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Abstract. Using the space of holomorphic symmetric tensors on the moduli 
space of stable bundles over a Riemann surface we construct a projectively flat 
connection on a vector bundle over Teichmtiller space. The fibre of the vector 
bundle consists of the global sections of a power of the determinant bundle on 
the moduli space. Both Dolbeault and Cech techniques are used. 

O. Introduction 

The new invariants of 3-manifolds introduced by Witten 1-21] can be approached 
by defining a vector space V canonically associated to a closed surface S, a Lie 
group G, and an integer k. These spaces are to be thought of as analogues of 
cohomology groups, though satisfying different functorial properties [17]. To 
define cohomology groups one usually requires a choice of auxiliary structure - a 
triangulation, (2ech covering, differentiable structure, or Riemannian metric - and 
one needs to prove that the resulting space is independent, in a suitable sense, of 
that choice. The same is true of the vector spaces required for Witten's theory, and 
the aim of this paper is to prove that independence for the case G=SU(m). 

The underlying idea behind the vector space V is that of the geometric 
quantization of a symplectic manifold M. Given the group G, we consider the space 
of irreducible representations of the fundamental group nl(S) into G: 

Hom(rq(S), G)irr/G, 

which is in a canonical way a symplectic manifold M. Multiplying the canonical 
symplectic form by the level k gives it a different symplectic structure. These 
symplectic manifolds are clearly canonically associated to the surface X. To 
quantize them, in the Kostant-Kirillov-Souriau sense, requires a choice of 
polarization and one then needs to prove that the space is independent of that 
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choice. One type of polarization is a K/ihler polarization - we choose a complex 
structure on M to make it into a K/ihler manifold. This is an appropriate thing to 
do in the present context since a choice of conformal structure on Z induces a 
natural complex structure on M which defines a K/ihler polarization. As a complex 
manifold M becomes, due to the theorem of Narasimhan and Seshadri, the moduli 
space of stable holomorphic vector bundles of rank m over the Riemann surface X. 

For a K/ihler polarization, the vector space V one takes for the geometric 
quantization is the space of global holomorphic sections of a holomorphic line 
bundle L which has a hermitian metric whose curvature form is the symplectic 
form co. It is a general feature of quantization that only the projective space IP(V) is 
canonically defined - in the presence of group actions on M one tends to get 
projective representations or representations of central extensions. This means 
that what we look for is a canonical way of identifying the projective spaces for two 
different conformal structures on the surface N. This may be regarded as parallel 
translation for a fiat connection on the bundle of projective spaces ~(V) over 
Teichmiiller space. Given a diffeomorphism f of s one may then compare parallel 
translation between the points x and f(x) in Teichmfiller space with the natural 
action of f from P(Vx) to ~(V:(x)) to get a matrix whose elements enter into the 
definition of the Witten invariants. The problem then breaks up into two parts: (a) 
find the connection, and (b) prove that it is flat. 

In Sect. 1 we consider the situation of a general symplectic manifold and give a 
cohomological identification of what such a connection should be. This is framed 
in holomorphic terms in what is really the Kodaira-Spencer deformation theory 
for a triple (M, L, s) where M is a complex manifold, L a line bundle, and s a section 
of L. A connection is given by a class in the first hypercohomology group of the 
complex of sheaves 

0__~l(g ) s L~0, 

where NI(L) denotes the sheaf of first-order differential operators on L and the 
map s is evaluation on the section s. [This approach is inspired by a paper of Welters 
[20] who essentially deals with the abelian case G=U(1).] The abstract 
eohomological formalism can be made quite explicit and elementary in Dolbeault 
terms, but it has the advantage of being accessible by other approaches - exact 
sequences and so forth - which enable us to find canonical classes in the required 
group. 

In the second section we consider the specific case where the symplectic 
manifold M is the space of equivalence classes of homomorphisms of the universal 
central extension F of rc1(s into SU(m). We consider this case initially since it is a 
smooth compact manifold. It corresponds for a choice of conformal structure on 
to the moduli space of stable bundles of rank m, degree 1 and fixed determinant. 
Some general properties of M as a complex manifold are given including the 
identification of the holomorphic line bundle L. The principal result concerns the 
infinitesimal deformations of the Kfihler polarizations we are concerned with. For 
a symplectic manifold in general, such an infinitesimal deformation is given by a 
complex symmetric tensor G ~J satisfying an integrability condition. In our case this 
tensor is holomorphic and can be explicitly described. 
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The connection is defined in Sect. 3. Formally speaking it arises from the 
coboundary map of a short exact sequence related to the sequence of sheaves 

O _ ~ ( L ) ~ 2 ( L )  ~ ,S2ToO, 

where ~Z(L) is the sheaf of second order differential operators on L, SZT the sheaf 
of symmetric 2-tensors and a the symbol map. This formal description can be 
realized in two ways - either by a Dolbeault representative which uses the 
differential geometry of the K/ihler manifold M, or by a ~ech representative using 
a covering of M by coordinate neighbourhoods. Either way, the connection may 
be described by a heat equation. Parallel translation with respect to the connection 
means evolving a section s of L along a curve by solving the heat equation. The 
differential geometric version is 

1 "" 2aG ) 8s_  __~(Vi (G~Wf l )+ .  ijSF 
~t (2k+2)ii, j \  Ozi -Vjs+ikfss " 

The holomorphic one is of the form 

8s 1 / 8  / u ~s ~ A~ (~s + BGs) ' 

where the holomorphic coefficients apart from G u depend on the choice of 
coordinates and trivialization of L. 

In Sect. 4 we prove the flatness of the connection by using the holomorphic 
Cech description. The essential point is that the symmetric tensors G ~ considered 
as functions on the cotangent bundle T'M, actually Poisson-commute for general 
reasons. This becomes translated into commutation properties of the heat 
operators which define the connection (and whose symbols are the tensors G i j) and 
hence of the covariant derivatives of the connection. The final section deals with 
the general case where the compact space Hom(n~(~); SU(m))/SU(m) is singular. 
Here, as in Sect. 4 we make some use of the moduli space of stable Higgs bundles - 
a completion of the cotangent bundle T*M - to prove some basic holomorphic 
facts about M. Essentially, we work over the smooth open submanifold of 
irreducible connections and rely on Hartog's theorem to provide a substitute for 
compactness. One of the incidental outcomes of the holomorphic approach is to 
note that on the square root K 1/2 of the canonical bundle K of M there exists a 
natural space of globally defined commuting second-order differential operators. 
Its significance is, at least to the author, not clear - there is no connection to be 
defined for K ~/2 since it has no global sections. 

There exist a number of other approaches to the flat connection, some arising 
from conformal field theory where this is a connection on the space of"conformal 
blocks." The description of Tsuchiya, Ueno, and Yamada [19] is also algebro- 
geometric in nature and, being phrased in the language of @-modules shows how 
to extend the connection to stable curves. Allied to this is Segal's point of view [17] 
relating to representations of the loop group. The direct approach of Witten, 
Axelrod, and Della Pietra [22], viewing the problem as the relationship between 
the quantization of an affine space and its symplectic quotient, leads to the 



350 N.J. Hitchin 

differential geometric heat equation above and shows that the connection 
introduced in a rather ad hoc manner in this paper is indeed the natural one. 

Many aspects of the connection have so far resisted attack by the methods 
presented here, most notably the unitary structure which the vector space Vshould 
have. Only in the abelian case does the heat operator preserve the inner product 
defined directly by the hermitian structure on L. Also, the behaviour of the space V 
under degeneration of the conformal structure is not easily accessible. The method, 
or at least the basic ingredients, does however extend to the situation of surfaces 
with marked points - the starting point for Witten's knot invariants. The 
corresponding moduli space here is the space of parabolically stable vector 
bundles. It is easy to produce symmetric tensors and heat operators in this case, 
and indeed the explicit connection of Knizhnik and Zamolodzhikov [9, 8] can be 
viewed as a holomorphic heat equation. However, the modifications of the method 
given here to take into account the marked points are considerable and we have 
left such discussions until another occasion. 

1. Geometric Quantization 

The goal of the programme of geometric quantization is to associate to a 
symplectic manfiold a vector space, canonically defined up to a scalar factor, and 
satisfying certain properties. (The reader may refer to [23] or [5] for more details 
of this process.) The recognized method for producing this vector space requires 
the choice of a polarization of the symplectic manifold. The difficulty in practice in 
carrying out the quantization is in proving that, in an appropriate sense, the vector 
space is independent of that choice. Here, we shall consider this general problem 
for the case of a Kdhler polarization. 

Suppose M 2n is a compact symplectic manifold with symplectic form 09. The 
symplectic form is a closed 2-form and thus defines a de Rham cohomology class 

[co] e H2(M; I~.). 

If 1 [co] is contained in the image of the integral cohomology 

H2(M ; ~E)~ H2(M ; F-~), 

then the symplectic form assumes a geometrical interpretation. It is the curvature 
form of a connection on a principal U(1) bundle over M, whose first Chern class is 
1 

[09]. When M is simply-connected, this connection is unique up to gauge 

equivalence. 
Instead of considering the principal bundle, we may consider the associated C ~~ 

complex line bundle L, which has a hermitian structure and a connection defined 
by a covariant derivative 

V: f2~ L)~O~(M; L). 
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Now suppose we choose a K?ihler polarization of the symplectic manifold M. 
This consists of an endomorphism 1 ~ f2~ End T) of the tangent bundle of M 
such that 

12 = --  1, (1.1) 

[IX, IY] = IX, Y] + I[IX, Y] + I[X, IY], (1.2) 

co(X, IY) = --co(iX, Y), (1.3) 

co(X, IX) is positive definite. (1.4) 

By the well-known theorem of Newlander and Nirenberg the first two conditions 
give M the structure of a complex manifold and the last two say that g(X, Y) 
=co(X, IY) is a K~ihler metric, with K~ihler form ~o ~f2 ~' I(M). 

