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Abstract. The paper develops a construction for finding fully symmetric inte- 
gration formulas of arbitrary degree 2k + t  in n-space such that the number of evalua- 
tion points is O ((2n)k/k t), n - ~ .  Formulas of degrees 3, 5, 7, 9, are relatively simple 
and are presented in detail. The method has been tested by obtaining some special 
formulas of degrees 7, 9 and 1 t but these are not presented here. 

1. Introduction 

The practical problem in approximation of n-dimensional integrals is to find 
a method of evaluation which can be used on a computer, yields a desired ac- 
curacy and is not unduly time-consuming. No at tempt  is made here to present 
even a skeleton review of the methods which have been explored. The paper is 
confined to methods which depend on the evaluation of the integrand at a pre- 
determined set of points; some previous results of other workers which are 
germane to the present investigation are outlined briefly. 

Some outstanding difficulties in the field of n-dimensional quadrature formulas 
are the following: 

1. In  general, the choice o[ points will depend on the domain o[ integration. 

2. The choice o[ points involves the solution o[ non-linear simultaneous equations. 

3. In general, the number o/points needed will be an increasing [unction o /n ,  
the dimension o/the domain o/integration. 

4. For practical reasons, [ormulas with positive weights are to be pre[erred. 

5. Practical error bounds are needed. 

We consider these difficulties in order. The first four difficulties can be evaded 
to some extent, following the lead of TtIACHER, HAMMER, WYMORE, and STROUD, 
who directed attention to tractable problems in a series of papers, [1--3J and [41. 
First, we may  seek a transformation of a given domain into a domain of simpler 
geometry as ill Section 2 of the present paper. Second, we may  seek formulas 
applicable to symmetric regions and it then turns out that  the number of non- 
linear equations is independent of n. The kind of symmetry  envisaged is explained 
in Section 3. An explicit construction of special fully symmetric integration for- 
mulas of degree 3, 5, 7 and 9 is carried out in Section 4 by solution of non-linear 
algebraic equations. Difficulties encountered in Section 4 are removed in Sec- 
tions 5, 6 and 7; the developments of these latter sections and of Section 3 
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culminate in the constructive proof of Section 8. A general construction for fully 
symmetric formulas of arbitrary degree 2k + 1 requiring the least possible number 
of evaluation points, viz. 

is given in Section 8. 

The formulas obtained may be considered as a subset of a general class 
envisaged by LY~Ess [a--7], though our procedure is simple and direct in that 
we have introduced relatively few definitions and we have reduced the problem 
to a system of linear algebraic equations. All minimum-point fully symmetric 
quadrature formulas have the unfortunate property that  some of the weights 
become very large and negative for large n. This reduces the accuracy of the 
formulas and also leads to a gross over-estimate in some methods of bounding 
the error of quadrature. TCHAKALOFF ['9] has given an interesting result in this 
direction. He showed that  a positive weight formula can always be found for an 
n-dimensional domain and that  the evaluation points are interior to the domain. 

his result presupposes "-(n~-k)" evaluation points and this is ira- Unfortunately 
x - -  / 

practical even for moderate n and k. Precise results on the least number of 
points in positive weight formulas are much needed. 

Error  bounds are omitted in the present paper. The few known results appli- 
cable to fully symmetric integration formulas are not of practical value. Some 
new results for repeated Gauss-type quadrature formulas have been obtained 
recently [10] and it is hoped that  analogous results can be obtained for the fully 
symmetric formulas described in this paper. 

2. Transformation from an Arbitrary Region to the n-Cube 

Let R" and S" be regions in Euclidean n-space ~ .  HAMMER and WYMORE 
proved a theorem in [2] which enables one to apply a known integration formula 
over R" to S" whenever there exists a transformation with continuous non- 
vanishing jacobian which transforms R " onto S". Although the value of this 
theorem is indisputable, since the transformation from/~n to fig" is not in general 
known, the theorem is not in most suitable form from the point of view of 
applications. 

We prefer to reverse the procedure of HAMMER and WYMORE, in that  we 
shall explicitly construct a transformation from a class of regions {S n} to a 
particular reg ion/ i  n . The procedure is given in the proof of the following theorem. 

Theorem 2.1. The integral 

h~ ht hn 
x =  y y ... f /(x) dr(x) 

(2.t) ~, g, g, 
x = x  x, x ~ . . . . .  xn; d V ( x ) = d x X d x Z . . ,  dx ~ 

can always be trans/ormed into a integral over #he n-cube by a sequence o~ n linear 
trans/ormations. The/unct ions  h i and gi are assumed to be continuous and bounded 
almost everywhere and depend only on the variables x x, x ~ . . . . .  x~-l, gl and h a being 
constant. 
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Proo/. The symmetric case g i=- -h  i is easily tractable and we consider it 
first. We set 

(2.2) 

Then 

x i=h~u i, i = t ,  2, . . . ,  n. 

(2.3) 

Ldx"J [u"h,,1 u " g , , . . ,  h,d Ldu"J 

where we have set h~i= ahi/auJ. From (2.3) the jacobian J of the transformation 
(2.2) is just the product of the diagonal elements of the matrix: 

n 

(2.4) J = H  h,. 
i=1 

Hence we have 

(2.5) 
h~ I~ 1 1 

f ... f /(x) dV(a~) = f ... f F(u) J dV(u) 
--hl --hn - - t  --1 

where J is given by (2.4) and F = / u n d e r  the transformation (2.2). 

