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Abstract. In this paper, we study the problem of unique interpolation and ap-
proximation by a class of spline functions, L-splines, containing as special cases the
deficient and generalized spline functions of AHLBERG, NiLsoN, and WaLsH [3, 5, 6],
the Chebyshevian spline functions of KARLIN and Z1EGLER [27], and the piecewise
Hermite polynomial functions, as considered in [17]. We first give sufficient con-
ditions for unique interpolation by L-spline functions in Section 2. Then, we obtain
new L* and L2 error estimates for interpolation by L-splines in Section 4, and show
that these error estimates are, in a certain sense, sharp. In addition, we make a
similar study for the g-splines of SCHOENBERG, cf. [44, 3], in Section 5. In Section 6,
an application of these new error estimates is made to the analysis of the error made
in the use of finite dimensional subspaces of L-splines and g-splines in the Rayleigh-
Ritz procedure for the class of nonlinear two-point boundary value problems studied
in [17].

Because of the rapid growth of the number of papers devoted to or connected
with the topic of splines, we believe that a compilation of papers on splines for the
reader’s use is desirable, and such a list is found in the References at the end of this
paper?.

1. Introduction

For each positive integer m, let K3'[a, b] denote the collection of all real-
valued functions #(x) defined on [a, b] such that #cC™ '[a, b], and such that
D"y (x) =u™Y (x) is absolutely continuous, with D™u(x)cL?[a, b]. Let L be
the m-th order linear differential operator defined by

(1.1) Liu(#)] = 3 a,(x) Dius)

§=0

for any ucC™[a, b]. We assume that a;(x) is in K3'[a, b] for all 0=j<m, and
we further assume that there exists a positive real number w such that

(1.2) a,(x)=w>0 forall x¢[a,bd].

It is a well-known result (cf. [3’, p. 63]) from the classical theory of ordinary
differential equations that the equation

(1.3) Llu]=0
possesses # linearly independent solutions u,(x), #,(%), ..., %, (%) in C"[a, b],
and the m-th order Wronskian

3 (%) uy(%) ... ()
(1.4) Wi ug,uy, ..., u)—det | Dta(®) Dua(#) ... Duy(x)
D™=y (3) o D (2)

* This research was supported in part by NSF Grant GP-5553.
1 Papers not specifically concerned with splines are referred to in the text by
[17, 27], etc.
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is not zero for any x¢[a, b]. The formal adjoint, L*, of L is defined by

(1.5) L*[o()] ==j§o (—1) D' {a; (%) v (%)}
Associated with L is the bilinear concomitant P{u, v} {cf. [1', p. 86]), defined by
w1 . i
(1.6) Plu,9) = 3 D" () 3 (— 1) Dt (9 05,

u,v€ K3'[a, b]. As a direct consequence of the definition of P(u, v), we have
Green’s formula

B
(1.7) uf{vL[u] —uL*[v]} dx = P(u(B), v(B)) — P (u(w), v(a))

for any «, f¢[a, b], and any , ve K3'[a, b].

Let m: a=x,<<#; <" <xy<%y,==b be a partition of the interval [a, b],
and let 2=(2y, 2,, ..., 2y), the incidence vector associated with m, be an N-vector
with positive integer components, each less than or equal to m, ie., 1<z,<m
for 1<7<N.

Definition 1. The real-valued function s(x) defined on [a, b] is said to be an
L-spline for m and # if and only if s(x)e K3™[x;, x;,,] for each 4, 0<i<N,
(1.8) L*¥L[s(x)] =0
for almost all x¢(x;, x;,,), for each 4, 0=¢< N, and
(1.9) DFs(x;—)=D*s(x,+) for 0Zk<2m—1—z, 1=<i<N.

The class of all L-splines for fixed = and #z is denoted by Sp(L, =, 2).

We remark that if z,==2,= -+~ ==zy==1, then Sp(L, =, 2) coincides with the
space of generalized spline fumctions of ABLBERG, NiLsoN, and WALsH [5], while
if y=zy="1=zy=9q, SPp{L, n, &) coincides with the space of deficient spline
functions of deficiency ¢ of AHLBERG, NiLsoN, and WarsH [6]. Furthermore,
when z=z2,= - =2z,=m and L=D" then Sp(L, m, 2} coincides with the
Hermite space H™ () of piecewise-polynomial functions (cf. [17]).

If f(x) is a given function in C"[a, b], we can define four basic types of
interpolates of f{x) in Sp(L, =, 2). In so doing, it is convenient to augment the
incidence vector 2 with positive integer components 2, and zy,;, where 1=z,
Iy =M.

Definition 2. Given f(x)cC" '[q, b], a function s(x)cSp(L, n, 2) is said to
be a Sp(L, n, z)-interpolate of f(x)

of Type I if (i) DFs(x;)=D%f(x), 0sk=z—1, 1<i<N, and
(i) Drs(x)=D%f(x;), O0<ks=m—1, 1=0and N-+1;
of Type I if (i) Dts(x,)=D*f(x), 0<k<z—1, 1=i<N,
(i) Dfs(x,)=D*f(x;), O0=k=<z—1, {=0and N+41,
(iii) if z;<m, then kéb(m'l)kl)k{am_i”(xi)L[s(xt-)]}=O
for 0Z7Em—1—2, 1=0 and N +1,
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of Type IITif (i) DFs(x,)=D*#(x;), 0Zk<z;—1, 1<Si<N,
() D*s(x)=DFf(x), O0=k<z—1, 1=0or N+1,

(i) if z<m, thenéo(—nkD’*(um_,-H(x,-) (LU ()] —LIs(x)})

=0 for 0Zj<m—1-—z, i=0o0r N+1, and

of Type IVif (i) feC3" '[a,b], ie., [(x)cC*™ '[a,b], and
D*j(a) =DH () for 0<h<2m—1,
(i) a,cCr'[a,b] forall 0=j=m,
(i) Drs(z)=D'f(x), O<k<z—1, A<i=N,
(iv) Dts(x)=DFf(x), O0=5k<z,—1, i=0, and
(v) D*s(a)=DFs(b), =k<2m—1.

In essence, interpolation of Type I fixes the augmented incidence components
2o and 2y, to be m, i.e., we adopt the convention that zy=2zy,,=m in this case.
For Type I and Type III interpolation, z, and zy,, are arbitrary with 1=z,
zyp1=m, while for Type IV interpolation, z, is arbitrary with 1< z,=m, and
Zg=2y+1-

Definition 3. Given a real-valued function f{x)cC" '[a, b], and given L, z,
and 2, the L-Hermite problem of Type I (resp. Type II, 1II, or IV) is to find a
function % (x)eSp (L, m, #) such that

(1.10) Llu(x)]=0 forall =xefa,d],

and such that «(x) is an Sp(L, &, 2)-interpolate of f of Typel (resp. Type 11,
111, or IV). The L-Hermite problem is said to be well-posed? for Sp(L, =, z} if
and only if it has af most one solution.

We now determine sufficient conditions for the L-Hermite problem of Type I
{resp. Type II, I11, or IV) to be well-posed. The well-posed nature of the L-Hermite
problem is, as we shall see in Section 2, fundamental to the question of unique
interpolation in Sp (L, =, 2).

Theorem 1. If the coefficients a;(x) of (1.1) are not all identically zero in
[a, b] for 0<7<m —1, let c be the positive zero of

Mpycm ({m—1ym—1 My gt .
(1.11) ol { 2 }+ i Tt Mie—1=0,
where
(1.12) M’_x?[i?b] ol |’ 1=j=m.

