Maria Giovanna Garroni¹ and Michel Langlais²

¹ Istituto Matematico "G. Castelnuovo", Università di Roma, I-00185 Roma, Italy

² Laboratoire Associé an C.N.R.S. No 226, Université de Bordeaux, Bordeaux 1, 33405 Talence Cedex, France

Abstract. We present a simple model for age dependent population diffusion when the dynamics is submitted to external constraints. Existence, uniqueness and dependence on the parameters of the solution are discussed.

Key words: Degenerating elliptic operators $-$ Variational inequalities $-$ Unilateral constraints $-$ Population diffusion $-$ Renewal equation

Introduction

In this paper a mathematical model of an age-dependent population with diffusion in a bounded set of \mathbb{R}^3 and with an external constraint is treated.

In this model, the dynamics of the population is described by a function $u(t, a, x)$ such that for every open set Ω of \mathbb{R}^3 and every interval $[a_1, a_2]$, the integral

$$
\int_{a_1}^{a_2} da \int_{\Omega} u(t,a,x) \, dx
$$

gives the number of individuals of age between a_1 and a_2 living at the time t in the region Ω . Thus $u(t, a, x)$ represents the density of the individuals of age a at the time t and at position x.

We assume that the population develops with a constraint depending on the environment as follows: the density remains less than or equal to a given function $\psi(t, a, x)$ and moreover, when it is strictly less than ψ , it is ruled by the usual partial differential equation (see e.g. [3], [4], [5] and references there):

$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} - \varDelta u + \mu u = f. \tag{*}
$$

1) Here $\mu(t, a, x)$ is the rate of mortality, characteristic of the species, that is considered as divergent to $+\infty$ as $a \rightarrow A$, where A is the maximal age for the species;

^{*} This work has been done within the framework of the cultural agreement between the Universities of Bordeaux and Rome

2) $f(t, a, x)$ is a factor, possibly zero, that takes into account possible external increase of population.

We further assume that:

3) birth is described by the *"renewal equation"* (see e.g. [3], [4], and [5])

$$
u(t,0,x) = \int_0^A \beta(t,a,x)u(t,a,x) \, da,
$$

where β represents the rate of fertility;

4) the initial density of population in known;

5) the population does not leave the region Ω , i.e.

$$
\frac{\partial u}{\partial \eta} = 0, \qquad \text{on } \partial \Omega.
$$

This problem can be solved in terms of variational inequalities and can be set into equations as follows:

 $u < \psi$

Find a function u such that

$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Lambda u - f \le 0
$$
\n
$$
\left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Lambda u - f\right)(u - \psi) = 0
$$
\n
$$
\frac{\partial u}{\partial \eta} = 0, \quad t > 0, \quad 0 < a < A, \quad x \in \partial\Omega,
$$
\n
$$
u(0, a, x) = u_0(a, x), \quad 0 < a < A, \quad x \in \partial\Omega,
$$
\n
$$
u(t, 0, x) = \int_0^A \beta(t, a, x)u(t, a, x) da, \quad t > 0, \quad x \in \Omega.
$$

A problem of this kind with rigid control of birth, i.e. $u(t, 0, u) = b(t, x)$, has been studied by M. G. Garroni and L. Lamberti [2].

In this paper, using the results of existence and regularity of [2] and the methods of M. Langlais [6], [7] we obtain the existence and the uniqueness of the solution under weaker hypotheses than those of [2].

We also rediscover all the biologically intuitive properties connecting the density of the population to the other parameters of the problem.

The plan of the paper is the following: In \S I we introduce notations, hypotheses and preliminary results. In δ II we show existence, uniqueness and investigate the properties of solutions. §III contains the proofs.

w Notations~ Hypotheses, and Preliminary Results

1. Notations

We denote by Ω a bounded open subset of \mathbb{R}^N , with regular boundary $\partial\Omega$ and generic element $x = (x_1, ..., x_N)$. *A* is the Laplacian and *V* is the gradient

$$
\Delta = \sum_{i=1}^{N} \frac{\partial^2}{\partial x_i^2}; \qquad \mathbf{V} = \left(\frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_N}\right).
$$

 $H^1(\Omega)$ and $H^2(\Omega)$ are the usual Sobolev spaces of order 1 and 2 (see [9], for instance). By \langle , \rangle we denote the duality between $H^1(\Omega)$ and its dual.

Let η be the unit exterior normal; the normal exterior derivative is defined by

$$
\frac{\partial}{\partial \eta} = \sum_{i=1}^N \eta_i \frac{\partial}{\partial x_i}.
$$

T and A are two strictly positive and finite real numbers; $t \in [0, T]$ and $a \in [0, A]$. \emptyset is the open set $[0, T] \times [0, A]$.

If H is a Hilbert space and U an open set of \mathbb{R}^p , $L^2(U;H)$ is the (Hilbert) space of measurable functions of U with values in H s.t. $\int_U ||v(y)||_H^2 dy < +\infty$.

If u is a real function, we denote by u^+ its positive and by u^- its negative parts (so that $u = u^{+} - u^{-}$).

 ∂_t and ∂_a indicate partial differentiation in $\mathscr{D}'(\mathcal{O}; [H^1(\Omega)]')$.

2. Hypotheses

We consider a real-valued function μ on $\mathcal{O} \times \Omega$ such that:

$$
(\mu)_1 \qquad \mu \in C^0([0, T] \times [0, A[\times \overline{\Omega}), \quad \mu(t, a, x) \geq 0 \quad \text{in} \quad 0 \times \Omega;
$$

the behaviour of μ at $a = A$ is given by the divergency condition (see [5]):

$$
(\mu)_2 \qquad \begin{cases} 0 < t < A, & x \in \Omega, \lim_{a \to A} \int_0^t \mu(\tau, a - t + \tau, x) d\tau = +\infty, \\ A < t < T, & x \in \Omega, \lim_{a \to A} \int_0^a \mu(t - a + \alpha, \alpha, x) d\alpha = +\infty; \end{cases}
$$

we also assume that

$$
(\mu)_3 \qquad \qquad \nabla \mu \in [L^{\infty}(\mathcal{O} \times \Omega)]^N.
$$

Given a real valued function β on $\mathcal{O} \times \Omega$ such that

$$
(\beta)_1 \qquad \beta \in L^{\infty}(\mathcal{O} \times \Omega),
$$

$$
(\beta)_2 \qquad \beta(t, a, x) \geq 0, \qquad \text{a.e. in } \mathcal{O} \times \Omega,
$$

$$
(\beta)_{3} \qquad \sup_{(t,x)\in [0,T]\times\Omega} \int_{]0,A[} [\beta^{2}(t,a,x) + |\nabla \beta|^{2}(t,a,x)] da \leq c_{1} < +\infty.
$$

Remark 1. The main hypothesis is $(\mu)_2$. It ensures that the solution of the problem vanishes at $a = A$ (see Theorem 3). If μ is independent of t (and of x), it can be written more simply

$$
\int_0^A \mu(a) \, da = + \infty \, ;
$$

 $(\mu)_2$ means that the integral of μ is infinite on all line segments parallel to the first besectrix in the plane (t, a) whose end points are $a = 0$ and $a = A$, and $t = 0$ and $a=A$.

