = f w (x) p. (x) dx 
(X__ Xn, k) pn (x,,,k) • 

- - I  

On interchanging the order of integration in the resulting repeated integral, 
we find that  E .  (]) is also given by  

1 

, f f axaz; (7) E . ( / )  = ~ ( , _ , , )  ~,.(,) 
¢ --1 

in what follows we shall examine this latter double integral more closely. 

L e m m a  1. In  the expansion 

(8) I*l > 1 

and n >  t, we have b. , , i+l=O, b . , , i>O (j----0, t ,  2 . . . .  ). For n = t  we trivially 
t 1 have p - ~  = bl, o z-1 where bx, o= -k-[ > O. 

Proo/. We shall assume that  n > 2. Since w (x) is an even function of x in the 
interval (-- t ,  1), each p . (x )  is either even or odd with n. I t  is thus clear that  
bn,2i+x=0. To prove that  b . , , i > 0  we observe tha t  the zeros of p. (x)  are sym- 
metric about z = 0  and so we have 

(9) o 

Expanding the right of (9) we have 

(t0) t k~-~ ["/~]f °° 'x,, j,2k) 

the right hand side of (10) is a product of [n]2] power series each of which only 
has positive coefficients. The statement of Lemma t follows. 

Lemma 2. 

(t t)  x ~ = 

where 

i!0a-. ~iP~i(x) ; 

i~o~., ~j+l P2i+l (x) ; 

n = 2 k  

n = 2 k + t  

a . , s / >  0, a~,2/+x> 0, n_~0; j =  0, t . . . . .  k. 

Proo/. The proof is by  induction. Clearly we can choose Po (x) = k o, Pa (x) = ka x 
where k 0 and k a are positive. In  addition p s ( x ) = k 2 x  ~ -  a where k S and a are 
both positive. Now suppose that  for n = 2 k > 0  we have the first of (t t)  with 
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all the coefficients a , ,2 i>0 .  Multiplying this equation through by x we get 

k 
(t2) x'k+1 = Y ~,2ixp~j(x). 

i= 0  

We now use the three term recurrence relation 

(t3) xp . ( x )=A~p~+l (x )+B~p ._ l (X  ), n > t  

in (t 2) (A. = hn/k n + x, Bn = kn -~]k., k.  being the positive coefficient of x" in p .  (x)) 
to obtain an expansion having the form of the second of (t t)  with all the coef- 
ficients positive. The proof for n =  2k + 1 is similar and is omitted. 

Lemma 3. 
l 

OO 

f ~C Z -n-2j-1 (14) w(x)  P.('~I a,~ = / ,  .,2~ , t=1 > t 
2:--X 

_: i=o 

where c~,2i>O, n = 0 ,  1, 2 . . . .  ; j = 0 ,  1, 2 . . . . .  

Pro@ Expanding the denominator of the integrand in (14) we obtain 

1 1 

f f : (15) w(x)p.(x)z_, d x =  w(.) .(x) - i  
- - 1  - - 1  

If we now substitute equation (tl) into the sum on the fight of (t5), use the 
orthogonality property of the polynomials p,,(x) together with the results of 
Lemma2,  we obtain the expansion on the fight of (t4) with c,,,,i>O, j =  
0, t , 2  . . . . .  

Theorem 1. Let E,, (/) be given by equation (7), let a~ be defined by equation (2), 
and let e~, k be defined by (18) below. Then,/or n >  t, 

120 

(16) E.(I )  = Y, a2.+2k e.,h 
k=0 

where e~,k>0 , k = 0 ,  1, 2 . . . . .  

