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Numerical Integration of Products of Fourier 
and Ordinary Polynomials* 
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Abstract. Sets of coefficients for four finite difference methods of numerical 
integration are presented that  will integrate without truncation error products of 
fourier and ordinary polynomials. These sets are formulated such that  they are free 
from computational difficulties. 

I. Introduction 

In  a previous paper E4] sets of modified integration coefficients for the Cowell 
method  of numerical integration of order six were given which had the proper ty  
tha t  they  would integrate wi thout  t runcation error products  of a fourier poly- 
nomial and an ordinary polynomial. These sets of coefficients were characterized 
by  their explicit formulation. The purpose of this paper is the extension of the 
set of modified Cowell coefficients to any  order of the integration method, as 
well as the development of similar sets of modified integration coefficients for 
the StSrmer, Adams-Moulton, and the Adams-Bashfor th  methods of numerical 
integration. These modified coefficients will be given explicitly in a form such 
tha t  they  can be computed from a simple algorithm which does not suffer f rom 
numerical difficulties. 

The four methods of numerical integration based upon backward differences 
will be referred to as follows [2] : 1) Cowell --  the implicit method  for differential 
equations of the second order in which the first derivatives are absent;  2) St6rmer 
--  the explicit method for these second order differential equations; 3) Adams-  
Moulton --  the implicit method for differential equations of the first order; and 
4) Adams-Bashforth - -  the explicit method for differential equations of the first 
order. 

II. Integration Formulae 

For  the integration of a function ] (t), tabula ted  at equally spaced values of 
the independent  variable t with the step-length h, any  ascending diagonal of a 
difference table can be used for the development of a method of numerical 
integration [4]. In  such a table, let m be an integer, t,,=mh, ]**=](tm); and let 
AO/(m)=],,, ZJ/(m--~)=/m--/r~_l, Aa/(m)=/,,+m--2/m+f,n_l, ect. For a dif- 
ferential equation of the form 

d2 x (t) 
dt = / ( x ,  t) 

* Part  of this work was formulated earlier by the author in a dissertation presented 
to Yale University in partial fulfillment for the degree of Doctor of Philosophy. 
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the double integration may be obtained by  

(t.1) xl -- 2xo + x_l = h2 2 %zlk/ (p - -k-) 
k ~ 0  

where a0 = 1, p = t corresponds to the classical Cowell formula, and p-----0 re- 
presents the St6rmer formula. 

For the integration of a differential equation of the first order, 

d .  (t) 
at = / ( x ,  t) 

a suitable integration formula is 
oo 

k = O  

When ib ---- ~ the formula is the classical Adams-Moulton method, and when p = 0 
it is the classical Adams-Bashforth method. Since the sets of ~'s are assumed 
to be constant in these classical methods, the solution of the differential equations 
is expressed as a linear combination of the differences of a particular diagonal 
of the difference table. The coefficients ~ are different for the four methods of 
integration. However, with this distinction well in mind, no ambiguity will result 
if the same symbol is used for all four of the integration methods. 

In order to determine the four sets of coefficients ~, assume that  

(2) l(t) =z,t~ 

where Z represents any fixed complex number. Then it follows that  for the 
double integration 

h T 

. l o g  Z 
0 v--h  

and for the single integration 

h 

fz ~/h h (1 - - Z  -I) Z.  
- -  l o g Z  

0 

Letting 
= 1 - - Z  -1 

the integration formulae (1) become 

(3.t) [~-og (~ _ ~)"] ' =  P(~), 

(3.2) 1--¢ Yog(?Z-~¢) = P(¢) '  

¢ 
(3.3) log (1 -¢)  = P(¢) '  

¢ 
(3.4) (1--¢) log (1-¢) = P(¢) '  



Numerical Integration of Products of Fourier and Ordinary Polynomials 423 

where P(¢) is defined as 

(4) P(¢) = ~ =~ ~ ,  
k = 0  

and where the integers t,  2, 3, 4 denote the Cowell, St6rmer, Adams-Moulton, 
and the Adams-Bashforth methods, respectively. 

