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1. Introduction 

In recent years there has been much work on difference methods for ap- 
proximating solutions to boundary value problems for elliptic partial differential 
equations. Most of this work has centered on second order equations and strong 
use has been made of an analogous maximum principle for the difference equations 
in order to obtain asymptotic estimates for the error (c.f. [1--8]). 

As early as t928 COVRANT, FRIEDRICHS and LEWY [9] posed a difference analog 
for the first boundary value problem for the biharmonic equation and proved 
that  the approximate solutions converge to the exact solution as the mesh is 
refined. They  gave, however, no estimates for the error. Recently, THOM~E [19] 
treated the Dirichlet problem for a class of elliptic equations of order 2m with 
constant coefficients. Among the problems treated by  THOM~E was that of [9]. 
THO~t~E, however, proved that  in a certain norm the error is 0 (h½) where h is 
the mesh size. 

Still more recently ZLAMAL [13] posed a different difference analog for a 
fourth order elliptic operator with variable coefficients which includes the bi- 
harmonic operator in two dimensions. He proved that for his problem the error 
is O(hJ). 

This paper is concerned with the first boundary value problem for the bi- 
harmonic operator in the plane: 

A ~ u =  F in R 

(t . t)  u - -  ~u - - 0  on 

where A is the Laplace operator, R is a bounded region with boundary/~,  F is 
a given function in R and ~u/an is the outward normal derivative on/~.  The 
boundary conditions are taken to be homogeneous for convenience, this restriction 
being removed in the appendix. 

Section 2 simply gives some notation and definitions needed for the later 
sections. 

In Section 3 some basic lemmas are proved which provide some a priori 
estimates needed later. The third of these temmas, Lemma 3.3, is proved by 
using difference inequalities closely related to inequalities used by  MIRANDA [11] 
in proving his biharmonic maximum principle in the plane. This inequality did 
not,  however, lead to a discrete analog of MIRANDA'S maximum principle but 
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was used in conjunction with a method related to one of FICHERA, [10], in order 
to deduce inequalities for certain discrete Lz norms. 

Section 4 makes use of the lemmas of the previous section to show that in 
the case of the biharmonic operator in the plane the results of THOM~E [12] and 
ZL/~MAL [13] can be improved. 

In the final section a difference analog of problem (IA) is constructed for 
regions with boundaries of arbitrary shape (only piecewise smooth). I t  is shown 
that  the error is 0 (h 2) in certain norms and 0 (h 2 I logl/h[~) in maximum norm. 
Strong use is made of the lemmas of Section 3. Furthermore, the matrix of the 
resulting linear system is symmetric and positive definite and a general formula 
is given for the construction of the modified matrix near the boundary. I t  should 
be pointed out that,  while in many second order problems difference methods 
were often formulated and later estimates given, this represents the first time 
an 0 (h 2) method has even been formulated for the first boundary problem for 
any higher order elliptic partial differential equation in a general domain. 

Although the results of this paper are special in that  only the biharmonic 
operator in two dimensions is treated it is hoped that some of the ideas will lead 
to similar results for more general elliptic operators in regions of general shape. 

2. Notation and Definitions 

Let R be a bounded, open, connected set in the (x, y) plane. We denote by 

/~ the boundary of R a n d / ~ =  R~/~. 

We shall be concerned with difference approximations of problem (t.t). In 
order to study such problems we cover the (x, y) plane with a square mesh of 
width h, whose lines are parallel to the x and y axes. The intersection of these 
lines will be called mesh (or grid) points and the set of all such mesh points will 
be denoted by  S h. 

For any function V(x, y) defined at the mesh points we define in the usual 
way the following difference operators: 

t ~ ( x , y )  = ~ [V(x +h ,  y) --  V(x,y)] 
(2.1) 

t V~ (x, y) = X [V(x, y) -- V(x -- h, y)] 

and analogously for y. Further 

(2.2) Ah Y(x  , y) = V~(x, y ) +  Vy~(x, y) 

where 
V.~ (x, y) = (V~)~(x, y) .  