With a K/ihler polarization, we can give the C ~ line bundle L the structure of a 
holomorphic line bundle by considering the differential operator 

V o,~ :OO(M;L)~Oo.I(M;L ) 
defined by 

Fo, a = (1 + iI)F. (1.5) 

[Recall that the complex forms of type (0, 1) are those on which I acts as - i.] 
In local terms, this is a differential operator of the form 

~(~zi" . +Oif)dgi (1.6) 

and by the Dolbeault lemma, a local solution to 

l ay  
- -  - -  + 0 ~ = 0  

f O~i 

exists ff and only if ~(XOid~i)=O~O~ This, however, is the (0,2) 
component of the curvature of V. In our case the curvature form is the K~ihler form 
co which is of type (1, 1). Thus the integrability condition is satisfied and the 

equation V ~ is = 0 

has local non-vanishing solutions s. If s and g are two such solutions with g=gs, 

then = 0, and so g is a holomorphic transition function for the from Eq. (1.6), 

line bundle L. This gives it its holomorphic structure in the traditional sense. It 
means that a local holomorphic section s is a solution of the equation V ~ is = 0. 

The space of global holomorphic sections of L is by definition the vector space 
one takes as the quantization of M relative to the Kfihler polarization. 

To each K~ihler polarization I, we therefore associated the finite-dimensional 
vector space 

V/= {s e (2~ L) : (1 + iI) Vs = 0}. (1.7) 

We now need to address the question of the dependence of this vector space on the 
complex structure I. The first problem concerns the dimension of V~: is it constant 
as I varies? 
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To deal with this, recall that the Cauchy-Riemann operator V ~ 1 may be 
extended to act on (0, p) forms with values in L: 

V o, 1 : f2o,p(M; L)~Oo,p+ I(M; L) 

and the corresponding elliptic complex is the Dolbeault complex of the 
holomorphic line bundle L, with cohomology groups HP(M; L). The vector space 
Vz = H~ L) is the zeroth cohomology group of this complex. By Serre duality, 
(see e.g. I-4]) 

HP(M; L)* _~ H"-P(M; KL-  1), 

where K is the canonical bundle of holomorphic n-forms on M, and by the 
Kodaira-Nakano vanishing theorem [-4] this space is zero for p > 0 if the line 
bundle KL- 1 is negative, i.e. if the cohomology class - cl(KL- 1) = el(L)-- el(K) is 

1 
represented by a K/ihler form. Since Cl(L) is represented by the K/ihler form ~ c o  

then for large enough k, - c l ( K L  -k) = kcl(L ) -  el(K) will be represented also by a 
K/ihler form whatever el(K) is. Thus replacing L by L k (this change of level k will be 
important later on) we will obtain vanishing in the general case. In particular cases, 
the relationship between K and L will yield more accurate information about the 
applicability of this argument. 

This vanishing is relevant because the Riemann-Roch theorem [4] gives an 
expression for the alternating sum of dimensions 

( -  1) p dimHP(M; L) 
p=O 

in terms of Chern classes which are deformation invariants of the polarization on 
M. Given the vanishing of HV(M; L) for p > 0 this yields the dimension of Vj, which 
must therefore be a deformation invariant too. 

Suppose now that N is a connected finite-dimensional parameter space of 
K/ihler polarizations I. As I varies over N, the constant-dimensional vector space 
V/defines, by elliptic regularity, a vector bundle V over N. To say that the vector 
space V/ is independent of I is to say that given I, J e N there is a canonical 
identification of V~ and V~. Such an identification, if smoothly dependent on I and 
J, can be interpreted as parallel translation of a connection on the vector bundle V 
over N. Its independence of the path from I to J means it must be a fiat connection. 
Conversely, a natural flat connection on V will define, for N simply-connected, an 
identification of V~ and Vj by parallel translation. This is the context, then, in which 
we seek to answer the question of dependence on polarization - to look for the 
infinitesimal version which manifests itself in the form of a flat connection. The fact 
that the vector space of a quantization should be defined only up to a scalar factor 
means that the projective spaces F(V/) may be identified. This leads in general to a 
scalar ambiguity in the definition of the connection. 

With this in mind, let us consider a path I t of Kfihler polarizations and a 
smooth family st of solutions to 

~O, ls~= 0. 
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Thus s t is a section of the vector bundle V over the path. From (1.5) the 
differential equation takes the form 

(1 + ilt)17s t = O. 

Differentiating, we obtain 

i iVs + (1 + l O W  = O. (1.8) 

A connection on V will therefore be given by a C ~ section u(s, i) of L, depending 
bilinearly on a holomorphic section s and a tangent vector ] to the space of K~ihler 
polarizations, and satisfying the equation 

ii  Vs + (1 + il) Vu = 0. (1.9) 

Parallel translation along a path then consists of solving the equation 

~-~=u s,~-. 

Note finally that since V ~ i s=0 ,  (1.9) may be simplified to 

�9 i iV l"~  V~ ] . (1.10) 

We shall eventually give a cohomological interpretation of Eq. (1.10), but first let 
us consider what sort of tensorial object i is. It is an endomorphism of the tangent 
bundle but since 12= - 1 ,  we have 

iI+li=O. 

In other words i transforms the - i eigenspace o f / t o  the + i eigenspace, and hence 

-/E O~ T), 

where T denotes the holomorphic vector bundle of (1,0) tangent vectors. In local 
coordinates, 

i = 2 ai -~~- |  (1.11) 
i,j ~Z i 

Linearizing the integrability condition (1.2) for I, we have 

8i = 0 ~ f2~ T). (1.12) 

Linearizing the compatibility condition with the symplectic form (1.3), we find that 

] =  ~, GUo)jk~-~-| (1.13) 
i , j , k  GZ i 

where o9 = ~ ogj~dzj A ds k is the Kfihler form and 
j,k 

 =ZG,JL| 
i, j ~z i c3zj 

is a C ~ section of T |  T which is symmetric (i.e. GiJ= G/i). 
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Denoting by S 2 T  the bundle of symmetric tensors of type (2, 0), then we see that 
f is defined by a section G of S2T, satisfying the integrability condition (t.12). In 
local terms this condition is: 

~G~J 
~, -~-'--coj~dz k A d~ l = 0  (1.14) 

since the symplectic form ~o is closed. 
Let us consider the question now of finding solutions u(s, ]) to Eq. (1.10). By the 

Dolbeault  lemma a local solution will exist iff 

g(ilVl"~ fl~ ; L). 

We check next that this condition does indeed hold. Using (1.13), the left-hand side 
is in local coordinates 

t3 ii 
Z ~ ( i G  coj~Vis| k/x d~t) 

i, Lk, i 

which, using (1.14) gives 

ij 0 
iG ~oj~w:-_ (~s)| k ̂  d~ t. (1.15) 

f , j , k , l  OZ t 

But since the holomorphic structure on L is defined by V ~ 1, then 

3 

using the fact that the curvature of V on L is r 
Since s is also a holomorphic section of L, V~s = 0, and so (1.15) may be written 

as 

- ~ iGqoJj~co as | dff~ ̂  dg~. 

But now the symmetry G o = G j~ implies that this vanishes. Hence we can always 
find local solutions of (1.10). 

This calculation can also be given a slightly different interpretation in terms of 
the first order differential operator iiV 1'~ Written locally, we have 

i]Vl'~ E iGiJc~174 
i , j , k  

as 
= E ~k~z.. |174  (1.16) 

i ,k  U i k 

in terms of a local holomorphic trivialization of L. 
We now introduce the bundle ~k(L), defined as the vector bundle of 

holomorphic linear differential operators of order k on L. 
We can also identify it as the bundle Hom(jk(L), L), where Jk(L) is the vector 

bundle of k-jets ofholomorphic sections of L. The bundles @k(L) fit into short exact 
sequences of vector bundles: 

k a 0 - - ~  k- I(L)---~ (L)---~ SkT~O, (1.17) 
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where the homomorphism o- is the principal symbol (or highest order term) of the 
operator. 

With the above definition the local expression ofiJVl'  o in (1.16) shows that it is 
an element of s ~ ~(M; NI(L)). The calculation above for the local integrability of 
Eq. (1.10) then shows that 

~(i]g 1, o) = 0 e ~2 ~ 2(M; ~I(L)). (1.18) 

To reinterpret (1.10) cohomologically we now introduce a complex which 
incorporates the basic data iiV 1' o and u of the equation - a (0, 1) form with values 
in NI(L) and a C OO section of L. 

We set 

A v = f2~ ~1(L))@f2~ I(M; L), 

and define d~:AV~A v+l by 

diD, u) = (0D, Ju + ( -  1) p- iDs). 

(1.19) 

Since 8s = 0, it is easily checked that d~ = 0 and so we obtain a complex. The pth 
cohomology group of this complex we denote by 

]HV(M; ~I(L)).  

With this formalism we see that (Li V 1' o, u) can be viewed as an element of A 1 and 
the two equations (1.18) and (1.10) become 

ds(iViW' o, u) =0. 

Thus any solution to (1.10) defines a cohomology class in ~I~(M;~I(L)). This 
cohomology group - a hypercohomology group of a double complex (see [20]) - 
lies at the heart of the existence of the flat connection. It has the advantage of being 
viewed either from the Dolbeault point of view, as we have done here, or the ~ech 
point of view which gives extra information as we shall see. 

