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Summary. This paper contains three types of asymptotic results for certain 
quadratures applied to a Hilbert space of analytic functions. These results concern 
the following: bounds on the norm of a certain error functional; the convergence of 
the weights and nodes of a minimum norm quadrature to the weights and nodes of 
the corresponding Gaussian quadrature; and the convergence of optimal quadratures. 

1. Introduction 

The purpose of this paper  is to discuss error bounds for certain quadratures  
defined on spaces of analyt ic  functions. The function space is L 2 (EQ), the space 
of functions analytic inside the ellipse E ,  such tha t  f f  I/(z)]2dxdy exists, the 

Ea 
integral being taken over the region enclosed b y  the ellipse. The ellipse EQ has 
foci at ~ 1 ,  semimajor axis a, semiminor axis b--~(a2--t)  ½ and ~ = ( a + b )  2. 
L2(E,) is a Hilbert  space and the sequence {P~*(z)}~=o, where P*(z)~- 
2 [(m + l ) I n ] t ( Q  ~ + x -  ~ - ~ - I ) - t  Urn(z), where U,~(z) is the m-th Chebyshev poly- 
nomial  of the second kind, is complete and or thonormal  in L 2 (E~). For  a discussion 
of L*(Eo) the reader is referred to DAVIS [81. An impor tan t  proper ty  of the 
ellipses E~ is tha t  they approach the interval [ - - t ,  1] as ~ - + t .  Thus  a function 
analytic on [ - -1 ,  1 ] can be continued to a function tha t  is analyt ic  in some EQ. 

Let Q~( / )=  A~/(zk) and R,~(C)=f/--Q~([), where the A k and the z k are, 
k=l --1 

in general, functions of n. The idea of using the Riesz Representat ion Theorem 
for Hilbert  space to compute  tt R tl and then using the Schwarz inequali ty ] R~ (/)1 =< 
tIRol] • [[/[¢ is due to DAvis [7]. DAVIS and RABINOWlTZ [281, VALENTIN [251, YANAGI- 
HARA [31 ], WILF [30] and the author  [1 --3,  51 have suggested the idea of minimizing 
}] R~] I with respect to the A,  and/or the z,. Such rules are called minimum norm (MN) 
rules. A similar idea is to use the so-called hypercircle inequali ty or a modified 
form of it. The hypercircle inequali ty appeared first in SYNGE [24], and then 
in GOLOMB and WEINBERGER [10] and DAVIS [81, the differences in the formulas 
of the lat ter  two references resulting from certain orthonormalizations.  Modi- 
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fications have been discussed by the author [5]. The quadrature rules derived 
from the hypercircle inequality and its variants are called optimal rules. 

There are many bounds available for I R~ ([)l, most of which have the feature 
that  R~ (D can be written as the product of a term involving / and of a term 
independent of /, the Peano-Sard Theorem being a classical example. For quad- 
rature rules, this theorem has been generalized to involve derivatives (of ]) of 
lesser order by SARD [t9, 20]; a discussion is also given in STROUD and SECREST 
[23]. It  has also been generalized to involve higher-order derivatives. This work 
amounts to finding certain Euler's expansions for the Peano-Sard kernel. The 
general idea and its application to the trapezoidal and Simpson's rules is given 
by  KRYLOV [t 5], it is extended to Romberg integration by  MEINGUET [171. This 
last article also has a good general discussion of estimating the remainders of 
linear approximation rules. 

The results of this paper include estimates of ttR~Nll in terms of n, the 
number of evaluation points and similar estimates for a composite M N  rule. 
These estimates are obtained by comparison with the corresponding results for 
the remainder of Gaussian quadrature with n points, R,  ~. The estimates of I] R~ ][ 
are obtained by a method which is in spirit similar to that used by HAMMERLIN 
[t2--141. H)~M~IERLIN obtained results for the norms of certain Newton-Cotes 
rules for two function spaces, H e and L2(Eo). The first of these is the Hardy 
space of analytic functions square summable on C,, C, being the circle centered 
at the origin with radius r > l .  The complete orthonormal sequence is simpler 
for H2, being essentially the complex monomials. HXMMERLIN achieved his results 
by the use of special properties of the Euler-Maclaurin expansions of the Newton- 
Cotes rules and these were generalized by Meinguet to Romberg integration. 
The proofs involved showing that the Euler-Maclaurin expansions of certain 
functions (the even members of the complete sequences) were alternating series, 
so that  the error in truncating was bounded by the first neglected term. A similar 
result for Gaussian quadratures is apparently unknown, although related results 
are given in an article by STENGER [22t. 

