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Abstract. Sets of coefficients for four finite difference methods of numerical
integration are presented that will integrate without truncation error products of
fourier and ordinary polynomials. These sets are formulated such that they are free
from computational difficulties.

I. Introduction

In a previous paper (4] sets of modified integration coefficients for the Cowell
method of numerical integration of order six were given which had the property
that they would integrate without truncation error products of a fourier poly-
nomial and an ordinary polynomial. These sets of coefficients were characterized
by their explicit formulation. The purpose of this paper is the extension of the
set of modified Cowell coefficients to any order of the integration method, as
well as the development of similar sets of modified integration coefficients for
the Stérmer, Adams-Moulton, and the Adams-Bashforth methods of numerical
integration. These modified coefficients will be given explicitly in a form such
that they can be computed from a simple algorithm which does not suffer from
numerical difficulties.

The four methods of numerical integration based upon backward differences
will be referred to as follows [2]: 1) Cowell — the implicit method for differential
equations of the second order in which the first derivatives are absent; 2) Stérmer
— the explicit method for these second order differential equations; 3) Adams-
Moulton — the implicit method for differential equations of the first order; and
4) Adams-Bashforth — the explicit method for differential equations of the first
order.

II. Integration Formulae

For the integration of a function f(#), tabulated at equally spaced values of
the independent variable ¢ with the step-length A, any ascending diagonal of a
difference table can be used for the development of a method of numerical
integration [4]. In such a table, let m be an integer, ¢, =m#, f,,=[(,); and let
Aof(m) =fm’ Af(m '_"%) :fm ——fm—l’ Az/(m) :fm+1 _2fm +.fm—1’ ect. For a dif-
ferential equation of the form

d2
20— fx )

* Part of this work was formulated earlier by the author in a dissertation presented
to Yale University in partial fulfillment for the degree of Doctor of Philosophy.
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the double integration may be obtained by
(1.1) —zx9+x_1~kzzak4kf( —_)
k=0

where «y=1, p==1 corresponds to the classical Cowell formula, and p=0 re-
presents the Stérmer formula.

For the integration of a differential equation of the first order,

dx(t
B = f(x )
a suitable integration formula is
< k
(1.2) xi—xﬂ,:kZockAkf( —4).
k=0

When #$ =1 the formula is the classical Adams-Moulton method, and when $ =0
it is the classical Adams-Bashforth method. Since the sets of a’s are assumed
to be constant in these classical methods, the solution of the differential equations
is expressed as a linear combination of the differences of a particular diagonal
of the difference table. The coefficients a are different for the four methods of
integration. However, with this distinction well in mind, no ambiguity will result
if the same symbol is used for all four of the integration methods.

In order to determine the four sets of coefficients «, assume that

() foy=2z"

where Z represents any fixed complex number. Then it follows that for the

double integration
T/h ! (1—-Z1))2
[ foonaraf M2
01—k

and for the single integration

A
[zn= Téf (1—2z1Z
Letting
{=1—-2"1
the integration formulae (1) become
T
34) see=g] = PO
1 ¢ 2
62 +iz =g = PO
33) e =g = PO,
¢
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where P{({) is defined as
@ P =Y al"

and where the integers 1, 2, 3, 4 denote the Cowell, Stérmer, Adams-Moulton,
and the Adams-Bashforth methods, respectively.

Upon expanding the left-hand sides of (3) in powers of £, with |Z|<1, the
coefficients of similar terms of { may be compared, yielding, for the first six
coefficients the following sets [2]:

Cowell method —
1

0(12""1, Uy == 12 ° %:O,
G4) _ 4o

#4="T40" %™ 230’ %= 60480°
Stormer method —

1 1

“=0, L=730 BTz
5.2) _ 19 _ 3 _ 863

%= 340 %= g % = 12096 *
Adams-Moulton method —

__1 R 1

. o= k="T5 BT T
(5.3) —19 —27 —863

%4= T30’ % = 3440’ %= 60480 *

Adams-Bashforth method —

_ 1 _ 5 _ 9

54 o =g %= p % =24
(5.4) 251 _ 475 __ 19087
%= 720 % =740’ %= go480"