Otherwise, define ¢ =b—a. Given & and 2, assume that the components of the
augmented incidence vector 2 for Type I (resp. Type 11, III, or IV) interpolation,

% In the special case L =D", we remark that our term “well-posed”” corresponds
to the term * m-poised’” of SCHOENBERG [47].
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for some 0= p<g=< N1, satisfy the inequality

q
(1.13) {gpz,zm where x,—x,=c.

Then, the L-Hermite problem of Type I (resp. Type 11, III, or IV) is well-posed
for Sp(L, =, 2).

Proof. It suffices to show that if f(x)==0 in [a, 8], then the only solution of
the L-Hermite problem of TypeI (resp. Type II, 111, or IV) for Sp(L, =, 2} is
#{x} =0. Using a result from the theory of ordinary differential equations [3’,
p- 346; 4], any solution % (x) of L[#]==0 having m zeros (counting multiplicities)
in any subinterval of [a, ] of length ¢ or less must be identically zero. By de-
finition, if L{u]=0and u(x) is a Sp(L, n, &)-interpolate of Type I (resp. Type II,
III, or IV) of f(x)=0, then #{x) has a zero of order 2 at each x,, 0S/<N+1.
Thus, by hypothesis (1.43), #(x) has at least m zeros in an interval of length ¢
or less, and consequently #{x)=0. Q.E.D.

For any z; with z;=m where 0<X{S N1, then (1.13) is trivially satisfied,
which gives us the

Corollary 1. Given Sp (L, =, 2), then the L-Hermite problem of some particular
type is well-posed for Sp(L, =, 2) if some component z; of the associated aug-
mented incidence vector satisfies z;=m. In particular, the L-Hermite problem
of Type I is always well-posed for Sp (L, =, ).

If we have a sequence of partitions {#;}2; on [4, b], where 7;: a= ) < 2§ <
o< 4 1=b, and if we define ﬁimog}ig;;v ‘ (%11 — x{"), suppose that Jim 7, =0.
If {2'9}%, is any sequence of augmented incidence vectors associated with {m,}32,,
then, since the positive zero ¢ of (1.11) is fixed, independent of ¢, and any com-
ponent of any incidence vector is at least unity, then it is clear that there exist
g; and p; with 0=<4,<¢,< N;41 such that

a4 . . ,
(1.14) {Zﬂzﬁ‘)_?:m with 8 — ) <c
=ps

for all 7 sufficiently large. This gives us
Corollary 2. Given any sequence of partitions {z;}{2; with lim #;=0, and any

sequence {21}32; of augmented incidence vectors associated with {#;}{2;, the
L-Hermite problem of Type I, Type II, Type 1II, or Type IV is well-posed for
Sp(L, m;, %) for all 1 sufficiently large.

If we assume that the differential operator L has Pélya’s property W of
(1.15), we obtain a result analogous to (1.413} of Theorem 1.

Theorem 2. Let the differential operator L have property W on some interval
{2, )[4, B, i.e., L[u]=0 has m solutions u, (%), uy(x}, ..., ,,(x) such that
#y (%) ug(%) ... (%)

Du(x) Duy(x) ... Duy(x) +0

(1.45) W{x; %, ..., u,) =det
D11, (%) I P

for all ze{x, ), forall 1=k=Zm.
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Given =z and 2z, let the components of the augmented incidence vector for Typel
{resp. Type I1, II1, or IV} interpolation, for some O£ p<g<< N1, satisfy the
inequality .
(1.16) 2 z=m where x,, x€(a, f).

t=p
Then, the L-Hermite problem of Type I (resp. Type 11, III, or IV) is well-posed
for Sp(L, =, 2).

Proof. The argument is like that of Theorem 1. If L{u]=0 and u{x) is a
Sp(L, m, z)-interpolate of Typel (resp. TypeIlI, III, or IV} of f(x)==0, then
#(x) has a zero of order z at each x,, 0=/<N-1. With the hypothesis of
(1.16), it is known [3’, p. 67; 5'] that if »(x) has m zeros in («, £), then #(x) =0.
Q.ED.

If we choose any point g interior to [a, b] and let u, (%), ..., #,,(*) be solutions
of L{u] =0 with D’ u;{u)=0;_1 ,, 1S7<m, 0= =<m —1, then W(u; uy, ..., ) =1
for all 1 = A< m. Hence, by continuity, there always exists an interval (&, §} ([a, ]
with a<u<<f such that L has property W on (x, ). If f —a>c¢ where ¢ is de-
fined by (1.11), then (1.16) is a weaker condition than that of (1.43), and Theorem 2
gives an improved result.

2. Existence and Uniqueness
The following result is a generalization of Theorem 4 of [5].
Theorem 3. Let 1, 2, and feC™"{a, b] be given. If the L-Hermite problem of
Type I {resp. Type 11, 111, or IV) is well-posed for Sp(L, 7, 2}, then there exists

a unique function s(x)eSp(L, =, ) which is the Sp(L, m, 2)-interpolate of /(x)
of Type I (resp. Type II, III, or IV).

Proof. Recalling our original assumption that a,(x)cK3'[a, b], 0=j=m, it
2m

follows that the coefficients §;(x) in L* L[v(x)]= X f;(x) D'v(x) are all elements
=0

of L2[a, b]. Thus (cf. [3', p. 43]), there exist 2m?1inearly independent functions
v; (x)eK3™[a, b], 1=j<2m, with L*L[v;(x)]=0 almost everywhere in {a, B],
such that if s(x) is a Sp(L, m, 2)-interpolate of Type I (resp. Type I, III, or 1V),
then on each subinterval (x;, x;,4), 0S¢< N, s(x) can be expressed as s(x) =

2m
X ;iv;(#), ie., s(#) is determined by 2m coefficients «; ; in each subinterval.
f=1

Thus, the total number of coefficients determining s(x) in [a, b] is 2m{N 4 1).

We now calculate the number of linear equations which constrain these coef-
ficients. At each interior mesh point x;, the differentiability condition (1.9)
N

yields 2m —z;, homogeneous conditions, and thus there are ) (2m —z,) such
equations in all. Next, if s(x) is a Sp(L, m, 2)-interpolate of f(x=) the conditions
of Definition 2 impose Z 2;-+2m constraints in all, mdependent of type. Hence,
the total number of const;alnt equationsis2mN — Z z+ Z 2;+2m=2m (N +41).

In other words, if s(x) exists, it is obtained from a solutmn of 2m(N4-1) linear
equations in 2m (N +1) unknowns. To establish both the existence and uni-
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queness of s{x), it suffices to show that if f(x})=0 on [a, &], then s(x)=0 also
for all x¢{a, 5],
Consider the integral
N xiqq

b
(2.1) J=J(Ls@)ras=3 [ (Lls(]) s,
a =0 %
where s(x) is any Sp(L, mn, z})-interpolate of f(x)==0 of any type. With u=s
and v=L[s] in (1.7), we can express [ as
T=2i4
r=x }

The first sum of (2.2) is zero since s{x) is an L-spline (cf. (1.8)), and, using (1.6)
and Definition 2, it can be verified that the second sum vanishes for all four
types of interpolation. Thus, [ is zero and consequently L[s] () =0 almost every-
where in [a, b]. But, as s(x)cSp(L, =, #) implies that se K§”[x;, #,,,] for each 1,
0<i<N, then surely L{s]{x)=0 for xe(x;, x,,4), O0=¢<N. Now, letting
% (%), #y(%), ..., #,,(x} denote m linearly independent solutions of L{u]=0, we

"
have s(x) xkzlﬁ,-,kuk (%) for all x€(x;, x,,4), 4=0, ..., N. To show that L[s(x)]=0

for all xe[a, b], we must show that B, ,=f,.,,, i=0,..., N—1, k=1,...,m.
But, it follows from (1.9) of Definition 1 that D*s(x;—)=D"s (x;+), k=0, ..., m—1,
i=1,..., N, since each z; is at most m. Hence for each ¢, 0=¢<N —1, the
m differences f; , —B,., ; satisfy the s homogeneous linear equations

N xegs

22)  J=3 [ s(x)(L*L[s(x)])dx —|—£§O{P(s(x), Lis))

=0 x

(2-3) kgl(ﬁi,k —ﬂiﬂ,k) Dj”k (xi+1) =0, 7' =0, ..., m—1.

