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NON-STEADY-STATE DIFFUSION IN PROGRAMMED HEATING
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The utilization, for programmed heating, of Fick’s second equation concerning non-
steady-state diffusion is discussed. Methods for calculating the activation energy of
the diffusion process and the factor D, of the Arrhenius equation from a single non-
isothermal experiment are suggested.

It is well known that Fick’s second equation is the mathematical model for non-
steady-state diffusion under isothermal conditions. For the case when the diffusion
coefficient is independent of concentration, this equation has the following shape:
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However, for a wide range of practical tasks in isotropic media, Eq. (1) may be
considered along a single coordinate x:
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In the general case, it is assumed that the diffusion coefficient D is related to tem-
perature according to the Arrhenius law:
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D = D, exp

The basic differential equation (2) is of great scientific and practical interest in
programmed heating following the three most accepted systems:

dr
1. Linear heating: T = T, + at or P

. . dTr
2. Exponential heating: 7' = T, exp (bt) or 4= bT.
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3. Hyperbolic heating: T= ]fo — ¢t or a cT?.
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Let us write the basic equation (2) in the following form:
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Introducing a new variable d@ = exp[ﬁ]dt, Eq. (3) may be written in the
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accepted form
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It should be considered that, when choosing the characteristics for temperature
programming, one will always be able to find a starting temperature T, for which
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RT R—TO] . Then, to simplify the mathematical solution of the task with-

out causing a significant error, one may assume that for the initial boundary con-
ditions C = C,, x = 0 and ¢ = 0, the value @ will also be close to zero. In this
case, analogously to the classical solution of Fick’s second equation under iso-
thermal conditions [1], the following solution will be obtained for Eq. (4):
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where fe—y’ dy is the probability integral, and y* = D6 Eq. (5) can also be
0
written in the shape
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The numerical value of y can be found in statistical probability calculus handbooks
for an experimentally determined value of Z. Knowing the value of y, it is then
easy to establish the value D,@ for a known depth of diffusion x in the given mo-
ment.
In an earlier paper [2] we reported a simpler solution for Fick’s second equation:
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Analogously, taking into account the above assumptions, the solution of Fick’s
second equation for programmed heating is
G -Cx,T) X ®
G, T 2D®
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Thus, from a corresponding non-isothermal experiment, one will be able to de-
termine the value D,®@, which — for the different temperature-programming sys-
tems — by integration according to [3, (Eq. 12)] will yield
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The linearization of the above equations allows to calculate the activation energy
of the diffusion process E and the coefficient D,:
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Finally it should be noted that in the general case, the activation energy values
E calculated by the two methods suggested in this paper for solving the diffusion
equation Eq. (4) will be identical, but the values of the coefficient D, will slightly
differ.
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