The order, n, of the integration method is defined by the subscript of the
highest coefficient a,, retained in (1). It is important to remember that the classical
sets of integration coefficients are based upon the expansion of the left-hand
sides of (3) in an infinite power series in terms of the variable {. If, in application,
(1) are used with the order chosen such that either the highest coefficients are
zero, or the difference 4* of the function being integrated vanishes identically,
then (1) will integrate the function exactly. However, in practice these two
conditions are usually not satisfied. In effect, the integration of the function is
being approximated by the truncated polynomial of the right-hand side of (3),

© B0 =St

Therefore, the integration of a function by the use of (1) with a finite set of
coefficients will result in an error because the formulae are based upon an ap-
proximating polynomial instead of an exact polynomial.
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While formulating a method to reduce these truncation errors for the four
classical methods of numerical integration when they are applied to functions
which are products of fourier polynomials and ordinary polynomials, the basic
formulae (1) will not be altered, but the coefficients o will be modified.

II1. Formulation of the Problem

Before deriving the modified coefficients which will integrate without trunca-
tion error the products of fourier and ordinary polynomials, the modified coef-
ficients will be obtained which will integrate only fourier polynomials exactly.
The final sets of coefficients which will integrate the products of the fourier and
the ordinary polynomials will be obtained as limiting cases of these first sets
of coefficients.

Much insight into the general problem of deriving the modified coefficients
results from the determination of the coefficients which will integrate the functions
sinw ¢ and cos w ¢. Thus, for (2) let f(f) =exp (i w ¢), and introducing the notation
20=wh, Z in (2) becomes

Z=exp(2¢0),
and ¢ becomes

{=1—exp(—2¢a).
Therefore, Egs. (3) reduce to:

(7) Lt(G):Pn(C)v 'i:L 2: 3’41

where
sin o

L) == )2exp(~—2io),

L2(cr) _ (sir;o)ﬁ i

sin ¢

Ly(o) = =% exp(— o),

Ly(o)= sin g exp(io).

o4

The coefficients « must be chosen such that (7) are satisfied for the given fre-
quency o, as well as for —w, if the four integration methods of order » are to
integrate the functions f(f} =sin w ¢ and f(f) =cos w ¢ exactly.

For the integration methods of order two the coefficients o; and o, must be
chosen such that the L;(o) are identical to

1+“1C +a252;
or
1+, [1—exp(—270)] +ay[1 —exp(—270)]2

For the methods of order two, the modified coefficients can be determined
by solving the two equations which result from (7) when the two frequencies w
and —w are considered. If ¢ is not zero, or if, for the two Adams methods, ¢ is
not an odd integer multiple of z/2, then the solution of the two equations yields
for the
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Cowell method —

8.1 oy =—1, oy == A{u});
Stormer method —

8.2) oy = A*u) —1, oty == A{u);
Adams-Moulton method —

(8.3) o =u*u) —1, oy = (u);
Adams-Bashforth method —

(8.4) =0 — )t —1, ay=p ) +pu*w);
where

o‘—-wf%ﬁ, #==4sin?e,
and where

sinag

2 =50, ) = 5reea

(M)___L( 1 1 )
) = "4 \sint o osinocoso/’

With these choices of «, and «, the four integration methods of second order will
integrate the functions sin w ¢ and cos w ¢ exactly, except for any round-off error
which accumulates in the algorithm.

Henceforth, the coefficients which have been adjusted in the above manner,
will be referred to as modified coefficients, and the coefficients of {5) will be
referred to as the classical coefficients. For the modified coefficients two sub-
scripts, ¢ and #, will denote the ¢-th coefficient of the set and the order of the
method, respectively. As ¢ becomes very small, the above coefficients approach
the corresponding classical coefficients.