Upon expanding the left-hand sides of (3) in powers of ¢, with 1¢[<  t ,  the 
coefficients of similar terms of ¢ m a y  be compared, yielding, for the first six 
coefficients the following sets [2]: 

Cowell method - -  

G£1= - - t ,  

(5.t) 
~4 ~ - -  - -  

St6rmer method  - -  

~1 -~  0 ,  

(5.2) 19 
° t4 -  240 ' 

t 

~ 2 =  t 2  ' q - 8 = 0 ,  

1 1 - - 2 2 t  

2 4 0  ' ~5 = 2 4 0  ' 0~6-~ 60  4 8 0  

t t 
O t ~ =  t 2  ' ~'3----~ 12  ' 

3 863 
0~--  4 0 '  °ee= 12096 '  

Adams-Moulton method  - -  

(5.3) 

t 

2 '  

--19 
~4-- 720 ' 

1 ! 
cZ~ ~--- t 2 ' 0ta ~--- 24 ' 

-- 27 -- 863.  
v ' 5 -  t440 ' v ' °=  60480 ' 

Adams-Bashfor th  method - -  

(5.4) 

1 5 9 
0 ~ 1 - -  2 ' 0 ~ 2 : 1 2  ' 0C3--  2 4  ' 

251 475 19087 
°t4-- 720 ' °ts-- 1440 ' cte= 60480 " 

The order, n, of the integration method is defined by  the subscript of the 
highest coefficient x~ retained in (t). I t  is important  to remember tha t  the classical 
sets of integration coefficients are based upon the expansion of the left-hand 
sides of (3) in an infinite power series in terms of the variable ~. If, in application, 
(t) are used with the order chosen such tha t  either the highest coefficients are 
zero, or the difference zJ" of the function being integrated vanishes identically, 
then (1) will integrate the function exactly. However, in practice these two 
conditions are usually not  satisfied. In  effect, the integration of the function is 
being approximated by  the t runcated polynomial of the r ight-hand side of (3), 

(6) p,,(~) = ~, ~ k .  
k=0  

Therefore, the integration of a function by  the use of (t) with a finite set of 
coefficients will result in an error because the formulae are based upon an ap- 
proximating polynomial instead of an exact polynomial. 
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While formulating a method to reduce these t runcat ion errors for the four 
classical methods of numerical integration when they  are applied to functions 
which are products  of fourier polynomials and ordinary polynomials, the basic 
formulae (l) will not  be altered, bu t  the coefficients ~ will be modified. 

I I I .  F o r m u l a t i o n  o f  t h e  P r o b l e m  

Before deriving the modified coefficients which will integrate without  trunca- 
tion error the products  of fourier and ordinary polynomials, the modified coef- 
ficients will be obtained which will integrate only fourier polynomials exactly. 
The final sets of coefficients which will integrate the products of the fourier and 
the ordinary polynomials will be obtained as limiting cases of these first sets 
of coefficients. 

Much insight into the general problem of deriving the modified coefficients 
results from the determination of the coefficients which will in tegrate the functions 
sin o~ t and cos o~ t. Thus, for (2) let [ (t) = exp (i o~ t), and introducing the notat ion 
2 a = o ~ h ,  Z in (2) becomes 

Z = exp (2i a), 
and ~ becomes 

Therefore, Eqs. (3) reduce to:  

(7) 

where 

= 1 - - e x p ( - - 2 i a ) .  

L,(a)= P~(¢), i = t , 2 , 3 , 4 ,  

/ s i n  a \2 . . 
L 1 (a) = ( ~ )  exp (--  2* a), 

L~ (~) = 

s i n  a 
L a ( a ) =  a e x p ( - - i a ) ,  

s i n  a 
L 4 ( a ) =  a exp( ia ) .  