This amounts to the main modification of the hypotheses of [2], where μ was assumed to belong to L^p .

Hypotheses $(\mu)_3$ and $(\beta)_3$ are technical. The others appear natural. As to the data (u_0, ψ, f) , we assume at the outset that

$$
u_0 \in L^2([0, A[, H^1(\Omega)),
$$

$$
u_0(a, x) \ge 0, \qquad \text{a.e. in } [0, A[\times \Omega],
$$

The "obstacle" ψ is a regular function. More precisely ψ satisfies:

$$
(\psi)_{1}
$$
\n
$$
\begin{cases}\n\psi \in L^{2}(\mathcal{O}; H^{2}(\Omega)), \\
\frac{\partial \psi}{\partial \eta} \ge 0, \quad \text{on } \mathcal{O} \times \partial \Omega, \\
\frac{\partial \psi}{\partial t} + \frac{\partial \psi}{\partial a} \in L^{2}(\mathcal{O} \times \Omega),\n\end{cases}
$$
\n
$$
\psi \circ \psi
$$
\n
$$
\psi
$$

$$
(\psi)_2 \qquad \begin{cases} \psi(t,a,x) \geq 0, & a.e. \text{ in } \mathcal{O} \times \Omega, \\ \psi(0,a,x) \geq u_0(a,x), & a.e. \text{ in }]0, A[\times \Omega, \\ \psi(t,0,x) \geq \int_0^A \beta(t,a,x) \psi(t,a,x) \, da, & a.e. \text{ in }]0, T[\times \Omega, \end{cases}
$$

and note that, thanks to $(\psi)_1$, conditions $(\psi)_2$ make sense (see next section).

Finally, the right-hand side f satisfies

$$
f \in L^2(\mathcal{O} \times \Omega),
$$

$$
f(t, a, x) \ge 0, \quad \text{a.e. in } \mathcal{O} \times \Omega.
$$

Remark 2. (i) Conditions $(\psi)_2$ are as natural as the positivity of the data.

(ii) Conditions $(\psi)_1$ and $(\psi)_2$ are usual when regular solutions are desired.

(iii) Another important modification to [2] is that no hypothesis is made on the term $\mu\psi$.

3. Preliminary Results

We begin with a trace result that will be essential in what follows. This result is known in case $H^1(\Omega)$ is replaced by $L^2(\Omega)$ (see [1], [9]) or by $H^1_{0}(\Omega)$ (see [6]).

Lemma 0. A_0 is a strictly positive real number and $\mathcal{O}_0 = [0, T[\times]0, A_0[$. Let $u \in L^2(\mathcal{O}_0; H^1(\Omega))$ *s.t.* $(\partial_t + \partial_a)u$ belongs to $L^2(\mathcal{O}_0; [H^1(\Omega)]')$. Then:

i) *for all t₀ in*]0, $T[$ *and all a₀ in*]0, $A_0[$, *u* has a trace at $t = t_0$ belonging to $L^2($ [0, A_0 [\times Ω) and at $a = a_0$ belonging to $L^2($ [0, T[\times Ω). The "trace applications" *are continuous in the strong and weak topology;*

ii) *the following equality (Ostrogradski formula) holds:*

$$
\int_{\mathcal{C}_0} \langle (\partial_t + \partial_a) u, u \rangle dt \, da = \frac{1}{2} \left\{ \int_{\substack{]0, A_0[} \times \Omega}} u^2(T, a, x) \, da \, dx \right\} + \int_{\substack{]} u^2(t, A_0, x) \, dt \, dx \right\} -
$$

$$
-\frac{1}{2}\bigg\{\int_{]0,A_0[x_0]}u^2(0,a,x)\,da\,dx+\int_{]0,T[x_0]}u^2(t,0,x)\,dt\,dx\bigg\}.
$$
 (0)

For the proof we can proceed as in [9] or adapt the proofs of $[1]$, $[6]$.

Remark 3. This result will be exploited both as it stands with $A_0 = A$ and in the following form: A_0 is such that $a < A_0 < A$ and u is a function defined on $\emptyset \times \Omega$ s.t.

$$
u \in L^{2}(\mathcal{O}; H^{1}(\Omega)),
$$

$$
(\partial_{t} + \partial_{a})u + \mu u \in L^{2}(\mathcal{O} : [H^{1}(\Omega)])
$$

which implies that u satisfies the hypotheses of Lemma 0.

The second result concerns the regularity of the linear problems.

Theorem 0. *Under the hypotheses of Section 1.2, for all given*

$$
(u_0, b, f) \in L^2([0, A[\times \Omega) \times L^2(]0, T[\times \Omega) \times L^2(\mathcal{O}; [H^1(\Omega)]'),
$$

there exists a unique

$$
u \in L^2(\mathcal{O}; H^1(\Omega)) \text{ s.t. } (\partial_t + \partial_a)u + \mu u
$$

belongs to $L^2(\mathcal{O}; H^1(\Omega))'$, *which is solution of*

$$
\forall v \in L^2(\mathcal{O}; H^1(\Omega)),
$$

$$
\int_{\mathcal{C}} \langle (\partial_t + \partial_a)u + \mu u, v \rangle dt da + \int_{\mathcal{C} \times \Omega} \mathbf{V} \mathbf{u} \cdot \mathbf{V} \mathbf{v} dt da dx = \int_{\mathcal{C}} \langle f, v \rangle dt da;
$$

$$
u(0, a, x) = u_0(a, x), \qquad a.e. \text{ in }]0, A[\times \Omega;
$$

$$
u(t, 0, x) = b(t, x), \qquad a.e. \text{ in }]0, T[\times \Omega.
$$

Moreover, if

$$
(u_0, b, f) \in L^2([0, A[
$$
; $H^1(\Omega)) \times L^2([0, T[\times H^1(\Omega)) \times L^2(\mathcal{O} \times \Omega),$

