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1. Introduct ion 

We consider an elliptic partial differential equation, the operator being sym- 
metric definite positive. I t  exists an equivalent problem of variation (see Ell) 
which is specially suitable for numerical t reatment  (see [2]). For this purpose, 
it is necessary to change the initial problem into a problem with a finite number  
of unknowns. We adopt the Ritz 's discretisation procedure in which we restrict 
the space of the functions to be a space of finite dimension. For this, we divide 
the given domain into simple geometrical elements (segments for the one-dimen- 
sional problems, triangles for the two-dimensional problems). To each lattice 
point P, we associate one or more functions with value zero except on the elements 
adjacent to this point (the interval formed of the two segments admitt ing P for 
endpoint for the one-dimensional problems, the polygon formed of triangles ad- 
mitt ing P for vertex for the two-dimensional problems). These functions (called 
hereafter basic functions) form the basis of the mentioned finite dimensional 
space. This method presents several avantages: the construction of the basic 
functions is relatively easy; the linear system has a band structure. I t  has been 
proposed by  COURA~T [3] for problems of variation where the maximum order 
of derivatives is one. Recently, specialists in structural analysis, in particular 
CLOUGH (Berkeley, see [4]) and ZIENKIEWlCZ (Wales, Swansea, see [5]) have 
obtained, under the name of finite element method, basic functions for two- 
dimensional problems of variation where the maximum order of derivatives is two. 

In this paper, we give a mathematical  form of Clough's and Zienkiewicz's 
results and generalize them. We introduce a notion of completion and we prove 
the sufficiency and very often the necessity of the conditions to obtain this 
completion. The practical value of the results has been verified experimentally 
by  a general and entirely automatic program of calculus of plate in bending 
(see [9, t0]). 

Definitions. 1. A piecewise continuous function on a closed interval I is con- 
tinuous everywhere on I except at a finite number of points. A piecewise con- 
tinuous function is not necessarily bounded and may  be undefined at the points 
of discontinuity. 

* This article is drawn from a thesis presented at the Ecole Polyteehnique de 
l'Universit6 de Lausanne [9]. I want to express my gratitude to Prof. J. DESCLOUX 
for his suggestions and helpful assistance. 
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2. A domain S is a subspace of the two-dimensional closed plane, bounded and 
limited by a finite number  of segments of straightline (triangle, rectangle . . . .  ); 
the simple connexity is not required. 

3. A function is piecewise continuous on a domain if it is continuous every- 
where with the exception of a finite number of segments of straightline. 

4. The support of a function is the closure of the set where it is different from 
zero. 

5. The derivative aM~x= [~ of a function is called continuous on a domain S 
if t) it is continuous in the interior of S, 2) it can be extended to a continuous 
function defined on S. This definition can clearly be extended for [y, for the 
partial  derivatives of greater order and for the notion of "funct ion of class C k 
on S". 

Convention. All sets of definition of functions which we consider are closed. 

Problem 1. Given: I the interval with endpoints 0 and t ,  6) the set of func- 
tions of class C 1 on I ,  of second derivative piecewise continuous and square 
integrable, ~ the set of functions of class C 3 on I ;  construct a sequence E x, E 2 . . . . .  
not necessarily embedded, of linear subspaces of O, of finite dimension nx, n 2 . . . .  
such tha t  for each /~  # ,  there exists a sequence wlcE~, ws~E 2 . . . .  with: 

1 

lim f [ ( / - -w , )  ~ + (/~ - -  wk,) 2 + ( /~ - -  w,~,) ~] dx = O. (t) 
k--~oo 0 

Problem 2. Given: S a domain of boundary Z, 6) the set of functions of class 
C 1 on S possessing partial  derivatives of second order piecewise continuous and 
square integrable. # the set of functions of class C 3 on S; construct a sequence 
E 1, E 2 . . . . .  not necessarily embedded, of linear subspaces of O, of finite dimension 
r~, nz . . . .  such tha t  for each/E # ,  there exists a sequence wlEE1, w2EE ~ . . . .  with: 

(2) 
+ ( / ,~-  w,,,), + ( /y , -  w, yy)~ + (/,y - w,~)'] d x d y  = o. 