The coefficients ~ must  be chosen such tha t  (7) are satisfied for the given fre- 
quency a~, as well as for --co, if the four integration methods of order n are to 
integrate the functions [ (t) = sin ¢o t and [ (t) = cos o~ t exactly. 

For  the integration methods of order two the coefficients al and a s must  be 
chosen such tha t  the L i(a) are identical to 

o r  

+ ~1~ + ~2~ 2, 

1 + ~1 [1 - -  exp ( --  2 i  a) ] + ~2 [t - -  exp ( - -  2 i a) ] ~. 

For  the methods of order two, the modified coefficients can be determined 
by  solving the two equations which result from (7) when the two frequencies ~o 
and --~o are considered. If  a is not  zero, or if, for the two Adams methods, a is 
not  an odd integer multiple of n/2, then the solution of the two equations yields 
for the 
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Cowell me thod  - -  

(8.t)  ~ = - t ,  ~2 = 2 (u); 

St6rmer  me thod  - -  

(8.2) ~ = 2*(u) - t ,  

Adams-Moul ton  me thod  - -  

~ = ~ (u); 

(8.3) ~ = ~*(u)  - 1, 

Adams-Bashfo r th  me thod  - -  

~2 = t* (~) ; 

(8.4) ~ =  (3 - u ) # *  - t ,  ~ = ~ ( u )  + t z * ( u ) ;  

where 

and  where 

a = -~-- ,  u = 4 sin 2 a, 

( ~ ) ~  s i n °  
2*(u) = , ~ * ( u ) -  2 ~ c o s ~ '  

Z (u) = 2 
~ ( 1  , ) 

/.* (U) = -4- sin2 a a sin a cos a " 

W i t h  these choices of a l  and  a~. the  four in tegra t ion  methods  of second order will 
in tegra te  the  functions sin oJ t and  cos ¢o t exac t ly ,  except  for any  round-off error  
which accumula tes  in the  a lgori thm. 

Hencefor th ,  the  coefficients which have been ad jus t ed  in the  above manner ,  
will be referred to  as modif ied  coefficients, and  the  coefficients of (5) will be 
referred to as the  classical coefficients. Fo r  the  modif ied coefficients two sub-  
scripts ,  i and  n, will denote  the  i - th  coefficient of the  set and  the  order  of t he  
method,  respect ively.  As a becomes very  small ,  the  above  coefficients app roach  
the corresponding classical coefficients. 

If  the  order  of the  in tegra t ion  me thod  is greater  t han  two, then the mi, n 
(i = I ,  2 . . . . .  n) coefficients can be de te rmined  such t h a t  the  funct ions cos oJ t 
and  sin ~o t are in t eg ra ted  exact ly .  I t  will be  assumed t h a t  n is even and  equal  
to  2v. Thus,  there  will exis t  v d is t inct  frequencies oJx, co 2 . . . . .  co, such t h a t  t h e  
2v coefficients will  in tegra te  the  functions cos og~t and  sin o~kt ( k =  1, 2 . . . . .  v) 
exact ly ,  if (7) are  sat isf ied for the  corresponding a ,  and  for - - a , .  Since the  r igh t -  
h a n d  sides of (7) are po lynomia ls  in the  var iable  ~, the  above condit ion is equiv-  
a lent  to the  following problem of po lynomia l  in te rpola t ion :  

Given 2 v + 1  points  ~,, k - - - - v  . . . . .  - - t , 0 ,  + t  . . . . .  + v ,  where $ k =  
1 - - e x p  ( - - 2 i  ak), and  where the  points  are on a circle which has a un i t  r ad ius  
in the complex ~-plane, cons t ruc t  a po lynomia l  P, (~), n = 2v, such t ha t  L ~ (al,) = 
P~ (~), i =  ! ,  2, 3, 4, and  where a _ ~ =  - -ak .  