then the solution u is in $L^2(\mathcal{O}; H^2(\Omega))$ *and satisfies:*

$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Delta u = f, \qquad a.e. \text{ in } \mathbb{O} \times \Omega,
$$

$$
\frac{\partial u}{\partial \eta} = 0, \qquad \text{on } \mathbb{O} \times \partial \Omega,
$$

$$
||u||_{L^{2}(\mathbb{O}; H^{2}(\Omega))} \leq c \{||f||_{L^{2}(\mathbb{O} \times \Omega)}, ||u_{0}||_{L^{2}(0, T; H^{1}(\Omega))}, ||b||_{L^{2}(0, T; H^{1}(\Omega))},
$$

$$
|\nabla \mu|_{[L^{2}(\mathbb{O} \times \Omega)]^{N}}\}.
$$

These results can be proved by passing to the limit on those contained in [2]. One can also proceed as follows: first, prove the result for $\mu = 0$, by using for instance Galerkin's method; then for bounded μ by using a fixed-point method, and finally for any μ by a passage to the limit (see also [6] for bounded μ and limit conditions of Dirichlet type).

M. G. Garroni and M. Langlais

§II. Results

1. Existence and Uniqueness

 $\ddot{}$

We consider the following problem:

Find

$$
u \in L^{2}(\mathcal{O}; H^{2}(\Omega)) \quad \text{s.t.,}
$$
\n
$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u \in L^{2}(\mathcal{O} \times \Omega),
$$
\n
$$
u(0, a, x) = u_{0}(a, x), \quad \text{a.e. in }]0, A[\times \Omega,
$$
\n
$$
u(t, 0, x) = \int_{0}^{A} \beta(t, a, x)u(t, a, x) da, \quad \text{a.e. in }]0, T[\times \Omega,
$$
\n
$$
\frac{\partial u}{\partial \eta} = 0, \quad \text{on } \mathcal{O} \times \partial\Omega,
$$
\n(1)

and is a solution of

$$
u(t, a, x) \le \psi(t, a, x), \qquad \text{a.e. in } \mathcal{O} \times \Omega,
$$

$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Delta u \le f, \qquad \text{a.e. in } \mathcal{O} \times \Omega,
$$

$$
\int_{\mathcal{O} \times \Omega} \left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Delta u - f \right) \cdot (u - \psi) dt \, da \, dx = 0.
$$
 (2)

We prove:

Theorem 1. *Under the hypotheses of I.2, the problem* (1), (2) *admits a unique solution.*

The proof will be given at the end of the paper.

Remark 4. Under the previous hypotheses, problem (1), (2) is equivalent to the variational inequality:

Find u satisfying (1) and solution of

$$
\forall v \in L^{2}(\mathcal{O} \times \Omega), \qquad \forall v \leq \psi, \quad \text{a.e. in } \mathcal{O} \times \Omega^{1},
$$

$$
\int_{\mathcal{O} \times \Omega} \left(\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Delta u - f \right) \cdot (v - u) dt da dx \geq 0.
$$
(3)

We shall solve problem (1) , (3) .

2. Properties

A few side results can be deduced from the existence result.

Theorem 2. *The solution of* (1), (2) *is positive.*

82

¹ In what follows we shall omit writing a.e., if there is no danger of confusion

Let, for $i = 1, 2$, $(\mu^i, \beta^i, u^i, \psi^i, f^i)$ satisfy the hypotheses of Section I.2; and let u^i be the solution of the variational inequality (1) , (3) . If we assume that

 $\mu^2 \le \mu^1$, $\beta^1 \le \beta^2$, $u_0^1 \le u_0^2$, $\psi^1 \le \psi^2$, $f^1 \le f^2$, in $\mathcal{O} \times \Omega$, *then* $u^1 \leq u^2$ *, in* $\emptyset \times \Omega$ *.*

Thus, we have the following properties, which are intuitive from a biological viewpoint; the solution is positive, it decreases as a function of μ , and increases as function of the other parameters.

Hypothesis (u) , has not yet been exploited.

Theorem 3. *Under the hypotheses of L2, the solution of problem* (1), (2) *or* (1), (3), *is such that*

$$
u(t, A, x) = 0, \qquad \text{in }]0, T[\times \Omega. \tag{4}
$$

The proof of this result is immediate, and is independent of the remaining part of the paper.

Let q be given in $L^2(\mathcal{O} \times \Omega)$ and w solution in $L^2(\mathcal{O} \times \Omega)$ of

$$
\frac{\partial w}{\partial t} + \frac{\partial w}{\partial a} + \mu w = g, \qquad \text{in } \mathcal{O} \times \Omega,
$$

$$
w(0, a, x) = w_0(a, x), \qquad \text{in }]0, A[\times \Omega,
$$

$$
w(t, 0, x) = w_1(t, x), \qquad \text{in }]0, T[\times \Omega,
$$

where w_0 and w_1 are elements of $L^2([0, A] \times \Omega)$ and $L^2([0, T] \times \Omega)$ respectively.

By computing w by the method of characteristics, it is clear that condition $(\mu)_2$ ensures that $w(t, A, x) = 0$, in $[0, T] \times \Omega$.¹

This result can thus be applied to u , which satisfies the same hypotheses as w (see $\lceil 1 \rceil$).

Remark 5. A few hypotheses may be weakened. For instance, the data do not have to be positive, and ψ minimized by a regular function.

One can also weaken the formulations (1), (2), look for weak solutions and study the regularity of the latter by dual estimates; this will allow to weaken the hypotheses of ψ .

The previous results still hold if one considers the interval $[0, T] \times [0, \infty) \times \Omega$.

§III. Proofs

In order to obtain the existence in the V.I. (1) , (3) a penalization method is used. More precisely, for $\varepsilon > 0$, we seek $u_{\varepsilon} \in L^2(\mathcal{O}:H^2(\Omega))$ solution of

¹ We have indeed for $a > t$, $x \in \Omega$

$$
w(t, a, x) = \exp\bigg(-\int_0^t \mu(\tau, a - t + \tau, x) d\tau\bigg)\bigg[w_0(a - t, x) + \int_0^t \exp\bigg(\int_0^t \mu(\vartheta, a - t + \vartheta, x) d\vartheta\bigg)g(\tau, a - t + \tau, x) d\tau\bigg];
$$

analogously for $a < t$, $x \in \Omega$

$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Delta u + \frac{1}{\varepsilon} (u - \psi)^+ = f, \quad \text{in } \mathcal{O} \times \Omega;
$$

$$
u(0, a, x) = u_0(a, x), \quad \text{in }]0, A[\times \Omega;
$$

$$
u(t, 0, x) = \int_0^A \beta(t, a, x) u(t, a, x) da, \quad \text{in }]0, T[\times \Omega;
$$

$$
\frac{\partial u}{\partial \eta} = 0, \quad \text{on } \mathcal{O} \times \partial \Omega,
$$
 (5)

and then, letting $\varepsilon \to 0$, we obtain a solution of (1), (3).