If the order of the integration method is greater than two, then the «, ,
({=1, 2, ..., n} coefficients can be determined such that the functions cosw ¢
and sin w ¢ are integrated exactly. It will be assumed that » is even and equal
to 2». Thus, there will exist » distinct frequencies w,, w,, ..., w, such that the
2y coefficients will integrate the functiens cosw,f and sinw,f (f=1,2,...,%)
exactly, if {7) are satisfied for the corresponding g, and for —o,. Since the right-
hand sides of (7) are polynomials in the variable £, the above condition is equiv-
alent to the following problem of polynomial interpolation:

Given 2y -1 points &, k= —», ..., —1,0, +1,..., +v, where {,=
1 —exp(— 27 0;), and where the points are on a circle which has a unit radius
in the complex {-plane, construct a polynomial B,(f), »n= 2y, such that L (0}) =
P ({), i=1, 2,3, 4, and where o_; = —0,.

Once the coefficients « are determined such that the above conditions are
satisfied, the integration methods will integrate without truncation error not
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only the functions sin w,? and cos w,?, but also the linear combination

9 Ao+ 2 (@, cos wyt -+ by, sin w, 2) .
k=1

The constant a, is integrated exactly because the polynomial B,({) begins with
unity.

IV. A Special Case

When only two of the » coefficients are modified, the remainder of the coef-
ficients retaining their classical values, the resulting set of coefficients will inte-
grate exactly the function

{10) @, sty +acoswt-+bsinwt,

where Q,,{f) is an ordinary polynomial of degree m in the variable £ In this
special case there are given two points {, =1 —exp(—2¢a;), k= —1, +1, on
a unit circle in the complex {-plane passing through the orgin, where the remaining
n — 2 points are located. The problem is the construction of a polynomial B,{{)
such that the relations {7} are satisfied for the two values of k. This problem
can be solved by the technique which was used for the modification of the coef-
ficients for the integration methods of order two. Thus, the problem reduces
to the solution of the two equations (k= —1, 4-1):

(11) Li("k):l:::@k)r 1:=1;2, 3: 41

for two of the coefficients, for example «,, ,, and «,_, ,.

Before solving for the two unknown coefficients it is advantageous to intro-
duce two sequences of polynomials R, (#) and S, () defined by the recurrence
relations [4]:

Rm—f—l:u(Rm'_’Rm—l)! R0=2, RIZMI

12
(#2) Sparm W(Sm—Sp_1)s  So=0, Si—u.

For m=0,1, 2, ..., the following relations can be proved by induction:

(—1)"~1sin 20 Sy

(13) sin2mo = PEIEN] ,
p— ” oy
sin{2m 4+ 1) 0 = (=1) :::+1R2m+1 ,
and
(14) Sam = (—1)" 0™ (m + QX ),

R2m+] = (ﬂd)m“m+1(2m +1 +Q::):

where (%) is a polynomial with constant coefficients of degree p in the variable
with the term of degree zero absent. Also the following preliminary relations
will be needed:

o, = % S (1) ,
(15) “*

G+ =R,(u),

where 7= 27sin 20.
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Solving (11) for «, , and «,_, , gives

1 L8, —L; & " PN e I e
oy, = 1 - 164 +k§0a”*”uk 1(? i )}’

Yy T

where &y , =1, g=n—1 when p=n, g=n when p=n—1, and L, ,=L,(qg}).
Using (15), the definition of ,, and the relation,
exp{to,) = ({,)*2¢sing,,
and defining the first term in the bracket as E¥;(«), then
Bty = 2(u) Sy
Efy=—1*(u) S,Ju,
Efy= —u*(u) R, 4,

Eﬁ = p*(u) Rq+1/“ .

Therefore, if the classical coefficients are used for &1 s l=1,2,...,8—2,
then the last two coefficients are

— D
(’16) ap,n“" ( .u;)—-l l: (u +Zae‘cn q k}
p=mn,q9=n—1, p—n—‘l,q—-n.

With these coefficients the integration methods will integrate the function (10)
exactly.

