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Abstract. We discuss a simple deterministic model for the spread, in a closed 
population, of an infectious disease which confers only temporary immunity. 
The model leads to a nonlinear Volterra integral equation of convolution type. 
We are interested in the bifurcation of  periodic solutions from a constant 
solution (the endemic state) as a certain parameter (the population size) is 
varied. Thus we are led to study a characteristic equation. Our main result gives 
a fairly detailed description (in terms of  Fourier coefficients of the kernel) of the 
traffic of roots across the imaginary axis. As a corollary we obtain the 
following: if the period of immunity is longer than the preceding period of 
incubation and infectivity, then the endemic state is unstable for large 
population sizes and at least one periodic solution will originate. 
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1. A Simple Deterministic Epidemic Model 

Consider a population divided into two classes S and L The class S consists of those 
individuals who are susceptible to a certain infectious disease and the class I o f  those 
who experience the consequences of an infection. We distinguish the members of I 
according to the time elapsed since they were infected. In particular, let i(t, r) denote 
the density, at time t, of those members o f /which  have class-age r. We assume that: 

(i) The population is demographically closed and all changes are due to the 
infection mechanism. In other words, 

S( t )  + I( t )  = N,  (1.l) 

where N denotes the population size. 
(ii) The interaction ofinfectives and susceptibles is of"mass-act ion" type, with 

a weighted average over the age-structured class of infectives. More precisely, there 
exists a nonnegative function A(r), describing the infective "force" of an individual 
which was infected z units of time ago, such that 

fit, O) = S ( t )  A(r)i( t ,  z) dr. (1.2) 
0 
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(iii) The infective "force" reduces to zero after a finite time: there exists a least 
positive number ~1 < ~ such that the support of A is contained in [0, zl].  

(iv) The disease confers only temporary immunity: there exists a number 
"c2 ~ T1, such that every infected individual becomes susceptible again exactly "c2 
units of time after its contagion. 

On account of (iv) we can rewrite (1.1) as 

S(t)+f~i(t,z)dr=N. (1.3) 

Noting that i(t, r)  = i(t - z, 0) and eliminating S ( t )  from (1.2) and (1.3) we obtain 

i(t ,O) = N -  i(t - z , O ) d z  A ( z ) i ( t  - z , O ) d z ,  (1.4) 
o 

which upon the transformation of variables 

~'2 
x ( t )  = - ~  i(r2t,  0),  

b ( t )  = z2A('c2t A(~) dz , 
0 

leads to 

( fo )f x ( t )  = ~ 1 - x ( t  - z)clr  b ( z ) x ( t  - z ) d z .  (1.6) 
0 

We remark that this and similar models have been discussed before in the literature. 
In particular we refer to [1, 8, 12, 13, 14, 15, 16, 17, 19] and the references given 
there. 

2. A Nonlinear Volterra Integral Equation 

Let b: ~ ~ ~ be a nonnegative and measurable function such that its support is 
contained in [0, 1] and 

flob(Z)dz = 1. (2.1) 

The nonlinear autonomous (i.e., translation invariant) Volterra integral equation 

( f  )f x ( t )  = y 1 - x ( z ) d z  b( t  - z ) x ( z ) d z  (2.2) = (1.6) 
t - 1  t - 1  

admits the constant solutions 

:21 = 0, x2 = 1 - 7-1. (2.3) 

If we (formally) linearize the equation about such a constant solution and if we, 
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subsequently, substitute the function exp(2t), we obtain an equation for 2 which is 
called the characteristic equation. The location of  the roots of the characteristic 
equation in the complex plane (as well as the variation of this location with 
variations in 7) yields information about the qualitative behaviour of solutions of 
(2.2) near the constant solution. In order to make this statement more precise it is 
advantageous to have a theory which associates with (2.2) a nonlinear semigroup of 
operators on some function space such that, for instance, the principle of linearized 
stability and the Hopf  bifurcation theorem can be derived in a standard manner. In 
[6] a specific semigroup construction has been introduced (see [5] for the linear 
case). A detailed elaboration of some qualitative items within that context is in 
preparation [7]. 