But the determinant of the coefficient matrix in (2.3) is exactly the Wronskian
W{(x; 4, ttg, ..., u,) of (1.4), evaluated at the point x=wx;,,, which we know
does not vanish. Hence, §; ,=,11,:,1=0, ..., N—1,k=1, ..., m,and L[s(x)]=0
for all x¢<[a, b]. But, since the L-Hermite problem is well-posed, then s(x)=0
for all xefa, b]. Q.E.D.

In the special case that the differential operator L has property W on the
interval (a, b), Theorems 2 and 3 give us that interpolation in Sp(L, m, 2) is

N

unique, if ) z,=2m. Thus, Theorem 3 is a generalization of the basic results of
=1

KarLIN and ZI1EGLER [27, Theorems 3 and 3'].

3. Integral Relations
The results of this section generalize the first and second integral relations
of [6].
Theorem 4. Let f(x)e K7 [a, b], @, and z be given. If s(x) is a Sp(L, =, 2)-
interpolate of f of Type I, II, or IV, then the following first integral relation is
valid:

|4 b
6.1 J@pan=1 @ —s)ean+f @shran.
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Proof. Clearly,
(3.2) afb(L[f])?dx =j(L[f —s))2dx+ 2;12{}‘ —s]+L{s]dx +f(L[s])2dx,

and the first integral relation of (3.1) follows if we can show that the middle
term on the right-hand side of (3.2) vanishes. With #u=f—s and v=L[s] in
(1.7), we then have

N %49

fL[f—S]L[S]dx—Z J (t—s) (L*L[s)) d=

a =0 g

+,~§{ (F(x) —s(x), LIs]) "

(3-3)

*i+ x}

As in the proof of Theorem 3, the first sum on the right-side vanishes since
seSp(L, m, z), and the second sum vanishes if s(x) is a Sp(L, n, #)-interpolate
of f of Typel, TypeIl, or Type IV. Q.E.D.

In much the same manner, we obtain the following second integral relation
if f(x)cK3™[a, b].

Theorem 5. Let f(x)cK3™[a, b], m, and z be given. If s(x) is a Sp(L, , 2)-
interpolate of f(x) of Type I, III, or IV, then the following second integral relation
is valid:

b b
(3-4) af@[f*SDZafx =‘;f (f —s) (L*L[f]) ax.

Proof. With u=f—s and v=L[f—s] in (1.7), we have
b b
uf (L[f —s])?ax =af (f —s) (L*L[f]) dx

(3.5) N
+ 2 {P () (), LA —LEs)

{-h}

since L* L[s] =0 almost everywhere on each interval (x,, x;.,), 7=0, ..., N. But,
as before in the proofs of Theorems 3 and 4, the second term on the nght-hand
side of (3.5) vanishes since s(x) is a Sp(L, =, 2)-interpolate of f(x) of Typel,
Type I1I, or TypeIV. Q.E.D.

It is worth noting in Definition 2 that only the periodic boundary conditions
of Type IV couple the boundary conditions at one end with the other. This
means that we can in fact independently assign boundary conditions of Types I,
I1, or III at either end. Thus, it is clear that the result of Theorem 4 is equally
valid for a hybrid interpolate of f in Sp(L, =, 2) with a Type I boundary con-
dition at one end and a Type II boundary condition at the other end. A similar
remark is also valid for Theorem 5.

4. Error Bounds
Let {m;}2, be any sequence of partitions of [4,b], with ilir{‘lo F;==0. We then

have the following error bounds which generalize Theorem 1 of [6] and Theorem 9
of [17].
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Theorem 6. Let fe K7'[a, b], let {m;}{2, be a sequence of partitions of [a, b]

with lim 7;=0, and let {2}{2, be any sequence of incidence vectors associated
‘}——)OO

with {7;}{2;. Then, there exists a positive integer 4, such that the Sp (L, x;, 21%)-
mterpolate s;(x) of f of Typel, II, or IV exists and is unique for any =1,
and moreover, there exists a constant M,, dependent on § and # but independent
of 7, such that

1D7(f — sl oo to, 0 = My (7"~ D L — s)2a, 10

(4.1) o
S My@)" T PNL flrage, 01,

for any § with 0=7<=<m —1, and any ¢=1,.

Proof. The first part of this result follows directly from Corollary 1 of Theorem 1
and Theorem 3. For the remainder of the proof, fix ¢ large enough, say 1=1,,
so that s;(x), the Sp(L, x;, z("))-interpolate of f of Typel, II, or IV, exists and
is unique. If ;1 a=1xy<<x;<< -*» < ay,31=0, then, as each component z; of any
augmented vector is at least unity, f(x;) —s;(x;) =0 for all 07 < N, +-1. Because
(f—s;)€C™ [a, b], we can apply Rolle’s Theorem to f(x) —s(x). Hence, there
exist points {£/})e51~7 in [a, b] such that

DifED) —Dis; (&) =0, O=Zf<N,+1—j, O0=j<m—1, where

42) { as&) <& < <&fl;1;<0b, and
EN<E <)y forall 0SI<N,+1—j, O=jsm—1.

It is readily verified by induction that | &/} — & | < (j+1) 7;, |a —&]| =(j+1) 7
and |b—&Q 1 ;| S(G+1)7; for any 0<j<m—1. Now, for each j§ w1th
0=j=m—1, let x;¢[a, b] be such that

(4.3) | DY (f(x;) —'si(xf))l =D/ (f —3,)| Lo 10, 57 0=j=m—1.

Again, it is easily seen that there is a &) such that |x; —&’| < (j +1) ;. Then,
as Di[f(EW) —s;(6")]=0, we have from (4.3) that

1D/ (f — )L o,

() — ;) dtj .
For j<m~—1, this integral is bounded above by (7 +1) #; [ D' (f —s) e s, 57 -
By repeating this argument, we obtain

gt ) L m—1—j | ym—
i 1) (7;) ! 7"D 1(f*'3i)“z,w[a,b1,

o=7j<=m—1.

Di(f —s)|rofen =
DU L
Similarly, using the Schwarz inequality, we obtain

Tm—1

"D"'_l(f”—si)ﬂm[a,b]— fDm( (t) —s;()) @t

g (xm—l - Esem—l))* "Dm (f - si)"L'[a, 5]
LYmZ D™ (f — 53)|le2ga, 67

(4.5)
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Combining (4.4) and (4.5), we have

107 (f — s} reoa, 0y = ‘f“%? @Y T PYD(f — ) erta,
07Em—1.

(4-6)

Writing
m—1

a,, () D™ (%) — 5,(x)) = L[} (%) — 5(#)] —iZ a;(x) D (f (x) — s;(x))

=0

and recalling the lower bound for a,,(x) of (1.2), the triangle inequality gives us
m—1
" 1 ]
107 (= sdlsie = {HLU =) ertam + Z} laleo oo 1D ¢ — sdlerce bl} :
71=
Since )
(0 —aP | D7 (f — s e n = 1D (f — ) |r, 015

the bounds of (4.6) thus yield
m—1
1 G—atml .. "
{1 — ’;) laleo e, 57— @)™ (’”} 107 (f = s:}lerta,
1
S Ll = s)ria -

Thus, there exists a positive integer ¢, and a positive constant H such that

(4.7) 1D (f — sdleata, 1 = HILG — s, forall izid;.