Pro@ Combining the results of Lemmas t and 3 we have 

1 

('17) f W(x) Pn(x) dx = ~ e Z - 2 n - 2 k - 1  
• ( z -  x) p .  (z) . ,  k , 

--1 k=O 
where 

(18) 

By Lemmas t 

(t9) 

[z[ > 1 

k 

e~, k % X o b n ,  2 f c n ,  2 k - 2 i  • 

and 2 it is clear that e., k> 0. Substituting (I 7) into (7) we obtain 

 a.e ,'-"-'*-'d,. 
¢7 /'=Ok='~O 1 n,k 

Both series, (2) and that on the fight of (17), converge uniformly and absolutely 
in the annulus t +  ,x e <  [z[ < t + ] e  and hence the resulting double sum in (t9) 
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also converges uniformly and absolutely in this annulus. With C the circle 
[z] = t + e ,  we may  thus interchange integration and summation in (t9). All 
terms integrate to zero except those for which j = 2 n + 2 k; summing the residues 
for ] ' - -  2n --  2k - -  t = - -  1 we obtain (t6). This completes the proof of the theorem. 

W i t h / ~  defined by 
1 

(20) t~k -~ f w (x) x k dx,  k = O, 1, 2 . . . . .  
--1 

we have the following corollary, which follows from the above theorem and 
equation (5). 

Corollary 1. 

(2t) en, k=l~2n+2k - ~ Wn, i ~.+2k~n,i • 
i = l  

Equation (2t) provides a useful method for computing the coefficients e., k. I t  
further enables us to establish 

Corollary 2. 

(22) en, h=p2n+~k[l+O(t)]  , n fixed, k-+oo.  

Proo/. Let xo==mx,~, . Ix . ,k]  wherep . ( x . , k )=O.  We define a constant K .  by 
s 

2 n  K . x ~ " = ~ w . , j x . ,  i. Since each w., t is positive, K .  is also positive. We first 
i = 1  

show that  ~" . . . .  2n+2k~1 Tg- ~2n+2k / .  , % , i . ~ n , i  --~., , .n.~,o , k=O,  t ,  2 . . . . .  For suppose this is true for 
1=1 

some integer k-->0._ Then, since Xo< t and w., i >  O, ~ w.,~.x2".+sk+2<.,j = ~ - - , i " - J  '~' ~ .+~k 
i = l  /=1 

o-----*~-n'*o , establishing the above inequality for all k>--0. Again, since 
x 0< t, we have 

1 
kt~.+~k>2 f w(x) x 'n+*kdx>~A[~( t+  Xo)] ~ + ~  

( l+x°} 

where 

Hence 

1 

A =  f w(x) d x > O .  
~(a+x0) 

n 

i = l  
as k - ~  oo. 

In order to prove that  E.( / )  decreases monotonically to zero in the case 
when all the coefficients a~k in the expansion (2) are non-negative we shall require 
the following lemma. 

L e m m a  4. For all integers n >= t ,  k >= O, we have 

(23) e.,k+l - -  e .+l ,k> 0. 

Proo/. By Theorem 1 and equation (7) 

1 

t z*.+*kp.(x) dx dz (24) f f w(x) ( z -  x) p .  (z) 
C --1 
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where the contour C is the circle of radius t + , > 1 .  I t  follows from (24) that 

(25) 

1 

e"k+l - -  e~+l'~ = 2 ~  -~- Pn(z)P.+I(*) z--x  
G --1 

By the Christoffel-Darboux formula (see e.g. [6]) we may write this as 

(26) 

1 

e",k+l--e~+l,k-- 2 ~ k , i  -p~(-a~p~71(a ) pk(x)p~(z)dxdz  
k=0 C --1 

ko I kn+l/*o f zt~n+z/e+s 
- -  2r~kni pn(z) pn+l(z) dz 

c 

using the orthogonality property of the polynomials. Using the expansion for 
l]p~(z) as given by Lemma t,  it follows that if n-->t the coefficient of z -1 in the 
expansion of z2~+2*+*]~p~(z)p~+l(z)] in powers of 1/z is positive. Hence 
e~,k+l--e~+l,k>0 for all n > l ,  k>O. 