The analog of the biharmonic operator is the usual t3 point operator 

(2.3) A~ V(P) = A h (A, V(P)) 

with P =  (x, y). 
We also need to define certain norms. Let Qh be an arbitrary bounded subset 

of S h defined for each h and let V be any mesh function such that  V (P )=  O, 
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PcQn. Then we define 

(2.4) 

and for any  integer p 

(2.5) 

M = (h. Z w ( P ) ?  
P E S h  / 

IIVll<,,) = (h, y, v*p(p) ::'~, 
" P E S h  

Now if V(P) is defined on Qh (otherwise arbitrary) we define 

(2.6) ]]Vilo, = (h N £ V* (P))½ 
PEQh 

where N is the smallest integer such that  the number of points in Q~ is o (h -N) 
for h-+O. Again if V ( P ) = 0 ,  PcQh we define 

Finally the maximum norm is given by  

(2.s) I vIQ. = max I V(P)l 
PEQh 

for any V defined on Qh. 

We shall need some names for neighborhoods of a point P relative to the 
operators A h and A~. Thus let 9 ( P ) : ~ ( P ,  Po) (Kronecker's delta) and define 

N~ (Po) = {PI A~ ~ (P) # o} (2.9) 

and 

(2.1o) N~ (P0) = {Pl A ~  (P) #o) .  

If  we take Qh to be an arbi trary subset of Sh then 

(2.tt) ~(Q,)= u N(P), i = 1 , 2 .  
PEQh 

Throughout this paper, we shall use the symbol, C, to denote a generic con- 
stant  which does not depend on h. In two different places C will not necessarily 
refer to the same constant. 

3. Some Discrete a Priori Inequalities 

In  this section we shall prove some lemmas which will be used in obtaining 
our error estimates in the later sections. 

The following lemma is the discrete analog of a well known inequa~ty valid 
in two dimensions. 

Lemma 3.1. Let V(P) be any function defined at the mesh points, which 
vanishes outside a bounded set of mesh points, R h. Then for any integer p => 1, 

(3.1) IlVlh~)---- Call,Vii, 

where C~ is a constant which depends on p and R, but  not on h. 
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Pro@ For any mesh point (2, Y) E Rh 
1 [ v~(~, ~)l --< ~ h E l(V%t, 

(3.2) * 
I V~(~,y) I _< ~ h E I(V%l 

y 

where the ~, is taken over the mesh points along the line y :  ~ and similarly for ~ .  
x y 

Thus 

By factoring the differences (VP). and using Schwarz's inequality we see that  
there is a constant C depending only on p and R such that  

(3.4) h~Z I (vP),l --< c ilv~ll IIvtNL~)), 
Sh 

with a similar inequality for the other factor in (3.3). Thus 

(3.5) IlVllF~p) ~ c II ~Vll ~ I lvN~&)  • 
I terating this inequality p times we obtain (3.t). 

We note that  the constant C a in (3./) tends to infinity as p -+oo  so that  
we do not obtain a maximum norm estimate. The next lemma, however, enables 
us to obtain an estimate for the maximum norm. 

Lemma 3.2. Let v(p) be any function defined at the mesh points which 
vanishes outside R h. Then 

(3.6) t VIRh ~ C ! log l/hl~ l[dVll. 

Pro@ Let G (P, Q) be the Green's function defined by  

Ak, pG(P,Q)=-h-20(P,Q) ,  PERh 

G(P,O)=O, P e R ,  

for QES h. Here again 0 (P, Q) is the Kronecker delta. Now since V(P) = O, PC Rh 
we have the well known relation 

V(P) = -- h 2 ~, G (P, Q) Aa V(Q) 
(3.7) Oes, 

= h ~ ~, [G x (P, Q) ~ (O) + Gy (P, Q) W (O)]. 
O E St, 

Using Schwarz's inequality we have 

If we note that  G(P, Q)=G(Q, P) and set V(S)=G(S, P) in (3.7) we see that  

(3.9) G(P, P)=h  2 Y, IOn(P, Q)+G~(P, Q)]. 
QESj, 

But it  was shown in [8] tha t  there is a constant C independent of h such tha t  

(3AO) G(P, P)<=C]logt/h[. 