Results are given concerning the behavior of the A k and z k in a MN or an 
optimal rule, as 0--~ co. The proof of this theorem follows along the lines of one 
by VALENTIN [25] for a Hilbert space of analytic functions similar to L2(Eo). 
The result is that the A k and zk, for a given n, converge to the corresponding A~ 
and z~ of the Gaussian quadrature with the same n. This theorem is capable of 
rather wide generalization, as Valentin points out. This result also implies that  
if all 0 > t  are considered, then I[RMNI] ~ []R,~[[ is a sharp result. 

The last theoretical results of the paper concern the convergence of the 
bounds given by the hypercircle inequality. A theorem giving sufficient con- 
ditions that  the limit of the radii of the hypercircles be zero is given and this 
theorem yields various corollaries pertaining to quadrature rules for analytic 
functions. 

2. Asymptotic Properties of ilRMN]] 

The first theorem gives an upper bound on tlR~l[, where ~ is the remainder 
of the n-point Gaussian quadrature. 
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Theorem 1. For the space L ~ (Eo), II R~.II < r (n). fl(n, Q). Z(n, ~) where 

2,.+, .¢-("!)' V i 
7 ( n ) - -  ( 2 n + l )  (2,¢)! t (2rt)lJ I . 3 . . .  ( 4 n + l )  ' 

/3 (n, Q) = {4/[z~q (t - -  p-in-s)]}½, 

z(. ,  (z~+U~C(2k+ l)~--l]~n~ ½ 

Proo/. Firstly, 

lIRa? = _ ,  R.(P~)[ ,  

and  

where 
1R~n (P*) I ' = re(m, e) [R~ (U~)]', 

~(m. Q) = 4(m + t) / [~ (q *'+1 - -  e-,.-1)].  

B y  the t radi t ional  remainder  formula,  

2,.+, I (~ !)' ~ 
R~(U.)--  (2n+l)(2n)!  []2-~-~.~J b$*")(~)' ~ i n  ( - - 1 , 1 ) .  

Now 

t ' 3 . . . ( 2 h + 1 )  on [ - -1 ,  1] 

with equali ty at 4- 1, k ~  m (see the reference in HNMMERLIN [14] to TODD). Hence 

2,.+I ~ (n!)* l~l ~ 
[ R~(P*)I'<=~(m' Q) (2.+~)(2,,)! t ~ - ) ~ /  

. { ( ~ + , ) E ( ~ + , / ' - , l  . . .  E(m+,),-(~./.l }'.= 
i : 3-:[: ( 4 n T O  [7 (n)] 2 o~ (m, e)y(m),  

where ~o (m) = {(m + t) [(m + t) ~ - -  t ] . . .  [(m + t ) '  - -  (2n)*]} 2 and 

2,.+, / ( . ! ) ' p  I 
7 ( n ) - -  ( 2n+ t ) (2n ) !  [ ( 2 n ) I J  I " 3 . . . ( 4 n + 1 )  

Since R~(U~)=0  for m = 0 ,  t . . . . .  2 n - - t  and for m = 2 k + t ;  k = n ,  n + t  . . . . .  
we have 

oo 

il~lt ~ < [7 (n)]' E ~(m, ~)~(~). 
that is, 

o o  

IIR~II *-~ [r (,0]' X ~(2k, ~)!0(2k). 
Now 

k = n  

= ~, 4 ( 2k+I  
*=. ~ (9,,+,_Q_**_1) ((2k-{- 1) [(2k + 1) 3 -  1 ] . . .  [(2k + 1) 3 -  (2n)2]} 2 

and  
~'}k"bl __~--(*k'+'l) = ~)2k+I (I -- ~)--2 (2k+1)) > ~2k+l (I -- ~-2 (3 n+l)) 
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for k >  n, so that  

~.c¢(2k, 9)~v(2k)< 4 1 (2k+t)  3 _114 ~ 

4( t )~ .  (2k+1)~ E(2k+t)'-l]'- 
= ~ t - - 0 - - 1 n - 2  _ ~ # ¢ + 1  

which implies the desired result. Q.E.D. 