If the limits of integration are as in (2.t) then the set of transformations 

(2.6) xi __ hi+gi + ui hi--gi i = t, 2, n 
2 2 ' " '" 

will transform the integral (2.1) to an integral over the n-cube, and the proof is 
similar to that for the symmetric case above. The jacobian of the transformation 
(2.6) is 

/ - /  

As an example, let us transform the integral 

1 V~Txi 
(2.8) I = f f / (x, y) dy dx 

into the corresponding integral over the square. By Eq. (2.2) the linear trans- 
formations which will enable us to do this are x=t ,  y=sVt-~-x-~--s] / t -# .  By 
Eq. (2.4) the iacobian of the transformation is 1/t - - t  ~. Hence 

1 1 
(2.9) I = f f /(t, s V-i--s-Y) g ] - - ~  as at. 

--1 --1 

We can now evaluate this integral by  e.g. repeated Gaussian integration: Gauss- 
Legendre in the variable x, Gauss-Chebyshev 1 in the variable t. 

Theorem 2.t is of course limited in scope to transformations of the type (2.6). 
Within this limitation the theorem is of practical value since it enables one to 
prescind from the task of finding integration formulas valid for arbitrary regions 

1 m . " ~ t :  

1 b, 
m + l  ' 

--1 i=1 
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(over which the integrals maybe  written as in (2A)) in n-space and to concentrate 
on the simpler problem of finding higher-degree integration formulas for the 
n-cube, keeping the weight function arbitrary. 

3. Fully Symmetric Generators 

The following definitions are used. 

(a) A set R n in Euclidean n-space E" is said to be/ully symmetric i~ xE l l  ~ 
implies ycl~ ~ where y is any point obtainable /tom x by permutations and by 
changes o/sign o/the coordinates o /x .  

(b) A/unction g de/ined on a/ulty symmetric set is/ully symmetric i! g (x) =g (y). 

It  follows that  any fully symmetric set S of a finite number of points can be 
decomposed into a finite number of disjoint classes S i (/" = t,  2 . . . . .  m) with the 
property that  any member of a particular class can be used to generate the 
whole class. A particular point 

(3.t)  (ul ,  us . . . . .  u , ,  o . . . . .  o) 

in B ~, where 0 <  ui_--< u i if i_< i, will be referred to as a generator, and displayed as 

(3.2) [ul,  us . . . . .  u,3. 

For convenience the zero coordinates have been suppressed. 

We shall consider numerical integration formulas of the type 

m 

(3.3) 1(/) =- f w (x) ! (x) dV(x) ~ ~. w i / (xi) = J ,  (/) 
/~ j=l 

where R ~ and w(x) are fully symmetric, and w(x)>O in R ~. The formula (3.3) 
will be referred to as a fully symmetric numerical integration formula if the set 
S of evaluation points is a fully symmetric set, and S is the union of fully sym- 
metric sets Sj generated by  distinct generators (i.e. S i ~ S  j is empty if i ~ j 3  
such that  to every generator there corresponds exactly one weight ~. 

Let the generator (3.2) have p distinct positive coordinates: Px of the first, 
p 

. . . .  pp of the p-th so that ~ p j =  r. Then by  rearranging these coordinate values 
i=1 

in all possible ways and allowing all possible changes of signs of the coordinates 
we obtain 

2rn! 
(3.4) N (Pt, Pz . . . . .  Pp) -- p 

(n -  r) ! [I  Pi ! 
i=t 

different points in n-space. 

Let (3-3) be a fully symmetric integration formula. Then it follows that  

(c) I] in (3.3) [ is a monomial containing an odd power o~ a coordinate variable 
then z( / )  = y, .  (/) = o.  

(d) / /  / is a monomial containing only even powers o/variables then I(~ and 
J,.~) depend only on the exponents and not on the ordering o/the variables. 

The weights in (3.3) are the numbers w i. 
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I t  is clear f rom the last of the  above s ta tements  tha t  if a fully symmetr ic  
integrat ion formula is exact  for all monomials  up to some even degree 2k, then 
it is exact  for all monomials  of degree 2k + 1. 

(e) T h e / a l l y  symmetric integration/ormula (3.3) is said to be o/degree 2k + I 
whenever it is exact/or all monomials ~/ the /orm 

(xl) ~ (x~)k,... (x') k" k i integer 

(3.5) O<=ki<=k i i~ i<= i,  ~ . k j < = 2 k + l  (oddinteger). 
i=1 

In  construct ing fully symmetr ic  integration formulas we m a y  thus restrict 
ourselves to all the distinct monomials  of the form 

(xl) ~'(x~')2~'... (x") 2~' ( ~  1 if v = O) 
(3.6) 

l < : k ~ k  i if i<=i, ~ . k i<:k  
/'=1 

where the k~ are positive integers. 

I t  is also convenient  to use the notat ion 

(3-7) Y, 1 In,,  u, . . . . .  u,] 
to imp ly  that  the sum extends over all the N(p 1, ps . . . . .  pp) points generated by 
the generator (3.2). 

Let  the p distinct integers/'1,/ '3 . . . . .  i,  corresponding to p distinct coordinates 
in the  generator  [G] = [uj,, . . . .  uj~ range from t to p. Let  p j  be the  number  
of t imes uj appears  in G, ~'------t, 2 . . . . .  p.  With  v (v<=r) any positive integer we 
subst i tu te  the monomial  (3.6) into ~. / [G] to obtain the  fully symmetr ic  polynomial  

p p 
(3.s) 2'.  ~ . . .  Y 5,(i ,  . . . . . .  , ,  , ~ , ,  . 

i1~1 iv=l 

where ~, (i I . . . . .  i,) is defined as fottows. Corresponding to the integers Pi we define 
integers qi, where qi denotes the number  of t imes the integer i appears  in (i 1 . . . . .  i,). 
( q ] = 0  if ] does not  appear  in this set.) Then 3 

(3.9) ~, (il . . . . .  iv) --  (n - r ) !  (Pi --  qi) ! ' 

where we put  (Pi - -  q0 ! = oo if Pi --  qi < O. 
The  formula  (3.4) indicates the manner  in which we ought  to choose our 

generators  in order to obtain fully symmetr ic  integrat ion formulas which require 
a min imum number  of points. Once the total  number  of generators  to be used 
is fixed, the following procedure evidently minimizes the number  of points 
genera ted by  each generator:  

(f) Minimization o /r ,  the total number o/non-zero corodinates in a generator; and 

(g) Minimization o/ p, the total number o/ distinct positive coordinates in a 
generator. 