Once the coefficients a are de te rmined  such tha t  the  above  condi t ions are  
satisfied, the  in tegra t ion  methods  will in tegra te  wi thout  t runca t ion  error  no t  
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only the functions sin o)~t and cos o)~t, but  also the linear combination 

(9) a o + ~, (a k cos ~k t + b k sin o)~ t). 
k = i  

The constant a o is integrated exactly because the polynomial P. (~) begins with 
unity. 

IV. A Special Case 

When only two of the n coefficients are modified, the remainder of the coef- 
ficients retaining their classical values, the resulting set of coefficients will inte- 
grate exactly the function 

(10) Q~_~(t) + a coso~ t +bs in~o  t, 

where Q,~(t) is an ordinary polynomial of degree m in the variable t. In  this 
special case there are given two points ~ u = t - - e x p ( - - 2 i a ~ ) ,  k-=--1, + t ,  on 
a unit circle in the complex C-plane passing through the orgin, where the remaining 
n -  2 points are located. The problem is the construction of a polynomial P. (~) 
such that  the relations (7) are satisfied for the two values of k. This problem 
can be solved by the technique which was used for the modification of the coef- 
ficients for the integration methods of order two. Thus, the problem reduces 
to the solution of the two equations (k = -  t, + t ) :  

(11) L~(~k)=P.(C~), i=1 ,  2, 3, 4, 

for two of the coefficients, for example ~. , .  and ~.-1,~, 

Before solving for the two unknown coefficients it is advantageous to intro- 
duce two sequences of polynomials Rr~(u) and Sr~ (u) defined by the recurrence 
relations [4] : 

Bin+i= u ( R ~  --  R,n_I) , R o - -  2, R I  = u, 
02) 

S ~ + i =  u(S,~--S,._l), S o =  O, S~=u.  

For m -  0, 1, 2 . . . . .  the following relations can be proved by induction: 

sin 2ma - -  (--t)m-Xsin 2 a  S~. ,  
~ m + l  P 

sin (2m + 1) a ----- (--t)msin a Rara+l 
u m +  i 

03) 

and 

(~4) 
( - t )  u (m +O.-1), Ss m ~ ~--1 m + i  * 

Rsm+l = ( - -  t ) ~ u ' + l ( 2 m  + a + Q * ) ,  

where Q~(u) is a polynomial with constant coefficients of degree p in the variable u 
with the te rm of degree zero absent. Also the following preliminary" relations 
wilt be needed: 
(t9 C~ -C~-~ - ~ s .  (-k) 

"/&k 

+ ~ k  = R.,(u~), 

where T ~ 2i sin 2a. 
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Solving (tt) for a.,n and a . - i , ,  gives 

n - - 2  

k=O 

where c%, .= t ,  q----n--I when p = n .  q = n  when p = n - - t ,  and Li, k =Li(a , ) .  

Using (15), the definition of ~t, and the relation, 

exp (ia,) ---- (~t)-i 2i sin a, ,  

and defining the first term in the bracket as Fp,* i(u), then 

~*, = ,~*(u) s , _ ~ ,  

~*. = - ~*(u) S / u ,  

~? .  = - ~ , * ( , , )  R q _ l ,  

5 '  : ,u* (u) Rq+,lu. 

Therefore, if the classical coefficients are used for ~z,~, l = t, 2 . . . . .  n i 2 ,  
then the last two coefficients are 

{,,;,< ] (t6) %,. - -  u._ 1 u) + ~ . . u k - l  S+_~ , 
k=O 

p = n , q = n - - t ;  p = n - - i , q = n .  

With these coefficients the integration methods will integrate the function (t0) 
exactly. 

V. Modified Coefficients for Distinct Frequencies 

To integrate the function (9) without any truncation error requires the solu- 
tion of the problem of interpolation given in Section III. Any of the classical 
interpolation formulae are available for this purpose. Here the technique will 
be to obtain the two highest coefficients by an application of the Lagrangian 
interpolation method: 

Z 5,,~__H_ Ck_¢rn, n = 2 , .  (I 7) L~ (~) =h . . . .  
r, c4=k 

The lower coefficients could be obtained by the same technique, but this results 
in a rather tedious procedure that  involves computation in the complex variable ~. 
Therefore, a more efficient algorithm in the real field is developed in which the 
lower coefficients are determined by recurrence with respect to the coefficients 
of lower order. The final goal is the determination of the two highest coefficients 
in explicit form for any order. Thus, after the remaining coefficients are found 
by  the recurrence method, the complete set of modified coefficients for the four 
methods will be readily available. 