Corollary 1. Let R MN denote the remainder of the MN quadrature with 
n points. Then IIR.~ll<~(~) M(n, O) Z(~, e). (This follows directly from the fact 
that ilR.~NtI= min ltR.lI-< tlR~lI -) 

A,z 

Corollary 2. Consider a composite MN quadrature that  uses n points on 
s subintervals of ~-- t ,  t ] ,  each subinterval being of length h=2/s. Then 
IIR~II  < a -y*(n) B( ~, e) ~(n,  e), where 7*(n) = h 2"+1 y(n). 

Proo/. The n-point Gaussian quadrature remainder on the interval [a, b], R~, 
is given by 

Hence the only change in the bound on IIR~II of Theorem 1 is that  y(n) is re- 
placed by  

~*(~) -= (b - -  a )  ~ + ~  • ~ ( n ) ,  

where b --a----h. However, 11 ~I1 is taken over a subinterval of length h. Therefore 

_ _  M N  < tlRLIt <_, .  II~.11 and IIR., II = IIRLU 
implies the desired result. Q.E.D. 

3. Numerical Results 

For the function / (z) = z sin z cos z, a = 1.5, and three point rules, we have the 
following numerical results. The optimal quadrature based on the 3 Gaussian 
nodes has error 0.5t677(--02) 1 with error bound 0.4t t35. The minimum norm 
and optimal (with respect to nodes) quadratures have error 0.47762(--02) with 
optimal error bound 0.33212(--0t). Thus, the minimization with respect to the 
nodes yields a slightly bet ter  error, but an error bound that  is bet ter  by an order 
of magnitude. A second example is the function /(z)~ tl(t+z~), with a =  1.5. 
The four point Gauss rule yields an error of 0.2t689(--02), while the optimal 
rule has an error of 0.21323(--02) and an error bound of 0.32271(--02). Thus, 
the optimal error bound is close to the error in this example. For computational 
details and more numerical results, the reader is referred to [2--4, 33J- 

The bound on itR~il provided by  Theorem I has been calculated for n = 3  
and 4 and a = t.5. 2 From a previous paper [Table 3 in reference 2], we have 
that,  for a = 1 . 5 ,  i lR~i[=0.tO364(-0t)  and i[R~i[----0.t74t6(--02). Q is 6.8541 for 

1 Floating point notation. 
The author is indebted to Mr. GREGORY M. NIELSON for the new computations 

in this paragraph. 
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a=i.5,  and, for this 0, Y(3) fl(3, 0) 2:(3, 0)=3.9547, and y(4) fl(4 0) X(4, 0)-- 
5.0249. Since these bounds are so much larger (essentially, two orders of magni- 
tude) than IIR I] itself, it was conjectured that  the upper bound 

[(2k +'1) 3 -  1] . . .  ((2k +'1) z -  (2n) ~ ]<  ~(2k +'1.) 2 -  132" 

was too large and so the above right-hand bound was replaced by  the left-hand 
side. This decreased the bound for n =  3 to 2.5306 and the bound for n = 4  to 
2.7386. These bounds are still too conservative and so we must recommend to 
users of these quadrature rules that  they use ]] R,d I itself, rather than bounds on it. 

4. Asymptotic Behavior of the Quadratures as p -* o 0  

We shall prove the result s tated in the introduction concerning the behavior 
of the quadrature weights and points of M N  and optimal rules as 0 -~  ~ ,  i.e., 
as the functions considered approach entire functions. 

Theorem 2. Assume that  the n-point quadratures Q~ that  follow are defined 
on L ~ (Eo). 

(1) If  Q, is a MN quadrature with fixed z k, then the weights of Qn converge, 
as 9-+ ~ ,  to the weights of the interpolatory quadrature based on the z k. 

(2) If  Q. is a MN quadrature with the z k variable, then the weights and the 
base points converge, as 0--~ ~ ,  to the weights and base points of the n-point 
Gaussian quadrature. 

(3) If  Q~ is an optimal quadrature with fixed z k, then the conclusion of 
s tatement  (t) holds. 

(4) If  Q. is an optimal quadrature of minimal norm with respect to the z k, 
then the conclusion of s tatement (2) holds. 