For  the moment, note that the symbol map a [see (1.17)] applied to 
O e Qo, a(M; ~I(L)) gives a homomorphism of cohomology groups 

~: ~:(M; ~I(L))~HI(M; T). 

In our context, a(]gl'~ is the Kodaira-Spencer deformation class 
corresponding to the infinitesimal deformation ] of the complex structure of M. 

The K~ihler form ( o = ~  coiflz i ̂  d~je Qo, I(M; T*) also defines a cohomology 
class [~o] e H I ( M ;  T*) and a cup product map 

[co] : H~ T)~HI(M; (9), 

defined at the Dolbeault  level by 

-Z  



356 N.J. Hitchin 

for the holomorphic vector field X = ~ X i ~ e H~ T). Using this notation, the 
i ~ Z  i 

role of the hypercohomology group in defining a connection may be expressed by 
the following theorem: 

Theorem (1.20). Let M be a compact symplectic manifold and L a line bundle over M 
with connection whose curvature form is the symplectic form co. Suppose we have a 
family of Kdhler polarizations of M such that for each polarization 
i) [co] :H~ T)~HI(M; (9) is an isomorphism. 

ii) For each holomorphic section s ~H~ L) and tangent vector J to the family 
there exists a smoothly varying cohomology class 

A(i, s) e ~ ( M ;  ~ ~(L)) 

such that - iaA( i ,  s) is the Kodaira-Spencer class I l l  e HI(M; T). 
Then A defines a connection on the bundle of projective spaces ]P(H~ L)) over 

the family. [As we shall see, condition (i) says that there are no holomorphic vector 
fields which f ix  the line bundle L.] 

Proof. Firstly let us interpret condition (i) in the theorem. As in (1A7), the 
holomorphic bundle ~ ( L )  appears in an exact sequence 

O-,~~ T~O, 

where g~ is the trivial bundle of 0-order differential operators. This exact 
sequence defines ~ I(L) as an extension of (9 by T and hence by a sheaf cohomology 
class in Hi(M; T*). This is a multiple of the first Chern class 

[el(L)] = 2~ [co] e Hi(M; T*) 

by the Atiyah interpretation of characteristic classes [1]. 
Taking the exact cohomology sequence we have 

0~H~ (9)~H~176 T) [o,] HX(M; (9)... 

... ~ HI(M ; ~X(L))~ H~(M ; T ) ~  H2(M ; (9)--, .... 

Condition (i) tells us that H~ (9)---H~ ~I(L)), in other words that the only 
globally defined holomorphic first order operators on L are multiplication 
operators by a holomorphic function. Since M is compact these are just constants. 
It also says that the natural symbol map HI(M; ~I(L))~HI(M; T) is injective. 

Suppose then we are given A(i, s) e IH~(M; ~I(L)) as in condition (ii) of the 
theorem. We represent the class by a 1-cocycle 

(O, w) e f2 ~ I(M; @a(L))GO~ L). 

Since - ia(D)eO~ is cohomologous to J then D and dV 1'~ have 
cohomologous symbols and hence by the above injectivity are cohomologous in 
f2 ~ I(M; ~X(L)), i.e. there exists P e f2~ ~I(L)) such that 

D -- iiV ~" o = jp .  (1.21) 
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Since d~(D, w) = O, 

Ds + ~w = i lV 1' ~ + J(Ps + w) = O, 

and hence u = P s +  w gives a solution to (1.10). 
Let u~,u z be solutions to (1.10) such that ( i lV l '~  and (ilV~'~ are 

cohomologous in ~ ( M ;  ~I(L)). Then 

( 0 ,  U 1 - -  U2)  : dsP, P E ~2~ ~I(L)). 

From the definition of ds this means that 

~-P=0 

and 
U2--U 1 = P s .  

However condition (i) says that the only global holomorphic sections of ~I(L) are 
constants, so P is a constant c and u 2 = u~ + cs, i.e. u is well-defined up to a multiple 
of s. This ambiguity is precisely the indeterminacy to obtain a connection on the 
projective bundle rather than the vector bundle. 

Note that this uniqueness also gives the bilinearity of the dependence of u on i 
and s. 

This is as far as the general theory of K/ihler polarizations will take us. We 
consider next the more specific symplectic manifolds that arise from represen- 
tations of surface groups. 

2. Spaces of Representations 

The manifolds to which we shall apply the above process of geometric quantiza- 
tion are spaces of equivalence classes of representations of the fundamental group 
of a compact oriented surface Z of genus g > 1 into a compact Lie group G. We 
consider then the space 

Hom(~(Z);  G) 

ofhomomorphisms from the fundamental group ~1(S) to G and the quotient space 

Hom(n I(Z); G)/G 

by the conjugation action of G. 
Since na(S ) is a group with 2g generators A1, B1 . . . .  , Ag, B o satisfying the one 

0 

relation YI [Ai, Bi] = 1, this compact space has an explicit description, but 
i = l  

unfortunately is rarely a manifold because of the existence of reducible represen- 
tations and in particular the trivial one. At an irreducible representation it is 
smooth, with tangent space the cohomology group Ha(hi(S); ~ ) -  the cohomology 
of the Lie algebra of G considered as a nl(S)-module. 

There are, however, compact spaces of representations which are smooth 
manifolds (see [2]) if we replace the fundamental group nl(Z) by its universal 
central extension 

O o Z - ~  F ~ n l ( S )  o 1 
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9 
generated by Ax, Bx .... , A o, B o and the central element J satisfying I-I [-Ai, BJ  =J .  

i=1 
The space of equivalence classes of representations of F into SU(m) such that J 
maps to a generator of the centre Z / m  is a smooth compact manifold M. 

The spaces we have just defined as manifolds are not yet canonically symplectic 
manifolds. This additional fact becomes apparent by adopting the point of view of 
Atiyah and Bott [2] and interpreting via the holonomy representation the above 
spaces as spaces of gauge-equivalence classes of f iat  connections over S. If P is a 
principal G-bundle over Z, then the infinite-dimensional affine space d of all 
connections on P is canonically a symplectic manifold: a tangent vector to d is a 
Lie-algebra-valued 1-form a ~ O1(S; adP) and 

('0(~1' a 2 ) =  I B(cq/x a2) (2.1) 
Z 

defines a non-degenerate skew form where B is a bi-invariant positive definite inner 
product on the Lie algebra. For G=SU(m) ,  we have 

co(a1, ct2) = - S Tr(71/x a2). (2.2) 

Since co is a constant form it is closed. The infinite-dimensional group (~ of gauge 
transformations (automorphisms of P) acts on d preserving the symplectic form co 
and has moment map 

defined by 

# : d  ~ Lie ((r _---(2~ ad P)*, 

/t(A) = F A ~ f22(~; adP). 

The reduced phase space, or Marsden-Weinstein quotient 
- 

then has an induced symplectic structure. This space is precisely the set of gauge- 
equivalence classes of connections A with F a = 0 ,  i.e. fiat connections, and hence a 
space of representations of n I(Z). The central extension case considered above may 
similarly be interpreted either as the gauge equivalence classes of U(m)- 
connections with central curvature or via a refined notation of equivalence for flat 
PU(m)- (= U(m)/centre)-connections. In either case the symplectic formalism goes 
through and we are left with a symplectic manifold (M, co) of equivalence classes of 
representations of an abstract group. 

With the flat connection interpretation, the tangent space to M is the first 
cohomology group H1A(S; adP) of the complex 

~2~ nA (~l(S;adP) aA>~22(Z;adP) (2.3) 

defined by the covariant exterior derivative d A. The symplectic form is obtained by 
applying (2.1) to any two representatives ax, a 2 of H~(S; adP). Since 

cO(dAY3, ct) = S B(da~p A cr = ~ dB(~p, ct) = O, 

the result is independent of the choice of representative. 



Flat Connections and Geometric Quantization 359 

By irreducibility of the connection the zeroth cohomology group of (2.3) 
vanishes and then by duality and the index theorem, 

dimM = dim HI(Z; adP) 

=2g for G=U(1) 

= (2g -  2) dim G for G semi-simple. (2.4) 

There is a natural way to produce a Kghler polarization of this symplectic 
manifold and that is to choose a conformal structure on the surface s and make it 
into a Riemann surface. This consists of the choice of a Hodge star-operator * (or 
complex structure I) on O1(2): 

� 9  

�9 2 - - 1  . 

With this choice each cohomology class in H~(S; adP) has by Hodge theory a 
unique harmonic representative e: 

{dAO~ = O, (2.5) 
da*c~=0. 

We define an endomorphism / on this space of harmonic forms by 

Ia = - * ~. (2.6) 

Since for any 1-form fie 01(Z), 

then 

- ~o(Ia, a)-- o9(~, I . )  = - I B ( .  ^ *.)__> 0 
X 

and conditions (1.1), (1.3), and (1.4) for a K/ihler polarization are then easily seen to 
hold. 

This particular choice of/defines by the same argument a K/ihler polarization 
on the infinite-dimensional symplectic manifold d ,  making it into a complex affine 
space. For general reasons this induces an integrable complex structure on the 
quotient, satisfying the condition (1.2) for a polarization of M. 

In fact, there is a much more explicit description of this complex structure. For 
the moment, to place ourselves firmly in the context of smooth manifolds, let us 
assume that M is the compact manifold of equivalence classes of representations of 
F into SU(m) with J generating the centre of SU(m), denoted by 
Homl(F, SU(m))/SU(m). Then M is the space of gauge-equivalence classes of 
connections on a fixed rank m hermitian vector bundle E of degree one, and with 
fixed central curvature. 