8 In  the evaluation of ~ / [G] where / is the monomial (3.6) we observe that  the 
(n--r) zeros in each evaluation point must occupy (n--r) of the (n--v) last coordinate 
positions. The remaining (n--v)--(n--r) positions axe shared by  (pi--qi) uj's j = l ,  
2 . . . . .  p. With i t, i2, . . . ,  i, fixed, the number of distinct possibilities therefore is 
e, (il . . . . .  i,) given by (3.9). 
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4. Construction of Fully Symmetr ic  Formulas  of Degree 3, 5, 7 and 9 

In  this section we shall write down the non-linear algebraic equat ions and 
their  corresponding solutions, which yield fully symmet r i c  integrat ion formulas  
of degree 3, 5, 7 and 9, I t  is convenient  to use the nota t ions  

n Ck)= n ( n - - t ) . . .  (n - -k+1)  
(4.1) n ( n - l )  ... (n--k+1) 

n ( k )  - -  - -  k t 

The following generators  suffice for these formulas.  

Generator Number o/points 

[o] t 
[u] 
[u, u] 2n ~) 
[u, v] 2~n (~') 
[u, u, u] 23n~8) 

[u, u, u, u] 2~n(4) 

On the right side of the non-linear algebraic equations we designate 

f w(x) (x')~(xJ)" dV(x), ': * i  

for example by Is, 4 (=  14, 3). 

4.1. Formulas o[ Degree 3 
We a t t e m p t  to obta in  the  following formula  of degree 3 

(4.2) I(I)~=Ao 1[0] + A  1 X / [ u ]  • 

The non-linear equations to be satisfied are 

2n A 0 

Clearly (4.3) is satisfied if we first choosO u and then  solve for the linear un- 
knowns, viz. 

u , = I d I  o 
(4.4) 

Al=Io/(2u2), Ao=O--n)Io .  

4.2. Formulas o] Degree 5 
We a t t e m p t  a 2 h i +  t -po in t  formula  of the  form 

(4.5) I(/) ~= A 0 / [ 0  ] + A1 Y,/[u] + Aa, ~ ~. ][u, u]. 

If instead of (4.2) we had chosen 
(4.2)' I (]) ~-A Z /[u] 
and demanded that  the right hand side be exact for any polynomial of degree 3, we 
would obtain the unique solution u=nlVni~,/Io, A =I0/2n.  However (4.2)' does not fit 
our theory to be developed in later sections; moreover the evaluation points u for 
(4.2)' axe eventually outside R n for n sufficiently large. I t  may  be noted tha t  (4.2)' 
has positive weights. I t  will be seen later tha t  adherence to positive weight formulas 
can lead to other inconvenient properties, e.g. evaluation points outside the domain. 
or complex evaluation points. 
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Using (3.8) we a t t empt  to satisfy the following system of non-linear algebraic 
equations. 

(4.6) 
2u  2 4 ( n - - t ) u *  / A° 12 

A 1 ---- /4 " 
2u  4 4 ( n - - t ) u t ]  A1 1 

0 0 4 u  a 1 " 2,2 

ficients. The general solution is 

u = (I4/I , ) t  

] (4.7) A.  = I .  - -  n - i4 _ n -  ~ - ~  I2, 2 

A 1 = 2- \ I t]  A 
t 1 12\3- 

J2, . 

4.3. Formulas  o/Degree 7 

We a t tempt  to obtain a formula of degree 7 of the form 

I( / )  ~--- A o / [0] + A 1 ~ / [u] + A 2 Z / Iv] 

-1 2n 2n 22n(2) 22n(2) 23n(3) 
0 2u  2 2v 2 2 2 ( n - - t ) u  2 2 2 ( n - - l ) v  2 23(n--Q(2)u 2 

0 2 u  4 2 v  4 2 2 ( n - - t ) u  4 2 2 ( n i l ) v  4 2 3 ( n - t ) ( 2 ) u  4 

0 2u 6 2v 6 2 * ( n - - t ) u  6 2 2 ( n - - t ) v  ° 23(n--t)( , .)u 6 
0 0 0 23u 4 22v 4 2 3 ( n - 2 ) u  4 
0 0 0 2 2 #  22v e 23(n--  2) u 6 

0 0 0 0 0 2 a u ~ 

Fig. t. The System (4.9) 

(4.8)  + A1,1 ~] 1 [u,  u ]  + A 2, ,  ~ .  / Iv, v] 

+ ALL1 ~ . / [u ,  u, u] .  

To obtain the value of u, v, A o . . . . .  AI,L1 in (4.8) we need to solve the following 
system of non-linear algebraic equations 

(4.9) See Fig. t.  