Proo/. We prove statement (2) first. The first step is to show that  

lim [RffN(u=)[=O for m = 0 ,  t . . . . .  2 n - - 1 .  
Q---~ O0 

By definition, [[R~N[[ 2 =< ][R~][ 2, i.e. 

~, 4(m+1) ERMN(Um)I2 < ~. 4(m+1) 
m = 0  Y g ( 0 m + l - - 0 - - m - - 1 )  =m_2nyr.(om+l__o~m_l) [RV,(Um)] =. (8) 

Multiplying this inequality by 9 = ' - - 0  -=n and deleting all but the first term of 
the series on the left-hand side, we get 

( 0 " - 0 - " )  4 [R~ N (Uo)]' - ~ 4(m+1) 
gl: (0  - -  0 - 1 )  - -  :Tl ( 0  = + 1  - -  0 - = - 1 )  = = 2 n  

Taking limits of both sides as 0 - ~ ,  we find that  lim O~"-I[RMN(Uo)]2=O, 
0-+OO 

which implies that  lim [RMN(u0)]~= 0. We include successive terms on the left- 
Q--+ OO 

hand side of (8) to get lim ,~="-'n-*FRMNIu ~q=--0 re=O, t 2n - - t ,  so 
Q.--~ O0 

that  lira [RMN(u.)]'= O, m = O, t . . . . .  2 n  - -  1 .  

0-+cQ 
We now recall the algebraic derivation of Gaussian quadratures given in 

KOPAL [32]. Tha t  is, we write the 2 n X 2 n  nonlinear system of equations to be 
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satisfied if the Gaussian quadrature  is to be exact  for polynomials of degree not 
n t t ~ l  . 

greater than  2n --  t.  We define p~(x) = l ~ ( x  - -  x 3 = x '~ + ~. c~ x', where the x~ 
i = l  ~ = 0  

are the Gauss nodes and, by  appropriate combinat ions of equations in the 
2 n × 2 n  system, we obtain a system linear in the coefficients c i. We can solve 
for the c~, since the determinant  involved is a Vandermonde and we are assuming 
t h a t  the x~ are distinct. The roots of a polynomial are continuous functions of 
its coefficients and so we can get the Gaussian x i. With  the x i in hand, the 
quadra ture  weights A s are found by  solving the appropriate linear system. 

We recall now that  RMSV(U,~)--->O as ~-+oo,  m = 0  . . . . .  2 n - - 1  and tha t  U m 
is a polynomial  of degree m, so tha t  these conditions are equivalent to R MN (z") -+0  
as Q--> 0% m =  0, . . . ,  2 n -  1. The latter conditions are equivalent to the original 
nonlinear system for Gaussian quadrature,  if per turbat ion terms tha t  go to zero 
as ~---> oo are added to the constant  vector. Then the argument  for the algebraic 
derivation of the Gaussian quadratures can be followed to obtain s ta tement  (2). 
For  the calculations involved in the above discussion, the reader is referred to 
a similar case in VALENTIN [25]. 

The argument  for s ta tement  (t) is analogous. We show that ,  for fixed z k, 
R M2v (z '~) ---> 0 as ~ -+  co for m =  0 . . . . .  n - -  ~ and the rest of the a rgument  is the 
same as the last par t  of the preceding one. 

If  Q, is an optimal quadrature  with the z k given, then the hypercircle in- 
equali ty can be writ ten as follows: 

I R,,(i)I llLIIu (11111' --Ilull') 
where u is the center of the hypercircle and U is a subspace parallel to the hyper-  
circle. However,  VALENTIN has shown that  the A k calculated for the hyper-  
circle inequali ty are the same as the A k that  minimize ]lR~[ ] with fixed z k. (He 
proved this by  showing tha t  the minimum proper ty  of the appropriate  Fourier 
expansion in terms of an or thonormal  sequence was equivalent to sett ing up the 
corresponding normal  equations.) This means tha t  s ta tement  (3) holds, by  ap- 
plication of s ta tement  (t). Since the optimal quadrature  in (4) is defined to have 
the proper ty  tha t  IILllu is a minimum with respect to the z k, s ta tement  (4) follows 
f rom s ta tement  (2). Q.E.D. 