The complex structure I on d identifies d as the complex affine space of 
Cauchy-Riemann operators on E obtained by taking the (0,1) part of the 
connection just as in (1.5) - the space f2 ~ 1(~; ad P) is by the definition of I the space 
of tangent vectors to d of type (1, 0). 
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Restricting to the connections with central curvature, the theorem of 
Narasimhan and Seshadri (see [-2, 12]) provides the explicit description of M as a 
complex manifold. This theorem states that a holomorphic vector bundle E on a 
compact Riemann surface 2; is stable  if and only if there exists a unitary connection 
with central curvature compatible with the J-operator on E. Here stability means 
that for each holomorphic subbundle U C E, 

deg U degE < -  
r ank  U rank E" 

It follows, as discussed in [-2], that the moduli space of equivalence classes of stable 
bundles of rankm, degree one and fixed determinant can be naturally identified 
with the holomorphic structure on M defined by the K/ihler polarization above. It 
is a smooth projective variety of complex dimension n = (g-1)(rn 2 - 1 )  [-cf. (2.4)]. 

Of course, for G=U(I),  we obtain also a smooth manifold. With this 
polarization it is just a component of the group of holomorphic line bundles on 2 - 
the Picard variety. Each component is isomorphic to the complex torus 
Hi(S; C;)/Ul(S; Z). 

We need now to establish some basic properties of M" as a K~ihler manifold. 
The first is to identify the line bundle L of Sect. 1, and its holomorphic structure 
relative to the polarization. Quillen's work [-15] on determinants of Cauchy- 
Riemann operators does this - the K/ihler form on ~r defined above is the 
curvature of a unitary connection on the determinant bundle of the universal 
family of Cauchy-Riemann operators 

oo(z; o, l(z; 

parametrized by d .  
Replacing E by adP = Endo E, the bundle of trace zero endomorphisms of E, we 

obtain another determinant line bundle for the family of operators 

~A: O~ End0 E) ~(2~ 1(~; End0 E) (2.7) 

whose curvature is a positive integer multiple 2m of the symplectic form. The 
integer ,~ may be calculated (see [2]) by the Grothendieck-Riemann-Roch theorem 
or its formal equivalent. 

These two properties pass to the symplectic quotient M, so we may identify the 
line bundle L with the determinant bundle for the family of stable ~a-operators. In 
the stable situation there are no holomorphic sections of Endo E (a vanishing. 
theorem using the flat connection will prove this) so the determinant bundle for " 
(2.7) is the line bundle A"HI(S; Endo E). However Hi(S; EndoE) is represented by 
the harmonic solutions to (2.5) of type (0, 1), and thus using the complex structure 1 
is the holomorphic tangent space. Thus the canonical  bundle K of holomorphic 
n-forms on M" is related to the line bundle L by 

K ~ - L  - ~ .  (2.8) 

From this we see that for every k > 0, the line bundle K L -  k = L -  ~ + k) is negative and 
so in particular the Kodaira-Nakano vanishing theorem guarantees that 
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H~ L ~) has constant dimension for K/ihler polarizations of this type. Taking 
k = 0 it also tells us that 

HI(M;C)=O. (2.9) 

There are two further properties of M we shall need, which were established by 
Narasimhan and Ramanan [11]. The first is the non-existence of holomorphic 
vector fields 

H~ T) = 0. (2.10) 

The second concerns the infinitesimal deformation map ~:HI(S;K -~) 
-~H~(M; T) which associates to each deformation of complex structure on S the 
corresponding deformation of complex structure of M: 

Q : Hi(Z; K -  1)~HI(M; T) is injective. (2.11) 

We shall in Sect. 5 give independent proofs of these results when we deal with the 
case where M is singular. 

Having reached the point of considering deformations of complex structure, we 
should address now the question of finding the symmetric tensor G which gives rise 
as in (1.13) to the infinitesimal deformation of a K/ihler polarization of M. 

An infinitesimal deformation of the conformal structure * on Z is [cf. (1.11)] a 
Beltrami differential 

= a d~ | ~ [2 0, i(S; K -  1). (2.12) + 

We have from (2.5) and (2.6) that the (1, 0) tangent vectors at a point of M are the 
da-harmonic forms in O ~ l(Z; EndoE) and thus representatives for classes in the 
Dolbeault cohomology Hi(Z; End0E). Similarly the (0, 1) vectors are harmonic 
forms in Ol'~ EndoE), i.e. holomorphic sections of EndoE|  over Z. Thus 

T 1, o ~ Hi(Z; End0 E), 

T o, 1 ~ Ho(x; End0EQK) ' 

and as in (1.11), if i is the infinitesimal deformation of complex structure of M, 

]: T ~ 1 7 6  

L e m m a  (2.13). I f  X ~ T o, ~ is given by a holomorphic section ~ of EndoE| then 
I X  ~ T 1" o is represented in Hi(S; EndoE ) by 

_ ,~ ~ ~ Qo, I(Z; Endo E). 

Proof. Consider a l-parameter family of deformations * (t) of conformal structure 
on Z and the corresponding family I(t) of complex structurcs on M. Then 
ae~2~(X; EndoE) can be written as 

a = h + d a ~  

for some form h harmonic with respect to *. Differentiating at t = 0, 

0=/~+da~b and h=~.  (2.14) 
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Now by the definition of I, 

I[~] = [ -  �9 hi ~ n~ ( s ;  EndoE ) . 

Hence differentiating 
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and 

defined by 

[fl] = [ -- ,i, a ] e  H l(z~; End0  E) 

which proves the lemma. 
To find the symmetric tensor G corresponding to i all we need to do from (i.13) 

is to use the symplectic form to give an isomorphism 
O1-1 

(TI'~ * , To, 1 

and then compose with i : T  ~ 1~ T 1,o. The isomorphism 

o2-1 : Hi(S;  Endo E)* ~H~174 

is however precisely Serre duality - the bilinear pairing 

n ~  Endo E| K)| HI(Z ; EndoE)--* H~(S ; K)~  112 

f Tr(e ^ fl). $ 

Thus, considering G as a quadratic function on the holomorphic cotangent bundle 

T* = (T 1, o), ~ ~o(~; Endo E | K) 

we have from Lemma (2.13) 

G(~, ~) = ~ Tr(~ ^ + ~) = ~ (Tr ~2),~, (2.15) 

where Tr ~2 ~ Ho(S; K2) is, for ~ ~ H~ End 0 E |  a holomorphic quadratic 
differential. 

Note  that G only depends on the cohomology class of + e ~  ~ 1(~; K-1)  in 
Hi(S; K -  1)_ the Kodaira-Spencer c lass-  and depends holomorphically on M from 
its cohomological description. It is clear also, ignoring the origins of G, that any 
holomorphic symmetric tensor will satisfy the integrability condition (1.14) and so 
give an infinitesimal deformation of K/ihler polarization. 

i[~] = E-*  h - , t i ]  
= [ -  + ~ + * dA(O] from (2.14). 

But now J transforms T o' 1 to T 1'~ thus this class is represented by a harmonic 
(0, 1)-form fl, i.e. there exists ~b e O~ E) such that 

- + ct + * da73 + d,,l~b = fl E O0,1 (z~; Endo E). 

Since + ~ f2 ~ t(S; K -  1) and �9 e t2~ EndoK), + ~ is already of type (0, 1), so 

fl = - + ~ + Ja(q5 -- i~b) 



Flat Connections and Geometric Quantization 363 

We put this result more formally as follows: 

Proposition (2.16). The cup product map 

Ha(S; K -  a)|176 EndoE| K ) ~  n~(s  ; Endo E) 

defines for each infinitesimal deformation of conformal structure of X a holomorphic 
symmetric tensor G on the moduli space of stable bundles M which is the 
corresponding infinitesimal deformation of the Kgihler polarization. 

3. The Connection 

In the previous section we saw that the infinitesimal deformation coming from a 
standard Kfihler polarization on the symplectic manifold 

M = Hom l (F; SU(m))/SU(m) 

arose from a holomorphic symmetric tensor 

G ~ H~ S 2 T). 

On the other hand Theorem (1.20) says that to define a connection on the vector 
bundle V over a family of K/ihler polarizations we need a class in the 
hypercohomology group H2(M; @a(L)). 

There is a canonical way of associating to a holomorphic symmetric tensor 
such a class. It stems from the following short exact sequence of (very short!) 
complexes of sheaves 

0 , ~a(L) , ~2(L) ~ ,S2T ,0 

~ L ~ L ~ 0 ~0. 

(3.1) 

The top row is just the sequence (1.17) for the sheaf @2(L) of second order operators 
on L and the vertical homomorphisms consist of evaluating the differential 
operator on a given section s of L. There is a corresponding long exact sequence of 
hypercohomology groups 

0~- I~  ~I(L))~-I~ ~Z(L)) -~  H~ S 2 T) ~, ]HI(M; ~I(L))~ (3.2) 

It is the coboundary map 6 which concerns us here. There are two ways to go from 
this abstract cohomology formalism to explicit formulas - we can represent 
cohomology classes by either Dolbeault or Cech representatives. Let us first 
consider the Dolbeault version of (3.2). We also introduce the level k -  that is, we try 
to quantize the symplectic manifold M with symplectic form kco for a positive 
integer k. This means replacing the line bundle L by L k. 

Now from the definition of the complex (1.19) which defines the hypercoho- 
mology groups ~Iff, 

A ~ = f2~ ~i(L)). 
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Thus to describe 6(G), for GsH~ in Dolbeault terms, we choose a C ~ 
section A of N2(L) such that a(A)= G, and then consider 

djA, O) = (gA, - As). (3.3) 

Since the principal symbol of the second order operator A is holomorphic, JA is 
first order, an element of O ~ I(M; N~(L)) and (3.3) defines the Class 

6(G) ~ IFI~(M; @'(L)). 