Remarks. t .  No boundary conditions are introduced in Problems 1 and 2. 
In fact, for direct application of the Ritz 's method, the elements of the set 
should satisfy the boundary conditions. However very often the methods of con- 
struction for the spaces E~ can be modified in order to verify the boundary 
conditions arising frequently in the problems of mathematical  physics. 

2. Let:  

Q ( D = a a l ~ + a ~ . / L + a z / / y + a 4 / L , +  " "  + b x ~ + b 2 L [ y +  "'" (3) 

be a quadratic form in the variables [, ]~, ]y, ]~ ,  [yy, Ly whose coefficients 
a a, az . . . . .  bl, b~ . . . .  are supposed to be integrable and bounded. Setting gk ~- [ - -  wk, 
one obtains by  Schwarz's inequality: 

f f Q  ([ - w~,) dx dy ~_ max l ffg~ dx dy 
S S 

+ m a x [ a ~ [ ( f f g ~ d x d y ) t  ( f f g L d x d y ) t  + . . . .  (4) 
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If the relation (2) is verified, then: 

dy = o. (9  

If the formulation of Problem t and 2 does not take into consideration the 
boundary conditions, it is relatively independent of the differential form of the 
energy Q. 

3. The Problems 1 and 2 refer to expressions of energy with first and second 
derivatives. The same questions can be considered for expressions of energy with 
first derivatives only or with derivatives of higher order than two. The problem 
with first derivatives is very easy to solve for functions of one or two variables. 
If the expression of energy contains derivatives of higher order than two, the 
one-dimensional case is relatively simple but  the two-dimensional case becomes 
extremely intricate. Further generalizations are possible, e.g. those concerning 
the functions with more than two variables. 

For the particular functions considered in this paper, our main result can be 
roughly expressed in the following way: the sequence E 1, E~ . . . .  will satisfy the 
condition of Problem t (Problem 2) if and only if the functions t,  x, x z (t, x, y, 
x ~', yZ, x y) belong to Ek for all k. 

A list of functions for two-dimensional second order variational problems is 
given in [t01. 

2. Basic Functions for One-Dimensional Problems of Variation of Second Order 

Let I be the interval 0 ~ x ~ t ,  x~=ih ,  i = t ,  2 . . . . .  N be the coordinates of 
the points P~ of the mesh, h =  t [N be the stepsize of the mesh; the interval Exi, xi+t~ 
is an element of the mesh (see Fig. t). 

Pi-I Pi Pi.,I 
t I I I I t ~ x  

x i h 

Fig. t 

To each point Pi, we associate the functions ~i and/~i defined on I ,  possessing 
the following properties: t) they admit the interval [xi_l, x~+x] for support, 
2) they are of class O with second derivative piecewise continuous and square 
integrable, 3) they verify the relations illustrated in the Fig. 2: 

a,(x , )=t ,  (6) 

<X t 

t I l - - x  

Fig. 2 
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One considers the function: 
N 

w (x) = X (~,  a,(x) + w j , ( ~ ) ) ,  (7) 

where wi, wxi are parameters representing respectively the value of the function w 
and of its derivative with respect to x at the point Pi. The set E N of the func- 
tions w is a subspace of 0 (see Section t) of dimension 2 ( N + I ) ;  the ~i and/~i 
form a basis. 

The functions ~i and/~i are constructed from the two functions ~ and fl which 
have the following properties: defined for - - o o <  x ' <  + 0% ~, fl admit the interval 
[ - - t ,  + t] for support; they are of class C x with second piecewise continuous 
derivative square integrable; they verify the relations: 

o~(o) = 1, ~,(o) = o, ~(o) = o,  
Now, we set: 

~ ( ~ )  = ~(~ ') ,  ~ ( x )  = ht~(x'),  

Let (see Fig. 3): 

~1 (x') = {; (x') pourP°Ur x'X':>0'< 0; 

~c~(x'--,) pour x ' < t ,  
~ ( x ' )  = = /o pour x' > t ; 

/L,(0) = i .  (8) 

X t  ~ X - -  X i 
h (9) 

fll(x') = {fl0 (x') pourP°Ur x'>=O,x, < 0; 

f l2(x , )=~f l (x ' - - t )  pour x '=<l ,  
/o pour x' > 1. 