Combining (4.7) and (4.6), we obtain

. Hom! (7)ym—i—H .
(4.8) ||D7(f--s1.)”Lm[a’b]§%“L(]‘——si)h.[a,b] for 0<jsm—1,

for all t=max(i,, 7;), which establishes the first inequality of (4.1). But, the
second inequality of {4.1) is a direct consequence of the first integral relation
of (3.1). Q.E.D.

If we are interested in L2[a, b}-type rather than L[z, b]-type error bounds,
the result of Theorem 6 can be improved by the following new result.

Theorem 7. Let fcK¥[a, b], let {n,}21 be a sequence of partitions of [a, b]
with lim 7%;==0, and let {2¥1}32, be any sequence of incidence vectors associated
1> 00
with {#,}$2,. Then, there exists a positive integer ¢, such that the Sp (L, =;, 2¥)-
interpolate s,;(x) of f of Type I, II, or IV exists and is unique for any ¢z4,, and
moreover, there exists a constant M,, dependent on 7 and m but independent

of ¢, such that
4.9) D — s a5y = My F)™ LG — s)lerpe, 0= Mo (T 7| L lroa sy

for any 7 with 0<j<m and any 1=1,.

Proof. The first part of this proof has already been established in Theorem 6.
Now, for any § with 0<7<m —1, we have from (4.2) that D/ (f(&0) —s,(£/)) =0
for 0X/<N;+1—4. Hence, applying the Rayleigh-Ritz inequality [2', p. 184],
24 Numer, Math, Bd. 10
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we have
& _ &

@10) [0 —so)pars[ LIS [ —s @)
EU) 5({7)

since | &) ha— /) < (j +1) #;, and this inequality holds for # with 0=</< N, —7.
Thus, summing both sides of this inequality with respect to £ gives

@A) (D = )losep, o0 [FLEDT S (1D =) o,

~4+1] _,+1])

for all 0=j<m—1. Since [£"?, 7=, 1 [a, b], the special case j=m —1
and the inequality of (4.7) give
(4.11’) (H Dm—l(f —Sz) uL:[E(m—l) m-}.)

(—m+ 2)

< 8t OB (L 5 o )?

for all 7= +4,. Next, the inequality of (4.8) of Theorem 6 gives us that
5(/)
(4.12) f (D) —s:@)]2at < (1D (f — s) ) oo, 00)* | & — 2]
SM (7P (LY —s)ppn)? forall 0=j<m—t, 121,

since |£Y) —a| < (j 1) #;. Similarly, we have

, [ (D9 (1() — )] dt < M) (LF — )l )’
{4.12") ENg441
0=Zism—1, =1,
Thus, summing the inequality of (4.11’) with the inequalities of (4.12)—(4.12")
for the case of j=m —1 gives

(4.13) "Dm 1 -‘—S "L’[a b]gM” ”L - S; "Ll[a,b], igio.

Continuing this argument, we can use {4.11) in conjunction with (4.12) —(4.13)
to establish the desired result of (4.9). QE.D.

If we make the stronger assumption that fcK3"[a, b], we can materially
improve the above error estimates. The following result generalizes and improves
Theorem 2 of [6].

Theorem 8. Let fcK3™[a, b], let {m;}32; be a sequence of partitions of {4, b]
with lim 7,=0, and let {27}, be any sequence of incidence vectors associated
with {m © .. Then, there exists a positive integer i, such that the Sp(L, n;, 2%)-
interpolate s,(x) of f of Type I, III, or IV exists and is unique for any i=4,,
and moreover, there exists a constant M;, dependent on 7 and s but not on ¢,
such that

(4.14) 107 (f — sl a, 01 = M ()"~ @ L* L[] rata, 1
for any j with 0=<7<m —1, and any 12=4,.

Proof. Schwarz’s inequality applied to the second integral relation of (3.4)
yields

(4.15) (LG — sHleria, ) = IF — sillosia, o0 1L* LI ata, -
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Using the first inequality of {4.9) for the case =0 then gives
(4.16) LG — slea, o1 = Mo (@)™ |L* Lo, -
Combining this inequality with that of (4.8) produces

197 = 5oty S et @01 L{f e

for 05/sm—1,

(417)

the desired result. Q.E.D.

If we are again interested in L2 [a, b]-type error bounds, the result of Theorem &
can be improved as follows.

Theorem 9. 1f the hypotheses of Theorem 8 hold, then there exists a positive
integer 4, and a constant M,, dependent on 7 and m but not on ¢, such that
(4.’18) H D (f - 5;) HL*{a, ] =M, (ﬁz‘)zm_i HL* L[ﬂ HL'[a, o]
for any § with 0=<7=<m and any ¢=1,.

Proof. Just combine (4.13) and (4.16). Q.E.D.

The result of Theorem 9 here generalizes and improves the results of Theorems2
and 6 of [6], and Theorem 9 of [17].

In [6], AHLBERG, NILsON, and WALSH obtain the convergence of derivatives
of higher order of generalized splines to the corresponding derivatives of 7. This
can also be generalized and improved as follows. With the hypotheses of TheoremS$,
we know from Theorem 8 that there is a positive integer 7, such that the
Sp(L, m;, 2%)-interpolate of f, called s,(x), of Type I, III, or IV exists and is
unique for any 1=4,. If {v;(#)}}2 is any linearly independent set of functions
in K3"[a,b] such that L*L[v;(x)]=0 for almost all x¢[q, b], and if z;: a=
x < xfl< oo < af) ;1="b, then s;(x) for any i=4, can be represented on each
subinterval of z; by

2m
(4.19) s;(x) =2 APPo(x), xe[af), ], OZERSN;, iz,
=1
Fixing our attention on the particular subinterval [}, &’} ] of ;, divide this

, 5 I =AY
subinterval into 2m equal parts by means of &=x{) +—————

Just as in [6], we form the divided differences

, 0= i< 2m.

[4
sﬁﬁwwME%QPW%%ﬁm
7:5

Al
2m ’

(4.20)
h= osf2m—1,

so that from (4.19)
2m

4.21)  #1s;[E, &1y en E] =2 AP v (&, & oL &) os/s2m—1.
=1

Thus, regarding (4.21) as 2m linear equations in the unknowns A{*, the 2m X 2m
coefficient matrix C=(c, ,) for these unknowns has its entries given by ¢, ,=
=)y, [&, &, ..., Epma), 1P, g2m. On the other hand (cf. (1.4)), the

24»
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2m X 2m Wronskian matrix W(x; vy, vy, ..., va,,) = (b, ;) has its entries given by
by =v¥~V(x), 1=<p, g<2m, and the connection between these two matrices
comes from the well-known result which relates divided differences to derivatives,
ie., if g(x)eC*'[#{), xfY),], then

(4.22) gl &, ..., &) =D'g(r), where )= <1, <=2,

Now, we make use of the fact that W(x; v, v,, ..., v5,) is nonsingular for any
x¢€[a, b].By choosing 7, sufficiently small, i.e., i=4,, it follows from {4.22) that
the entries of C can be made uniformly close to the entries of W(x¥; v, ..., vs,,),
and as such, C is nonsingular. Moreover, for =1, there is a constant K, >0 which
uniformly bounds the entries in modulus of the inverse of C for any 0 AN,
Thus, from {4.21) we have for all § and % that

2m—1
(4.23) AP S K, 3 {1 sl b, &) forany iz

It remains to show that the s;[&,, ..., &] are all bounded for 0/=<2m —1.

With feK3™[a, b] and ¢=14,, Theorem 8 gives us that there exists a constant
M;>0 such that

(4.24) | F(%) —s;(x)| S My (7P for all x€[a,b].