Using the connection V on L k and the Levi-Civita connection on the K/ihler 
manifold M, there is a natural choice for A - the complex Laplace-Beltrami 
operator 

As = Z. V~( G'JVJ s) " (3.4) 
l , J  

This is a second-order differential operator on L k with symbol G as required. 
To find the hypercohomology class we take ~A or equivalently we use the (0, 1) 

part of the connection on the tangent bundle T of M and L k. From (3.4) we have for 
any local holomorphic section s, 

Vl-(as) = .~. V f  i(GiJVfl). 
t~J 

Now ~ G~174 ~ is a section of Lk@ T. The curvature of the connection on this 

bundle gives 

.~. ViVi( GiJ~ s) -- .~. ( Rii + kcoii)GqVfl + Z Vi VI~ Gi;~ s) ' 
t ,J  1,3 I ,J  

where R o is the Ricci form. 
But 

Z VyI~GiJVjs)=.~. Vi(GiJ~Vjs), since G is holomorphic 

= .~ ~(G~&@js), 
t , J  

since s is holomorphic and the curvature of V on L k is kco. Hence, finally 

~-(A s)= ~ (Rii + 2ko~u)Gi&js + k .~ (ViGiJ)co~lfl. (3.5) 
t , J  I,J 

We can now prove the following: 

Theorem (3.6). The class c~(G~) ~R-I~(M;~I(Lk)) defines via Theorem (1.20) a 
(2k + 2)i 

connection on the bundle of projective spaces IP(H~ Le)) over the family of Kiihler 
polarizations arising from a family of conformal structures on F,. 

Proof. First note that from (2.9) and (2.10), condition (i) of Theorem (1.20) holds. It 
also holds in the abelian situation M=HI(F.; (9)/HI(Z;2g), where the symplectic 
form co is constant and positive definite. 
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If we take - -  
(2k+2)i 

simply have to check that 
- e 6 ( C )  
- - ~ H I ( M ;  T) 
(2k+2) 

is the Kodaira-Spencer class. 
From (2.13) and (2.15) the Kodaira-Spencer class is represented by 

~j 0 
1= Z G cojk~-@dgk, 

i , j , k  GZ i 

whereas from (3.5), o-6(G) is represented by 

~j 0 
-- Z G (2k~oj~+gj~)SS- - | 

i , j , k  vzi 

6(G) -A ( I ,  s) in the theorem, then to obtain a connection we 

(3.1) 

(3.8) 

On the other hand, the Ricci form 

1 
- -  R j k d z  j A d z  k 
2n j,~ 

represents the first Chern class of M, and from (2.8) this is cohomologous to 2co. 
Thus a6(G) is also represented by 

- (2k + 2) Y, GiJ~ojr, ~ d~k, 
i.e. ~,j,k CZi 

-- ab(G) = (2k + 2) [ l ]  e H i ( M ;  T) ,  

thus proving the theorem. 
We can, in fact, be a little more explicit about the form of this connection. 

Firstly, since the Ricci form and 20~ are cohomologous we may define a real 
function - the Ricci potential F characterized by 

02F 
R jr, - 2o9j~ = 2i Ozja~k (3.9) 

and normalized by the condition that its integral over M is zero. Thus (3.5) can be 
written as 

i' 02F 
V~(As) = (2k + 2) y, G i J f o f l V i s  - -  2i Z G J - -  Vfl - k ~, (ViGiJ)~ofls, 

i , j  i , j  OZ iOZ l i , j  

and so, since G is holomorphic, 

vT( zs+2iE~'j~ 
o OF = (2k + 2) • G'Jog~V~s + 2i 2 G - -  VTVjs- k .~. (V~GU)o)fi 

i , j  i , j  OZ i t , j  

i" i" OF 
= - (2k + 2) ~ G Jo~z V/s - 2ik ~ G J~ojt ~ -  s - k ~ (ViG 7)o~fi. 

. . . .  UZi i , j  l,J l ,J 
(3.10) 
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The (0, 1) form 
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" i" O F  
O~ = ~ (21 ~ Jcoj~ Uz~ + (v~6~J)~~ 

is J-closed from its origins in Theorem (1.20) and since HI(M;(.9)=0, there is a 
function f~, uniquely defined up to an additive constant, such that 

Jfa=Oo. (3.11) 

Thus (3.10) may be written as 

i. OF 
~t A s + 2 i Z G ' - z - V j s + k f o s ~ = - ( 2 k + 2 ) Z G q m f l V ~  s, (3.12) 

i , j  OZi , /  i , j  

i.e. 

where 

i lV 1' ~ s = i .~. Giico flV~s = V ~ lu , 

)} l l i~(gi(G"~s)-2G'~-Z- iz iVjs+ikfos .  u(i, s) = (2k + 2) c ',J 

From (1.9), parallel translation with respect to this connection then consists of 
solving the differential-geometric heat equation 

_ i j  , J  ~F es 1 • (iV/(G ~ s ) - 2 G " - -  ~s+ikfos] .  (3.13) 
& (2k+2) i,s\ 0zi ) 

(3.14) Remarks. I. In the abelian case, then a simplification occurs. First of all, the 
natural K/ihler metric on the Jacobian torus is flat, so the Ricci tensor is zero and 
2 = 0. Secondly, the holomorphic sections of S2T are just quadratic expressions in 
global holomorphic vector fields and as such are covariant constant. Consequent- 
ly (3.5) becomes 

Vz~ A s ) = - 2k .~. Gq o~ j~ Vis , 
l,J 

and we can take 

Os i 
~t - 2k ~ V~(GiJVjs) 

as the heat equation defining the connection. 

2. Although negative values of k have not been considered here in the context of 
geometric quantization, note that putting 2 k = - 2 ,  Eq. (3.12) tells us that the 
second-order operator 

..~(Vi(GiJVj) " ijSF \ +21G 
~ p . # \  

is holomorphic. In the exact cohomology sequence of the sequence of sheaves 

O__-~ ~ l( L -  ~/z)--~ ~2 (L-  2/2)--~ S2 T---~O , 
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this is clear from 6(G)=O~HI(M;~I(L-a/2))gHI(M; T), but we have here an 
explicit differential geometric formula for this operator. The operators (one for 
each G i~) act on L -~/2 ~-K ~/2 from (2.8). There are, however, no global sections of 
K ~/2, nor cohomology groups of higher degree, to get a global space on which the 
operators act. 

We have now found in Theorem (3.6) a connection. We shall need the 
alternative (~ech description of the coboundary map 6 in order to proceed further. 

First consider the Kodaira-Spencer class of a deformation of complex structure 
from the ~ech point of view. We have a holomorphic fibration Z v ~ B over some 
open set BCr k with coordinates (q,...,tk) such that each fibre is a compact 
complex manifold MT. With a suitable Stein covering of Z we choose on each open 
set U of the covering a coordinate system of the form 

(zl,...,z,, tl .... ,tk) 
O 

and consider the holomorphic vector fields ~ on U,, (A = 1,..., k). 

On an intersection U~n Up, the vector field 

i ata ,  , i OtA, p -xctA'~ (3.15) 

projects to zero in B and hence is a ~ech representative for a class in Hi(Mr; T) for 
each t s B. This is the Kodaira-Spencer class for the infinitesimal deformation of 
complex structure of M, in the direction ta. 

If we additionally have a holomorphic line bundle L on Z, inducing a family 
(Mr, L,) of complex structures and line bundles, then on each open set U,, 

0 
sufficiently small, we can trivialize L and then interpret ~a,~ as a first order 

differential operator on L over U,. On the intersection U~c~ Up, then X,p in (3.15) 
from this point of view is a Cech cocycle for a class 

[xAp3 ~ HI(Mr, ~'(L)) (3.16) 

whose symbol class is the Kodaira-Spencer class. This defines the deformation of 
holomorphic structure on L in the direction ta. (Note that different choices of L on 
Z are possible: L and L |  U for U pulled back from the base B define the same 
bundle on each fibre.) 

Now consider the coboundary map (3.2) 

6 : H~ S2T)~M-I~(M; ~'(L)) 

from the Cech point of view. 
Given a global section G of S2T, we choose on each open set Mc~U~ of M a 

holomorphic section A~ of ~2(L) over Mc~ U~, i.e. a holomorphic locally defined 
second order differential operator on L. On the intersection Mc~ U~c~ Up, A~--Ap 
defines a section of ~ (L) ,  since the principal symbols G~, Gp agree as G is globally 
defined. A Cech representative for 6(G) is then a pair of cocycles 

(A,--Ap, -A~s) (3.17) 

in CI(M; ~(L))@C~ [cf. (3.3)]. 
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If we now have a holomorphic family of K/ihler polarizations we can put 
the connection defined in Theorem(3.6) in Cech form. In fact, since 
- -  O ' ~ ( G A )  

s Hl(M ; T) is the K~ class ~ the infinitesimal def~176 

in the direction ta, with GA the corresponding symmetric tensor, then from (3.17) 
and (3.16), 

1~ 18 1 
i OtA, ~ i &A, fl -- (2k+2) (AA'~-AA'p)+DA'~-DA'~' 

where DA,, ~ C~ ~l(Lk)) defines the coboundary DA, p --DA, ~. Thus 

iAA,~ ~ iAa,p 
&A,, + (2k+2~ +iDA'a-- &A,r + (2k+2~ ~-iDA'P on U~c~U~, (3.18) 

and we obtain a globally defined holomorphie heat operator 

iA A 
&a + (2k+2) ~-iDa= &a +PA" (3.19) 

0 
Note that neither the "Laplacian" part PA nor the "time derivative" ~ are 

0 
globally defined but (3.18) shows that the combination ~A + PA is indeed global. 