The solution to the system (4.9) is not  unique. Among an infinity 5 of possible 
choices of u and v we choose l u  und  + v as solutions of 

(4. t 0) (I** - -  I o I , )  u* - -  (12 I ,  - -  I018)  u s + (I** - -  1212) ---- 0 .  

s u and v need merely be related by v2=(u2I,--I6)/(u*I~--I4) in order that  the 
second, third and fourth equations in (4.9) be simultaneously satisfied. Thus we could 
for example set Ai, I = 0  in (4.8), if we were to define u and v as the zeros of the poly- 

nomial u 6 (12,2 I , - - I2 , ,  12) + u  4 (m I2 I2,2,, + I ,  12,4--12,2 12) 

( * )  - -  2 m  ui(Ia I,,2,2) + ( m  12 12,2,2) 

where m -- n - -  2. For all integrals wi th"proper ty  P "  (See Section 6) 12, 2 I4-- 12, 412 = O, 
and for large n the zeros of the polynomial (*) will thus be complex. 

-A0 - i - / °  
A1 I 2  ! 
A1 1 12 

Az'2 12'4 
A,L. J,k,_ 

The value of u is easily obtained by  dividing the second equation into the 
third. By  ordinary elimination we can then obtain the value of the linear coef- 
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In Section 8 it will be made clear that  by this choice of u and v the second, 
third and fourth equations in (4.9) are simultaneously satisfied. Moreover, if 
w(x) > 0, u ~ v .  The linear unknowns are given by 

A 1 , 1 , 1 =  I2,~,f l (2u2)  3 

A ~ , J  = - £  u e v 6] [ \ I 2 , J  - u6 AI.I,1 

() ( l ( : )  (t l A, = - - 2 ( n - - t ) ( A l ,  l ~ +  t u' v'~ -1 12 _28(n  _1)(,) A1,1,1 
A 2 \A2,~] 2 u 4 v i] I u, 

A o = Io  - -  2 n (A 1 + A 3) - -  22 n(2) ( A t , ,  + A 3, 2) - -  28 n(8) A1 ,1 , , .  

Fig. 2. The Eqs. (4.1 t) 

(4.tt) See Fig. 2. 

Observe that  we obtain two integration formulas by interchanging the role of 
u and v in the Eqs. (4.9). 

4.4. Formulas o! Degree 9 

We attempt to find a formula of the form 

X(/) ~ A 0 / [0] + A1 X / [u] + A ~ X / [v] 

+ Al, l ~,l[u, u] + A,.~EIEu, v] + A2.~./Ev, v] 
(4A2) 

+ A~,~,I E IEu, u, u] + A,,,~,~E lEv, v, v] 

+ AI.I,I,1 ~. / [u,  u, u, u]. 

The requirement that  (4.t2) be exact for all polynomials of degree 9 leads to the 
following system of non-linear equations (see P.335). 

(4.13) See Fig. 3. 

The solution to (4.13) given below is valid provided 

(4.t4) Is, ,  -- (u* + v~) I4,, + u~v~ I, ,2=O 

or, what is the same thing, provided that  

(4.15) f w(x) (x'xi)'[(x')~--u ,] [(x')' --v~j dV(x)=O (¢=~i). 
w, 

The unknowns u and v are taken to be the zeros of the polynomial 

(4. t 6) (~ -- I n Ie) u* -- (I 41 s -- I ,  Is) u* + I~ -- I ,  I s . 
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The linear unknowns in (4.t3) are then given by 

(A:::::) = 1--/us vS~-x [ ( I ' ' ~ )  -- 2 ' (n--3)  aLx,1:  (u~)l 

(A,,,~ ~. --2(n--2, (A,,,,,~ I .( ue ve~ -' [(I,.4~ 

~A 6 

- -  22 ~u e/u'v~+u~v'~av~ + uz V~ ] 1,2 --2'(n--2)(S)(us)A1,Ll,1 ] 

( A1)A~ = --2(n--t)(AI'I+At'~--2~(n--I)(~)(A:\A~,~+AI,~] ::', :) 

Ao ---- Io - -  ~.n (A~ + A2) - -  2 ~ n<,.~(A~: + 2A~,~ + A~,2) 

- -  2sn(s)(A~,~,~ + A~,~,~) -- 2~n(~)A~,l,~,~. 
Fig. 4. The Eqs. (4.17) 

(4.17) See Fig. 4. 

By interchanging the role of u and v in (4.13) we obtain two formulas of degree 9. 

I t  will be shown in Section 8 that  although the 4-th, 5-th, and 8-th equation 
in (4.t3) have not been used to compute the linear unknowns, these equations 
are automatically satisfied by our choice of u and v in (4.16). 

5. Orthogonal Polynomia l s  

The integration formulas we have obtained in Section 4 and those we shall 
construct in Section 8 have the property that  the coordinates in the evaluation 
points are zeros of polynomials orthogonal over R n with respect to w (x). These 
polynomials qk (x) (qk (x) of degree k in x) are defined, apart from an arbitrary 
multiplicative constant by qo = l,  

(5.t) k=t,2,  . . . . .  

I t  is readily seen that  the non-linear unknowns used to obtain formulas of 
degree 3, 5, 7 and 9 are the zeros of the polynomials qi(x~), qs(x~), q,(x ~) and 
q5 (x~) respectively. 

Under the assumption that  w ( x ) > 0  for x~R ~, the zeros of the polynomials 
q, (x ~) are easily shown to be real and distinct. Moreover, q, (x ~) is either an even 
or an odd function of x ~ depending on k, and hence [k/2] of the zeros of qk (x~) 
will be positive and [k/2] negative. 
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6. A Restriction on the Integrals 

Although the formulas of degree 3, 5 and 7 obtained in Section 4 are valid 
for arbitrary fully symmetric integrals, the Eq. (4.t 5) does not hold for all such 
integrals. I t  is therefore convenient to introduce the following definition. 