~l(x') ' p ,  (x') 

_ _  X I 

o 1 
P2(x') 

Fig. 3 

(t0) 

Property 1. For each function [¢ # ,  of class C 3, defined on I, there exists a 
sequence w 1C El,  w~E E~ . . . . .  wNcEN . . . .  such that:  

1 

run f [(/--w~)~ + (L--wNx)" + (l~x--w~,x)~]ax=o. (tl) 
N---> oo 0 

Theorem 1. The Property ! is satisfied if and only if the functions ~1, ill, ~2, fl~ 
satisfy the relations: 

~, (x') + ~2(x') --  1, (12) 

~ (x') + t~ (x') + t~2 (x') = x', (13) 

½~(~ ' )  + t ~ ( x ' )  = } x " .  (14) 
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Proo/. The condition is necessary. Suppose that  the Property I is satisfied, 
in particular for / = t ;  there exists a sequence wlcE1, wzEE 2 . . . . .  w~v~E y . . . .  
such that  lira I N =  0 where: 

1 

I N =  f (WN-- t)2dx. 
0 

Let:  
1 

---- min f [ p l ~ l ( x '  ) + p 2 ~ 2 ( x ' ) + q l f l l ( x ' ) + q 2 f l * ( x ' ) - t ~ 2 d x  '. 
Pt,P*,ql,q* o 

On the interval [xi, xi+l], w N takes the form: 

[ X - - X i \  X - - X  i . 

I x becomes: 
N 1 (i+l) h 

= i k  

[ x - -x i \  h -  [ x - -x i \  +willful h-) +w,,+l ) -t]2a. 
N - - 1  

__> ~ h ~ = ~ .  
i = 0  

By hypothesis, lira I N = 0 ,  thus 4 = 0 .  The relation (12) follows immediately. 

In the same way, the relations (t3) and (14) can be obtained by using the Prop- 
er ty I for the function [ (x)=  x and / ( x ) =  ½x 2. 

To show the sufficiency of the condition, one chooses for parameters w~, w,i 
in (7): w~=[(xi), w, i= / , (x i ) ,  i = 0 ,  t . . . . .  N;  therefore, the functions WN are 
constructed by interpolation. Using Taylor 's  series, one shows tha t  there exists 
a constant C, dependant from ], but  independant from the function w N such that :  

(j )' N(/--WN)=-= [([--WN)2+(/x--WNx)Z-~-(fxx--WN,x)Zdx] ~ C h .  (15) 

Letting N - +  o~, one gets (I1). 

Remarks. 1. One verifies easily that  the Theorem I can also take the form: 
the Property t is satisfied if and only if the functions 1, x, x 2 belong to the sub- 
spaces E g for N = t,  2 . . . . .  

2. If  ] is the solution of a variational problem, w W its Ritz's approximation, 
then (t 5) and (4) prove tha t  the energy norm o f / -  w y converges towards zero 
like h. Assuming [ of class C ~+'* it is possible to construct with analogous prin- 
ciples, w-functions allowing convergence like h ~. 

3. The theorem remains valid if we divide the interval ~0, t l  into variable 
stepsizes. On an element [xi, xi+l] of length h i, w takes the form: 

[ x - x i ~  x - x ~  

(16) 
X~-- X i 

hi ] 
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For a decomposition ~ ,  one defines H ~ =  max (he). Then, the Property t be- 
i=0,1 , . . . ,N--1  

comes: for all sequence of decomposition ~1, ~2 . . . .  with l i m  H~k= 0 and for 

each function /Cg~, of class C 3, defined on I ,  there exists a sequence wciEg , ,  
wgEE~, , . . ,  such that :  

I 
lira f ~(/-- wk) 2 + (/~ --  wk,) g + (L, --  w~,,)g] dx = 0. (t 7) 

/~--~ ¢o 0 

Theorem I is then still valid. 