From a technical viewpoint it is more convenient to work on a weaker formulation of (5): we seek $u_e \in L^2(\mathcal{O}: H^1(\Omega))$ solution of

$$
\forall v \in L^{2}(\mathcal{O}: H^{1}(\Omega)),
$$

$$
\int_{\mathcal{O}} \langle (\partial_{t} + \partial_{a})u + \mu u, v \rangle dt da + \int_{\mathcal{O} \times \Omega} \nabla u \times \nabla v dt da dx
$$

$$
+ \frac{1}{\varepsilon} \int_{\mathcal{O} \times \Omega} (u - \psi)^{+} v dt da dx = \int_{\mathcal{O} \times \Omega} fv dt da dx;
$$

$$
u(0, a, x) = u_{0}(a, x), \quad \text{in }]0, A[\times \Omega,
$$

$$
u(t, 0, x) = \int_{0}^{A} \beta(t, a, x)u(t, a, x) da, \quad \text{in }]0, T[\times \Omega.
$$

In order to pass from (6) to (5) it is sufficient to apply the regularity results to the equations.

Remark 6. If we perform a change of variables $u = e^{\lambda t}\tilde{u}$, $f = e^{\lambda t}\tilde{f}$, $\psi = e^{\lambda t}\tilde{\psi}$, then \tilde{u} is solution of (5) or (6) with μ replaced by $\tilde{\mu} = \mu + \lambda$, f by $\tilde{\jmath}$ and ψ by $\tilde{\psi}$. This will be tacitly done in the sequel, with λ sufficiently large (i.e. $\lambda > \frac{1}{2}c_1$, c_1 defined in (β)₃).

1. Penalized Equations: The Case µ Bounded

In this section μ is assumed to be bounded in $\mathcal{O} \times \Omega$ i.e. hypotheses $(\mu)_2$ is replaced by

$$
(\mu)^* \qquad \mu \in L^\infty(\mathcal{O} \times \Omega).
$$

The following lemma is basic.

Lemma 1. *Under the hypotheses of I.2 with* $(\mu)_2$ *replaced by* $(\mu)_2^*$ *and* $\varepsilon > 0$ *, for all* $b\in L^2(]0, T[\times \Omega)$, there exists a unique $u\in L^2(\mathbb{C}:H^1(\Omega))$ such that

$$
(\partial_t + \partial_a)u \in L^2(\mathcal{O}:H^1(\Omega))^{\prime})
$$

which is solution of

$$
\forall v \in L^2(\mathcal{O}; H^1(\Omega)),
$$

$$
\int_{\mathcal{O}} \langle (\partial_t + \partial_a)u, v \rangle dt da + \int_{\mathcal{O} \times \Omega} \left[(\lambda + \mu)uv + \nabla u \cdot \nabla v + \frac{1}{\varepsilon} (u - \psi)^+ v \right] dt da dx
$$

\n
$$
= \int_{\mathcal{O} \times \Omega} fv dt da dx; \qquad u(0, a, x) = u_0(a, x), \qquad]0, A[\times \Omega; \qquad u(t, 0, x) = b(t, x), \qquad]0, T[\times \Omega. \qquad (7)
$$

Proof. The proof follows either by using the results of [2] or the results on the linear problems and the technique of the maximal-monotone operators (see [7] for the case of the Dirichlet problem).

Remark 7. Since

$$
\frac{1}{\varepsilon}(u-\psi)^+ \in L^2(\mathcal{O} \times \Omega), \quad \text{if} \quad b \in L^2(0,T;H^1(\Omega))
$$

then u satisfies

$$
u \in L^{2}(\mathcal{O}; H^{2}(\Omega)),
$$

\n
$$
\frac{\partial u}{\partial \eta} = 0, \qquad \text{on } \mathcal{O} \times \partial \Omega,
$$

\n
$$
\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + (\lambda + \mu)u - \Delta u + \frac{1}{\varepsilon}(u - \psi)^{+} = f, \qquad \text{in } \mathcal{O} \times \Omega;
$$

(By Theorem 0, because of $(\mu)^*$ the term μu is in $L^2(\mathcal{O} \times \Omega)$).

For the proof of Theorem 2 we need the following lemma.

Lemma 2. *Under the hypotheses of Lemma 1,*

i) *if b is positive (in* $\lceil 0, T \rceil \times \Omega$), *the same holds (in* $\mathcal{O} \times \Omega$) *for the solution of problem* (7).

More 9enerally:

ii) *for i* = 1, 2, *let* $(b^i, u_0^i, \psi^i, f^i)$ *satisfy the hypotheses of Lemma 1, and let* u^i *be the solution of* (7). *Then if*

 $b^1 \leq b^2$, $u_0^1 \leq u_0^2$, $\psi^1 \leq \psi^2$, $f^1 \leq f^2$,

we have $u^1 \leq u^2$.

iii) Let ε_1 and ε_2 s.t. $0 < \varepsilon_1 < \varepsilon_2$ and let uⁱ the solution of (7) for $\varepsilon = \varepsilon_i$, $i = 1, 2$. *Then* $u^1 \leq u^2$.

iv) Let μ^1 and μ^2 satisfy $(\mu)^*$ and let u^i the solution of (7) for $\mu = \mu^i$, $i = 1, 2$. *Then, if* $b \ge 0$ *, and* $\mu^1 \le \mu^2$ *we have* $u^2 \le u^1$ *.*

Proof. These results are a consequence of the weak maximum principle, satisfied by the degenerate elliptic operators. Since, by hypothesis, f and u_0 are positive, it is clear that if b is positive the same holds for u .

The second property (comparison result) is also classic.

The third property is a standard property of the penalized equations (see [10], $[11]$, $[7]$).