Definition 6.1. Let R ~ and w be/ully symmetric, and let the integrals 

n 

(6.t) f w ( ~ e ) H ( x ~ ) k ' d V ( ~ ) ,  k ~ = 0 ,  I ,  2 . . . .  
Ig" i=l 

exist. The integral I(/) on the left o/(3.3) will be said to possess property P i/there 
exists a trans/ormation T, Tae=y with continuous non-vanishing ~acobian which 
trans/orms (6.1) into 

a 

(6.2) fw~(y~; kx)dy~fw~_~(y ', ya . . . . .  y"; k , ,  k3 . . . .  , k.) dV(y~_x) 

where w,~_ 1 and R n-I need not be ]ully symmetric ~. 

With u and v zeros of qs(x), the Eq. (4A5) holds for all integrals with prop- 
erty P.  Moreover we have 

Lemma 6.1. Let the integral (6A) have prot~erty P. Then 

(6.3) I~k,, ~k ...... "~,=O~rI~k,I~k,"" I2k, 

where cq= 1 and ct,> 0 is independent o[ the integers k x, k, . . . . .  k,. 

Proo/. By (6.t) and (6.2) we have 

(6.4) I~ ~,, ~ k,----- A (2 kl) 19. ~, = A (2 k~) 12 k, 

where A(.) is a unique function. Clearly (6.3) follows from (6.4) for r =  2. The 
general case follows similarly by  induction. 

7, Repeated Integration and Generators 

Assume that  we are given an interval (a, b) ( 0 < a < b )  and m distinct points 
ul, u S . . . . .  u~, in (a, b). Define 

b 

(7.1) I ~  = f w~(x ~) (x~)~'dx ', ki = 1, 2, 3 . . . . .  
a 

We can then clearly choose n formulas 

(7.2/  k s - - t ,  2 . . . . .  m ,  i = t ,  2 . . . . .  n .  
i=I 

Using (7.2) we can construct the repeated integration formula 

(7.3) f . . . f / ( x l ,  . . . ,  x ' ) I I w , ( x ' ) d x ' ~  ""  w ~  . . .  w¢.'~/(%,,, . . . ,  ui.) 
a a {=] ix=l ~ffil 

e "Property P"  in effect implies that the transformation T above transforms a 
fully symmetric integral into a repeated integral. 

23 Numer ,  Math .  Bd.  t 0  
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which is exact for all polynomials I of the form 

(7.4) H (x~) k', ks= t,  2 . . . . .  m. 

Observe that the determinant of the system (7.2) is a Vandermonde deter- 
minant and the m parameters w~ 0 are uniquely determined for each i, i = t, 2, . . . ,  n. 
Hence the Eqs. (7.2) uniquely determine the m n  parameters w} i). 

We shall show that  we can uniquely determine the integration formula (7.3) 
without knowing all the m n  monomial integrals of the form (7A), but instead 
knowing the monomial integrals of chosen ( m - - l ) n - b t  fully symmetric poly- 
nomials. The type of fully symmetric polynomials we shall use are those obtained 
from (7.4) by  summing over all the n! terms of the form (7.4) with the order 
of the k s fixed but with the order of the coordinates x i interchanged in all possible 
ways. Clearly, with k s an integer in the range t ~ k i ~  m we can obtain all the 
fully symmetric polynomials if we restrict the order of the k i to k~<--k/if i ~  i. 
An easy calculation shows that  there are 

(7.5) (m + n  - 1)(.) 

distinct fully symmetric polynomials subject to this restricted range of ki. 

Integrating only a certain (m -- t) n + 1 of atl the fully symmetric polynomials 
described in the above paragraph we obtain the following system of equations 

H Ii'1 : ~o,,0 t = 1 
(7.6) i=1 

n s ilia,) 
H I~) Z Hl~:~)~..~-cot, s s=l,2 ..... n, t=2,3 ..... m. 
i = l  1<11<:,<'"<i* <n p = l  z 

The Eqs. (7.6) lead to the polynomial equations 

(7.7) (-0'o~,.,~"-'=II(liO~-I7))=o t = ~ o ,  2 . . . . .  m .  
i = 0  i = l  

That is, the Eqs. (7.6) are satisfied if and only if the zeros of the polynomial 
on the left of (7.7) are the ratios I~O/I~L Thus, for each fixed i the ( m - - t ) n  + t  
equations (7.6) determine every I~ 0, apart from a multiplicative constant. The 
lack of uniqueness is due to the fact that e.g. 

b b 

f fw, (x) (y) / (,) g (y) d, ds 
t~ t~ 

b b 

(7.8) =J:,:(.)/(.) dy 

b b 

~ fw,(ylg(y) dy 
a a 

for an arbitrary non-zero constant c, i.e. we cannot factor the integral (7.8) in 
a unique manner. We observe however, that the ( m - -  t )n  + t equations (7.6) are 
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an independent set, and they uniquely determine every product /-/w}~ ) in (7-3), 
i = l  

since they uniquely determine every product on the left of the equation 

(7.9) i ~  I~':---- ~, ~, w (1, w}:' k~ u k, "'" l~ . . .  u i :  , . . .  ~, , k I = 1 , 2  . . . . .  m .  
i = l  j t = l  ~ t = l  

Two additional observations are of interest. Although m n  equalions of the 
form (7.2) completely determine the formula (7.3), (7.3) is exact for m" monomial 
integrals of the form (7.4). Similarly, though the ( m - - i ) n + i  equations (7.6) 
completely determine the formula (7.3), (7.3) holds for ( m + n - - 4 ) ( . )  fully sym- 
metric monomial integrals. 