4. I t  is easy to take into consideration boundary conditions. Consider e.g. 
the condition 1-----0 at a point R. Thus the decomposition of the interval I re- 
quires R to be a point P /o f  the mesh. Therefore: 

N N 

~(x)= X ~,a,(x) + E ~,,~,(x). (,8) 
i = 0  i = 0  

Other conditions can be considered (/~= 0 at a point, /=/,-----0 at a point) and 
combined. Correspondant spaces (9 and E~ are defined for each problem. 

Example o/Funct ions ~ ,  fl~, c~,, fig. Any set of functions a~, ag, fl~, fig satis- 
f3dng the conditions (8), (~0), (t2), (~3), (14) can be obtained in the following 
way. One chooses arbitrarily one of the functions ~ ,  fix, ~,, fl, subjected to the 
conditions implied by  (8). The other functions are then uniquelly determined. 
For example: 

xx(x') = 2 x ' 3 - - 3 x  '~ + , ,  

~(x')  x ' ~ - 2 x ' ~ + x  ', 
~ ( x ' )  = -- 2x'S + 3 x '2, 09) 

/~(x') = x'~-~'~. 

3. Basic Functions for Two-Dimensional Problems of Variation of Second Order 

Let  us consider a domain S whose boundary Z is formed by  segments of 
straightline (see Definition in Section 1); one sets on this domain a mesh of 
triangles (see Fig. 4). An element of the mesh is one of the triangles; N is the 
number of points of the mesh and N E  is the number of elements of the mesh. 
A typical element P1 P~ P8 is characterised by the geometrical datas: (x I, Yl), 
(x~, yg), (x 3, Y3): coordinates of P1, P2, P3 respectively; L I, Lg, L3: length of the 
sides P~ P3, P3 P1, P1 P~ respectively; ~1, ~2, x3: angle at the vertex P1, P~, Pa re- 
spectively; C I -  L,  L 3 cos ~I, Ci----- L 3 L 1 cos gg, C 8 = L 1 L2 cos ~3; h = max (L 1, L2, L3) ; 
A = ~ [(x, -- xl) (Y8 -- Yl) -- (x3 -- Xl) (Y, -- Yl)] : surface of the triangle. 

For a decomposition ~ of the domain S into triangles, one defines: 

H~ = max (hi'): parameter of fineness, 
j--X,g, . . . ,N E 

R g =  min m i n ( ~ l i , ~ i , x s i ,  z~--~lj ,  zc--~2~,z~--x~i):parameterofregularity.  
~'=1,2, ..., N E 

A sequence of decomposition ~1, ~g . . . .  is said regular if: t) lim H~k= 0, 
~-+oo 

2) there exists a number e > 0 ,  independant of ~ ,  and such that:  R~ ,>  e, 
k----1,2 . . . . .  
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One associates to each point ~ of the mesh three basic functions ~i,  fie, Yi .  
Let us consider a point P1 and the polygon formed of triangles admitting P1 for 
vertex (hachured polygon of the Fig. 4). The basic functions ~q,/31, Yl associated 
to the point P1 verify the following properties: 

1) They admit the polygon for support; 2) they are of class C x and of piece- 
wise continuous partial derivatives of second order square integrable; 3) they 
verify the relations: 

al  (PO = t ,  ~ (PO = o ,  ~ ,  (P~) = o ,  

~l(Px) = O, /31x (P1)= 1, /~ly(P1) = 0, (20) 

~1 ( ~ )  = o ,  '21, (P~) = o ,  ~ ,  ( ~ )  = 1 .  