Inequality (3.6) follows now from (3.8)--(3AO). 
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The next lemma is an inequality specifically involving the discrete biharmonic 
operator A~. We shall need to define some sets of mesh points. Let k h be a subset 
of those mesh points whose distance to the boundary is less than h. The set R h 
will denote those mesh points of R not in kh and R~ is the set of points P E R  h 
such that  N2(P ) ~ R h. Finally R*----R h -  R~ with these sets defined we shall 
prove 

Lemma3.3. Let V(P) be any mesh function vanishing for P e R  h. Suppose 
that  the function ~b, defined by zJ~ ~b(p) ___-- t ,  P~ R h ~b(p) = 0, PC R h, satisfies 
~b(p) ~ K h  for P E R*, (K = constant). 

Then there exists a constant C independent of h, for h sufficiently small, 
such that  

(3.1 ~) llVll + ll~Vll < c{h-~llvll~ + IIA~ Vl l~  • 

Proot. By a direct calculation we have 

A~E~-(v2 + v~ + 52 + 52) - vA~v] 
(3. t2) = - vA~v+~Ev2x+2~+~,]  +~ES~ + 2 ~  + 55] - 

- (A~ v)~ + v2~ + v.~ + v2~ + v2~. 
Since 

(3.t3) -- (A, V ) ' >  --  2 [V.~ + V~] 
it follows that  

A, [½ (v2 + v2 + 5 '  + 5') - v A ,  v] 

(3.t4) >= -- VAI]V + ½ [V,~-- 2 V,~ + V~] + ~-ES~ -- 255  +V~]  

= - v A ]  v + h , / z  ((v.~).~ + ( 5 ~ ) . )  • 
Now let 

(3.t5) z =  ~ v2 + v~ + 5' + 5 * -  v A , v  
so that  (3.t4) is simply 

(3.t6) - A ,  z < V n~ V - -  h~12 ( (V.~)x~ + (V~)~)  . 

Now by  hypothesis the mesh function ~5 defined by 

A, O(P) = -- t ,  PeRh  
(3.t7) 

O(P) = 0, P ¢ Rh, 
satisfies 

(3.t8) ¢ ( P ) ~ g h ,  PER~. 

(We note here that  it is easily shown that  if R has a piecewise smooth boundary 
with no reentrant comers such a mesh function will exist. The next lemma is 
applicable in the more general case, allowing reentrant comers. The behaviour 
near the boundary of the discrete "torsion function" in this case is discussed 
in [8].) 

Now we have 

(3.t9) - h 2 Y X d~  q~ = - -  I* 2 Y, ¢' AhX. 
Sh Sh 
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Using (3A6) 

- -  S a  (3-2o) s~ R~ 
h 4 

= h ,~  [(b v ~  v] + ~- F, [(bx (~)~ + (b~ (~)~3 • 
Ra Sa 

In order to obtain our results from (3.20) we need to show that the difference 
quotients (bx and (by are uniformly bounded. This is clear since any first difference 
quotient, say (b~, satisfies 

Ah (b~ ( P ) = 0 ,  PER;, 

(3.2~) la,(b,(2)} <cfh~, P e [ N ~ ( R t ) - - R i ]  

(b,(p) =o ,  P ~ ( R h )  

and hence by the results of [2] 

(3.22) [(b,,]s,<c. [(by[s,_~c. 
We note now that, 

(3.23) h ~ Y. Z = 2[I~V[[ ~. 
sa 

Returning to (3.20) and using (3-23) we have 

h a 

S~ Sh -- Rh 

h 4 (3.24) + ~-Y. E(b, (v2~), + (b~ (v~),] + 
SA 

+h*y, [(b v ~  v]. 

Using (3.22)we have, since Z [(V~),[ ~ - - 2 Z I / ~  etc., 
SA 

sa 

Sn 

Sa 

= Chh*XVA~ V. 

Also from (3A8) the first term on the right of (3.24) is bounded in terms of 
h-*HV[~v,~RI). Thus we have 

c {h-'~Vl~r.(gr.)+ hh'E IVAI V[ + h'X IVAn, V[} < 

(3.26) 
< c {~-' M~,.(.~, + ~'Y, Ivy: vl}.  