This heat equation is well-defined up to the addition of a constant since under 
hypothesis (i) of Theorem (1.20), H~ Nl(Lk))~ ~. A covariant constant section 
of the vector bundle V~ = H~ L~) (the direct image sheafp.L k) over the family will 
be a solution of the heat equation (3.19). In any local coordinate system and local 
trivialisation of L k, therefore, parallel translation along a holomorphic curve is 
given by solving an equation of the form 

ds dta I/ i" ~2S i OS 
--dt +E  i,J +K s) =0.  (3.20) 

Since a holomorphic section of L k is determined by its value on any open set, this 
provides a local means of determining the connection. The same is true of the 
differential geometric heat equation (3.13), but there we always need local 
differential geometric information about the metric and curvature to write it down. 

In both the Dolbeault and Cech descriptions of the connection, there is an 
indeterminacy in choice, reflecting the fact that the connection is really defined 
only on the projective space bundle P(H~ Lk)). This choice, and its dependence 
on k, is most explicitly given in the differential geometric formulation (3.11). There 
we considered the (0, 1) form 

/ /  " i "  OF 
0a = Z [21G~r ~-s + (ViG~)co ~1 , 

i , j \  i 

and chose a function fA such that 

~-fA~OA. 
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If fA, fJ are two choices then f a - f ~  is holomorphic and therefore a constant 
ca. The heat equation (3.13) then changes by an additive constant 

tkcA 
(2k+2)" 

In the (~ech formulation, this constant ambiguity appears in the choice of local 
holomorphic differential operator Oa, ~. In this context, we may regard Da, , as 
varying holomorphically with respect to the base variable t ~ B. 

Making a choice of heat operator @~a + P A ) o v e r  each open set U ~ i n a  

general complex base space, the difference on an intersection of two sets U,n  Up 
defines a holomorphic function 

ikca(t) 
(2k + 2) 

on the intersection and hence a holomorphic 1-form 

V ikcadta 
~b, = ~  (3.21) 

which represents a Qech cohomology class in Hi(B; TB* ). If this class were to 
vanish, then by judicious choices of fA, we could find a well-defined holomorphic 
connection on the vector bundle V. This obstruction is called the central charge, 
since if we had a connection with central curvature on V, then the curvature would 
represent the same class [at least if B was a compact K/ihler manifold so that 
Hi(B; T*)_~H 1' I(B; (E)]. 

Thus far, we have said little about the curvature of the connection defined in 
Theorem (3.6). Note that the holomorphic description by Cech cohomology shows 
that for a holomorphic family the connection itself is holomorphic and thus the 
curvature is of type (2, 0)-  the (1, 1) and (0, 2) components already vanish. Note also 
that to prove flatness it is sufficient to consider holomorphic families since the 
deformations we are considering arise from deformations of conformal structure 
on Z and these are holomorphically parametrized by a complex manifold - 
Teichmiiller space. 

In the next section we shall prove flatness by using the ~ech formalism, and 
some basic facts about symmetric tensors G a H~ SZT) on M. 

4. Integrable Systems and Flatness of the Connection 

The symmetric tensors G ~ H~ S2T) which yield the infinitesimal deformations 
of K~ihler polarizations were defined in (2.15) by 

G(~, ~) = ~ Tr~ 2 +, 
2 

where c~eH~174 is considered as a cotangent vector to M, 
Tr~ 2 E H~ K 2) is a quadratic differential and + e Qo, 1(S; K -  1)is a deformation 
of conformal structure. 
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This definition represents G explicitly as a holomorphic function on the 
cotangent bundle T*M which is homogeneous of degree 2 in the fibre directions. 
We may define more functions of this type of homogeneity l simply by taking 
fle f2 ~ ~(S; K -  t- 2) and defining 

H(a) = ~ Tr (a/)fi. (4.1) 

Proposition (4.2) (see [7]). With respect to the canonical hoIomorphic symplectic 
structure on T ' M ,  any two functions H 1, H2 of the form (4.1) Poisson-commute. 

Proof This is a very general fact. Following [7], we prove it by appealing to 
infinite-dimensional symplectic geometry. As in Sect. 2 we consider ~ '  to be the 
complex affine space of all Cauchy-Riemann operators on a C ~ vector bundle E, 
with an action of the group (#c of C oo automorphisms. This action lifts to a 
symplectie action on the cotangent bundle 

T* d - d x f21, O(z; Endo E). 

A point of T*~r consists of a pair (JA, a) and the function H in (4.1) is clearly well- 
defined as a function on T ' d ,  independent of the .if-variables. Since the 
d-variables and Ol'~ are conjugate with respect to the 
canonical symplectic form, the two functions H1 and H2 certainly Poisson- 
commute on T*d .  

Now the moment map for the action of (~c is 

#(~A, 00 = ~A 0~ ~ Q l, l ( z ;  Endo E) ~ (Lie (f#0)*, 

so the Marsden-Weinstein quotient (here in the complex case) consists of the 
equivalence classes of pairs (~A, a) such that ~A a ~ 0, i.e. a ~ H~ End o E| If we 
restrict to the stable holomorphic structures JA on E, then this is just the cotangent 
bundle T*M of the moduli space of stable bundles. 

Now H1 and H2 are invariant under the action of f#*, since it acts on a by 
conjugation and Tr(~ t) is conjugation-invariant. Hence being invariant under @~ 
and Poisson-commuting, they inherit the same property on the quotient T ' M ,  
where they are of course holomorphic. 

In the above proposition we restrieted attention to stable complex structures, 
but in fact there is a notion of stability for a pair of objects - a holomorphic vector 
bundle E of rankm over Z and a Higgs field ar H~ EndoE| This definition 
is the standard stability criterion for subbundles U C E as in Sect. 2, but restricted 
only to those U which are a-invariant. (In [6], which deals with the rank 2 case these 
are called "stable pairs." In [18], which holds for general rank - and dimension of 
the base Z - they are called stable "Higgs bundles.") There is a good moduli space 
for these Higgs bundles (see E6, 18, 13]) denoted by .///2, which contains T 'M"  as 
an open set and is a (non-compact) complex symplectic manifold, extending the 
canonical symplectic structure on T*M. Functions of type (4.1) are well-defined on 
J / /and Poisson-eommute there. It follows from [6, 7, and 18] (see also [3]) that 
these holomorphic functions make Jr a completely integrable Hamiltonian 
system. More precisely: 

Proposition (4.3). Let V= C) H~ K~), and define p : ~//2n-->V by 
i=2 

P(SA, a) = ( Tra2, Tra3 .... , Tr cd"), 
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then 
i) p is proper, 

ii) dim ~ / =  2 dim V= 2n, 
iii) the n functions Pi defined by p Poisson-commute, 
iv) the generic fibre of p is an abelian variety. 

These properties of the moduli space J/g allow us to deduce the following property 
of the vector space of holomorphic tensors on M, the moduli space we are 
primarily interested in: 

Proposition (4.4). The linear map 

f :  H~(Z; K -  1)--*H~ S2T) 

defined by 

f(/~) (cq ~) = I (Tr~2)/~ 
Z 

for ~ a H~ EndoE| and ~ a 0 ~ I(Z; K -  1) is an isomorphism. 

Proof The method of proof is to take G~H~ and think of it as a 
holomorphic function of degree 2 on the cotangent bundle T*M. We then want to 
extend it to a holomorphic function on ~ / b y  Hartog's theorem. To do this we 
should prove that the codimension of the complement of T*M in ~ is greater than 
o n e .  

Recall that (see [2]) every holomorphic bundle E has a canonical filtration 

0 = E o C E 1 C . . . C E , = E  

by bundles for which Di = Ei/E i_ 1 is semi-stable and 

degD1 degDz degDr 
rkD~ > ~ > ' " >  rkD~-" 

This type determines a stratification of the space of holomorphic structures on 
E, whose maximal stratum consists of the stable structures. There is a natural 
partial ordering on the strata (cf. [2]) which shows that the maximal strata in the 
complement of the stable structures consist of holomorphic structures which are 
extensions 

0 ~  U1 ~ E ~  U 2 ~ 0  (4.5) 

where #(U0>#(U2) (#(U)=degU/rkU) and U~ and U2 are stable. For stable 
bundles it is a standard fact that if #(U)>#(V) then there are no non-trivial 
homomorphisms from U to V, and it follows from this that E is uniquely 
expressible as an extension in this way. 

The stratification induces one on the Higgs bundle moduli space M//, the 
maximal stratum being T*M. We wish to estimate the dimension of the space of 
stable Higgs bundles of type (4.5). First note that in order for E to appear as a stable 
Higgs bundle, there must exist a Higgs field ~ for which U1 is not invariant. In 
particular, H~ U* | U2 @K) 4 = 0. Conversely, if this holds, it is easy to construct 
a stable Higgs field on U1 @ U2. This condition on U~ and U2 is therefore necessary 
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and sufficient to determine the relevant extensions. We may remark that by Serre 
duality HI(S; U*| U1)�9 0 so that non-trivial extensions exist. 

Let deg U~ = k~ and rk Ui = hi. Since U~ is stable its holomorphic structure is 
parametrized by a moduli space of dimension n2(g - 1)+ 1. We are fixing the 
holomorphic structure on AmE, which yields the number of parameters for 
choosing U1 and U2 as 

niZ(g - 1) + nZ(g - 1 ) + 2 - g .  