However, we note that other approaches are possible and, in fact, have been 
studied in the literature. In particular the Hopf  bifurcation theorem has drawn a lot 
of attention, see [2, 3, 4, 8, 9, 10, 11, 20]. As we will indicate more clearly later, the 
present paper forms a good combination with Gripenberg [8]. 

The characteristic equations corresponding to :~x and 22 are, respectively, 

75(2) = 1, (2.4) 

i - e  - ~  
5(2) + (1 - y) - 1. (2.5) 

2 

Here b denotes the Laplace transform of b: 

(2.6) 

If 0 < y < 1 all roots of (2.4) lie in the left half plane (1.h.p.). Indeed, by the 
nonnegativity of b, all roots satisfy Re 2 ~< (, where ( is the unique real root and if 
7 < 1 then ( < 0. Similarly, one deduces that for 7 < 1 (2.5) has at least one root, 
viz. a real one, in the right half plane (r.h.p.). If ~ passes through one, 2l and )C2 
intersect each other, the real root of (2.4) moves into the r.h.p. (and will stay there 
for all y > 1), the real root  of (2.5) moves into the 1.h.p. and, at least for y > 1 but 

- 1 small, all roots of (2.5) lie in the 1.h.p. Consequently, if y passes through one 
bifurcation and exchange of (linearized) stability takes place. 

2 

s 

/ 

Fig~ L The graph of 21 and 2 2 
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In the epidemic model 2 2 corresponds to the state in which the disease is 
endemic. As the population size reaches a critical value (i.e., as 7 passes through 
one) this state becomes positive, and thus biologically meaningful, and at the same 
time it takes over the stability of the state 2a in which the disease is absent from the 
population. This is the well-known threshold phenomenon. 

The following question naturally arises: does the endemic state 22 retain its 
stability as ~ is further increased? First of all, we observe that 2 = 0 is a solution of 
(2.5) if and only if7 = 1 (note that/~(0) = 1). Consequently, stability will be lost if 
and only if a pair of complex conjugated roots crosses the imaginary axis (note that 
nonreal roots occur in conjugated pairs and that no roots can enter the r.h.p, from 
infinity). Such a crossing will, presumably, be attended with a Hopf  bifurcation 
(i.e., the origination of a periodic solution}. In the next section we shall study the 
traffic of roots of (2.5) across the imaginary axis when 7 increases. 

3. Imaginary Roots: The Main Result 

Putting ~ = x + iy  and splitting (2.5) into its real and its imaginary part we obtain 
the system of two real equations 

f~(x,y,7) = O, i =  1,2, (3.1) 

where by definition 

fl(x,y,';)=flob(r)e-~'~cos(yz)dz+(1-y)f~oe-X~cos(y'c)dz-1, (3.2) 

fz(x,Y, 7)=-flob(z)e-X~sin(y'r)dz-(1-,)floe-~sin(yz)dz. (3.3) 

In search for purely imaginary roots we concentrate on solutions with x = 0 and 
y ~ 0 .  

Suppose (0,y,7) is a solution of (3.1). We note that necessarily y ~ 2mr, 
nE Z\{0}, since for those values of y 

fl(O,y,~)=flob('c)cos(yz)d'c-l<O. 

So we can use the second equation to express 7 in terms of y: 

~o b(r) sin(yr) dr 
y = 1 + (3.4) 

Io 1 sin(yz) dz 

Substitution of this expression into the first equation yields an equation for y alone 

K(y) = O, (3.5) 

where by definition 

~ b(z) cos(yz) dz ~ sin(y~) d'c - ~ b(z) sin(yz) dr ~1 cos(yz) dz 
K(y) = - 1 + 

~ sin(yz) dr 

(3.6) 
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Conversely, suppose y ~ 2nrc satisfies (3.5) then, defining , /by (3.4), we obtain a 
solution (0,y, ~) of  (3.1). We conclude that  we can find all solutions of  (3.1) with 
x = 0 and y # 0 by finding all solutions of  (3.5). 