From the well known inequality 

(~.27) Ilv[[-~ cll~vll 
17 Numer. Math. Bd. 9 
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we have, using the arithmetic-geometric mean inequality 

(3.28) Ilarll < C{h-~IIVII~,<R~ + IIA~ Vll~;} 
for some constant C independent of h. The estimate of TrIOM~E 

eh-~ IlVl~,a~ < II~ vii =< c (IIA~ vIl~ + h-. IlvlIa) 
together with (3.27) and (3.28) yields the desired result. 

Lemma 3.3 is not quite general enough for domains with reentrant corners in 
that  the inequality qS(p)---<Ktt in the hypothesis will not be satisfied. However, 
if we weaken this hypothesis we can include such regions. I t  is clear, following 
the proof of Lemma 3.3, that the following lemma, which includes lemma 3.3, 
is true. 

Lemma 3.4. Let  V(P) be any mesh function vanishing for P e R  h. Suppose 
that  the function • defined by  An q~(P)=-- t, PcRh, qS(P)=0, P e R  h satisfies 
• (P) <=Kh ~, for 0 < a <  1, PERh*. Then there exists a constant C independent 
of h, for h sufficiently small, such that  

0t--1 

(3.29) ]l VII + II ~ VII ----< C h--v- {h-' II VIla + I[~ ~ V[l~} • 

4. Application of Lemmas to the Results of Thom~e and Zl~nal 

A particular case of those problems studied by TEOM~E I12] was problem (1. t). 
The difference problem in that case which he posed was that studied by COgeNT, 
•RIEDRICHS and LEWY [9] who showed convergence only. THOM~E essentially 
gave the following result. Let U(P) satisfy 

A~ U(P)=F(P), P~ Rh 
(4.1) 

U(P)= o, PcRh.  

Then if e(P)=u(P)--U(P) ,  PER h, e ( P ) = 0 ,  P e R  h and if k and u are suf- 
ficiently smooth, e satisfies 

(4.2) limb, II--< ch~, 
where C is independent of h. Now it follows at once from (4.2) and the fact that 
e ( P ) = 0 ,  P e R  h, that  

(4.3) II,llR, z oh ' .  

Thus in the case that Lemma 3.3 is applicable (R piecewise smooth with no 
reentrant comers) we have 

(4.4) I1.11 + II~.H < ch  
and from Lemmas 3.t and 3.2 

(4.5) llell, p<:ch 
and 

(4.6) I,IR,_-< Ch l log l/hl~. 
In case Lemma 3.4 holds but  not Lemma 3.3 the factor h on the right hand 

sides of (4.4)--(4.6) will simply be replaced by h 2 
Recently ZL,~MAL [18] has posed a difference analog of (1.t) (and more general 

fourth order equations) in the case that  R is composed of a finite number of 
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rectangles and/~ lies on mesh lines for a sequence of meshes with mesh width h n, 
h~-+ O, n - +  oo. 

In that  the more general formulation in the next section includes his for- 
mulation as a special case, i t  will not be explicitly given here. We state, however 
his result and show how it may  be extended by  means of the lemmas. 

Again let e be the error in ZL~AL'S problem and take e (P) = 0 P¢  Ra. ZLAMAL 
showed tha t  

(4.7) ItAhe II------- Cha 
and 

(4.8) t elR,_-< ch~. 
Now in the case of a rectangle Lemma 3.3 applies and we obtain 

(4.9) llell + ll~e]l--< ch* 
and from Lemmas 3.1 and 3.2 

and 

(4.11) l,lk<ch'tlogtlhl~. 
Clearly (4.1t) is a sharper result than (4.8). Now if  R has reentrant corners then 

3~ the interior angles will be v a :  ~ , and it can be shown that  we may take ~ =  3 _ e 

for any e > 0 ,  in Lemma 3.4. We then obtain instead of (4.9)--(4At) 

(4.12) ll,ll + 11~,tl- -< ch' ' /~- ' ,  
(4.~ 3) II, I1~, < Ch11/6-'~, 
(4.t4) l~l~,=< cn"J0-,  
for any fixed e >  0. Hence for any e <  ~ (4.t4) is a sharper estimate than (4.8). 