The last property is proved similarly; noting $(u^2 - u^1)^+ \in L^2(\mathcal{O}; H^1(\Omega))$, we obtain

$$
\int_{\mathcal{O}} \langle [\partial_t + \partial_a](u^2 - u^1), (u^2 - u^1)^+ \rangle dt da
$$

+
$$
\int_{\mathcal{O} \times \Omega} (\lambda + \mu^1)(u^2 - u^1)(u^2 - u^1)^+ dt da dx
$$

+
$$
\int_{\mathcal{O} \times \Omega} \nabla (u^2 - u^1) \cdot \nabla (u^2 - u^1)^+ dt da dx
$$

+
$$
\frac{1}{\varepsilon} \int_{\mathcal{O} \times \Omega} [(u^2 - \psi)^+ - (u^1 - \psi)^+](u^2 - u^1)^+ dt da dx
$$

+
$$
\int_{\mathcal{O} \times \Omega} (\mu^2 - \mu^1) u^2 (u^2 - u^1)^+ dt da dx = 0.
$$

The last two terms of this equality are positive (as $b \ge 0$ ensures that $u^i \ge 0$, $i = 1, 2$). The first one is also positive since

$$
(u2 - u1)(0, a, x) = (u2 - u1)(t, 0, x) = 0.
$$

It follows that $(u^2 - u^1)^+ = 0$, i.e. $u^2 \le u^1$ in $\mathcal{O} \times \Omega$.

Problem (6) is solved by a fixed point method.

Lemma 3. *Under the hypotheses 1.2, with* $(\mu)_2$ *replaced by* $(\mu)_2^*$ *, then problem* (6) *admits a unique solution in* $L^2(\mathcal{O}; H^1(\Omega))$.

Proof. For a given w in $L^2(\mathcal{O}; H^1(\Omega))$, *Sw* denotes the solution of (7) with

$$
b(t,x) = \int_0^A \beta(t,a,x)w(t,a,x) da.
$$
 (8)

S is an application of $L^2(\mathcal{O}; H^1(\Omega))$ in itself. We are left with proving that S is strictly contracting.

Let w_1 and w_2 be two elements of $L^2(\mathcal{O}; H^1(\Omega))$. By elementary computations we obtain:

$$
\int_{\mathcal{O}} \langle [\partial_t + \partial_a](Sw_1 - Sw_2), Sw_1 - Sw_2 \rangle dt da
$$

+
$$
\int_{\mathcal{O} \times \Omega} [(\lambda + \mu)(Sw_1 - Sw_2)^2 + |\nabla(Sw_1 - Sw_2)|^2] dt da dx
$$

+
$$
\frac{1}{\varepsilon} \int_{\mathcal{O} \times \Omega} [(\nabla w_1 - \psi)^+ - (Sw_2 - \psi)^+] \cdot [Sw_1 - Sw_2] dt da dx = 0.
$$
 (9)

The penalization term, i.e. the last term, is positive; the initial data at $t = 0$ and $a = 0$ are

$$
[Sw_1 - Sw_2](0, a, x) = 0, \qquad [Sw_1 - Sw_2](t, 0, x) = \int_0^A \beta(w_1 - w_2) \, da.
$$

From equality (0) (see Section 1.3) we have:

$$
\int_{\mathcal{C}} \langle [\partial_t + \partial_a](Sw_1 - Sw_2), Sw_1 - Sw_2 \rangle dt da
$$

= $\frac{1}{2} \int_{]0, A[\times \Omega]} [Sw_1 - Sw_2]^2(T, a, x) da dx$
+ $\frac{1}{2} \int_{]0, T[\times \Omega]} [Sw_1 - Sw_2]^2(t, A, x) dt dx$
- $\frac{1}{2} \int_{]0, T[\times \Omega]} [\int_0^A \beta(w_1 - w_2) da]^2 dt dx.$

By substituting this in (9) and using $(\beta)_3$ we have in particular

$$
\int_{\theta \times \Omega} [(\lambda + \mu)(Sw_1 - Sw_2)^2 + |\nabla(Sw_1 - Sw_2)|^2] dt da dx
$$

$$
\leq \frac{1}{2} c_1 \int_{\theta \times \Omega} (w_1 - w_2)^2 dt da dx
$$

and we deduce (see the choice of λ in Remark 6) that S is strict contraction.

Before passing to the case of μ whatsoever we draw from Lemma 2 a few properties of the solution of (6).

Lemma 4. *Under the hypotheses of Lemma 3, the solution u of problem* (6) *is positive, it depends in an increasing manner on* (β, u_0, ψ, f) *and on* ε *, and it depends in a* decreasing way on μ .

Proof. It is sufficient to prove that the results of Lemma 2 still hold for the previous fixed point. We prove, for instance, the last property.

Let μ^1 and μ^2 with $\mu^1 \le \mu^2$, and let Sⁱ the application S corresponding to $\mu = \mu^i$, $i = 1, 2$. Set

$$
u^{i,0} = 0, \t i = 1, 2,
$$

$$
u^{i,n+1} = S^{i}(u^{i,n}), \t n \ge 0, i = 1, 2.
$$

From the last part of Lemma 2 we have $0 \le u^{2,1} \le u^{1,1}$. Let now $v^{2,2}$ be the solution of (7) with $\mu = \mu^2$, $w = u^{1,1}$, in (8). From Lemma 2 if follows $0 \le u^{2,2} \le v^{2,2}$ (see (ii)), $v^{2,2} \le u^{1,2}$ (see (iv)). Finally, let $0 \le u^{2,2} \le u^{1,2}$. An easy induction shows that $\forall n \geq 0, 0 \leq u^{2,n} \leq u^{1,n}$, and since the sequence $(u^{i,n})_n$ converges to the solution u^i of (6) with $\mu = \mu^i$, we obtain the desired result.

Remark 8. Note that (6), and thus also (5), has been solved under the hypothesis μ bounded.

2. Penalized Equation: General Case

In order to pass from the case of bounded μ to that of an arbitrary μ we introduce the sequence $(\mu_n)_{n\in\mathbb{N}}$ defined by

88 M. G. Garroni and M. Langlais

$$
\mu^n = \mu \wedge n = \text{Inf}(\mu, n), \qquad n \in \mathbb{N}.
$$

As we know how to solve (5) and (6) with μ replaced by μ^n , we perform a passage to the limit.

Lemma 5. *Under the hypotheses of Section I.2, for all* $\varepsilon > 0$ *there exists a unique u_s in* $L^2(\mathcal{O}; H^1(\Omega))$ *s.t.* $(\partial_t + \partial_a)u_\varepsilon + \mu u_\varepsilon \in L^2(\mathcal{O}; [H^1(\Omega)]')$ *and is a solution of* (6).

Proof. Let us start by proving the existence.