V. Modified Coefficients for Distinct Frequencies

To integrate the function (9) without any truncation error requires the solu-
tion of the problem of interpolation given in Section III. Any of the classical
interpolation formulae are available for this purpose. Here the technique will
be to obtain the two highest coefficients by an application of the Lagrangian
interpolation method:

{— Em
(17) ZL'kH n=27.

h=—y m=—y

mk
The lower coefficients could be obtained by the same technique, but this results
in a rather tedious procedure that involves computation in the complex variable [.
Therefore, a more efficient algorithm in the real field is developed in which the
lower coefficients are determined by recurrence with respect to the coefficients
of lower order. The final goal is the determination of the two highest coefficients
in explicit form for any order. Thus, after the remaining coefficients are found
by the recurrence method, the complete set of modified coefficients for the four

methods will be readily available.

The derivation of the expression for the highest coefficient for the four
methods of any given even order will be given. The modified coefficient «, ,,
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equals the coefficient of the {” term of the Lagrangian interpolation formula:

L N L Ep(Eop—1)"1—L; _ — 1)1
(18) I‘"v"gu_k_i—kzl gk E—n(l—x—1) 1 Ce(Ce—1) I+,

- (Ce—C—p) ur
where
Y 1
==
m;k

The expression (18) can be expressed in terms of #, A(u), and u(«) for the four
integration methods.
Since, for the Cowell method,

U
I‘l,k: 4_; (1 _Ck)’

the right-hand side of (18) becomes:

(19) S = b= (=) GGt

= 40} (5z—C—1)

Since
1—L=—((_,— 1),

the numerator of (19) becomes
—C G — GG — 1)
or, because {, =1-—exp(2¢ 0;), the numerator reduces to
(—1y ' [2¢sin2(y —2) 6, ] +(—1)"[2¢sin 2(» — 1) 0]

Using the definitions (13), the above expression simplifies to

T[Sz(v—z) + 52(7—1)]’

uv—-l u¥
and, since the denominator is equal to 4027, (18) becomes

H*
4o} "

[ Sy(— So(y—
(20) Z[ 2(v—2) 2(v—1)

¥—1
) uf,

k=1

With the aid of the first formula of (14), the expression in brackets can be shown
to be of the form
(=1’ U+ Qe (w)],
where
Om(u)=qroe + g0+ -+ +q,u".
Therefore, by using the finite expansion of 1/(#,4, ... u,) from Section VII, (19)

becomes of the form

-1 N [ A Gt t o o Uy 1+t - +—a W] s
ey (o3| - - - .
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Since the constants ¢ are arbitrary, they can be chosen such that the numerators
of the two terms in the brackets of (21) are identical, i.e., the coefficients of
the polynomial

Vb o+ 0t

are selected so that the polynomial equals

Satr—2 + 2(v -1 __ Sgr—3

y—1 - y—1
Uy Uy,

Thus, (21) can be expressed as

¥ Sl 3y 17,

P B
which is the «, , coefficient for the case of distinct frequencies for the Cowell
method.
Defining E, ,(») as

(22.1) E )=~

the «, , coefficient for the Cowell method becomes the (» —1)-th divided dif-
ference of the function F, () at the nodes #,, #, ..., #,. In a similar manner
it follows that the «,, , coefficient for the Stérmer (s = 2) and the Adams-Moulton
(i =3) methods is the (v —1)-th divided difference of the function F, ,(), where

(22.2) E, o) = 22 44y,
(22.3) B () = T2 .

Likewise, for the Adams-Bashforth method («, ,—$%) is the (v —1)-th divided
difference of F, 4(u), where

(22.4) E o) = — T2 .

The factor one-half appears in this method because a term of degree {» —1} is
necessary in the finite expansion of the first term of (18).

The second highest coefficient equals the coefficient of the ! term of the
Lagrangian interpolation formula:

: T o LipberCp— 1)L p G (G172
(23) 2*—_Li'okl=_11 e +k§1 (Ck—c )Mk IT*,
i=1,2,3%,4,

where
- (1 - Z uk) %y n
k=1

With the aid of (12), {13), and (14), and with a development analogous to that
for the highest coefficient, («,, , —2*) becomes the (» —1)-th divided difference
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of the function F,_, ;(u), i=1, 2, 3, 4, where

Sgy—5{4)

Ez~1,1(“) =T~ Aw),
E ) =222 ),
24,
9 E gy =Foml ),
Eyyal) = — Forsald )
In order to obtain the remaining coefficients O, ns M ==1, 2, ..., » —2, assume

that the set of coefficients of order » —2 are known and that the two highest
coefficients have been computed. Consider two polynomials P,({) and B,_,({)
interpolated at the nodes

(25) CO: Ci]_: ey C:‘:v:
and
(26) go:éip---,cig, £=V—~1,

respectively. The polynomial having the points (26) as zeros is

C—ml +uy) (F— sl + o) ... (B~ 04,0 +107).