Using the notation &; = min (2., — #{9), it follows from (4.24) and the definition
of (4.20) that
) 2m—@)

lf[s.,,sl,...,fflwsitso,fl,...,f,]ig(m)'Ml(—)TﬂT),——, 0<t<2m—1.

If we make the mesh restriction that there exists a positive constant ¢ such
that oz, =7, for all ¢ =1, this then becomes

(4.25) [F[&o, -.o) &) =i, - &) = (dom) My (m)* 0, osf=2m—1.
Bat as
[1{Eos s N = | D fa) Y S D ropeuft!, OSt=<2m—1,

it is clear from (4.25) that the quantities |s;[&,, ..., £]| are uniformly bounded
for all 124, all 0=/ 2m—1, and all 0ZAXN,. Thus, with (4.23), we can
assert, as in [6], that there is a constant K,>>0 such that

(4.26) |[APP| <K, for izi;=max(ty, ).

By definition, s;(x) e K3™ [, xf, ] for every 0L k< N,, and also v, K3™[a, b]
for all 1<j<2m. Again, considering the particular subinterval [x{, #{, ;] of =;,
it follows from (4.25) that there is a 1, with &< 7,<§, such that

(4.27) |D'(f—s)) (x)| S L1 (dom) My (7)) —-®,  ostf<am—1.

Thus, for any xe[s{), 2§, ], we can write

(4.28) D(f—s,) (%) — D' (f—s)) (m) = sz"“(f —s;)(@)dt, O0sf{=2m—1.
2
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For the case /=2m —1, combining an application of Schwarz’s inequality to
the integral of (4.28) with the inequality of (4.27) yields

(429) | DM f —s)) (9)] = {) (4o m) My + | D*™(f — s) |uapapp, w0, 3} (R

Now, the representation of s;(x) in (4.19), coupled with the uniform boundedness
of the Af*" in (4.26), gives us that the norms |D*"s|.,. ., are also uni-
formly bounded for all 2 and all 7=+,, and as f is a fixed function in Kg"’ {a, b],
the same is evidently true for the norms |D*”(f —s,)|,. o9, 580" Hence, there is
a positive constant M, such that for i=4,,

(4.30) D" f — s )0 o = My(7)E forall 0<k=<N,.
[# :"kh]

From (4.28), it is clear that this argument can be repeated in the uniform norm
for the lower order derivatives, and we have for 1224, that there is a constant M,
such that

(4.31) 1D/ (f —s.) lore, sty = Ms @)%, o=Zj<2m—1,

Frtl

for all 0L k< N,. Thus, if we extend the usual definition of the L®-norm on
[, b] by defining

(4.31)) [D7(F = slpotany = jmax {ID7(f — sl 49,1}

we have

Theorem 10, If the hypotheses of Theorem 8 hold, and if there is a positive
constant ¢ such that gm,=7, for all 1=1, then there exists a positive integer i,
and a positive constant M, independent of ¢, such that

(4.32) 1D (F = $) g p) < Mg ()21~ D

for any § with 0<{/<2m —1 and any ¢=1,.
It is worth noting that if max #'=g,, then the Sp(L, x;, 2¥)-interpolate
=R

s;(x) of #(x) is in general only of class C*#~1~%[q, b] on the entire interval [a, b].
Thus, for any § with 0<7<2m —1—o;, the statement of (4.32) is an inequality
for the continuous derivatives DI (f —s;) (x). —

We now investigate in what sense the previous theorems (Theorems 6-—10)
are sharp, with respect to the exponent of 7;. It suffices to consider the unit
interval [0,1]. Let v, (%), vy(%), ..., v;,,(¥) again be 2m linearly independent
functions in K2™[0, 1] such that L*L[v;(x)]=0 for almost all x€[0, 1], and let
V be the finite dimensional linear space of all linear combinations of v, (x), v,(x),
.oy U (%), where 0= x<1. For each integer §, 0=7=2m —1, and each % with
0< h=1, consider the following problem of best Chebyshev approximation. For
any u>0 such that D/x#¢V, let

Guoll) = 0o 15 1) = IDE | D7 (8 — 7 (£1)) g, -

Because V is finite dimensional, ¢, (%) is readily seen to be continuous on
[0, 1], and as Dfx#¢ V, then o, (h) is strictly positive in 0= A= 1. Thus, we define
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min o (k; §; u) =cy(7, #) >0. We now assert that

0<h=1
(4.33) }gf. D7 (# — 7 (%)) eworo, m = 2T e (§, 1) >0,
since, with the change of variables x=1¢4, 0=<{<1, we have
. ; i , ¥ (th)
gD/ — ) o =i | (= )

= pri i?g | D7 (¢ — s (¢ M) logo,1 = 777 604, p6) > 0.

The inequality of (4.33) can now be used to show that the results of Theorems 6
and 10 are sharp with respect to the exponents of &,. For Theorem 6, consider
the function f, (x)=ax""®+e 0<x<1. For each £>0, we see that f,cK7[0,1].
Moreover, as any collection of functions of the form {x"~W+}®  for ¢, >¢, ;>
+++ > g >0 are linearly independent on [0, 1], it follows from the finite dimension-
ality of V that Df,¢V for any 0=<7<m —1 for all £> 0 sufficiently small. Thus,
for any s;(x) of Sp(L, m;, 2%), we must have that

107 (h — ) |oo, 0 Z 1D (fr — 83) g0, sty = INE | D7 (f1 (%) — 7 (%)) [ g0, gy

€V
for any 0=<j<m —1, where %}’ denotes the right endpoint of the first sub-
interval of ;. With (4.33), and the mesh restriction of Theorem 10, i.e., o ;= 7;
for all ©=1, the above inequality becomes

@34) D)o = () e (im— (3)+e),  o=j=m—t.

In the same manner, we deduce for the function f,(x)=x*""®+¢in K30, 1]
the inequalities
7;

(4.35) "Di(fz—si)"m[o,u2(—(,‘*')2m_(§)~i+gcoo(7‘:Zm“(%)-l—e), 0=j<2m —1.

As these inequalities are valid for all ¢>0 sufficiently small, we have proved

Theorem 11. Assuming that the hypotheses of Theorem 6 hold and that there
is a positive constant ¢ such that o 7;= &; for all =1, then, for each £> 0 suf-

ficiently small, there is an element f, ()€ K% [a, b] and a positive constant My,
independent of ¢, such that

436) | D/ (= s)iopan = Me(@)mi=Wte,  o=<j=m—1, i=1

for any s;eSp (L, m;, 2%). Similarly, assuming the hypotheses of Theorem 8 and
that there is a positive constant ¢ such that o 7= 7, for all /=1, then, for each
&> 0 sufficiently small, there is an element f(x)cK2™[a, b] and a positive con-
stant M,, independent of ¢, such that

@.37) D (fy — s)wpa sy = My ()P i-WFe, o< j<2m—1, =1

for any s;¢ Sp (L, 7;, #%). Thus, the respective exponents of 7, in (4.1) in Theorem 6
and (4.32) of Theorem 10 cannot in general be increased for the classes of func-
tions K¥[a, b] and K2"[a, b].

To investigate the sharpness of the exponents of #; in Theorems 7 and 9,
we similarly have the following problem of best L,-approximation. For any x>0
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such that Dix*¢V, let o,(h)=a,(h, 1, p) =inf | D (#* —7 (#h)) |s0,4; Tor each A

with 0<Xh=1. As before, the finite dimensionality of V gives that o, (%) is con-
tinuous on [O 1], and if D7x*¢V;, then ay(k) is strictly positive in [0, 1]. Thus,
we define mm .02 (B, 1, u)=cy(f, y) > 0. This gives rise to the following inequality.