R,mark 1. Since IIR,,Ii is a continuous function of the vectors A and z, Cor- 
onary  I to Theorem t is the strongest s ta tement  tha t  can be made about  it R~Nti 
for all ¢. In  fact, IIR. NIt is the same as IIRT.Ii to several digits for 0 tha t  are not  
large. This can be seen by  comparing,  for example, Table 3 in reference [2] with 
Table 3 in reference [3], from which we note that ,  for a = t . 5  (0=6 .9 ) ,  lIR~NII 
differs from IIR ll by about 0.5 × t0-8. 

Remark 2. Similar results can be proved for the space L2(C,), C, the unit  
circle. The formulas are considerably heater, because the monomials form a 
complete or thogonal  system for L ~(C,). However,  the ellipses E o collapse to the 
interval  of integration [ - -1 ,  i ]  as ~--~ 1, whereas the circles C, do not,  as r - + l .  
Therefore, if we have a function analyt ic  on [ - -  t,  t]  but  with a nearby  singularity, 
such as / ( z )= l / (O .Ol+z* ) ,  then ] is in no L~(C,), r > l ,  but  / is in L*(E~) for 
sufficiently small 0 > 1 .  
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5. The Convergence of Optimal Quadratures 

This section contains conditions under which certain upper bounds on the 
remainder of the optimal quadratures tend to zero as n - ~  oo. We begin with a 
discussion of the hypercircle inequality which leads to a theorem applicable to 
spaces more general than L 2 (E,). 

Assume that  we are given n linearly independent bounded linear functionals 
L x . . . . .  L~ which are to approximate a given bounded linear functional L and 
also assume a uniform bound on the functions to be considered, H/If<r< oo. 
The hypercircle inequality yields a linear approximation of the form 

n 

L([) "." Z Ak Lk(/) 
k = X  

where ~. A k Lk([) is L(u), u being the approximation to [ which is optimal in 
the sense that  L k ( / ) = L , ( u  ), k = t  . . . . .  n, Ilul[__<r, and the upper bound given 
by  the hypercircle inequality on IL ( / ) - -L (u ) l  is minimal among all such func- 
tions u. The hypercircle inequality is the following: 

t L(/) - -L(u.) l  <_--IILllu¢.) • [ rz --I[u.[l~] ½ 

where we have indicated the dependence of u and the subspace U on L~ . . . . .  L~. 
We define the radius of the hypercircle to be r ,=l[L[[v(,) .  Er z-[[u.[[']~. The 
question to be considered is the following: under what conditions does r , - + 0  
as n -+  oo ? If we take the view that  [ is some given function, then this question 
amounts to asking if [ is unique under the conditions that  L k (/) = ~k, k = t, 2 . . . .  

and II/t1-<-,. 
The statement  of the next theorem is simplified if we recall that  X* is the 

space of bounded linear functionals defined on the normed linear space X. We 
define S, to be the set of functions [ such that  If/If =<r< o0. 

Theorem 3. Let X be a Hilbert space with L 1, L~ . . . .  linearly independent 
elements in X* and let ] be a given function in S,.  If the L k are complete in X*, 
then lim r~---- 0. 

Proo/. I t  suffices to show that  lim ]IL[lu(~)--0. Now (Lk} complete implies 
n 

{Lk) closed and so t l E + ~ 0  as n -+  0% where E~ is the difference between L and 
its best linear approximation by  L 1 . . . . .  L . .  But  [[L][v(n)= ][E,[]v~n)~ lIE, f[, so 
tha t  []Ll[v~,)---~0. Q.E.D. 

Let B be a region (an open, connected set) in the complex plane. Then L 2 (B) 
is defined analogously to L~(Eo) [8]. WALStt and DAVIS [27] considered the fol- 
lowing questions: given the linearly independent L k in [L 2 (B)]* and constants 
/3 x, 153 . . . . .  does there exist a function / in L 2 (E~) such that  L k ( / )= ilk, k = 1 . . . .  
and is this / unique ? Their theorem that  answers these questions is the following: 

Theorem 4 (WALSI~ and DAVIS). Given the sequence {L,) linearly independent 
and in [L 2 (B)]* and the constants/~1, t53 . . . . .  a necessary and sufficient condition 
that  there exists a function ] in L2(B) such that  L,, ([)---- fl,~, n----1, 2 . . . .  is that  

12 
, 
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where the A ~ i come from a biorthogonalization of the L~ (see below). This solution, 
when it exists, is unique iff the L,, are complete. 