In order  to facilitate the formulat ion of  our  results we introduce some notat ion.  
The Fourier  coefficients b, of  b are defined by 

flo b(z) b. = 2 sin(2~nz) dr. (3.7) 

The intervals I + are defined as follows n 

I.  = ((2n - 1)~, (2n + 1)~), 

I + = (2n~, (2n + 1)z0, 

I.- = ((2n - l)zt, 2m0. (3.8) 

Our  first result gives informat ion about  the zeros of  K. 

Lemma. I f  b. = 0 then K has no zero m In. If, on the contrary, b. r 0 then K has 
precisely one simple zero in I., say y.. I f  b. > 0 then y .  ~ I ~ and K'(y .)  > O, whereas i f  
b. < 0 then y .  ~ I + and K'(y .)  < O. 

Proof. Using well-known tr igonometr ic  identities we rewrite (3.6) as 

_ - ~ ) y )  d r  ( 3 . 9 )  K(y) = - 1 ~ b(z) sin((, 1 

sin(�89 

We observe that K(y) = K ( -  y), b_,  = - b,, I+n = - I~ and 12,  = - I~ +. So we 
restrict our  at tent ion to nonnegat ive n. 

In I,\{2n~} the equat ion K(y) = 0 is equivalent to 

y = m(y), (3.1 O) 

where by definition 

m(y) = 2ng + ( -1 ) "+12arcs in  { flob(r)sin((r - �89 (3.11) 

Clearly m((2n - 1)r 0 > (2n - 1)~ and m((2n + 1)~) < (2n + 1)~. Moreover ,  

9y )  & } 2 [m'(y)[ 2 = 4 { S~ (z - ~)b(z) cos((r - 1 
1 - { 5 l b ( r )  sin((z _ 1  ~)y) dr} 2 

4 51 (r - ~)2b(,) dr 5o ~ b(r) cos2((r - 1)y) dr 

1 - ~o ~ b(O dr $1 b(z) sin/((r - ?-)y)  dr 

t "1 4 (r - 1 2  = 2) b(r) dr 
0 

< 1 .  
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J 
J f 2~n y --" 

# 
b. > 0  b. < 0  

Fig. 2. The graph of K on the interval I. 

(Here we use the Cauchy-Schwarz inequality with respect to the measure b(r) dz in 
both numera tor  and denominator ,  the fact that  ~ b ( r )d r  = 1 and the inequality 
(r - �89 < �88 for r s (0, 1).) So we are in a position to apply the contract ion mapping 
theorem and to conclude that  m has a unique fixed point  in I,. Since 

m(2n~) = 2n~ - 2 arcsin(�89 

the fixed point  lies in I,- i fb ,  > 0 and in I + i fb ,  < 0, whereas it equals 2n~ i fb ,  = 0. 
F r o m  (3.9) and the properties of  b we deduce that  

K((2n __+ 1)Tr) = - 1 -T- ( -  1)" Ilo b ( z ) s i n ( ( r -  ~)(2n + 1)re) d z < 0  

and, as y ~ 2nrt, 

K(y) = -  1 bn f l  ~ y - 2nTr + (1 - 2r)b(r) cos(2nz~)d~ + o(1). 

This implies that  K'(y.) > 0 if b. > 0 and K'(y.) < 0 if b. < 0 (note that  K'(y.) 4= 0 
since m'(y.) ~ 1). Finally, if b. = 0 then 

K ( 2 n ~ ) = - l + f l o ( 1 - 2 ~ ) b ( r ) c o s ( 2 n ~ ) d r < O .  [~ 

We are now ready to state the main result. 

Theorem. As y increases from one to infinity, exactly as many pairs o f  conjugated 
roots o f  the characteristic equation (2.5)pass the imaginary axis as there are n ~ N for 
which b, > O. They cross from left to right with a positive velocity, one in the interval 
I~ and the other in I+,. Moreover, they are simple. 