For any partltmn 7; of [0, 1], we have

(”Di(x"‘“Si(x))"v[o,ﬂ)gz > ﬁD’( (x))[zdx

(4)

x&‘)

= f | D7 (5# —s,(x))[2dx,

and with the change of variables x=¢4 where A= x{, we have

D (z“ — %2&

1
(uDi(xﬂ_ Si(xmlv[o,n)g > kz{u—i}ﬂf

= (@), ).

Now, for Theorem 7, consider the function f;{x)= 2"~ B+e o< x<1. Foralle>0
sufficiently small, f,e K¥'[0,1] with D'f,¢V for any 0=<j<m. Thus, for any
s;€Sp(L, n;, #%), we must have, with the mesh restriction that oz, = %, for
all =1, that

“D] (s — sl = <_)m 7+scz<': m— (“;“) + 8), 0=Zj=m,

for all £>0 sufficiently small. Similarly, with f,(x) = 2**~#+¢ in K2"[0, 1], we
deduce that

1D (fy — ) leaga, 01 = (nt)m 7+Bcz (7', 2m —f — (%) + g), 0<i<m,

for any s;¢Sp(L, m;, 2¥) for all £>0 sufficiently small. This gives us

Theorem 12. Assuming that the hypotheses of Theorem 6 hold and that there
is a positive constant ¢ such that ¢ z;= @, for all ¢=1, then, for each £>0 suf-
ficiently small, there is an element f;(x)cK3'[a, b] and a positive constant My,
independent of ¢, such that

(4.38) 1D (fa — $)l2pa,1y = Mo (7)™~ ite, o0Zjsm, iz1,

for any s;eSp(L, m;, 2”). Similarly, assuming the hypotheses of Theorem 8 and
that there is a positive constant ¢ such that o ;= &, for all 221, then, for each
£>>0 sufficiently small, there is an element f,(x)c K3"[a, b] and a positive con-
stant M,, independent of 7, such that

(4.39) 1D/ (fy — sl iy = M (®)*™7FS, 0=j=m, =1,

for any s,eSp(L, m;, #%). Thus, the respective exponents of 7, in (4.9) of Theorem 7
and (4.18) of Theorem 9 cannot in general be increased for the classes of functions
K% [a, b] and K3™[a, b].

It is interesting to contrast the result of Theorem 11 with the results of [17]
and of BirkHOFF and DE Boor [10]. For the special case of cubic natural splines,
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ie., L=D? and z;==1, it was shown in [10] that
1DI(F — s)lzooga, 51 < M7, 0=7=3,

assuming feC*[a, b]. Similarly, in Theorem 9 of [17], it was shown for Hermite
interpolation, i.e., L=D" and z;=m, that

”Di (f — s |Lopa,py < M (7;)2 ™, 0sj=Em,

for fcC?™[a, b]. Both of these results improve the corresponding exponent of 7;
in (4.32) by %, at the expense of working with functions in C®”[a, b], rather than
K2™[a, b]. In general, Theorem 11 shows that such improvements in the exponent
of @, can only come from similar suitable restrictions in the function class
K2™[a, b]. This answers in the negative a conjecture of AHLBERG, NILsoN, and
WaLsH [6].

Using Theorem 10, we may extend the result of Theorem 9 for L2[a, b]-type
error bounds, where, in analogy with the definition of (4.31"), we define

(
N; "J(H)-l .,

(4.317) ;|Df(f_s,.)”L.[u,,,]E{k§0 (f‘)(D’(fws,»)(t))zdt}%, 0<i<2am—1.

Theorem 13, If the hypothesis of Theorem 8 hold and if there is a positive
constant ¢ such that o z,= 7, for all /=1, then there exists a positive integer 7,
and a constant M,,, dependent on  and m but not on ¢, such that

(4.40) [ D7 (f — s, 57 = My (7)1, 0Sjsm, 121,

and
(4.41) DI — s)lisga, 0y < Mao (®)*7-®,  mH1<j<2m—1, izi,.

It follows from the second part of Theorem 12 that the exponent of 7; in
(4.40) is sharp for the class K;™[a, b] for 0<j=<m. It is easy to see that the
exponent of 7; in (4.41) cannot exceed 2m —7 even for the class C*[q, b], but it
remains an open question?® if the inequality of {4.40) is valid for all 07 2m —1
for the class K2™[a, b].

5, G-Splines

In the special, but important, case in which L{u{x)]=D"u(x), z¢{a, b], our
previous results may be generalized along the lines of recent work of AHLBERG and
NILSON [3] and SCHOENBERG [47]. As before, let @: a= %< ;< << Ay ¥y =D
be a partition of the interval [a, b], and let E= (¢; ;) denote the N Xm incidence
matriz, 115N, 0=j=<m —1, having entries of 0’s and 1’s, with at Jeast one
nonzero entry in each row of E. Further, let ¢ denote the collection of (7, 7) such
that e, ;=1. Following [47], we now generalize our Definitions 1, 2, and 3.

Definition 4, The real-valued function s(x) defined on [a, 5] is said to be a
g-spline of order m for 7 and E if and only if

(5.4) s{x)is a polynomial of degree at most 2# — 1 in each subinterval (x;, x;4),
0Zi=N, ie., D*”[s(x)]=0 in each subinterval of =z,

8 It has just been shown by Mr. F. PErrinN of Case Western Reserve University
that the inequality of (4.40) ¢s valid for all 0 Zj=2m—1 (added in proof).
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(5.2) s(x)eC™ '{a, b] and if ¢; ;=0, then s®”~7~¥(4) is continuous at x,, i.e.,
(4, 1) ¢ ¢ implies that s®m 7=V (x,—) = sEm—1~1 (5 1),
We denote the class of all g-splines of order m for = and E by Sp (m, 1, E).

As in Definition 2, if f(x)€C™ '[a, b], we can define four basic types of inter-
polation of f(x) in Sp (m, n, E). It is similarly convenient to augment the incidence
matrix E by the addition of two parameter-like rows, corresponding to {=0 and
t=N-+1, thereby forming the (N--2)Xm matrix E*=(e;;), 0=i<N41,
0=7=<m —1. Each of these added rows must have m entries consisting only of
0’s and 1’s, and at least one entry must be nonzero in each added row. We simi-
larly denote the collection of all (7, 1) in E* such that ¢; ;=1 by e*.

Definition 5. Given f(x)cC™ [a, b], a function s(x)€Sp (m, n, E) is said to be
a Sp(m, m, E)-interpolate of f(x)

of Type I if (i) Dis(x)=D'f(x,) for all (¢, 7)ee*,

(i) eo;j=eyi1,;=1 forall 0Z7/=m—1,
of Type I1if (i) Dis(x)=Dif(x;) forall (s,7)ce*,

(iiy D@m= i=Vs(x)=0 for i=0 or {=N-+1, (i7)de*,
of Type Il if (i) D's(x,) =D f(x) for all (z, j)ee*,

(i) D@7 i Vgs(x)=DE»=i-Df(x) for i=0 or i=N-+1,

(5, 7) €,
of Type IVif (i) feCi"'[a,b], ie., f(x)eC? *[a,b] and
D' f(a) = DI }(b) forall ogj=<2m—1,

(ii) Dis(x;)=D'f(x,) for all (¢, f)ce*,
(i) e ;=eyi1;=00; O0=7=m—1,
(iv) D's{a)=Dis(b) forall 1=<j<2m—1.

Definition 6. Given the C"~[a, b] function f(x), the partition 7, the incidence
matrix E, and the positive integer m, the Hermite-Birkhoff problem of order m
of Type I (resp. Type II, Type 111, or Type IV) is to find a polynomial p,,_, (%),
x€[a, b], of degree at most m —1 such that p,,_, (%) is an Sp (m, x, E)-interpolate
of f of Typel (resp. Typell, Type III, or Type IV). The Hermite-Birkhoff
problem of order m is said to be well-posed for Sp(m, n, E} if and only if it has
at most one solution.