The biorthogonalization is of the form 

_ .~A.,L,(I~ * * L*(/) = , L .  ( ~ )  = 6. , . ,  

where the q~* are in L2(B) and the L* in EL2(B)] *. 

The above condition is then seen to be 

o 0 .  

n = O  

Corollary. Let L~ (g)=g(zk), k----1, 2 . . . .  be distinct point functionals defined 
on L~(B), B a region and let / be in S,. If  the sequence {zk} has a limit point 
in B, then lim r~= 0. 

Proo]. We remark that  the zk and [ (z~) must satisfy the condition of Theorem 4 
in order that  [ be in L ~ (B). Assuming that  this condition is fulfilled, Theorem 3 
implies that  r~-+0, i.e., [ is unique if the L k are complete. But, by  a uniqueness 
theorem for analytic functions, the z k having an interior limit point implies 
that  the L k are complete ~t8]. Q.E.D. 

We note that  these theorems do not apply to cases such as the optimal 
quadratures based on the Gaussian base points, where a triangular scheme of 
the form 

L~ ~) 

is involved. However, results can be formulated for the convergence of optimal 
quadratures based on points that  occur in a cyclic order, such as the Newton- 
Cotes quadratures, 

Another question of theoretical interest for L2(B) and point functionals is 
the following: assuming that  the points have no interior limit point (of course, 
this implies at least one limit point on the boundary), how slowly must the points 
approach the boundary so that  g (zk)= 0, k = t, 2 . . . .  implies g ~ 0 on B ? The 
answer to this question depends on the geometry of B and has apparently been 
satisfactorily resolved only for B =  U, the open unit disc. For L2(U) the uni- 

queness question has been answered, the result being that  if ~, ( t -  ]z~l ) diverges, 
k = l  

then the point functionals determine a unique [ in L 2 (U). This result appears in 
LoKKI E16], who gives reference to F. and R. NEVANLINNA. The uniqueness 
question has been answered for the Hardy space H 2 [26] as follows: If  g is in 

H 2 and vanishes in the points zk of U, where /~lz~[ diverges, then g ~ 0  on U. 
k = l  

The divergence of ~[zk[ is equivalent to the divergence of • (1--Iz~f), s o  that  
the answer is the same for H 2 as for L~(U). The answer is also the same for the 
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space H °° of functions analytic on U and bounded,  in the sup norm, on U. For  
the spaces Hp, 0 < p _ < o o ,  the result can also be phrased in telanS of a limiting 
boundary  function as follows: let g*(e ~°) = lim g(re~°), g in Hp. If g*----0 on a 

f ' - ~ l  

set of the unit  circle ([z I : t )  tha t  has positive measure, then g ~ 0  on U [t8]. 

6. Conclusions 

The results contained in this paper  are s tated in Section I and thus need 
no t  be repeated here. At  the beginning of the work tha t  led to  the results in 
Section 2, it was hoped tha t  a bound  on IIR Nlt in terms of n could be found 
directly. When this hope was not  realized, it was decided to find a bound on 
IIR~A~I] by  finding one on IIR~°ll. The bound presented in Section 2 is found in a 
s t ra ightforward fashion and we might  hope for a slightly bet ter  bound using an 
Euler-Maclaurin expansion of Gaussian quadrature• This would be analogous to 
the  discussions given for the trapezoidal and Simpson's  rules in KRYLOV [t5t  
and  H/~MME~LIN [ t 2 - - t 4 ]  and for Romberg  integration by  MEINGUET [17]. Un- 
fortunately,  for Gaussian quadrature  the kernels of interest are not  of one sign 
on the interval  [ - - t ,  1 ]. I t  appears tha t  STENGER [22j has made  an equivalent  
observation.  

The results of Section 4 can be generalized to cubatures of analytic functions. 
If  the space X is L 2 (E~ × Ee) (defined below), then lira R ~ =  0 if the functionals 
L k are complete• L~(EoxE~) is the space of functions /(z, w) analytic inside 
EQ ×E0 such tha t  f[/12dV exists, where the volume integral is taken over the 
four-dimensional real region enclosed b y  Eo ×EQ. Thus, for example, if the L~ 
are point  functionals, L k (D = [ (zk, wk), and tlhe points (z~, wk) have a limit point  
inside E~ × Eo, and are not  on an analytic hypersurface,  then lim r~=  0. Fur ther  
applications of these results to cubatures will appear  in a future paper [34]. 
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