We now observe by (t6) that 

(27) E~ (/) -- E,+ 1 (/) = e~,oa~+ ~, (en,~+ 1 -- e~+l,k) a2n+2k+ 2. 
k=0 

On inspecting this equation in view of Theorem 1 and Lemma 4, we have 

Theorem 2. I / i n  the expansion (2) a2k>=0/or all integers k >  N ~  1, then 

(28) E~(/) >= E~+I (/) _--> 0 

/or all n ~  N. I ] /or  some n =  no~ N and some positive integer s we have En. ( /)= 
E~,+,(/), then E ~ ( / ) = 0 / o r  all n>=n o, and a2~=0 /o r  all k > n  o. 

I t  is noteworthy that if a2k>_0 for all k > N  and two Gaussian approximate 
integrations for two different n>=N (carried out with infinite precisionl) are 
the same then by  Theorem 2 the integrations are exact. We add also on passing 
that both E~ (/) and E~ ( [ ) -  E,+ 1 (/) are continuous functions of the coefficients 
a2~+2 k, k-->_0, and that for n>__N if E~ (/) -- E~+I ([ ) is small then E~(/) is also 
small and conversely. 

It  cannot be expected that the e,, ~ would in general decrease monotonically 
as n remains fixed and k increases. Indeed, if this were the case we could make 
a statement similar to Theorem 2 for the case when for each non-negative k, 
az~+~ has a sign opposite to that of az~+zk+~.. That is, in this case we could 
say that either E~( / )<0,  E~+I(/)> 0 . . . . .  or this same sequence with the in- 
equalities reversed, together with I E~+I (/)] < I E .  (/)]. A typical graph illustrating 
the relationship between e~,k and p ~ + ~  is given in Fig. t. 

3. Error Bounds  

By equation (t6) it is evident that  when the coefficients a,. k (see equation (2)) 
alternate in sign the magnitude of the error of numerical integration will be 
smaller than when these coefficients are of the same sign. 
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For example, assume that /(z) has a singularity at z=b,  i.e., that 

(29) /(z) =g (z)/(z -- b)" 

where Ibl > t ,  a is real, g(z) is regular for ]z] < ]b I + e  with e > 0  and g(b)4=0. 
Then (see e.g. [7]) the coefficient ask in the expansion (2) satisfies 

g(b) b_._,,(2kV_~.[i + O(k ) ]  (30) a . =  F(o)  - , - ,  

as k--> ~ .  Hence if b is real and positive, En(/) will have the sign of g(b)/F(a) 
and l E- (/)1 will decrease monotonically as n increases for all n sufficiently large. 

" , , ~ a k  

k=O k -  . ('w~/~ n tTx~l) 
Fig. t 

Assuming the sequence {en,,}~°=0 to be in lP (t < p < o o )  we apply H61der's 
inequality to (t6) to obtain 

\ h=O / ~k~O / 

where ~- + ~- 
[ oo \ l i p  

The quantity an, p =  (,~=oe.P,k) is independent of I and can be computed once 

and for all. In particular 

(32) v ( n ) = a n , ~ =  sup en, k (<lZ*n) 
k=O, 1, 2, ... 

always exists and can be computed using equation (22). Whenever W~=an,~ 
exists 4, then by  proceeding similarly as in [4] the constant W~ can be shown 
to be given by  

1 1 

w. = f f w(x) w(,)t --.y(XY)'" dxdy-- 
--1 --1 

(33) 
1 n 

fZ, *.,, dy+ 2 2 
- -  2 Wn, t W ( y  ) In  y l ~  t n  i n  

- 1  = t - - X n ,  a y  k = l  i = 1  1 - - X n ' ~ Y n ' i  

4 Wn~=a~ 'l exists if and only if 
1 1 

converges. 
- - I  --1 k~O 
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Some numerical values of v (n) and W~ for three well-known types of numerical 
integration formulae are given in the table below. 

We record some of the above remarks in a theorem. 

Theorem 3. Let /(z) be an analytic/unction o / z  having the expansion (2) in 
< t + 2 ,  

Table. Error Constants/or Theorem 3 

w(~)=l  n,(x)= 0 -x*)~  tv{x) ffi¢t - z ' ) -  if 
nk gin,,, w.,, givea x~.,feos (n--~-t) ~,kffieos [ ~ ]  

n ' ( ° ' )  in [8], p. 916 w~,~= n-ff~-smt ~ wtt.kffi 

. wl . ' I  . ' !  