The above remarks lead us to consider determination of the products w (~) w(~) h It 
w !") directly by use of generators. Let us denote the monomiai (7.4) subject • "" }n 

to the constraint ki<=k j if i ~  i by a = a ( x  x, x ~ . . . . .  x"), and l e t / = [ ( x  I, x ~ . . . . .  x") 
be the fully symmetric polynomial generated from a in the manner described 
above. Then we have 

f . . . f  / ( x  1, x") H w i ( x  ~) dx ~ "" w Ix) w}",)/(ui~, ui, ) 

(7.40) ----- E A .* . . w(1) w(~) wt") E* a [uj,, ui, ] 

= Y X ~,, j . . . . . .  ] .  / (%'  % '  . . . .  Uj.) 

where ~*  indicates a sum taken over all the points (u~, ui,, . . . .  ui.) obtainable 
from (ui~, ui,, . . . ,  ui. ) by interchanging coordinates. I n  (7.40) [ is arbitrary and 
every constant Ai~ ' i ...... i. is uniquely determined. 

We next index all the generators [ui,, ui,, . . . .  uj.] (/1<=~2<=... <= i .) from 4 
to ( m + n -  l)(.) and we also index all the fully symmetric polynomials obtained 
as described above, from t to ( m + n -  t)(.). The Eqs. (7A0) can then be written 
in matrix form 

(7Ai) V W = J k ~ , ~  ...... k.. 

Here V is an (m+  n -  l)(.)× (m+ n -  4)(~) matrix with (i, ])-th element equal to 
the i-th fuly symmetric polynomial evaluated at the j-th generator. W is an 
( m + n - - l ) ( . ) × ~  vector whose f-th element is the coefficient Ai,,~ ...... ~. of the 
generator point with coordinates (ui~, u~,, . . . .  ui. ) , andJ~, k, ..... ~.is an (m + n -- ~)(.) x i 
vector whose i-th element is the integral of the i-th fully symmetric polynomial. 

I t  has already been observed that  the coefficients Ai~,i ...... i. in (7.40) are 
uniquely determined. We have thus proved 

Theorem 7.I. The matrix V described above is non-singular. 

8. Minimum-Point Fully Symmetric Formulas of Arbitrary Degree 2k + 1 

The developments of the previous sections enable us to give a constructive 
proof of the following theorem. 

Theorem 8.1. Let w(x)  satis/y the conditions 

a) w(x)>o/or x~R"; 
b) w (ae) i s /u l l y  symmetric. 

23*  
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Let the integral I(]) in (8.t) have property P. Then there exis t /ul ly  symmetric 
numerical integration/ormulas in n space o[ the/orm 

I(l) -- f w(x) l(x) dV(x) 

(8.1) 
~ A o / E O ] + ~ 2  Z Aj~.~. .. . . .  j . ~ / E ~ j , , ~ .  . . . . .  u , . l  

s = l  x~A<i,~ " '£ i ,  

which are exact/or all monomials o/degree 2k + t,  k :> 0 an integer. The coordinates 
o/the evaluation points/or the/ormulas on the right o[ (8.t) are restricted to be the 
zeros o] the polynomials qk+l (x) defined in Section 5. Subiect to this restriction the 
total number o/points m required by the/ormulas (8.1) is minimal 

(re (an)' [ t+0( -~) ] ,  n--> oo) 
- -  k !  

Each o] the weights Ao, A i ...... i, is real. 
A few remarks concerning tile manner in which we shall carry out the proof 

are in order. At the outset of the proof we shall characterize the minimum number 
of monomials necessary to solve for all tile linear unknowns in (8.1), and at the 
same time establish an order among these monomials. A suitable ordering is 
also established for the generators, which are selected according to the rules (f) 
and (g) of Section 3. This brings about a "triangular structure" of the system 
of non-linear equations. This "triangular structure" enables us to use the analysis 
of Sections 6 and 7 to carry out a proof by induction that this system of non- 
linear equations possesses a unique solution. 

Proo] o/ Theorem 8.1. Let us first conveniently subdivide all the monomial 
integrals. We denote I(t)  in (8.t) by I 0, and the remaining integrals by 

$" • 

f w (x) H (x ~) ~ ~' d V(x) = I~ ~. ,~ ~ ... . .  ~ ~, = ~ ,  H I~ ~, 
R jt i ~ l  i = l  

(8.2) 
w h e r e  

(8.3) • 2 k i ~  2k, ki>= t , 
i = 1  

k s being an integer. The integer r will range from t to k. 
Due to the full symmetry we need only consider those integrals (8.2) for 

which ki<=k i if i ~  i, t <=i, i ~ r .  The inequalities (8.3) tell us that for v an integer 
in l ~ v ~ r ,  

(8.4) 2 < 2k, ___ 2k -- min ~ 2k~ -- min ~. 2k o 
*:~1 i = v + l  

The maximum of the right hand side subject to the constraint ki<=k j if i~]" is 
obtained by setting k i = l  for i < v  and k~=k, for i;>v. We thus find that  
1 ~ k, ~ k*, where 

(8.5) k* = k* (r) = t ; : = ~ + y j ,  ~ = t, 2 . . . . .  r. 

Corresponding to the numbers k* we define numbers l, by 

. / [k+t  ] 
(8.6) l, = l, (r) = mm [[---2---], k* (r)). 
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We then list all the monomial integrals (8.2) subject to the constraints (8.3) 
together with the constraints 

(8.7) k,<=l~, v = 1 , 2  . . . . .  r 

where l, is defined by (8.6). 
Let there be n=~(r )  distinct monomial integrals o/ the type (8.2) sub#ct to the 

constraints (8.3) and (8.7). We shall write down the non-linear equations for a 
"'minimum point" fully symmetric integration formula which exactly integrates 
these monomials, r---- 0, 1, 2 . . . . .  k. Later we will show that this integration formula 
exactly integrates all the monomials (8.2) subject only to the constraint (8.3). 