As in Section 4, we now determine sufficient conditions for the Hermite-
Birkhoff problem of order m, (henceforth abbreviated as the HB,,-problem) to
be well-posed. For each integer 7, 0S (S N+1, if ¢; €e*, let u, be the greatest
positive integer such that e;q, €;y, ..., €; 4 are all in e*. If ¢; ;¢e*, define p,
to be zero. Since a polynomial of degree m —1 with m zeros must be identically
zero, we have, in analogy with Theorem 1 and Corollary 1, the result of

N+1

Theorem 14. If i u;=m, then the HB, -problem of Typel (resp. Type II,
III, or IV) is welf-l;osed for Sp(m, =, E). In particular, the HB,,-problem of
Type I is always well-posed for Sp (m, =, E).
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As a partial generalization of our Theorem 1, with essentially the same proof
using L[u]==D™u, we have the following result which is a slight generalization
to different boundary conditions of results of AHLBERG and Nirson [3] and
SCHOENBERG [Theorem 1, 47].

Theorem 15, Let x, E, and fcC™ '[a, b] be given. If the HB,-problem of
Type I (resp. Type 11, II1I, or IV) is well-posed for Sp (m, =, E), then there exists
a unique function s(x) which is the Sp(m, #, E)-interpolate of f(x) of Typel
{resp. Type II, 111, or IV).

Moreover, as before, the following first and second integral relations hold for
g-splines of order m.

Theorem 16. Let fe K3 [4, b] and let s{x) be a Sp(m, x, E)-interpolate of f
of Typel, II, or IV. Then

63 Forieopdr=FI0m() —s@)Past [ s s,
Proof. Clearly
[ 1D frdn = [ (D7 — 9\ eds + 2 f [P — 5)) [Ds] dx + f [D" s]2d,

and the first integral relation (5.3) will follow if we can establish that the middle
term above vanishes. Using (1.7) in the special case L{#]=D"u, we have

f[D’“(f~s)} (D7 s)dx=(— 1) 3, [ {f—5) (D) d
t==f Xi
N m——l . . .
+ 3 T () DI — 5 D
i=0 j=0
Since s(x) is a polynomial of degree at most 2m —1 in each subinterval (x;, ;,)
of 7, 0<4=< N, the first sum clearly vanishes. Since (f —s)cC"~'[q, b], the last

sum can be written as

ity

xi

m—1

?';0(— 1)"‘-7"1{1)?‘ (f(b) - S(b)) Dzm—j—ls{b) — Di (f{g} _S{“)) Dzm_}-_ls(a)
+£§oDi(f (%) —s( ) (D711 s (x,—) —Dzm“j'ls(xri‘)]}.

For any 1=7< N, either (i, ) ce*, in which case Df(f(x,) —s(x,)) =0 by Defini-
tion 5, or else (i, f)4e*, in which case D*"~7~1s(x;+)=D*"~i~1s(x,—) by (5.2)
of Definition 4, so that the inner sum above vanishes. Similarly, the boundary
conditions force the remaining terms to vanish. Q.E.D.

In the same manner, one readily verifies the second integral relation of

Theorem 17. Let fcK3™[a, b], and let s(x) be a Sp(m, m, E)-interpolate of f
of Type I, 111, or IV. Then

b
{(5.4) f{D’" (f(x) —s{x))]2dx=(— 1)maf [f(x) —s(x)]- D*" f(x)dx.

To obtain error bounds for g-splines analogous to those of Section 4, we
begin by considering any sequence of partitions {r;}3=,0f [2,b] satlsfymg hm 7,=0.
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If ma=aP <<+ <a{) =0, we further require, as in [3], that there
exists a positive constant ¢ and a positive integer 7, such that for each k with
0= k< N;+1, there exists an integer j=4 (4, k) such that efy=1 and

(5.5) | — 2| <cm, forall =4, all 0SE<N,+1.

This latter assumption allows us to apply Rolle’s Theorem, as in Theorem 6,
as well as the Rayleigh-Ritz inequality, as in Theorem 7, to the case of g-splines.
Because the proofs of Section 4 carry over with little change, we now state, for
brevity, the following error bounds for g-splines which partially generalize the
results of Section 4.

Theorem 18. Let fc K7'[a, b] let {#,}{2; be a sequence of partitions of [a, b)
with hm 7;=0,and let {E®}32; be any sequence of incidence matrices associated

with {n 2 1. Assume that there exists a positive constant ¢ and a positive integer
1y such that for each & with 0= k< N;--1, there is an integer j=7 (¢, &) such that
eﬁ-f{)=1 and (5.5) is satisfied for all 7=4,. Then, there exists a positive integer ¢;
such that the Sp(m, m;, E%)-interpolate s;(x) of f of TypeI, II, or IV exists
and is unique for any 7=4;. Moreover, there exists a constant M;, dependent
on § and m, but independent of ¢, such that

(5.6) ”Di (f - s,-) "L“’[u, 2] = M1 (ﬁi)mﬂ:—“) ”Dm (f - si) "L’[a, 5]
< My (7@)" 7T~ D™ faga,
for any 7 with 0<<j<<m —1 and any ¢=1,.

Theorem 19. If the hypotheses of Theorem 18 are satisfied, then there exists
a constant M,, dependent on § and m, but independent of 7, such that

(5.7) 1D7(F — s)eota, 0 = Mo (7)™ | D™ Flisga, 51
for any 7 with 0=<7=<m and any ¢=7,.

Theorem 20. If the hypotheses of Theorem 18 are satisfied, and fc K3"[a, b],
then there exists a positive integer 7, such that the Sp(m, m;, E¥)-interpolate
s;(x) of f of TypeI, III, or IV, exists and is unique for any ¢=+¢,. Moreover,
there exists a constant M, dependent on § and m but independent of 7, such that

(5.8) "Di (f —sd|rowta, 00 = M, @)D D flraga, o

for any § with 0<{<m —1 and any i=4,. If, in addition, there is a positive
constant ¢ such that om;= 7, for all =1, then there exists a positive integer 4,
and a constant },, independent of ¢, such that

(5:9) "Di (f—s)) "Lm [, b] =M,(7 )2'"—1 ()]
for any 7 with 0</<2m —1 and any i=1;.

Theorem 21. If the hypotheses of Theorem 18 are satisfied and fe K3™[a, b],
then there exists a positive integer 7, and a constant My, independent of 4, such
that the Sp (m, x;, E¥)-interpolate s;(x) of f of Type I, III, or IV satisfies

(5.10) D7 (f — s) [eota, 01 < M5 (7)* ™7 | D*™ fliata, 5y
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for any § with 0= 7<m and any ¢=1,. If, in addition, there is a positive constant
o such that oz, = %, for any 4=1, then there exists a positive integer ¢, and a
constant Mg, independent of ¢, such that

(5.11) 1D/ — sl < Mg (7)*™ 7 forany 0<j<m, ©x4,,
and
(5142) |DI{f —s)lprpa, 0y S Mg(7)*" 1~ forany m+1si<2m—1, 24,
We remark that the error bounds of Theorem 18 slightly generalize those
of [3], while those of Theorems 17, 19, 20, and 21 are apparently entirely new.
Finally, because L-splines with L=D" are special cases of g-splines, it is
clear from the results of Theorems 11 and 12 that the exponents of 7, cannot in
general be increased in (5.6)—(5.11) for the corresponding function classes, and
our results are thus sharp.
6. An Application

In this section, we shall consider the numerical approximation of the solution
of the following real nonlinear two-point boundary value problem, studied in [17],

6.1) Plu(x)]=f(x, u(x)), o<zx<t,
with boundary conditions

d
(6.2) Dru(0)=D*u(1)=0, D=_-, O0=Sk=n-—1,

where the linear differential operator P is defined by
(6.3) Plu(x)] =X (— 1y DI[p;(#) DIu(x)], mn=1.
=0

The coefficient functions p,(#) are assumed to be of class C'[0, 1], =0, 1, ..., #.