For fixed U1 and U2, the holomorphic structures E expressed as extensions (4.5) 
are parametrized by P(HI(~; U~| so we have an additional number of 
parameters 

dimHl(S; U*| U 0 - 1 .  

Finally, stability of the Higgs bundle implies that the automorphisms of E act 
freely on the stable Higgs fields, so for each choice of holomorphic structure on E, 
the number of extra parameters is dimH~176 E) 
which by Riemann-Roch and Serre duality is 

+ n2) 2 - 1 ) ( g -  1).  

The dimension of Jg is 2((nl + n2) z -  1)(g-1), so from the above expressions 
the codimension of the stratum we are considering is 

c = 2ninE(g- 1) -  dim Hi(S; U*| U1). (4.6) 

To estimate c we use two methods. For the first, we choose a positive integer d such 
that 

d> k~ kz >0 .  
n l  n2 

Let L be a line bundle of degree d with a section s. The inequality above implies 
II(U2NL)>#(UO and hence H~ U*|174 By Riemann-Roch 

dimHl(X; U* | Ut | = k2n i - kin2 + nln2(d + g -  1). 

Tensoring with the section s gives a surjective map of this space to HI(~; U*| UI), 
SO 

dimH ~ (S; U2* | U1) ~ k2nl -- kin2 q- ninz(d + g -  1). 

Now if d is the smallest positive integer with the property above, then 

kl k2 
d - l < - - - - -  

n I n2 

and it follows that dimHl(X; U*| UO< nlnEg. Hence from (4.6) we obtain 

c > nln2(g- 2). (4.7) 

This inequality establishes that the codimension is at least 2 if g > 3 or if g = 3 and 
r k E > 2  but not for g = 2  or g=3  and rkE=2.  To deal with these cases we use a 
second argument. 
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Consider a holomorphie section u of K and the exact sequence of sheaves: 

0 ~  0x(U* | U~)--~ (~x(U~ | U1 |  (2D(U* | U~ | 

where D is the divisor of u, of degree 2 g -  2 = degK. 
Since if(U0 > p(U2), H~ U*@ U2) and its Serre dual Hi(S; U* @ Ua @K) 

vanish, so from the exact sequence of cohomology groups 

dim H~ U* N U1 |  dim H~ U* N U1) 

= (2g -  2)nln 2 - dim Hi(Z; U~ | U1) = c. 

Now sections of vector bundles can be interpreted as sections of line bundles: 
H~ U* | U1)= H~ U) where P is the projective bundle of U* | U* and U the 
hyperplane bundle along the fibres. Consider the map 

�9 (H~ U)) x F(H~ K))~F(H~ UQK)) 

obtained by adding effective divisors. It is finite-to-one, so 

dimH~ U ) - 1  + dimH~ K ) - i  < dimH~ U |  

and hence 

c=dimH~ U * | 1 7 4 1 7 6  * U 2 |  (4.8) 

Here, if equality holds, every divisor of the system U |  on P is reducible. 
Applying Bertini's theorem (after removing fixed components) this can only hold if 

dimH~ U* | U1 | =<_ 2. 

But by Riemann-Roch this gives 

nln2(g-- 1) + kin 2 -- k2n I <= 2. 

Since kin 2 - k 2 n  1 > 0, the only possibility for equality is g = 2, rkE = 2. Excluding 
this case, the codimension c is greater than or equal to 2. 

We can, therefore, apply Hartog's theorem and extend G to a holomorphic 
function on J~/, homogeneous of degree 2 with respect to the ~*-aetion 

(oA, 
Now we use the integrable system of(4.3)- G is constant on each compact fibre ofp 
and hence is the pull-back of a holomorphic function on V, homogeneous of 
degree 2. However, the weights of the C*-action on V are (2, 3, 4 ..... m) so the only 
holomorphic functions of degree2 are of the form gop for g~H~ * 
= Hi(Z; K-1), i.e. the functions of degree 2 referred to in the proposition. 

This shows that f is surjective. The functional independence of these functions 
certainly implies their linear independence so f is indeed an isomorphism. 

(Note that we can prove (2.9) in the same w a y -  a global section of T will define 
a holomorphic function on V of homogeneity one which is impossible since 2 is the 
smallest weight.) 

Propositions (4.2) and (4.4) now allow us to prove the required flatness. 
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Theorem (4.9). The connection defined in Theorem (3.6) is flat. 

Proof We adopt the Cech point of view and consider the holomorphic heat 

operators ~ + PA and ~ + PB and their commutator 

A, ~t-n 

This is a globally defined operator on L k which involves no t-differentiation. We 
can write it locally in the form 

8PB SPA 
+ [PA, PB]" (4.10) 

~ta ate 

Now PA and PB are second order operators, and so therefore is the first term 

OPB SPa The second term is a 3rd-order operator whose principal symbol, 
t?t A t?t B " 
thought of as a function homogeneous of degree 3 on T ' M ,  is the Poisson bracket 
of the symbols of PA and PB (see e.g. [5]). 

However, from Proposition (4.2) these functions Poisson-commute and so 
(4.10) is a globally defined 2nd order operator on L k, i.e. for each t, a holomorphic 
section of @2(Lk) on Mr, with symbol G. 

Now consider the exact sequence of sheaves 

O-~ ~I(Lk)-,  ~2(Lk)-~ S2 T-~O , 

and the exact sequence of cohomology groups 

0~H~ ~I(Lk))~ H~ ; @2(Lk))~ H~ ; S2T) ~ , Hi(M; ~l(Lk))~ .... 
(4.11) 

From Proposition (4.4) G arises from some deformation of conformal structure on 
S and from Theorem (3.6), 6(G) is a non-zero multiple of the Kodaira-Spencer map 
of this deformation. Also, from (2.11), the Kodaira-Spencer map is injective hence 

afi : H~ ; S 2 T ) ~ H I ( M  ; T) 

is an isomorphism from (4.4). 
In particular 6 itself is injective. Thus from (4.11) the holomorphic section of 

N Z(Lk) is actually a section of N 1 (L k) _ a first order operator. But now the vanishing 
of H~ T) and compactness of M show that it must be a constant. Hence 

+pBl 
is a constant CAB. 

Now from the definition of the connection, parallel translation of a global 
section of L k along holomorphic curves in the tA-direction means solving the 
holomorphic heat equation 

Os 
- -  +Pas=O.  
c~t A 
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0 
Since the operators --~ + Pa, ~ + Pn commute up to a constant, then it is clear 

that, for given choices of PA and PB, the curvature of the connection is a scalar, and 
hence the projective space connection is flat. 

Remarks (4.12). 1. In the abelian situation, the most natural choice of local 
coordinates and trivialization of L k is to pass to the universal covering 
Co= H~(X; (9) of the torus H~(X; (9)/H~(X; ~). On ~g, the global symmetric tensors 
are just constant symmetric matrices. In this situation Proposition (4.4) does not 
hold - not all principally polarized abelian varieties are Jacobians, but it is true 
that every symmetric tensor gives a deformation of a Kfihler polarization of the 
toms. Indeed, the symmetric tensors are the tangent space of the Siegel upper half 
space which parametrizes all principally polarized abelian varieties. The holo- 
morphic heat operator in this trivialization is 

which has as global solutions the classical theta functions of level k 

Ore= ~ e'~i/k<Z'Tbe 2'a(L~>. 
l e Z "  

l -~ re(k) 

Thus the theta functions are the covariant constant sections of the flat connection. 
The flatness of the connection could in fact be proved a priori by the arguments of 
Theorem (4.9), using the elementary fact that 

H~ SeT) , Hi(M; T) 

is injective for an abelian variety. 

2. Note that the proof of(4.9) concerned primarily the heat operator, before it was 
applied to any global section. Recall from Remark (3.14) that when 2k = - 2 ,  there 
is no heat operator, but instead a global holomorphic second order operator A t 
acting on K 1/2, with symbol G eH~ S2T). We have seen in Proposition (4.2) 
that the symbols of A~ and A n commute and so [At, An] is a second order operator. 
We may show in fact that this vanishes - the operators themselves commute. 

The key to this is to note that for any operator D on K ~/z there is a formal 
holomorphic adjoint operator D*, a canonically defined operator such that for any 
local sections s,t of K 1/2 on an open set UCM, 

(Ds)t - s(D* 0 = O(o(s, t) ~ H~ K). (4.13) 

Here c~(s, t) is a holomorphic ( n -  1)-form, so &b is a holomorphic n-form - a local 
section of K. If D is of order m, with symbol G, then the symbol of D* is (-1)raG. 

Hence A o -  A* is a holomorphic lst-order operator on K ~/2 but we know since 
H~ T)= 0 that this is just a constant scalar c. Since A t - A *  is formally skew- 
adjoint it follows that c=  - c ,  i.e. c=0.  

Hence each Ao is self-adjoint. This means that the commutator [At, An] is 
skew-adjoint. However, since the symbols Poisson-commute it is 2nd order with 
symbol F e H~ SZT). Being skew-adjoint F = -  F=0 ,  so the commutator is 
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first order and hence constant. Then, as above, skew-adjointness implies the 
constant vanishes. 