The derivation of the expression for the highest coefficient for the four 
methods of any given even order will be given. The modified coefficient 0t,,, 
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equals the coefficient of the ~" term of the Lagrangian interpolation formula: 

t + ~, Li, k ¢--~(¢--k--t)'--l--Li,--~¢k(¢k--t) "-1 H*, 
(18) Li,o ~ (¢k--¢-k) uk 

k = l  k = l  

where 

/ 1 " =  h t . 
m=I'L'L ~ k - -  g m  
m4=h 

The expression (18) can be expressed in terms of u, •(u), and #(u) for the four 
integration methods. 

Since, for the Cowell method, 
uk 

Ll, k- -  4 ~  ( 1 - - ¢ k ) ,  

the right-hand side of (18) becomes: 

(t -¢~) ¢_k (¢_k- t ) ' - 1 -  (t -¢_~) ¢, (¢~- t) "-1 
(t9) H*. k=l/' 4a~ (¢~-¢-k) 
Since 

t - ¢ ~  = - (¢_~  - 0 -1, 

the numerator of (19) becomes 

- ~ - k  ( ¢ - ~  - t )  "-~ +¢~ (¢~ - 1) '-'~ 

or, because ¢~ = t --  exp (2i ak), the numerator reduces to 

(-- 1)'-1 [2 i sin 2 (v -- 2) %] + (-- l)" [2i sin 2 (v -- !) %]. 

Using the definitions (13), the above expression simplifies to 

and, since the denominator is equal to 4a~z, (t8) becomes 

r e ,  
(20) ~,=~z" t_ u~ -1 + .~ j 4,~ " 

With the aid of the first formula of (t4), the expression in brackets can be shown 
to be of the form 

( -- 1)" [1 +(2%(u~)1,  
where 

Q* (u) = ql u + q2u2 + " "  + q,~um" 

Therefore, by using the finite expansion of t / (ulu2. . ,  u,) from Section v i i ,  (19) 
becomes of the form 

(2t) ( - -1 ) " -12  ] t + q " * +  "'" +c'-='u'~-~' -- l+ql"k+4;;q"-"u~- ' ]H*. 
k = l  '- Uk 



Numerical Integration of Products of Fourier and Ordinary Polynomials 429 

(23) 

where 

Since the constants  c are arbi t rary,  they  can be chosen such t ha t  the numerators  
of the two terms in the brackets  of (2t) are identical, i,e., the coefficients of 
the  polynomial  

t + q u k  + . . .  + c , _ 2 u ~  -2  

are selected so t ha t  the polynomial  equals 

~ - 1  + u~ - -  u U  I "  

Thus,  (21) can be expressed as 

- 2 
k = l  

which is the an, ~ coefficient for the case of distinct frequencies for the Cowell 
method.  

Defining F~,l(u ) as 

(22.1) Fn,x(u ) = S , , _ , ( u )  ,~(u) ~-- 1 

the  ~n,n coefficient for the Cowell me thod  becomes the ( v -  l ) - th  divided dif- 
ference of the function F., 1 (u) at  the nodes ul,  u~ . . . . .  u..  In  a similar manne r  
it  follows t h a t  the an,.  coefficient for the St6rmer  (i = 2) and the Adams-Moulton 
(i  = 3) methods  is the ( v -  t ) - th  divided difference of the function F,~,i(u), where 

S , , - d ~ )  ~ (u) 
(22.2) F~, 2(u) - -  u" ' 

R , , _ ,  (u) 
(22.3) Fn, a(U ) -  2uV_ 1 /z(u). 