Proof. For  symmetry reasons we can restrict our  at tention to the upper  half  plane. 
As noted before, any crossing of  the positive imaginary axis must  take place in I, for  
some n s N. According to the Lemma,  a roo t  of  (2.5) lies, for  some value of  7, in I, if 
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and only if b, ~ 0. The first equation of (3.1) implies that 

f 1 (1 - ~) sin(y) _ 1 - b('c)cos(y'c)d'c > O, 
Y o 

and consequently the corresponding value of 7 will be greater than one if and only if 
y e I~-, which in turn, by the Lemma, will be the case if and only if b, > 0. 

In order to obtain some more information about the crossing we want to solve 
(3.1) by the implicit function theorem for x and y as a function of 7, starting from 
such a point on the imaginary axis. We observe that 

with 

Since 

?x, y (0, y, ~,) = d ' 

c = - f X o z b ( ' O c o s ( y z ) & - ( 1 - 7 ) f ~ o ' C C O S ( y ' O d ' c ,  

d = - f l o ~ b ( ' O s i n ( y ' c ) d ' c - ( 1 - 7 ) f l o ' ~ S i n ( y ~ ) & .  

sin(y) 
K'(y) = d - c ~ O, 

cos(y) - 1 

it cannot happen that both c and dare zero. So the roots are simple and we can solve 
indeed for x and y as a function of 7. Along this curve we have 

~x,y (Ofl,2 ~- 10fl,2 

-cZ--+lde(Cd c d )  ( 1  _ cos(y)_ ] 

y / 

and thus 

- ( sin(y) "~ --=0x 1 1 cos(y) d -  c 
& c 2 + d 2 y \ cos(y) - ] ) /  

1 1 - cos(y) 
= - -  K ' ( y )  > O. c 2 + d 2 y 

[] 

We remark that a similar result relates the zeros of Kcorresponding to b, < 0 to 
pairs of roots of (2.5) which cross the imaginary axis from right to left when ? 
increases from minus infinity to one. 
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4. A Description of Trajectories of Roots in the Complex Plane 

In this section we shall give a description in words of the typical features that appear 
from a computer study of the roots of (2.5) in the case where the kernel is a block 
function on [e,/~] with 0 ~< e < fl < 1 (see Montijn [18]). 

If 7 increases beyond one, one real root moves into the 1.h.p. and at the same 
time one real root originates at minus infinity and starts to move in the positive 
direction. If 7 is further increased, these roots collaps, take off into the complex 
plane and move back to the imaginary axis. Whether they cross or not depends on 
the value of bl. As 7 tends to infinity they tend to _+ 2rci. 

Similarly, other couples move towards the imaginary axis. Whether they cross 
or not depends on the sign of some b,. If they cross, they make an excursion into the 
r.h.p., but inevitably they turn back and move towards the imaginary axis again. 
The Theorem implies that roots cannot cross from right to left. As 7 tends to infinity 
all roots settle down asymptotically at some integer multiple of 2rci. 

Using the implicit function theorem with 7-1 as a variable one can deduce that 
all the points ___ 2nni, n ~ %, occur as limits of roots as ~ ~ + oe. Detailed 
elaboration shows that + 2nrci will be approached from the r.h.p, ifb, > 0 and from 
the 1.h.p. i fb,  < 0. It is suggested by the Theorem and the numerical results that, in 
the case b, = 0, the approach is from the 1.h.p.. 

5. Interpretation and Discussion of the Results 

The Theorem implies that ~z retains its stability if and only if b~ ~< 0 for all n ~ 
(which is the case if, for instance, b is symmetric about ~). 

If b, > 0 for some n ~ ~ we are in a position to apply a Hopf  bifurcation 
theorem. Unfortunately, it is not clear to us whether roots can pass the imaginary 
axis simultaneously and "in resonance" (i.e., some being integer multiples of 
others). We think this will "generically" (with respect to the kernel b) not happen, 
but we do not know how to prove it. However, we do know that at most finitely 
many roots can pass simultaneously (equation (2.5) involves analytic functions and 
we can apply the Riemann-Lebesgue lemma). So there is always a largest one which 
then, according to the Theorem, satisfies all the assumptions of the usual Hopf  
bifurcation theorem. In particular, under mild assumptions on b, a variant of 
Gripenberg's theorem [8] is directly applicable ("variant" because one of the 
kernels is the characteristic function of [0, 1 ] which is not absolutely continuous as 
he requires; however, his proof can easily be adapted to cover this situation as well). 
We conclude that at least one periodic solution bifurcates if at least one b, > 0 and 
that countably many periodic solutions bifurcate if countably many b, > 0 (note 
that all b, > 0 if, for instance, b is decreasing). 