Let u_n be the solution of (6) with $\mu = \mu^n$ (see Lemma 3). Let $v = u_n$ in (6); integrating by parts (i.e., using equality (0)) we have:

$$
\frac{1}{2} \int_{0}^{R} u_n^2(T, a, x) da dx + \frac{1}{2} \int_{0}^{R} u_n^2(t, A, x) dt dx \n+ \int_{0}^{R} [(\lambda + \mu^n) u_n^2 + |\nabla u_n|^2 + \frac{1}{\varepsilon} (u_n - \psi)^+ u_n] dt da dx \n= \int_{0}^{R} f \cdot u_n dt da dx + \frac{1}{2} \int_{0}^{R} u_0^2 da dx \n+ \int_{0}^{R} \int_{0}^{R} \beta(t, a, x) u_n(t, a, x) \Big|^2 dt dx.
$$
\n(10)

Since for all *n* we have $u_n \geq 0$ in $\mathcal{O} \times \Omega$, we have

$$
\int_{\mathcal{O}\times\Omega}(\mu^n u_n^2 + u_n^2 + |\nabla u_n|^2) dt da dx \leq k,
$$
\n(11)

where k is a constant independent of n and ε .

From equation (6) we can now deduce $([\partial_t + \partial_a]u_n + \mu^n u_n)_n$ bounded in $L^2(\mathcal{O}; [H^1(\Omega)]')$. On the other hand (see Lemma 4), the sequence $(u_n)_n$ is decreasing. Thus from the sequence $(u_n)_n$ we can extract a sequence $(u_k)_k$ such that for $k \to \infty$

$$
u_k \to u_\varepsilon \quad \text{in } L^2(\mathcal{O}; H^1(\Omega)) \text{ weakly,}
$$

$$
\sqrt{\mu^k u_k} \to w \quad \text{in } L^2(\mathcal{O} \times \Omega) \text{ weakly,}
$$

$$
(\partial_t + \partial_a)u_k + \mu^k u_k \to h \quad \text{in } L^2(\mathcal{O}; [H^1(\Omega)]') \text{ weakly.}
$$

The monotonicity of u_n ensures that

$$
u_k \to u_\varepsilon \quad \text{in } L^2(\mathcal{O} \times \Omega) \text{ strongly,}
$$

$$
(u_k - \psi)^+ \to (u_\varepsilon - \psi)^+ \quad \text{in } L^2(\mathcal{O} \times \Omega) \text{ strongly.}
$$

Hypothesis $(\mu)_1$ ensures that for φ in $\mathscr{D}(\mathscr{O} \times \Omega)$ and k sufficiently large

$$
\int_{\theta \times \Omega} \sqrt{\mu^k} \, u_k \varphi \, dt \, da \, dx = \int_{\theta \times \Omega} \sqrt{\mu} \, u_k \varphi \, dt \, da \, dx \to \int_{\theta \times \Omega} \sqrt{\mu} \, u_\varepsilon \varphi \, dt \, da \, dx
$$

and thus $(\sqrt{\mu^k} u_k)$ converges to $\sqrt{\mu} u_k$ in $\mathscr{D}'(\mathcal{O} \times \Omega)$ and

$$
w=\sqrt{\mu}\,u_{\varepsilon}.
$$

Similarly, $([\partial_t + \partial_a]u_k + \mu^k]u_k)$ converges in $\mathscr{D}(\mathcal{O}; H^1(\Omega))^{\prime}$ to $(\partial_t + \partial_a)u_k + \mu u_k$ and $h = (\partial_t + \partial_a)u_{\varepsilon} + \mu u_{\varepsilon}$.

In order to show that u_{ε} is solution of the penalized equation (6) we have yet to verify the initial conditions. We do this using the results of Section 1.3.

Let A_0 be such that $0 \le A_0 < A$. From the above we deduce (setting $\mathcal{O}_0 = [0, T[\times]0, A_0[)$ for $k \to \infty$

$$
u_k \to u_\varepsilon \quad \text{in } L^2(\mathcal{O}_0; H^1(\Omega)) \text{ weakly,}
$$

$$
(\partial_t + \partial_a)u_k \to (\partial_t + \partial_a)u_\varepsilon \quad \text{in } L^2(\mathcal{O}_0; [H^1(\Omega)]) \text{ weakly,}
$$

consequently (see Lemma 0)

$$
u_k(0, a, x) \to u_\varepsilon(0, a, x) \quad \text{in } L^2([0, A_0[\times \Omega) \text{ weakly},
$$

$$
u_k(t, 0, x) \to u_\varepsilon(t, 0, x) \quad \text{in } L^2([0, T[\times \Omega) \text{ weakly.})
$$

As

$$
u_k(0, a, x) = u_0(a, x), \qquad \forall n \geq 0, \qquad \text{in }]0, A[\times \Omega,
$$

$$
u_k(t, a, x) = \int_0^A \beta u_k \, da \to \int_0^A \beta u_k \, da \qquad \text{in } L^2([0, T[\times \Omega) \text{ strongly,})
$$

 u_{ε} satisfies

$$
u_{\varepsilon}(0, a, x) = u_0(a, x), \quad \text{in }]0, A[\times \Omega,
$$

$$
u_{\varepsilon}(t, 0, x) = \int_0^A \beta u_{\varepsilon} da, \quad \text{in }]0, T[\times \Omega]
$$

and is a solution of (6).

Let us now prove *uniqueness*. Let u_1 and u_2 be two solutions of (6) and let $u = u_1 - u_2$. We take $v = u \cdot \chi_{0.40}$ ¹ as test function in the equation admitting u_1 and u_2 as solutions. Taking the difference and using (0) we have

$$
\frac{1}{2}\int_{10, A_0[x\Omega]} u^2(T, a, x) da dx + \frac{1}{2}\int_{10, T[x\Omega]} u^2(t, A_0, x) dt dx \n+ \int_{\varnothing_0 \times \Omega} \left[(\lambda + \mu)u^2 + |\nabla u|^2 + \frac{1}{\varepsilon} u\{(u_1 - \psi)^+ - (u_2 - \psi)^+\} \chi_{[0, A_0[}] dt da dx \right] \n= \frac{1}{2}\int_{10, T[x\Omega]} \left[\int_0^A \beta u da \right]^2 dt dx.
$$

Since the penalization term is positive we have in particular:

$$
\int_{\theta_0 \times \Omega} \left[\lambda u^2 + |\nabla u|^2 \right] dt \, da \, dx \leq \frac{1}{2} c_1 \int_{\theta \times \Omega} u^2 \, dt \, da \, dx.
$$

Letting A_0 tend to A we obtain the result: $u = 0$.

Remark 9. The sequence $(u_n)_n$ converges strongly in $L^2(\mathcal{O} \times \Omega)$ to the solution u_s of (6).