Likewise, for the Adams-Bashfor th  method  (~n,~--~) is the ( v - - l ) - t h  divided 
difference of F~, 4 (u), where 

(22.4) F., 4 (u) - -  R 2, (u) 

The  factor one-half appears  in this me thod  because a t e rm of degree ( v -  t) is 
necessary in the  finite expansion of the first te rm of (t8). 

The second highest coefficient equals the  coefficient of the  ~.-1 t e rm of the  
Lagrangian interpolation formula:  

I *  - - L i ,  o H u~ + (¢~--¢-k) uk 
~=I k=l 

i = L  2 , 3 , 4 ,  

( v )  
l *  = t - ~. uk a n ,  n .  

k = l  

With  the aid of (t2), (t3), and (14), and with a development  analogous to t ha t  
for the highest coefficient, (a~-l,n - -X*)  becomes the ( v -  t ) - th  divided difference 
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of the function F~_ 1,i (u), i = 1, 2, 3, 4, where 

s~._~(~) 2(u), 

s~._~ (.) 2 (u), F ._ I ,~ ( - )  - -  . . - 1  
(24) 

R~,-4 (u) F , _ l , 3 ( u ) - -  2 . ' - ~  /~(u),  

F._, 4 ( u ) =  R,,_,(.) 
, 2 . ' - '  / ,  (u).  

In  order to obtain the remaining coefficients e . . . .  m = 1, 2 . . . . .  n -  2, assume 
tha t  the set of coefficients of order n -  2 are known and  that  the two highest 
coefficients have been computed. Consider two polynomials P~(C) and P.-a(~) 
interpolated at the nodes 

(25) t0, C+1 . . . . .  C±,,  

and 

(26) Co, C±I . . . . .  C±t, l = v -- 1,  

respectively. The polynomial  having the points (26) as zeros is 

C (C a - u~C + ul) (C ~ - uaC + us) .. • (C a - u~ C + u~). 

This polynomial which vanishes at  the n -  2 zeros, multiplied by  a linear factor, 
is the difference of the two polynomials P. (~) and P._ a (C), 

(2z) P.(C) - P,-~(C) =C(C ~ -uIC +u~)(C a -'*aC +u~) . . .  (C a - " t  C +u,)(rC -s ) .  

The parameters  r and s can be obtained as a function of the two highest coef- 
ficients by  first expressing the left-hand sides of (27) in terms of the modified 
coefficients of order n and n -  2, respectively, and by  then comparing the coef- 
ficients of ~" and  ~.-a, yielding 

l 

r = ~ . , . ,  s = ~ ._ l , .  + ~,,,. Y, u ~ . 
k = l  

With  these values for r and s, (27) becomes 

1 I 

(28) P.(C)=P._a(C)+[o~nuC+o~n_xn+otn, n~,uk]I~(Ca--ukCa+ukC). 
' ' k = l  / ~ : 1  

The lower coefficients can now be obtained by  comparing the coefficients of 
similar terms of ~ in (28). This technique is easily adaptable to a computer  sub- 
routine. 

VI. Modified Coefficients for Confluent Frequencies 

The modified coefficients previously developed will integrate wi thout  t runca-  
tion error the function (9). However,  if two or more of the frequencies (ok approach 
a common limit, for example if a~---~(oa-+ . - . -+oJ= ,  the modified coefficients 
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for this case of confluent frequencies will integrate exactly the function 

(29) ao+Q,~_l(t) L=,~+l(a~cosookt + b~sin eo~t)], 

i.e., the product  of an ordinary polynomial and  a fourier polynomial. 

I n  order to obtain the sets of modified coefficients which wilt integrate the 
above function, the limits must  be obtained of the modified coefficients for distinct 
frequencies as the m frequencies approach the value of confluency. Since the 
modified coefficients for distinct frequencies are the divided differences of the 
function F0,i(u), p = n, n --  t,  and i = 1, 2, 3, 4, at the nodes ul, u~, . . . ,  u~, the 
desired limits are available from the well established theory of divided dif- 
ferences [3]. 