Fig. 4 

ea 

For a decomposition ~ of the mesh, one considers the functions: 

N 

w(x) = X [wiai( x, y) + w , i ~ ( x ,  y) + w , ~ , ( x ,  y)] ,  (21) 
$=1 

where w i, w,~, wy i are parameters representing respectively the value of the 
function w, of its derivative with respect to x and of its derivative with respect 
to y at a point Pi. The set E~ of the functions w defined on S and relative to the 
decomposition ~ is a subset of O (see Section t) of finite dimension 3 N, a basis 

being ~i,/3i, ~7i. 
The basic functions associated to the point P1 : ~l,/31, ~71 are constructed from 

the functions ~,/~k, Yk, Qk, k = t ,  2, 3. Let us determine at first the properties 
of the functions =l,/~1, Yl, 01 : 1) they are defined on the rectangular triangle 
(0, 0), (t, 0), (0, t); 2) they are of class C 1 and of partial derivatives of second 
order piecewise continuous square integrable; 3) they verify the relations: 

=1(o, o) = t ,  ~1, .(o,  o) = o ,  ~1, .(o,  o) = o ,  

/~1(o, o) = o ,  / ~ 1 / o ,  o) = 1 ,  /~1,.(o, o) = o ,  

71(o, o) = o,  ~'1,.(o, o) = o,  yl , . (o,  o) = t ; 

(22) 
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4) the form of the functions along the three sides of the triangle satisfy the condi- 
tions: 

~l  (s, o) = " l  (s) , o~1(o, s) = . l  (s) , 

~ly, (s, o) = o, ~1~" (o, s) = o,  

i l l (s ,  o) = . 3 ( s ) ,  i l l (o ,  s) = o,  

flly' (S, O) = O, fllx" (0, S) = "=s (S), 

rl (s, o) = o, n (o, s) = .= (s), 
r1,' (s, o) = -3, (s), ~1., (o, s) = o, 

el(s, o) = o, el(o, s) = o,  
ely.(s,O) = o ,  e.,.(o,s) = o ,  

o~1 (s, t - s) = O, 

=l , , ( s ,  t - - s )  = o; 

&(s ,  t - s) = o.  

f l . , (s ,  t - s ) = o ;  
yl(s, 1 - s )  = o, 
y . , ( s ,  1 - -s)  = o; 

el(s, i - s) = o, 
01n (S, 'l -- S) = V'2 "ls ($)" 

(23) 

In Fig. 5, we have drafted the value of the function along the three sides of the 
triangle; the value of the normal derivative has been indicated by  an arrow. 
The functions u 1 and u3 have the following properties: defined on the interval 
[0, t ], they are of class C 1 with second piecewise continuous derivative square 
integrable; they verify the relations (see Fig. 5): 

"1 (o)  = t ,  u l , ( o )  = o ,  

- 1 (s )  + . ,  ( t  - s) = 1 ,  

.=(o) = o ,  . = , ( o )  = t ,  
y' 

~1 3' 
~I (O,s): ~ ' p~..lO.s)= 

:UI{/ -~0 0 ~ :U2s(S) 

_ ~0_~ -x' 
1 - f - 2 -  

~ =  u i Is) 

u1(t) = o,  u . O ) = o ;  
O _ < s ~ l ;  

. = ( t ) = o ,  . ~ , ( t ) = o .  
¢' 

gl 

~ 0  2_.,7t (O,s)= 
: u~ (s) / I 

k o 
×' 

fills,O)= u2ls) 

(24) 

y' 

X' 

71y,(s,O)= u2~ is} 

Set: 

with 

with 

3' 
,~olsA-s)= 

0 ~ u l ,  ls). ¢1" 

~0 ~2.x ' 0 s 0 I s 
Fig. 5 

~=(x', y') = ~1 (x", y") ,  fl~ (x', y') = fll (x", y") ,  
r3(x', y ' ) = r l ( x " ,  y"),  e3(x', y ' ) - - e l ( x " ,  y"), 

x"  = y' ,  y " =  t - -  x'  - -  y ' ;  

~3(~', y ' ) = ~ l ( x ' " ,  y'"), fl3(x', y ' ) = A ( x ' " ,  y'"), 
~ ( x ' ,  y') = ~l(x '" ,  y ' " ) ,  e~(x', y') = el(~ '" ,  y ' " ) ,  

(25) 

x ' " =  t - -  x '  - -  y ' ,  y ' " - - -  x ' .  
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~ ,  p1,?1 are the restrictions of functions ~1, ~1,~1 on the k-th triangle of 
the polygon formed of triangles admitting P1 for vertex: 

8~(x, y)=8~(x,  y), ~l(x, y )=/~(x ,  y), ,~x(x, y)=~,~(x, y), (26) 

on the k-th triangle of the polygon, k = t, 2 . . . . .  N T, 
where N T is the number of triangular elements surrounding the point P1.8~, ~ ,  Yl k 
are constructed from the functions el, ill, 71, 02, ~3. We choose the typical 
triangle P1 P2 P~ for this construction. 