2 .21164 .55736 .098174 .19888 .67495 
3 .10222 .39235 .039883 .10790 .44001 
4 .o610t 4 .30368 .019654 .068058 .32799 
5 .040511 ,24793 .ot118 2 .04693 4 .26t58 
6 .02886 7 .20954 .0069788 .03434 7 .21761 
7 .02161 8 .18148 .0046443 .02623 2 .18634 
8 .01679 7 .16005 .0032477 .020692 .16294 
9 .013430 .14316 .0023600 .016741 .14477 

10 .010983 .12949 .0017688 .013824 .13026 
t2 .00773 98 .10874 .0010682 .00988 63 .10850 
t6 .00443 63 .082356 .00047615 .0057743 .08134 7 

These do not  
exist; see the 
footnote 4 

(a) With v(n) defined by equation (32), we have 

(34) I ,,(n) I a , . + , , l  • 
kffiO 

(b) II W~ (equation (33)) exists, then 

I ,s) ' 
g 

The sharpness of the bounds (34) and (35) will depend on how well the 
magnitudes of the Taylor series coefficients can be estimated. The estimate 
[ a2 k [ < m(r)/r zk, where m(r) = ~,l=a~, [ ! (z) + ! (-- ,)[, is applicable 5 for the general 

class {/} we have considered. We shall illustrate with some examples. 

Example l .  Let M(r)~_A(t--br)-",  where a>O,  0 < 3 < t .  Then [ask]< 
Ar-Sk(t--br)-*,  0 < r <  b -x. We minimize this last inequality with respect to r 

s This estimate is obtained from Cauchy's integral formula. A better estimate 
would be la , , I  ~pJlt~_= ~sup [ [ (z)-p , ,_ t (z) [  r - 'k}  where P . , - t  is any polynomial of qz[=, 
degree 2k--  1. In particular with Pak-t the Taylor polynomial, the right side of this 
inequality tends to [ a t k [ as ~" ~ O. 

Numer. Math. Bd. 8 t | 
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to t -I osio  e tim te o .  t , , I  ,o cru e 
estimates on 

~.[a2n+2k], and ~,[a2,~+~[ 2, 
k=O k=Q 

we obtain 

o r  

[ E. (/) I < ,(n)A e~'[ ~+~ + (a + 1)] 2 log b[- ' - ' ]  (-~)" b 2"-' 

I E.(t)l < W2 A ~' [~-t+ - + ( a +  ,) 14 log b l - ' - ' ] ' (~ )% '"-~. 

E x a m p l e  2. Let M ( r ) ~ A  e ~'~, where A, a and b are positive numbers. Using 

[a2k ] ~M(r)]r *k and minimizing with respect to r we obtain [a,k ] _--<A(2~) 2klb. 

Thus with n sufficiently large so that  \ 2n ] < 1, we have in this case 

\ 2 h i  [ \ 2n / ] 
or 

IE.(l)l < W J A  (eab]2"/b[t -- (eab],/b]-½ 
\ 5 ~ - 1  t ~-~n-] i " 

Example 3. Here we shall bound E,(/), given ](z) =zSe ~, where s is a positive 
t 

integer. It  follows from this, that, since a k -  (k--s)!' k ~ s ,  

O < E  n(/)<v(n) e ~-~v(n)(Z~e)6( e )~n-,+~. 
(2n:-s) l " \2n--s/  

The above examples illustrate that  the convergence of Ganssian quadrature 
is much more rapid in the case when ] is entire than in the case when ] has a 
singularity in the finite plane. 