Let S denote the linear space of all functions in K3[0, 1] which satisfy the
boundary conditions of (6.2). We assume that there exist two real constants §
and K such that

HEA ' 3
64 lele= sup |w(@)] SK{[] 3,00 (Diw(x)2+5 (0 ()] dx}
x€{0,1] ¢ =0
for all we¢S. We introduce the finite quantity (cf. Lemma 1 of [17]}:
{34 101 ()12}
(6.5) A= inf 4122 .
oo [wxdx

We assume that the functions f(x, ) and 21 ( .
both variables, i.e., f(x, ), MEC“([O 1] ><R) and that there exists a con-
stant y such that

af (%, u)
ou

are real and continuous in

(6.6) =f,(x,u)=y>—A forall xc[0,1], and all real u.

Finally, we assume that a classical solution of (6.1) —(6.2) exists.

The goal of this section is to estimate the error made in applying the classical
Rayleigh-Ritz procedure (cf. [17] and the references given there) to the variational
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formulation of (6.1)—(6.2), by minimizing over subspaces of L-spline functions.
In so doing, we generalize and improve the results of [17].

The following fundamental result summarizes Theorems 1, 2, and 3 of [17].

Theorem 22. (i) If p(x) is a classical solution of (6.1)—(6.2), then ¢ (x) strictly
minimizes the following functional

1. n w (%)
(6) Fiw) = [ {1 3.0,(2) (D' ()2 + ] Fs, ) d}

over the space S, and ¢{#) is thus the unique solution of (6.1)—(6.2).

(ii) If Sy is any finite dimensional subspace of S, then there exists a unique
function, @y, (#), in S,y which minimizes the functional F{w] over S,,.

(iii) There exists a constant C, which is independent of the choice of Sy, such
that the following error bound is valid

63) Joss — gl = Ko — L, < C inf o — gl
where

69  Iuh={ of1 Lé}op,.(x) (D (%)) +p (w (x))al dx}* forall weS.

It follows from Theorem 22 that, to bound the error in the Rayleigh-Ritz
procedure, it suffices to bound the quantity ié'xsf | —g|,. For the subspaces
weSy

under consideration, we do this by using the fact that

(6.10) inf |w —g], < |# —¢|,,

wCSy

where @ is the “interpolation” of @ in the subspace S,,.

If the L-Hermite problem of Typel is well-posed for Sp(L, =, 2), then,
given any constants of, 0 k=2, —1, 0=7< N+1, there exists a unique function
u{x)eSp(L, n, 2) with

Dru(x)=of, O0<k=z—1, O0=i<N+1.

Let Sp'(L, m,2) denote the finite-dimensional subspace of Sp(L,x,2) of all such
functions #(x). We attach a similar meaning to the subspaces Sp'(L, 7, ),
SpU(L, 7, 2), and Sp'V(L, m, #), and remark that these may have different di-
mensions. If the order of the differential operator L of (1.1) is such that m=#
and 2y, 7y412#, then Spg(L, m, 2), ..., Spy’ (L, 7, #) denote subspaces whose ele-
ments satisfy the boundary conditions of (6.2). Thus, if the L-Hermite problem
of Typel (resp. Type II, III, or 1IV) is well-posed for Sp(L, m, 2), there is a
unique Sp(L, , 2)-interpolate of @(x), the solution of (6.1)—(6.2), of TypeI
which is necessarily in Sp§(L, m, 2). Similarly, we consider finite dimensional
subspaces Sp(m, 7, E) of g-splines with m=n, subject to the condition that
€o,j=en4+1, ;=1 for all 0=j<n—1, and Spy(m, =, E) and Spst(m, 7, E) denote
subspaces of such g-splines satisfying the boundary conditions of (6.2). Because
Hermite and natural spline piecewise-polynomial functions are just special cases
of such L-splines or g-splines, the following result, obtained directly from
Theorems 7 and 19, generalizes and improves Theorems 10 and 16 of [17].
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Theorem 23. Let ¢(x), the solution of (6.1)—(6.2), be of class K5[0, 1] with
t=m>n, let {m;};2, be any sequence of partitions of [0, 1] with lim 7;=0, let

{#,}721 be any sequence of corresponding incidence vectors, let L be a differential
operator of the form (1.1), and let @,{x) be the unique function which minimizes
the functional F[w] over the subspace Spy(L, m;, 2%) or Spy' (L, m;, 7). Then,
there exists a positive integer ¢, and a positive constant 3,, independent of 7,
such that

(6.11) [#: — @lewou=K|®; — ¢l, < KM (@) | L @lrs0,

for all 1=4,. Similarly, if {E¥}2, is any sequence of incidence matrices which,
with the partitions {;}{21, satisfies the hypothesis of Theorem 18, let #,{x) be
the unique function which minimizes F[w] over the subspace Spg(m, 7;, Em) or
Spit(m, 7;, E®). Then, there exists a positive integer 4, and a positive constant
M,, independent of ¢, such that

(6.12) 1#: — @llewp,n = K|@; — ¢l < KM,y (7)" " | D™ pllso,
for all 1 =>14,.

The next result follows directly from Theorems 9 and 21. It generalizes and
improves Theorems 10 and 16 of [17].

Theorem 24. Let ¢(x), the solution of (6.1)—(6.2), be of class K5[0, 1] with
t=2m=2n, let {7,}2, be any sequence of partitions of [0,1] with lim 7;=0,

let {2"}2, be any sequence of correspondmg incidence vectors, let L be a dif-
ferential operator of the form (1.1), and let @,(x) be the unique function which
minimizes F[w] over the subspace Spg(L, 7;, z(i)) or Sps (L, m;, 2%). Then, there
exists a positive integer ¢, and a positive constant M, independent of 4, such that

(6.13) 1#; — @lrwpu = K|#; — o, = KM, (7" |L* L[] |20,

for all ¢=4,. Similarly, if {E®},, is any sequence of incidence matrices which,
with the partitions {m;}{2,, satlsfy the hypothesis of Theorem 18, let @,;{x) be
the umque function which minimizes F[w] over the subspace Sp§(m, 7;, EV) or

b (m, m;, EY). Then, there exists a positive integer 4, and a positive con-
stant M,, independent of 7, such that

(6.14) 1% — @l = K[@; — o], = KM (7" | D*" plsio
for all i=74,.

We remark that the asymptotic error estimates given in (6.41) and (6.13)
are independent of the choice of incidence vectors, and independent of the choice
of the particular differential operator L.

As a particular example, consider the case in which the solution ¢ (#) of the
linear problem D2 (x)=f(%), 0< x<<1, % (0)=u(1)=0, is only of class K3[0, 1].
In this case, to satisfy the hypotheses of Theorem 23, m must be chosen to be
at least 2, and we obtain for m=2 a sequence of functions which converges
linearly in 7; to @(x). Furthermore, to satisfy the hypothesis of Theorem 24,
m can be chosen to be 1 and we again obtain a sequence of functions which
converges linearly in 7; to @(x). Such results, as far as we know, are not obtain-
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able from Taylor series and Gerschgorin-type convergence arguments for discrete
methods applied to such two-point boundary value problems.

For results of numerical experiments obtained from applying the Rayleigh-
Ritz procedure to Hermite and natural spline subspaces for two-point nonlinear
boundary value problems (6.1) —(6.2), we refer the reader to [17].
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