5. Second Order Approximation 
In order to simplify the presentation and proof we shall t reat  in detail only 

the case of simply connected regions with smooth boundaries. The modifications 
needed to deal with regions whose boundaries have piecewise continuous curvature 
(possibly corners) are technical and will not be of concern here. I t  will be evident 
from the development that  the method may, in fact, be applied equally well to 
this more general class of domains. 

We star t  by  defining a set of mesh points which will be analogous to the 
boundary R. Let/~lh be the set of grid points not in R whose horizontal or vertical 
distance to R is less than or equal to 2h/3, and let/~2h be those mesh points of 
R whose horizontal or vertical distance to/~ is less that  hi3. We set Rh =Rlh~/~2h. 
The set of mesh points of R but  not in/~h will be called Ra. Further let us denote 
by  R* the subset of points PER h such that  Rh~N2(P) is not empty.  Finally 

let R ~ :  R h -  R* and ~ h =  R h ~kh .  
Now on R~ we take the usual thirteen point operator 

(5.t) A~, V(P)= AhAh V(P) 
for any V defined in R h. 

tlt* 
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We want yet  to define a difference operator zl~ on the set R*. This operator 
should have the property that  

(5.2) zl~, v(P)=zl~v(P)+o(h-~), PER* 

for any v E C (4) (i~) which vanishes with its gradient on l~. As will be seen, this is 
a property which will be used in obtaining 0 (h *) estimates for the error in our 
problem. For simplicity we are treating only the case of homogeneous boundary 
conditions, however the necessary modification for inhomogeneous boundary 
conditions will be stated in the appendix. 

In order to define the difference operator at a point PcR~ it is convenient 
to introduce the following sets: 

Jo(P) = NI(P)c~ Rh-- P 

(5.3) J~ (P) = N 1 (P) c~2~n 

/2 (P) = N (]I(P)) ~ n ,  - P .  

Now let V be any function, defined at the mesh points, which vanishes outside R h. 
Further let ~ (P)h be the distance from any point P to the boundary R. At an 
arbitrary point PER~ we define a mesh function Up(Q) for each point QENI(P ) as 

vp(Q) =z~ ,v (0 )  + s~j, ml(.,_, Q~ Jo(P) 
(5.4) 2 

Up ((2) -- o: (P) h* V(P), Q E J~ (P). 

In terms of Up (Q) we define the difference operator 

(5.5) Zl~ V(P)= ~ ,  Up(P), 

for each PER*. By looking at the Taylor expansion it may  be directly verified 
that  the difference operator defined by  (5.4), (5.5) satisfies (5.2) in case the 
curvature of /~  is piecewise continuous and i~ has only "convex"  corners. The 
extension of the results of this section to non-convex corners is technical and is 
omitted here for simplicity. 

Intuitively, however, the construction is based on the following considerations. 
If W is a sufficiently smooth function defined in the whole plane, which vanishes 
with its gradient on k ,  then i t  is easily verified that  for V(P)= W(P), PE Rh, 

(5.6) V/Q)= ~W(q) +O (h) 

for OENt(P ). Thus (5.2) will obviously be satisfied for V =  W. 
I t  wilt be useful to compare this operator with the operator zl~, for functions 

V(P) = O, PC R h. The relationship is easily seen to be 

(5.7) ZTi V(P) = 3~ V(P) + h-4r (P) V(P) - -  h -~ X v(s) 
s~J, (P) 

where 

~(S) z I : ~ (0) ~ ' ]_ t l .  - - - - 2 ~ ( p ) / l  ] 
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Thus the modification of A~ V(P) is simply a change in the coefficient of V(P) 
itself and possibly a change of some other coefficients from 2 to I. The number 
~, (P) is easily calculated from the c¢'s. 

The difference analog of (tA) which we take is 

A~ U(P)=~(P), PE Ri 
(5.9) zI~U(P)=F(P), PER: 

U(P) = o, P¢ Rh. 

We have then the following theorem. 

Theorem 5.1. There exists a unique solution of (5.9). Furthermore if uE C te) (R) 
is the solution to (IA) and if e ( P ) =  U(P)--u(P), PER h, e (P )=0 ,  PER h then 
for h sufficiently small 

(5.ao) U~II + 11~tl < ch~ 
where C is a constant independent of h. 