[k--+2--I ] distinct positive zeros ul, u,. . . . . .  % (oJ= 1 - ~ ] ) o f  q~+1(x) The will  

be used to construct a suitable set of n(r) generators subject to the rules (f) 
and (g) of Section 3, such that we obtain a system of u (r) linear equations of 
a form similar to (7.tl) in the n(r) unknown coefficients Ai,.i ' ..... j,, for which 
the determinant does not vanish. Consider the system of equations 

t, C0 bCr) Z,O') 
• . " uZk'u 2k" u ~ k ' -  ~,12k~l~k,... I ~ k ,  Z Z ' " Z  W,,Wi, . va,, i, ,, . . .  i, - -  

(8.8) ~==i i,=1 ~,=1 

( k i : l ,  2 . . . . .  l , ( r ) ;  i = t ,  2 . . . . .  r ) .  

By the analysis of Section 7 we know that we may write (8.8) in the form of a 
system ~ of ( l , ( r )+r - - l ) ( , )  linear equations which uniquely determines all of 
the (l,(r) + r - - t ) ( , )  products wi, wi, . . .  wi,, 1 <--i1<--_i2<= "" <=i,<_l,(r). The u(r) 
monomial integrals (8.2) subject to (8.3) and (8.7) are clearly a subset of those 
on the right of (8.8). Let the u(r) monomials (labelled l, 2 . . . . .  u(r)) specified 
by (3.6) with v = r  together with (8.7), be used to yield the first u(r) equations 
of the system ~. These u (r) equations are clearly of rank u (r), since the system 
has a non-zero determinant. Thus, there exist at least n (r) generators (labelled 
t, 2 . . . . .  n(r)) among the total (l, (r) + r -- t )<,), such that the square matrix, 
whose (i,/')-th element is the i-th monomiat summed over the points generated 
by the/ '-th generator, has a non-zero determinant. Let v~,),,(,) denote that particular 
u (r) × ~ (r) matrix with non-zero determinant which is constructed lrom any particular 
set ot generators selected such that the total number o] points generated by them is 
minimized. In this way we shall minimize the total number of points required 
in our final integration formula. (We expect that if we list the generators in 
increasing order of the number of points each generates, then the square matrix V 
whose (i, ])-th element is the i-th monomial described above summed over the 
points generated by the ]-th generator always has a non-zero determinant. How- 
ever, we have so far been unable to prove this.) In general there will be many 
different choices of generators leading to different integration formulas, all of 
which require the same number of points. Observe that  in choosing V,~) we have 
applied the rule (f) of Section 3 to select generators with exactly r positive co- 
ordinates, and that we have applied the rule (g) of Section 3 to minimize the 
number of points generated by the set of generators making up V,(~),~. 

Assume that  all the square matrices V,(~) have been determined as described 
above, for r = t ,  2 . . . . .  k. We then also de/ine the n(r)×~(s) matrices V~r<~) s =  
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1, 2 . . . . .  k as /ollows. The (i, f)-th element o~ V~(~) is the i-th monomial  used to 
obtain V~('(~) summed  over the points generated by the ]-th generator in  v(s) Here the "~(s). 
Eq. (3.8) can be used to explicitly express each (i, ])-th element. Clearly V~(~) is a 

(r) × x  (s) zero matr ix  i] r >  s. 

Further we denote W(') (r = t,  2 . . . . .  k) to be a u (r) × t dimensional vector 
of elements Ai, ,i . . . . . .  i,, the ]-th element in W('I corresponding to the f-th generator 
used to construct lz(,~ and finally, we denote i(,) to be the n (r) × 1 vector of "u(r), 
monomial integrals, the i-th element of I(0 being the integral of the i-th monomial 
used to construct v{,) "~(r)" 

At this point we are ready to consider solving the following sequence of 
k systems of linear algebraic equations 

v ~ )  w(k) = x(~) 
(8.9) 

v~<~ w( ' )  = I{'> - E v~(~) wc~) (r = k - -  t .  k - -  2 . . . . .  t ) .  

Clearly W (k) is uniquely determined in (8.9). By induction it follows that  each 
W(') (r----t, 2, k) in (8.9) is uniquely determined, since the square matrix lz(,) • .., -~(,) 
is non-singular. 

This completes the proof that  "minimum-point"  generators can be found, 
and the corresponding coefficients Ai, , i  . . . . . .  i, (s = t ,  2 . . . . .  k) in (8A) can be uni- 
quely determined such that the formula (8A) is exact for all monomials of the 
form (3.6) (with v----t, 2 . . . . .  k), subject also to the constraint (8.7). Clearly, if 
we s u b s t i t u t e / = l  into (8A) we can now also determine A 0. Thus (8A) is com- 
pletely determined. Each coefficient Ao,  Ai , , i  . . . . . .  i, in (8A) is obviously real. 