~ X  1 2 ~'" x '  

Fig. 6 

Let : 

with: 
ae = A a~' + z,  

{:I [1" { J f 1 X = , X1 = , *1" X2 - -  X l  X3 - -  *1  y, z = , A = (27) 
Yl Y s - - Y l  Y3--Yl 

be a linear application; the points t, 2, 3 of the plane (x', y') (see Fig. 6) is mapped 
into the points P~, P2, P3 of the plane (x, y). ~ ,  fi~, ~ take the form : 

C1 C1 
~ (x, y) = .~ (x', y') + L--; ~ ~ (x', y') + ~:~ ~a (x', y'), 

t~  (x, y) = ( x s -  21) fll (*', y') + (x5 - x1) 71 (x', y') 

(Y3-- YI) A X,' ( Y ~ - -  Yx)  A Li 05 ( , y') + z.l e5 (x', y') ,  
(28) 

f,~ (x, y) = (y2 - yl) fl~ (*', y') + (y~ - y,) 71(x',  y') 

( x s -  Ul) zl ( x , -  **) A x' + LI o~(x', y') L~ 08( , Y'), 

x = A x ' + z .  

The procedure for the other triangles admitting P~ for vertex is identical; a 
special linear application exists for each other triangle. So, we obtain the de- 
finitions of the basic functions associated to the point P~. One verifies that  the 
continuity of the basic functions and their partial derivatives of first order is 
realized. Moreover, the normal derivative of ~1 along the sides of the triangles 
is zero. Leaving out the two last terms of the expressions fi~, ~ ,  the continuity 
of the functions/~1, )71 and their partial derivatives of first order is still verified; 
then, the normal derivative along the sides of the triangles is proportional to 
the tangential derivative; however with this limitation, one cannot get the con- 
vergence. 
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The expression of w on the typical triangle P1 P~ P3 is given by the expression : 

w (x, y) = ~7"(x,, y') T T w ,  
with 

~ r =  (~1, A,  r l ,  ~ ,  f12, y~, ~3,13, 70, Q1, 5~, 53), 
w T =  (w 1, wxl, Wyl, w2, wx~, wy~, w3, w~3, wy3), (29) 

x = A x '  + z .  

The matrix T is given in the Table. Thus, the expression of w includes three 
distinct terms: t) ~(x', y') depends only from the functions defined on the 
rectangular triangle of the plane (x', y'), 2) T characterizes geometrically the 
element P1P~P3, 3) w specifies the parameters associated to the three points 
of the element. The form of w proves to be specially advantageous for the numeri- 
cal calculations. 

Let Ee  be the set of functions w whose expression on a triangle has the 
form (29). 

Property 2. For any regular sequence of decomposition ~1, ~ . . . .  and for 
each function /cq~, of class C ~, defined on I ,  there exists a sequence wl~E 1, 
w 2 ~ E 2 . . . .  such that  : 

lim f f  [ ( / - -  wk) 5 + (L  - -  wk , )  2 + (/y - -  wky) 5 + ( / . x  - -  wk ,~)  5 
k-+oo S (30) 

+ (ly~ - wky~) ~ + (L~ - wk,~) ~] dxdy  = 0. 

Theorem 2. The Property 2 is verified if and only if the functions ~k, ilk, Yk, 5k 
satisfy the six relations: 

3 

Z (~  + 5~) = 1, 
k = l  

~5 + 11 - -  85  - -  Y~ + Y3 + 51 - -  52 + 55 = x ' ,  

~ 5 + f l s - - i 3 + Y t - - 7 3 +  51+ 55-- 55=Y',  (3t) 

½ ~ 5 - 1 ~ - ? ,  +~51 + 55= ½~", 
~ . - f l 3 - 7 3  +½51+ 55 = ~y,5, 

fl2 + ? 3  + ~ _ i ^ 1 = x '  y ' .  