 $\frac{1}{\chi_F}$ denotes the characteristic function of the set F

We can now solve problem (5) .

Lemma 6. *Under the hypotheses of Section I.2, there exists a unique* u_{ε} *in* $L^2(\mathcal{O}; H^2(\Omega))$ *s.t.* $(\partial u_s/\partial t) + (\partial u_s/\partial a) + \mu u_s$ belongs to $L^2(\mathcal{O} \times \Omega)$ and is solution of *the penalized problem* (5).

Proof. We make use of the regularity of the linear problems. If we set

$$
g = f - \frac{1}{\varepsilon} (u_{\varepsilon} - \psi)^+,
$$

$$
b = \int_0^A \beta u_{\varepsilon} da,
$$

where u_{ε} is solution of (6), then u_{ε} is solution in $L^2(\mathcal{O}; H^1(\Omega))$ of

$$
\forall v \in L^2(\mathcal{O}; H^1(\Omega)),
$$

$$
\int_{\mathcal{C}} \langle [\partial_t + \partial_a] u + \mu u, v \rangle dt da + \int_{\mathcal{C} \times \Omega} \nabla u \cdot \nabla v dt da dx = \int_{\mathcal{C} \times \Omega} g \cdot v dt da dx,
$$

$$
u(0, a, x) = u_0(a, x), \quad \text{in }]0, A[\times \Omega,
$$

$$
u(t, 0, x) = b(t, x), \quad \text{in }]0, T[\times \Omega.
$$

The regularity result can now be applied. \blacksquare

Collecting the results of Lemmas 4, 5 and 6 we obtain:

Lemma 7. *Under the hypotheses of Lemma 6, the solution of problem* (5) *depends in an increasing way on* (β, u_0, ψ, f) *and* $\varepsilon > 0$ *, and in a decreasing way on* μ *.*

We are now in a position to prove the results announced at the beginning.

3. Proofs of the Results

Consider the sequence $(u_{\varepsilon})_{\varepsilon>0}$ of solutions of the penalized problem (5). We already know (see (11) and Lemma 7) that

$$
\int_{\mathcal{O}\times\Omega} \left[\mu u_{\varepsilon}^2 + \lambda u_{\varepsilon}^2 + |\nabla u_{\varepsilon}|^2\right] dt \, da \, dx \le k, \qquad k \text{ independent of } \varepsilon > 0,
$$

and that the sequence u_{ε} is decreasing, as ε decreases to 0.

We show that

$$
\left(\frac{1}{\varepsilon}(u_{\varepsilon}-\psi)^+\right)_{\varepsilon>0} \qquad \text{is bounded in } L^2(\mathcal{O}\times\Omega). \tag{12}
$$

The properties of ψ imply that $(u_{\varepsilon} - \psi)^+$ is an element of $L^2(\mathcal{O}: H^1(\Omega))$. For all A_0 such that $0 < A_0 < A$ we have (setting $\mathcal{O}_0 = [0, T[\times]0, A_0[)$)

$$
\int_{\mathcal{O}_0} \left\langle \left[\frac{\partial}{\partial t} + \frac{\partial}{\partial a} + \mu \right] (u_{\varepsilon} - \psi), (u_{\varepsilon} - \psi)^+ \right\rangle dt da +
$$

$$
+\int_{\mathcal{O}_{0}\times\Omega}\left[\lambda(u_{\epsilon}-\psi)(u_{\epsilon}-\psi)^{+}+\nabla(u_{\epsilon}-\psi)\cdot\nabla(u_{\epsilon}-\psi)^{+}\right]d\tau d\tau d\tau
$$
\n
$$
+\frac{1}{\epsilon}(u_{\epsilon}-\psi)(u_{\epsilon}-\psi)^{+}\right]d\tau d\tau d\tau
$$
\n
$$
=\int_{\mathcal{O}_{0}}\left\langle f-\frac{\partial\psi}{\partial t}-\frac{\partial\psi}{\partial a}-(\lambda+\mu)\psi,(u_{\epsilon}-\psi)^{+}\right\rangle d\tau d\tau
$$
\n
$$
+\int_{\mathcal{O}_{0}\times\Omega}\nabla\psi\cdot\nabla(u_{\epsilon}-\psi)^{+}d\tau d\tau d\tau.
$$
\n(13)

The condition $\partial \psi / \partial \eta \geq 0$, on $\mathcal{O} \times \partial \Omega$ ensures that

$$
\int_{\mathcal{O}_0 \times \Omega} \Delta \psi \cdot (u_{\epsilon} - \psi)^+ dt da dx \geqslant - \int_{\mathcal{O}_0 \times \Omega} \nabla \psi \times \nabla (u_{\epsilon} - \psi)^+ dt da dx;
$$

since λ , μ and ψ are positive, the right member of equality (13) is bounded from above by

$$
\int_{\theta_0 \times g} \left(f - \frac{\partial \psi}{\partial t} - \frac{\partial \psi}{\partial a} + \Delta \psi \right) (u_{\varepsilon} - \psi)^+ dt da dx.
$$

The regularity of ψ and that of u_{ε} imply

$$
\int_{\theta_0} \left\langle \left[\frac{\partial}{\partial t} + \frac{\partial}{\partial a} + \mu \right] (u_{\epsilon} - \psi)(u_{\epsilon} - \psi)^+ \right\rangle dt da
$$
\n
$$
= \int_{\theta_0 \times \Omega} \left[\frac{\partial}{\partial t} + \frac{\partial}{\partial a} \right] (u_{\epsilon} - \psi)^+ \cdot (u_{\epsilon} - \psi)^+ dt da dx
$$
\n
$$
+ \int_{\theta_0 \times \Omega} \mu [(u_{\epsilon} - \psi)^+]^2 dt da dx. \tag{14}
$$

A further consequence is (see condition $(\psi)_2$)

$$
(u_{\varepsilon} - \psi)^{+}(0, a, x) = [(u_{\varepsilon} - \psi)(0, a, x)]^{+} = 0
$$

and (see again $(\psi)_2$)

$$
(u_{\varepsilon} - \psi)^{+}(t, 0, x) = \left[(u_{\varepsilon} - \psi) \cdot (t, 0, x) \right]^{+} \leq \left[\int_{0}^{A} \beta (u_{\varepsilon} - \psi) \, da \right]^{+}
$$

$$
\leq \int_{0}^{A} \beta (u_{\varepsilon} - \psi)^{+} \, da.
$$

Therefore, the first term of the left side of (13) is minorized by (integrating by parts (14) and taking into account $(\beta)_{3}$)

$$
-\frac{1}{2}c_1\int_{\mathcal{O}\times\Omega}[(u_{\varepsilon}-\psi)^+]^2\,dt\,da\,dx.
$$