The period T o f t h e  bifurcating periodic solution corresponding to some b, > 0 
will, at least initially, satisfy the inequality 

1 1 
- < T < - -  1 ' n n - - ~  

So the period will in general be less than one with only one possible exception. 
Only the first bifurcating periodic solution can possibly be stable for parameter 

values near to the bifurcation value. Gripenberg [8] gives a formula to determine 
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the stability character, at least in a (formal) linearized sense. Numerical evaluation 
of his formula for various choices of the kernel b proves that both stability and 
instability are possible. However, it seems that the situation in which the first 
bifurcating periodic solution is stable occurs more frequently. 

Our result shows that the endemic state may or may not remain stable when the 
population size increases. In terms of the original variables we have 

= fll A( )sin dz 

Since A(z) ~> 0 and sin(r) ~> 0 for 0 ~< z ~< ~, it follo~vs directly that b l , . . . ,  Ok > 0 if 

zl 1 
< 

z2 2k" 

So, if z2 ~> 2ri, the endemic state will loose its stability, irrespective any other 
property of the infectivity function A. This corollary clearly shows that one can 
always destabilize the endemic state by both lengthening the immunity period and 
increasing the population size. Similar conclusions have been drawn by Hethcote et 
al. [12] and Stech and Williams [19] for related but somewhat different models. 

Let us make an attempt to explain the results. In the endemic state each infective 
replaces itself by passing on the disease to exactly one susceptible. If, by some 
disturbance (which does not influence the total population size), there are less 
infectives, then automatically there are more susceptibles and consequently the 
number of  contaminations by one infective will increase above one. Conversely, if 
there are more infectives then there are less susceptibles and the number of 
contaminations by one infective will decrease below one. This is the basic feedback 
mechanism which brings about the stability of the endemic state 1 - 7-1 in the 
ordinary differential equation model 

= 7y(1 - y) - y. 

In this case the stability of the endemic state increases with V in the sense that the 
characteristic exponent is given by 1 - 7. 

In the case of  equation (1.6) = (2.2) the feedback mechanism is influenced by 
time delays. For  instance, ira disturbance increases the number of immune but non- 
infectuous individuals and decreases the number of infectives as well as the number 
of susceptibles then there will be, at first, only very few new cases of contamination. 
Some time later this may lead to a situation with very many susceptibles (over 
compensation) etc. Thus a strong but time delayed feedback mechanism may lead 
to instability and to oscillations. Whether or not this actually happens depends on 
the details of the mechanism as described by the kernel b. In particular we found 
that the Fourier coefficients bn are the critical parameters and that a long immunity 
period leads to destabilization. 

The fact that all roots approach the imaginary axis as 7 --* + oo indicates that, 
although the endemic state may indeed retain its stability, nevertheless the stability 
becomes marginal. It seems possible that the domain of attraction shrinks and that 
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equation (2.2) has lots of periodic solutions for large values of ? even when b, ~< 0 
for all n. In that case they do not bifurcate from ~2, but they may originate from 
"free" bifurcations. Moreover, by analogy with the well-known difference equation 
x,+ 1 = 7( 1 - x,)x,, We are led to conjecture that (2.2) exhibits chaotic behaviour 
for large values of ?. In spite of the simplicity of the model, the qualitative behaviour 
of solutions is possibly fairly complicated. These remarks are speculations and 
many questions remain. We hope to be able to say more about equation (2.2) at a 
later time. 

Acknowledgement. The authors are grateful to H. A. Lauwerier who, by questions raised in [16, 17], has 
stimulated this investigation. 
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