Sets of these modified coefficients will be given without  proof for three of 
the more impor tant  limiting cases: a) two, b) v --  t, and c) all of the v frequencies 
approach a common limit. The first case is applicable when the two highest 
coefficients for distinct frequencies suffer from a loss of significant digits because 
the differences of u 1 and u s in their denominators become small. As the confluent 
frequencies approach zero in the second case, the coefficients approach those of 
the special case of Section IV. The third case is characterized by  the lack of the 
troublesome factors of u in the denominators of the two highest coefficients. 
Only the two highest coefficients will be given since the lower coefficients m a y  
be computed b y  the recurrence technique of Section V. 

In  the first case assume tha t  eoI and eo 2 approach the common limit co. If  
G~ (u) is defined as 

G~ (u) = ( / ( u  -- u~), n __> 6, 
k = 8  

then 
v 

(30) o~p,~=Kp,,+o[Fp"(u)]+ ~Fp, (uk)H *, p = n , n - - l ,  
[ O . ( u )  ] k = s  ' 

with the definitions 
K~ ~----0 if i = t ,  2, 3, K _ !  , n , 4 - -  2 '  

and 
K~_t, ~ - - X *  for i = t ,  2 , 3 , 4 ,  

and where D----d/du. For  the second case let the first (v - - t )  frequencies approach 
the common limit co, then 

(-- t)  v "~ (u,--u)~ D~ FI,,i(u) F~,,i(u,,) 
(31) % ~ = K p  i +  (u_u,)~-i ~=* , , k! + ~u _ u y : r ,  p : n , n - - t ,  

where the operator D is defined as 

D ° =  t" Dk = d~ , duk, k =1, 2, . . . .  

For the third case all the frequencies approach the limit o0. Here the highest 
coefficients become 

D~-IFP'*(u) p = n ,  n --1 (32) ~p,~ : Kp,~-[ (~ - t ) !  ' " 
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V I I .  A Fini te  E x p a n s i o n  

The development of the two highest coefficients for the case of distinct fre- 
quencies requires an expansion of the function t/(u I u2.. .  u,). 

The ( v -  l)-th divided difference of the function g (u)= !/u is [3]: 

( - 1 ) , - 1  
(33)  [u l  u2 . . .  u , ]  . . . .  , v 

jr/u~ 
k = l  

where the ( v -  t)-th divided difference of a function g (u) is defined by 

, v 

(34) [ulu2...u,]=~_~g(uk)Ii,, H , = H  1 
k=1 = ( u k - ~ . , )  " 

m4=k 

Combining (33) and (34) gives 

1 - ( - 1 )  (3 5) 

Since the (v- - t ) - th  divided difference of a polynomial of degree (v--2) is zero, 
then 

(36) ~, quk+c~u~+ ... +c,_~u~-~ H* = 0 .  
k ~ l  q~k 

Furthermore, the (v- - t ) - th  divided difference of a polynomial of degree v--1  
equals the coefficient of the term of the polynomial of degree v -- ], or 

(37) = c,. 
k = l  iUk 

Adding (35), (36), and (37) yields the desired finite expansion of the function 
t / (u l  u~ ... u~) : 

(38) 1 _ c , +  ( - l ) ' - ~ ( l + C l U k + . . -  +c,_~u,  )+c,  uk H* ,  
v Uk  

H Uk k=l 

k = l  

where the constants c are arbitrary. 

V I I I .  S o m e  P o w e r  E x p a n s i o n s  

During computation the functions ,~*(u), ,~(u), #*(u), and #(u), and their 
derivatives will suffer from a loss of significant digits if the variable a becomes 
small. This loss of precision may be avoided by expanding the functions in a 
power series in terms of the variable u. 