This polynomial which vanishes at the » —2 zeros, multiplied by a linear factor,
is the difference of the two polynomials B,() and B, _, (),

(27) B(0) =B @) =0( —ml +u) (P —upl +ug) ... (B —wy § +w)) (7L —5).

The parameters » and s can be obtained as a function of the two highest coef-
ficients by first expressing the left-hand sides of (27) in terms of the modified
coefficients of order » and » — 2, respectively, and by then comparing the coef-

ficients of {* and "}, yielding
!

=0y s S=y_1,n + an,nkzluk .

With these values for  and s, (27) becomes

i 1
(28) Rx(C) = Pn~2(£) + an,nc +an~1,n +°‘n,nk§1uk kQ (C3 - u’kcz + MkC) .

The lower coefficients can now be obtained by comparing the coefficients of
similar terms of £ in (28). This technique is easily adaptable to a computer sub-
routine.

VI. Modified Coefficients for Confluent Frequencies

The modified coefficients previously developed will integrate without trunca-
tion error the function (9). However, if two or more of the frequencies w, approach
a common limit, for example if w,—wy—--- - w,,, the modified coefficients
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for this case of confluent frequencies will integrate exactly the function

(29) g+ Q&) . %ﬂ(akcoswkt -+ by sin @ d) !,
i.e., the product of an ordinary polynomial and a fourier polynomial.

In order to obtain the sets of modified coefficients which will integrate the
above function, the limits must be obtained of the modified coefficients for distinct
frequencies as the m frequencies approach the value of confluency. Since the
modified coefficients for distinct frequencies are the divided differences of the
function F, ;(u), p=mn,n—1, and i=1, 2, 3, 4, at the nodes u,, u,, ..., %,, the
desired limits are available from the well established theory of divided dif-
ferences [3].

Sets of these modified coefficients will be given without proof for three of
the more important limiting cases: a) two, b) » —1, and c) all of the v frequencies
approach a common limit. The first case is applicable when the two highest
coefficients for distinct frequencies suffer from a loss of significant digits because
the differences of %, and #u, in their denominators become small. As the confluent
frequencies approach zero in the second case, the coefficients approach those of
the special case of Section IV. The third case is characterized by the lack of the
troublesome factors of # in the denominators of the two highest coefficients.
Only the two highest coefficients will be given since the lower coefficients may
be computed by the recurrence technique of Section V.

In the first case assume that o, and w, approach the common limit w. If
G, (u) is defined as

v

Gn(%)zn(u—uk)x n=0,

k=3
then
— Bp,i (1) ; E T+ = —
(30) (xp,n"K?,£+D G"(M) +kZ: p,i(uk) y P—mn,n 1,
=3

with the definitions
K,;,=0 if ¢=1,2,3, K,,=4%,
and
K, ,;=2% for 1=1,2,3,4,
and where D =d/du. For the second case let the first (v —1) frequencies approach
the common limit o, then

p=nn—1,

(=1 Nt (= wPD*E () | Fp i)
B1) opu=Kp i+ = ;2 3 T Gh—wpt
where the operator D is defined as
3
D=1, Dkzé%,;, E=1,2,....

For the third case all the frequencies approach the limit w. Here the highest
coefficients become

(32) =K i+ iy es p=mm—1.
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VII. A Finite Expansion

The development of the two highest coefficients for the case of distinct fre-
quencies requires an expansion of the function 1/(u; u, ... u,).