Proo/. In order to simplify the argument we shall assume that the set/~h has 
the property that  each of its points has at least one horizontal and vertical 
neighbor not in R h. We also suppose that  h is chosen small enough that for 
each pair of points P and Q such that  PEf~(Q), the set J~(P)~J2(Q) is a single 
point. 

Let V be any mesh function which vanishes outside R h. Then 

h~ Z (A~ V:= h ~ Z VA~, V. 
Sh Rh 

By (5.7) we have 

n~X(~hV)~+h-" Z.[r(P) V(P)-  Y V(S)]V(P) 
PERt, t SEJs(P) J (5.tl) S~ 

= h,X vAi v + h'Z v3~ v.  
Ri R1 

Clearly from (5.7) and the definition of ]~(P) the matrix of the system (5.9) is 
symmetric. By  examining the left hand side of (5.tt) we shall show that  it  is 
also positive definite. 

Now let R~'~ be the subset of points PER~ for which ]x(P) is empty. Then 
for PERks 

~(S) 
(5.t2) ~(P) =o ~,~v) {s ~s, co, ( ~ )  } >O 

and Jz (P) is also empty. Further let Rx*k be that  subset of R* where Jx (P) is 
not empty but  J~(P) is empty and finally let R*h be those points of R* where 
neither J1 (P) nor J2 (P) is empty. We have 

h'Y(~h V)'+ h-' Y, It(P) V(P) - X v(s)] v(p) 
Sa PER~ t SE ~ ( P) J 

(5.~3) >h'Z(A~V)' + h-' Z. ~'(P) V'(P)+ 
SA P 6 R1 

+h-, Z [r iP)r iP) -  X v(s)]vIP). 
PE Rffk. L SE J', (P} 
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Now since V(P) = O, PC Rh 

(5.14) h ' ~  (A h V) 2 = h*~ [V,~ + 2Vx~y + V~y~] 
Sh Sh 

and hence because of the assumption on/~ ,  

(5 A 5) h* Z (A a V)* :>h s Z (A, V) s + h-* Z i (P)Vs(P), 
Sa Sh--[R{lat..JR~a] PER~h k.~ R~a 

where i (P)  is the number of points in ]I(P). Thus combining (5.13) and (5.15) 
we have 

h'Z (A, V)* -}- h-'p~Rl [y (P) V(P) -- Z V(S)] V(P) 
sh seJ,(P) J 

(5A6) >=h" Y, (A~,V)2+ h-~ E (Y(P)+/ ' (P) )  V2(p)+ 
sh- [R~hwR~h] P~R{~ 

-}-h -a ~ [(y(P)+i(P))v(P)--  ~, V(S)]V(P). 
RE R~h S~], (P) 

Now for any P~ Rl*h ~R*h it is easy to see from the definition of k h and 7 (P) that  

(5.17) Y (P) + i  (P) ~ -  i (P) ~-~- 

This estimate will suffice for R*h however we must examine R** more closely. 
From the definition of y (P) we have 

(5.t8) y(P)+i(P)>= F, y(P ,Q)  
Q~A (,2) 

where 

7 (P, Q) = 2 [ 
t ( 0¢ (Q) 

~(p) 2 C~(~)] 1. 

By the definition of ]2(P) we have that SE]z(P) if and only if PEf2(S) and 
with each such pair P ,  S there is a unique Q=II(P)~]~(S). Thus we have 

h-2 ~ [ y ( P ) + i ( P ) V ( P ) - -  ~ V(S)]V(P) 
SEA(P) J 

(5.19) ,2~R~, 
~ h - ,  Z [7(P,Q) v , ( P ) - 2 v ( p ) v ( s ) + r ( s , q )  v,(s)]  

(P, O, S)~T 
where T is the set of triples satisfying P, SeR**, S~]~(P), O=]~(P)~]~(S). 
Now if QE/~xa then it is easily verified that  Y (P, Q)~  2. In case Q E/~h we could 
have at  worst 

2[ 1 - 2 ~ ]  r(P,  9) > t - ( ~ J  for ~¢< ~-. 