The expansions of ~*(u) and l(u)  are presented in [4]: 

t I u2 _ 3t u3 _ . .  
~*(u)  = t - ~ -  u - -  ~ 60 48o  " '  

t ~  1 31 289 ua + .-.. 
(u)  = + ~ u + ~ u 2 + 3 628 8oo 
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I n  order  to  o b t a i n  s imi la r  expans ions  for /~*(u)  a n d  # (u) as a f unc t i on  of 
t he  va r iab le  u consider  the  fol lowing i n t e g r a t i o n  fo rm u la  [1 ] : 

(39) 

h 

= f l(t)dt=h [t + 
o 

+ l ~ o Z l ~ t l ( 0 ) +  t l  . s . / t \  t91 Z]6/(0 ) 19I 
Zl 1t-2-) 60480 120960 A ' / ( 1 )  + ""1" 

The  func t ion  to  which  this  fo rmula  will be  app l ied  i s / ( t )  = cos co t. Since t = = m h ,  

a n d  since 2 a = c o  h, i t  follows t h a t  /,~--=cos 2 m a .  Also, since 

cos 2 (m + 1) a - -  cos 2 m a = - -  2 s in (2 m + I ) a s in a ,  

t h e n  

A / (m) = - -  2 s in 2 a s in 2 m a - -  ~- cos 2 m a .  

F u r t h e r m o r e ,  

A ~k-1 / (m) = ( - -  t) ~ u k-1 s in 2 e  sin 2 m  a + ~ -  cos 2 m  a , 

or, t he  odd  first  differences of cos co t are  

Likewise,  since 

t h e n  

and ,  in  general ,  

t 
A'k- l t (O ) = g (--u) k. 

c o s 2 ( m  + t ) a + c o s 2 ( m - - t ) a - - - - -  2 c o s 2 a c o s 2 m a ,  

A 2 / ( m )  = - - u c o s  2 m a ,  

A*k/(m) = ( - - u ) k c o s  2 m a .  

Thus ,  the  even  cen t ra l  differences of cos co t are  

F r o m  the  in t eg ra l  

i t  follows t h a t  

A**/(o) = ( -u )* .  

h 

f cos co t d t  . . . .  s in co h ,  
69 

0 

(½)  sin ~oh h sin a cos a 
A x  = -  g - -  

W i t h  these  resul t  (39) becomes  

sin a cos a 1 t u 2  _ I a 23 
- -  t - -  -6- U - -  U 226 800 

~/4  . . . .  . 

Using  this  re la t ion  the  expans ions  of #*(u)  a n d  p (u) are:  

t 1 11 191 a 

/~*(u) = ~- + ~ ¥  u + -i~Tg u~ + t-gg9g6 u + . . . ,  

t 11 t9 t  u9 " 2497 u8 . . . .  
/~(u) = 12 720 u - -  60480 3628800 ' 
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IX. Elimination of Numerical Difficulties 

The two highest coefficients suffer from a loss of significant digits during 
their computa t ion  when the differences of ul, u S . . . . .  u~, m => 2, in the denomina- 
tors become small. This occurs when m of the frequencies approach a common 
limit. This difficulty m a y  be avoided by  using the set of coefficients for l + m 
confluent frequencies, where l denotes the number  of confluent frequencies of 
the original set of coefficients. For  example, if this situation appears because 
o~ and 098 approach a common value when the modified coefficients for distinct 
frequencies are computed,  the set of coefficients (30) should be used. 

When the variable a becomes small the functions 2*(u), 2(u), /**(u), /z(u) 
and their derivatives become indeterminant.  I f  this occurs the power expansions 
from Section V I I I  will eliminate the difficulty. 

If  a = ( 2 m + t ) 2 ,  m = 0 ,  t, 2 . . . . .  the functions #*(u) and #(u)  and their 

derivatives, and  the derivatives of the functions 2*(u) and 2(u) become infinite. 
For  a given problem the value of 09 is specified, bu t  the value of h can be varied. 
Therefore, since 2a=o~ h, a suitable choice of the step-length will avoid the 
problem of a being an odd integer multiple of ~]2. 
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