The (v —1)-th divided difference of the function g(#) =1/« is [3]:

—1 y—1
33) [ty ) =4

I e

k=1
where the (v —1)-th divided difference of a function g () is defined by

— 3 * £ - 1
(34) [0y 142 ~~“v]—hzlg(uk)ﬂ . AT =Hm-
- m==t=k

Combining (33) and (34) gives

1

35) _ (—1)v—1§1 Lo

:!

Uk
k

1

Since the (» —1)-th divided difference of a polynomial of degree (v —2) is zero,
then

(36) Z”: 6y ttptCa Ut e oy upT? T*—o.

U

k=1

Furthermore, the (v —1)-th divided difference of a polynomial of degree » —1
equals the coefficient of the term of the polynomial of degree » —1, or

37) Z—Cfﬁiﬂ*:c,.

P i

Adding (35), (36), and (37) yields the desired finite expansion of the function
1 (uytg ... )

1 Y1) WY e, ol
68) =y Ut e d T b
IT i k=1
k=1

where the constants ¢ are arbitrary.

VIII. Some Power Expansions
During computation the functions A*(w), A(u), p*(u), and u(«), and their
derivatives will suffer from a loss of significant digits if the variable ¢ becomes
small. This loss of precision may be avoided by expanding the functions in a
power series in terms of the variable «.

The expansions of A*(#) and 1(u) are presented in [4]:

1 M——L 2 31 3

12 240 "~ 60480 ¥

_1r 1 31, 289 81 ...
Au) =3 + 50 % + 50480 T 3628800 ¥ T

A*(u) =1
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In order to obtain similar expansions for gu*(#) and u(x) as a function of
the variable # consider the following integration formula [1]:

"@:f fOds=h|1+ 347 (3) =55 210 ~ 5 24 (3)

0+ 41 (3) 2910~ (3) 4

The function to which this formula will be applied is () = cos w ¢. Since {,=mh,
and since 20 =w 4, it follows that f,,==cos 2m ¢. Also, since

(39)

cos 2(m +1) ¢ —cos 2m g = — 2sin{(2m +1)osing,
then
Af(m)= —2sin 20 sin2m o — —uz—cos 2mo.
Furthermore,

3
A2 f(m) = (—1)*|w* " sin 20 sin 2m o + %— cos2ma|,
or, the odd first differences of cosw ¢ are

A*1(0) = 5 (—w)
Likewise, since

cos2(m +1) o+ cos2(m —1) o= 2cos2g cos2mo,
then
A% f(m) = —ucos 2mao,
and, in general,
A% f(m) = (—u)¥cos 2ma.

Thus, the even central differences of cosw ¢ are

A%+1(0) = (—u)*.
From the integral
A

fcoswtdt: -c%sincuk,

0
it follows that

sm ok  hsingcoso
Ax{— .
w I

With these result (39) becomes

sino'COSO'_1 A LI LR R B
= =1—gu— g5 ¥ 1512 226 800

Using this relation the expansions of u*(#) and () are:

11 11 191
* —_ — 3
pru) =5 + 5%+ 0 e w

1 ot 2497
B =—"15~ 73 60430 *° T 3628800
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IX, Elimination of Numerical Difficulties

The two highest coefficients suffer from a loss of significant digits during
their computation when the differences of #,, #,, ..., %,,, m =2, in the denomina-
tors become small. This occurs when # of the frequencies approach a common
limit. This difficulty may be avoided by using the set of coefficients for I +m
confluent frequencies, where / denotes the number of confluent frequencies of
the original set of coefficients. For example, if this situation appears because
w, and w, approach a common value when the modified coefficients for distinct
frequencies are computed, the set of coefficients (30} should be used.

When the variable ¢ becomes small the functions A*(u), A(u), u*(w), u(u)
and their derivatives become indeterminant. If this occurs the power expansions
from Section VIII will eliminate the difficulty.

If G:(Zm-{—ﬂg—, m=0,1,2,..., the functions pu*{#) and g(u) and their

derivatives, and the derivatives of the functions 2*(%) and A{ux) become infinite.
For a given problem the value of w is specified, but the value of % can be varied.
Therefore, since 20 =w b, a suitable choice of the step-length will avoid the
problem of ¢ being an odd integer multiple of n/2.
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