But in this case we have 
[ t - - 2 a ' ]  t 

r (s, 9) > 2 L-~-T~-]' o~ < 3- 

(see Fig. t). In any case a simple calculation shows that 

h-a Z [r(P,Q) v * ( P ) - z v ( P )  v ( s )+y(s ,Q)v ' ( s ) ]  
(5.20) ('2, o,s)~r 7> -~ h-~P~ ~ ~ ( P) " 
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Combining (5.t6), (5.17), (5.19) and (5.20) we have 

hS~.(AhV)*+h-* ~ [ 7 ( P ) V ( P ) - -  ~. V(S)]V(P) 
PER• SeX(P) J (5.2t) s. 

->_ ~ h*X (~, V)*. 
Sh 

Tile case in which the assumption on /~n at the beginning of the proof is not 
satisfied can be dealt with again by  examining terms of h a ~, (AhV)* and (5.2t) 
can be shown to hold more generally, sh 

Thus combining (5.1t) and (5.2t) we have 

(5.22) h2 ~, (Ah V)* <= t0 th* ~, V A~ V + hZ X V ZI~ V} . 
sh ~ Ri R?, 

In view of uniqueness in the discrete Dirichlet problem (5.22) tells us immediately 
that  the solution of (5.9) is unique. But for linear systems uniqueness implies 
existence for any given F. 

In order to obtain the estimate (5.10) note that the number of points in N 2 (R*) 
( (h z v"(P)?/ is O(h -1) and by the definition of the norm I]ViiN,(R~) ]]V][N,(R~)= P~;,(R~) : /  

and the fact that V(P)=O, P e R  h, we have 

(5.2~) h-allvb~__< c II~ vll • & / 
where C is a constant which does not depend on h. In × /?^  / 
addition to this we need the well known inequality . • × / 

. . / x 
II LI 

Now we have for e ]Z]~e[R~ Ch ~ 

(5.25) IJsl~x_~ Ch 2 -1  

e(P)---- 0, P e R  h . 

If we set V = e  in (5.22)-(5.24) and apply the Schwarz / "  × x 
inequality to (5.22) it  follows, in view of (5.25), that  / 

Fig. t 

(5.26) Ilella__< Ch~- 
But by  Lemma 3.3 the estimate (5.10) follows. This completes the proof of the 
theorem. 

Corollary 1. There exists a constant C independent of h such that 

(5.27) II ~ 11(3 p) < c h' 
for any integer p ~ 1 and h sufficiently small. 

Proo]. Set V---- e in Lemma 3.t and apply Theorem 5A. 

Corollary 2. There exists a constant C independent of h such that 

(s.28) I el~,=< ch* Ilog a/h I ~ 
for h sufficiently small. 

Proo/. Set V =  e in Lemma 3.2 and apply Theorem 5 A. 
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Appendix 

Formulation o/Di//erence Problem/or Inhomogeneous Boundary Data 
We suppose for simplicity tha t  the boundary  is smooth and tha t  u is smooth 

in R. 

At  an arbi t rary  point  PER* we define 

if OEJo(P)~P 
and 

2 ( ~' (P) h ~' Wp(Q; u)= ~,(P)h, ~u(P)+~(P)hu-(P) 2 - -  [u~,(P) + k(P)u,,(P)]} 

if Q~A(P). 
We have used the no ta t ion :  

a) P is the point  of k closest to P (same for S). 

b) k (P) is the curvature  of/~ at  P .  

c) u~ (/~) is the  ou tward  normal  derivat ive of u at  ff  on/~.  

d) u s, (P) is the  second derivative of u with respect to arc length o n / ~  at  ft. 

If, instead of (tA), we have u and u ,  as given functions of arc length on R 
then the difference problem (5.9) is replaced by  

A~ u(P) = F(P), P~ R~ 

ZI~U(P) --F(P) + A h W p ( P ;  U), P6R* 

U(P) = o, P ¢ Rh. 

Now for e (P), as defined in Theorem t ,  i t  then follows tha t  we have 

Ai e (P)= o (h'), Pc R~ 

,ff~,e(p)=o(h-1), P c R :  

e(P)=o,  P~Rh. 

All the previous results now follow for the inhomogeneous problem. 
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