The right side of (8A) gives us the number of points m required by this formula 
if we substitute Ao-----Ai,,i . . . . . .  i , = ]  = 1. By (3.4)this number of points is a poly- 
nomial in n, the number of dimensions. Since the total number of generators 
at the s <  k stage is independent of n, and since there is only one generator (with 
k positive coordinates, all of which are the same) when s = k, it follows from (3-4) 
that  the s = k  generator generates the dominant term in this polynomial. Hence 

It  remains to show that (8.1) is exact for all the monomials (3.6) for v = 
0, t . . . . .  k without the additional restriction (8.7). Due to the full symmetry, we 
need merely carry out a proof for all those monomials subject also to (8.7) but 
with l, in (8.7) replaced by  k* in (8.5). An easy calculation shows that k* (r) can 

be greater than ~ ' " / k - ~  1-] only for r = 1 , 2  . . . . .  r-~/~_[, and also, subject to (8.7)with 

l, replaced by  k,*t ,~ , ( r ) ,  k :  (r) <= [h+_l] if v <  r. 

Let  us fix an arbitrary integer r in 1--< r--< and let *--  * ( r )>  

Substituting any monomia l / (x  1, x ~ . . . . .  x') of the form (3.6) for v = r  into (8.t) 
we obtain 

(8 . to )  Z Z &,i . . . . . .  j . Y t [ u ; . ,  uj.. . . . .  us,] = ~ , H I , , , .  
s = r  l<i~<A<... ~i. i~1 
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Dividing both sides of (8.t0) by ~ , / ~ I ~  and on the left collecting coefficients 
i = l  

of coordinates whose exponent is 2k, we obtain the equation 

(8.11) ~, ~,~ u~,=I2kr 
/* 

where the coefficients w v are functions of kt, t ----- t, 2 . . . . .  r -- 1. Let these integers k~ 
be fixed subject to (8.3) and (8.7) with l~ replaced by  k*, so that the integer k, in 

(8.tt) is free to traverse over the range t <_k,=<o~ where ~--'t-k--~-1-1 <=o~k*(r)<=k.  

For k , = l ,  2 . . . .  ' + " " t ,/k---!/ the system (8.tt) may be regardedL~J as a system of 

[k_~_] linear equations in the unknownsr~,.~w~. Clearly the in teger / , in  (8.tl) must 

over all the integers i n 1  ~/~ ~ } ~ ] ,  for otherwise no solution to this range 
[ would exist. Thus the determinant of this system of [k I equations is system 

not zero, and so there exists a unique set of w, s such that (8.11) is exact 

for k , = t ,  2 . . . . .  " '"t-k~J-/. However, by the definition of the ut, in Section 5 and 

by the connection between orthogonal polynomials and Gaussian quadrature, it  

f o l l o w s t h a t o n c e w e h a v e " d e t e r m i n e d " t h e w ~ b y s o l v i n g t h e s y s t e m o f [ ~ ]  
linear equations, (8.tl) is exact for k , = t ,  2 . . . . .  k. 

This completes the proof of Theorem 8.t. 

To facilitate the evaluation of the right of (8.t) we suggest using the formula 
p /, p 

(8.t2) Y ~ I E . j ~ , u j , ,  . . . .  u; , ]= E ~. "'" 2 ~(i~,i~ . . . . .  i~)t(ui~,ui ,  . . . . .  u~).  

In (8.12) u _ j = - - u  i for j > 0 ,  % = 0 ,  and d(i~, i s . . . . .  i,~) is defined as follows. 
It  is presumed that the generator [u~, uj,, . . . .  ui, ~ has p distinct positive co- 

p 
ordinates: p~ of the first . . . . .  ~bp of the p-th so that ~. P i =  s. Put  G* = { h ,  i2 . . . . .  i~, 

i = 1  

i,+1 . . . . .  i,~} where the integers h to ]'~ are defined as for (8.t2), and i,+1=~'~+~= 
. . . .  ]',,=0. Then d(i I, i~ . . . . .  i,~) is respectively equal to one or zero according 
to whether or not the set {Iql, li l . . . . .  liot} is a permutation of the elements 
in G*. Accordingly, it is unnecessary to compute / (u~,  u~, . . . . .  ui~) whenever 
d(i~, i~ . . . . .  i , )=0 .  

Although the above constructive proof is carried out only for n >= k, it applies 
equally for n <  k provided we define I~0= O for r >  n. 

9. Conclusion 

At the outset of the paper we have given a simple transformation which 
transforms integrals over a large class of regions into integrals over the n-cube. 

In the remainder of the paper we have concentrated on the development of 
a procedure for constructing fully symmetric numerical integration formulas. To 
start with, we have obtained four fully symmetric formulas of degree 3, 5, 7 and 9 
by directly solving a system of non-linear algebraic equations. Difficulties inherent 
in these special cases are later overcome in the general degree 2k + 1 case by 
restricting ourselves to integrals with property P (Section 6), by  introducing 
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orthogonal polynomials (Section 5), generators (Section 3), b y  establishing a con- 
nection between repeated integration and generators (Section 7) and by  using 
the connection between Gaussian integration and the solution of a certain cor- 
responding system of non-linear algebraic equations. Thus the problem of solving 
the system of non-linear algebraic equations in the general degree 2k + t case is 
reduced to solving a sequence of k + t systems of linear algebraic equations. 

I t  is apparent from tabulation of the formulas for moderate or large n and k 
that  the weights of the minimum-point formulas of the preceeding section differ 
in relative magnitudes by  as much as t0 ~ for e.g. n =  5, 2k + t = 7. 

I t  seems that  it m a y  be difficult to find formulas which satisfy all the criteria 
mentioned in the introduction of this paper. In Section 3 the positive weight 
formula was rejected because the coordinates of the evaluation points for it  are 
not zeros of certain orthogonal polynomials, Moreover, these evaluation points 
are in many  cases outside the region of integration when n is large. Abandonment 
of the positive weight criterion may lead to formulas involving large weights or 
too many  evaluation points. A possibility which we have not examined is to use 
linear combinations of the formulas of the present paper in such a way as to 
minimize the weights. 
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