Thus A~An = AnA~" 

If we set W= H~ the vector space of these operators, then the symbol 
map expresses W as an extension 

O--~II2~W ~ , H~ 

(any two such operators with the same symbol differ by a constant). From 
Proposition (4.4), H~ is canonically isomorphic to HI(Z;K -~) - the 
tangent space to Teichmtiller space. Thus, as the conformal structure on Z varies, 
W defines a vector bundle over Teichmiiller space which is an extension 

O~(9~ W ~  T~O 

and hence defines, on any family B of conformal structures an extension class in 

Hi(B; T~). This is essentially the central charge class --i2~cAdtA [ef. (3.21)]. 
A 

5. Singular Moduli Spaces 

Let us finally outline how to deal with the case where the moduli space M is 
singular. From the point of view of fiat connections the singularities are the 
connections which are reducible, i.e. E = E1 GE2, where E1 and E 2 a r e  preserved by 
the flat connection. In the holomorphic viewpoint they are the S-equivalence 
classes of semi-stable bundles - a notion of equivalence which is weaker than 
holomorphic equivalence. The moduli space M is a normal projective variety [12]. 
Normality means in particular that there is a Hartog's theorem for extending 
holomorphic sections of line bundles from the open stable subset M s C M to M. 
Since M s is a manifold, and our description of the connection in either the 
Dolbeault or Cech viewpoint is local then we can hope to work on the non- 
compact manifold M s and rely on Hartog's theorem to extend to M [and give in 
particular finite dimensionality of H~ Lk)J. 

There are a number of occasions where we have used smoothness and 
compactness. We list here the properties we require of M s to make our arguments 
carry through: 

i) H~ (9) -~ 112, 
ii) H~ T)=O, 

iii) H~(MS; (9)=0, 
iv) Hi(Z; K -  ~)--*H~ S2T) is an isomorphism, 
v) the Kodaira-Spencer map Ht(Z; K-  1)--,HI(MS, T) is injective, 

vi) the dimension ofH~ L k) is a deformation invariant for the standard family 
of K/ihler polarisations. 

Property (i) is immediate from Hartog's theorems and the compactness of M. 
Properties (ii) and (iv) follow similarly by imitating the argument of Proposi- 
tion (4.4) with Jr by the corresponding singular space for semi-stable 
Higgs bundles. This is a normal, quasi-projective variety [13] so Hartog's theorem 
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can be applied to the holomorphic functions of homogeneity I and 2 respectively 
defined on the smooth manifold T*M s C Jg by sections of T and S 2 T on M s. Here 
the arguments of (4.4) can be applied again, though taking account also of the semi- 
stable case #(U0 = #(U2). The case g = 2, rkE = 2 is indeed special - the moduli 
space M is CP  3 which clearly does have holomorphic vector fields. 

Properties (iii) and (v) involve 1st cohomology groups rather than zeroth 
groups. For this a general Hartog's-type theorem exists (see [16]) for the 
complements of analytic sets ofcodimension > 2. We follow the same procedure as 
in Sect. 4 (cf. [7]). By contraction a class in Hi(MS; SkT) defines a cohomology class 
in Hi(T 'MS;  (9) of homogeneity k. The Leray spectral sequence for the projective 
bundle IP( T*M ~) shows that the space of classes in Hi(T'MS; (9) (where T0*M s is the 
complement of the zero section) of homogeneity k correspond bijectively to 
HI(Ma; SkT). The Hartog-type extension theorem shows that the classes in T*M ~ 
are determined by their restriction to T*M ~ since dimMS> I. We may therefore 
consider HI(M~; (9) and HI(M~; T) as the subspaces of HI(T'MS; (9) of homogene- 
ity 0 and 1 respectively. 

To extend to rig, we have to extend across the singularities and the strata of the 
Harder-Narasimhan filtration. The expression (4.8) is greater than 2 if g > 2. 

Apart from this case then, the classes can be extended. The singularities of ~/~ 
are represented by reducible Higgs bundles. Since the dimension ofa Higgs moduli 
space is twice that of the corresponding stable bundle moduli space, the 
codimension of the singular set of,///is twice that of M, and hence by normality of 
M at least 4. Hence these classes extend to classes in HI(J~; (9). 

We now apply the proper map q ~ : J ~ V  of Proposition (4.3). The higher 
cohomology groups of the vector space V vanish, so 

Hi(d//; (9) ~ Ho(v; 1 Rp,(9), (5.1) 

where Rv,(9 is the 1 st direct image sheaf. 
We shall use the following result to identify classes in Hi(J/g, (9): 

Proposition (5.2). There is a natural isomorphism 

7J: H~ (9)@ V* ~ H~(J#; (9) 

such that T(@(2)f) = 2-  la(2)T(f) for the natural actions, O, a of 2 ~ ~* on both sides. 

Proof To define 7 ~, note that every linear functional f ~ V* defines a Hamiltonian 
function f~ o p on jgs whose corresponding vector field X, is tangent to the fibres of 
p. Also j//s carries a natural Kiihler form co (see [6]) which restricts to the 
symplectic form on M~C TM~cdg s. This defines a class [co] ~H~(./~; T*) which 
gives a homomorphism 

(P : H~ T~)--->H~(Y//F; (9)~ Ha(,/fi/; (9). (5.3) 

Restricting q5 to the vector fields Xi gives a map 

V* ~HI(J/ / ;  (9) 

which extends obviously to define the H~ (9) - module map 7 ~. The homogeneity 
of (P follows from the fact that the holomorphic symplectic form on the cotangent 
bundle T*M s has homogeneity 1. 
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We use (5.1) to prove that T is an isomorphism. Firstly, recall that the point 
p(A, ~) for (A, ~) e ./~ is given by (a a, aa, ..., am) where aie H~ Ki). This defines a 
spectral curve (see [11]) 

det(t/+ ~) = t/'~ + a2~ '~-2 + . . .  + am = 0 

in the surface which is the total space of the cotangent bundle of S. 
On the spectral curve ~, 4~ has a single-valued eigenvalue - t /and the kernel of 

t /+ q~ defines a rank 1 torsion-free sheaf on 2, at least i f s  is stable, for example if it is 
irreducible and has only nodes as singularities. The fibre of p is then the space of 
equivalence classes of such sheaves. If Z is non-singular this is essentially the 
Jacobian ofs  When s is stable this is a stable quasi-abelian variety X (see [14, 10]) 
and in particular 

dim H 1 (X; (gx) = dim X.  

This means that the sheaf R~v,(9 is a holomorphic vector bundle over the open set in 
V of (a~_,..., %) which define stable curves. In fact, apart from the ubiquitous 
special case g = 2, m = 2, a simple application of Bertini's theorem shows that the 
spectral curves with just one node or less form the complement of an analytic set 
D C V whose codimension is greater than one. Since by Hartog's theorem classes in 
HI(,/N; (9) are determined by their restriction to complements of codimension 2 
sets, (5.1) gives 

H ~(~;  (9) ~ H~ R~.(9). (5.4) 

Now for a non-singular abelian variety X the cup-product with a K/ihler class 
[r e Hi(X; T*) gives an isomorphism 

H~ T) [~oj, H~(X; (9). 

The same is certainly true for the singular abelian variety corresponding to a 
spectral curve with one node - the question reduces to checking the case of the 
quasi-abelian variety which is a rational curve with a node. Now since the vector 
fields X1 .. . .  , X n form a basis for H~ Tx)= Ext~ (fix) we see that over V\D, 
the vector bundle R~.(9 is isomorphic with the trivial bundle V\D x V* by the map 
qS. From (5.4) we have, as required, 

H I ( ~ ;  (9) ~_ H~ (9)| V* 
~_ H~ (9)| V* by Hartog's theorem. 

From Proposit ion (5.2) we may easily deduce property (iii), that HI(M s, (9)=0. 
Indeed, a class of homogeneity zero in H1(#2/; (9) corresponds under T to a class of 
negative homogeneity in H~174 *, and there are no such holomorphic 
functions with values in V*. There is only one subspace of H ~  (9)| of 
homogeneity 2, namely the linear functions gA defined on the space H~ K 2) of 
quadratic differentials. This space is canonically H~(S;K-1) ,  so T defines an 
isomorphism between this space and the space H~(MS; T) which defines the classes 
in H~(J#; (9) of homogeneity 1. To prove property (iv) we need to show that this is a 
non-zero multiple of the Kodaira-Spencer map. Now since H~(MS;(9)=O, 
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restriction of Hi(J/; (9) to the first order neighbourhood of the zero-section 
M s C T*M s gives a map 

Hi(j/C; (9)._+HI(MS; T)~H~(MS; (9(1)) 

which is the identity on Hi(MS; T)CHI(J/{; (9) by the way we constructed this 
subspace. 

Consider now the Hamiltonian vector field X a corresponding to the function 
gA. In local coordinates (zl, ..., z,) on M s, suppose the canonical holomorphic 
symplectie form is ~ dz i/x dw~, then ga is the Hamiltonian function corresponding 

i 

to a symmetric tensor 

i , j  ~Z i OZj'  

and so 
g (z, w) = .Z. G wzwj 

l , J  

with Hamiltonian vector field 

0G~ 0 i 0 
XA=--i,~k-~zk WiWJ~wk + 2~  G~Wi~zj" 

Restricting to the first order neighbourhood of the zero section wi = 0 we just 
obtain the class 

d 
2 E G~ ogir , ~ | d~,k, 

i,j,k i 

since the K/ihler form restricts on M s to the standard K/ihler form. This, from 
(2.16), is a non-zero multiple of the Kodaira-Spencer class, 

The final property we require - the constancy of dimension ofH~ L k) for the 
deformations of complex structure we are considering-  now actually follows from 
the existence of a heat operator, which only requires properties (i)-(v). Evolving 
with the heat equation gives a canonical way of extending any section of L k on M s 
with one complex structure to nearby ones. This proves the required property 
without appealing to singular versions of Riemann-Roch and vanishing theorems 
in the style of Sect. 1. 
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