In order to prove the necessity, one can choose the particular domain S: O~ x, 
y--< t divided into isoceles triangles (see Fig. 7); relations (3t) are obtained from 

(0.11 

1091 

,Q/l// 
///// 

///// 
/ / / / 

Fig .  7 
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1 X~ 1 2 the condition (30) f o r / = t ,  x, y, ~ , ~ y ,  xy.  In order to prove the sufficiency" 
of the condition, one constructs by  an interpolation method a particular sequence 
w k satisfying (30). 

Remarks. 1. The Theorem 2 can also take the form: the Property 2 is satisfied 
if and only if the functions l, x, y, x ~, y*, x y belong to the subspace E~ for each 
decomposition of the domain S. 

2. The relations (31) imply tha t  the normal derivative of the three basic 
functions along the sides of the triangles is a linear function. 

3. I t  is easy to introduce boundary conditions. Consider for example the 
particular condition/---- 0 along a segment Z of slope tg a. For any decomposition, 
Z is composed of sides of the triangles and its endpoints are meshpoints. Pj being 
a meshpoint on Z,  we set: 

w i = O, wt i---- w~ i cos ~ + wy i sin ~ ---- 0, (32) 

where w~i represents the derivative with respect to the direction Z at the point P,. 
w can be written (we assume that  [tg c~]< 1): 

p , ¢ z  _ (33) 
+ ~ w,i(-tg~tb+~j). 

7 _  
p~Ez 

Then w ( P ) = 0  for PET.  Other conditions ( / = 0  at a point, /--= / , =  /y= 0 along 
a segment of straightline) and combinations of conditions can be considered. 
For all "reasonable" conditions, Theorem 2 is valid. 

Examples o/ Functions ~k, ilk, 7k, ek, k = 1, 2, 3- Solutions of Eqs. (3t) are 
given in [4, 5 I. However our presentation is more synthetical and better  adaptated 
to the numerical calculation. For these solutions: 

~i---- I + 2x'3 + 2 Y ' 3 - - 3 x ' 2 - - 3 Y ' 2 - - 4 x '  y ' ( t - - x ' - -Y ' )  
2 2 

+ ½ qt - -  ~ 03 - -  ~ 0 3 ,  (34)  
8 3 

t~  = x ' 0  - x'  - y , ) 2 +  ½ x'  y ' ( l  - x'  - y')  + ~ e~ + ~ 03 - T~ e~, 

7 1 = y ' ( t - - x ' - - Y ' ) 2 + ~ x ' y ' ( t - - x ' - - Y ' ) + ~ - g q l  ---f~e23 +a-~5 q3. 

For the solution of reference [5~ : 
- - 6 x ' Z y ' * ( t - - x ' - - y ' )  . 

q ~ -  (1 - x ' ) ( 1 - y ' )  ' (35 )  

3 Cy' 

1 ~ ~  x, 
Fig. 8 
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for the solution of reference E4], one divides the t r iangle I 2 3 in to  three small  
tr iangles 2 3 G, 3 t G, t 2 G (see Fig. 8) : 

[ - -  (t  - -  x ' - -  y') [6x' y ' +  5(1 - -  x" -- y')Z - -  3 (1 - -  x ' - -  y')] :  t r iangle 2 3G, 

~ l = l - - x , 2 ( - - x ' + "  " 3Y,): ~ t r i a n g l e 3 2 G ,  (36) 

t - y  Z ( - - Y ' + 3 x ) :  tr iangle I 2G. 

The formula (25) allows us to calculate the funct ions ak, fl~, 7 , ,  9, ,  k-~ 2, 3. 

Decomposition o/the Domain S in Rectangles and Triangles. Basic funct ions 
for rec tangular  elements are much simpler than  for tr iangles;  their  use is also 
easier. However t r iangular  elements allow much more general domains.  By as- 
sociating basic functions at each point  of the mesh, one can mix t r i angula r  and 
rec tangular  elements (see [9, 10]). 
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