Is it possible to improve the inequality (31)? The restriction that  ](z) be 
regular in I z [ < l + 2 e  with e > 0  can be dropped; it suffices to assume that 
/(z) is regular in ]z I < 1  and continuous on Iz[ = t for equation (16) to hold. We 

also observe that  En(]) is a linear functional in ], and hence with/*(z) -~ ~ a~z k, 
k = O  

Iz[ < t  in the null-space of E ,  (i.e. E , ( / * ) = 0 ) ,  we have E,,(]+/*)=E,,(]). Thus 
for all such /*  we have 

[ vo \ l[q 

(36) I E.(/)l < ~. p ( Z I a , . + ~ -  a~.+,~lqJ 
' k ~ O  / 

For each q in t ~ q <  c~ there exists an 1" minimizing the right hand side of 
(36); this minimum is in fact equal to [E,  (/)1. However in practice finding the 
]* which achieves this minimum is as difficult as finding the exact value of the 
original integral, e We can nevertheless increase the rate of convergence by  "sub- 

6 The even coefficients of the minimizing ]* are given by 

e.P31E. (/) 
a~n+ak = a~n+2k - -  op ' P 
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tracting out" singularities of [ close to the region of integration. In addition 
it is noteworthy that any odd function, and any polynomial of degree 2 n -  t 
is in the null-space of E~ (]). 

For sake of completeness we also obtain an estimate on the bound of E .  (D 
when [ has complex singularities close to the region of integration. The assump- 
tions on / in the following theorem are similar to those of DAVIS [2]. 

Theorem 4. Let ] (z) be real when z is real, and let [ (z) be regular in the ellipse 
4o with [oci at ( ~  I, O) and semi-axis a, b where 0 = a + b >  t. Let 

(37) M(~) ----- sup [Re/(z)]. 

Then 

(38) le,,(t)l < 16/2° M(~)~-"". 
;71; 

Proo[. Using equation (5) we have by the last remark of the previous para- 
graph, that  

(39) I E~ (1) 1 = inf f w (x) I/(x) - P2~-1 (x)] dx --  ~, w~, k ~ (x~, k) - P2 ~-1 (x.. k)] • 
P ~ n - x  --1 k = l  

By a result of ACHIESER (see e.g. [9], p. 87) 

(40) inf ~ sup ]/(x)--P2._l(x)l} < 8M(~)  Q-2. 
P*n-l(x)(--l<:x< 1 

where M(0 ) is given by (37) above. Thus combining (39) and (40) we obtain (38). 
Although the estimate (38) is not the best possible it is simple and easily 

obtained from other known results. For example if M ( o ) ~ A ( t - - c  O)-g where 
d>0,  0 < e <  t, then minimizing the right of (38) with respect to ~ we obtain 

It is noteworthy that  in each of the above examples we can find the n required 
to give us a desired accuracy. 

4. Conclusion 

It was hoped at the undertaking of the writing of this paper that  it would 
be possible in certain cases of Gaussian integration to obtain the results stated 
in Theorems t and 2, and also a theorem analogous to Theorem 2 but applicable 
to the case of /(z) as in (2) with the magnitude of the ak's decreasing monotoni- 
cally and the sign of a2k+2 being different from that of a~  for all k sufficiently 
large. It was hoped that in this last case it would be possible to establish that 
]E~(/)] tends monotonically to zero and the sign of E~+I(/) is different from 
that of E~ (/) for all n sufficiently large. This last objective has not been achieved. 
The main difficulty is that  the e~,k do not in general decrease monotonically 
as n remains fixed and k increases. 

A number of the results we have obtained are nevertheless useful and new. 
This applies particularly to the error bounds in Section 3. We have attempted 
to obtain bounds suited to the Gaussian quadrature formulae, the only formulae 

t l *  
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so constructed tha t  they  exact ly  integrate the first 2n  terms of the  Taylor  series 
expansion of the function ](z) about  z = 0 .  Wi th  the exception of (38) the bounds 
obtained are of the  form IE~(])] <a~IlF~ll, where an (a~-->0 as n ->oo)  is in- 
dependent  of ~ and ~Fs[ I (IIF~-->o as n--> oo) depends only on ask (see equation (2)), 
k = n , n + t , n + 2  . . . . .  
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