Dividing both sides of (13) by ε we obtain

92 M.G. Garroni and M. Langlais

$$
\frac{\lambda}{\varepsilon} \int_{\theta_0 \times \Omega} \left[(u_{\varepsilon} - \psi)^+ \right]^2 dt \, da \, dx + \frac{1}{\varepsilon} \int_{\theta_0 \times \Omega} |\nabla (u_{\varepsilon} - \psi)^+|^2 dt \, da \, dx \n+ \frac{1}{\varepsilon^2} \int_{\theta_0 \times \Omega} \left[(u_{\varepsilon} - \psi)^+ \right]^2 dt \, da \, dx \n\leq \int_{\theta_0 \times \Omega} \left[f - \frac{\partial \psi}{\partial t} - \frac{\partial \psi}{\partial a} - A \psi \right] \frac{(u_{\varepsilon} - \psi)^+}{\varepsilon} dt \, da \, dx \n+ \frac{1}{2\varepsilon} c_1 \int_{\theta \times \Omega} \left[(u_3 - \psi)^+ \right]^2 dt \, da \, dx. \tag{15}
$$

If we make A_0 tend to A we can replace \mathcal{O}_0 by \mathcal{O} in (15) and deduce (12); thus from (5) it follows that

$$
\left(\frac{\partial u_{\varepsilon}}{\partial t}+\frac{\partial u_{\varepsilon}}{\partial a}+\mu u_{\varepsilon}-\Delta u_{\varepsilon}\right)_{\varepsilon>0}
$$
 is bounded in $L^2(\mathcal{O}\times\Omega)$,

and also (see the regularity of the linear problem)

$$
(u_{\varepsilon})_{\varepsilon>0}
$$
 bounded in $L^2(\mathcal{O};H^2(\Omega))$.

The monotonicity of the sequence $(u_ε)$ ensures that it converges strongly in $L^2(\mathcal{O}\times\Omega)$, i.e. $u_{\varepsilon}\to u$ in $L^2(\mathcal{O}\times\Omega)$ for $\varepsilon\to 0$. On the other hand, we can extract a subsequence $(u_{\varepsilon})_{\varepsilon}$ such that when $\varepsilon' \to 0$

$$
u_{\varepsilon'} \to u \quad \text{in } L^2(\mathcal{O}; H^2(\Omega)) \text{ weakly,}
$$

$$
\left[\frac{\partial}{\partial t} + \frac{\partial}{\partial a} + \mu\right] u_{\varepsilon'} - \Delta u_{\varepsilon'} \to l \quad \text{in } L^2(\mathcal{O} \times \Omega) \text{ weakly.}
$$

It is clear that

$$
\frac{\partial u}{\partial \eta} = 0, \qquad \text{on } \mathcal{O} \times \partial \Omega
$$

and (see proof of Lemma 5)

$$
l = \left[\frac{\partial}{\partial t} + \frac{\partial}{\partial a} + \mu\right]u - \Delta u.
$$

It follows (see also Lemma 5)

$$
u(0, a, x) = u_0(a, x), \qquad \text{in }]0, A[\times \Omega;
$$

$$
u(t, 0, x) = \int_0^A \beta u \, da, \qquad \text{in }]0, T[\times \Omega.
$$

Finally, $[\text{as } (1/\varepsilon)(u_{\varepsilon} - \psi)^+$ is bounded in $L^2(\mathcal{O} \times \Omega)$, we deduce that $(u - \psi)^+ = 0$, i.e.

$$
u\leqslant\psi,\qquad\text{in }\mathcal{O}\times\Omega.
$$

Let now v be an element of $L^2(\mathcal{O}\times\mathcal{Q})$, s.t. $v \leq \psi$ in $\mathcal{O}\times\mathcal{Q}$. Note that for all v

$$
\int_{\theta \times \Omega} \left(\left[\frac{\partial}{\partial t} + \frac{\partial}{\partial a} + \mu \right] u_{\varepsilon} - \Delta u_{\varepsilon} - f \right) (v - u_{\varepsilon}) dt da dx
$$
\n
$$
= \frac{1}{\varepsilon'} \int_{\theta \times \Omega} \left[(v - \psi)^+ - (u_{\varepsilon'} - \psi)^+ \right] (v - u_{\varepsilon}) dt da dx \ge 0. \tag{16}
$$

The strong convergence of u_{ε} in $L^2(\mathcal{O} \times \Omega)$ insures that the limit u satisfies inequality (3): it is sufficient to make ε' tend to 0 in (16). \blacksquare

As to uniqueness note that if u^1 and u^2 are two solutions of (1), (3), then the difference $u = u^1 - u^2$ satisfies

$$
\int_{\theta \times \Omega} \left[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u - \Delta u \right] u \, dt \, da \, dx \le 0,
$$

\n
$$
u(0, a, x) = 0, \qquad \text{in }]0, A[\times \Omega,
$$

\n
$$
u(t, 0, x) = \int_0^A \beta u \, da, \qquad \text{in }]0, T[\times \Omega,
$$

\n
$$
\frac{\partial u}{\partial \eta} = 0, \qquad on \quad 0 \times \partial \Omega.
$$

Since

$$
\int_{\theta \times \Omega} \left[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u \right] u \, dt \, da \, dx = \lim_{A_0 \to A} \int_{\theta_0 \times \Omega} \left[\frac{\partial u}{\partial t} + \frac{\partial u}{\partial a} + \mu u \right] u \, dt \, da \, dx
$$

the proof that $u = 0$ is along the lines of that of Lemma 5.

The proof of Theorem 1 is thus completed. That of Theorem 2 is immediate from Lemma 7.

References

- 1. Bardos, C.: Problèmes aux limites pour les équations aux dérivées partielles du premier ordre. Ann. Scient. Ec. Norm. Sup. 4° série, 3, 185 -233 (1970)
- 2. Garroni, M. G., Lamberti, L. : A variational problem for population dynamics with unilateral constraint. B.U.M.I. (5) 16B, 876-896 (1979)
- 3. Gurtin, M. E. : A system of equations for age dependent population diffusion. J. Theor. Biology 40, 389 - 392 (1973)
- 4. Hoppensteadt, F.: Mathematical theories of populations: Demographies genetics and epidemics. Philadelphia S.I.A.M. 1975
- 5. Langhaar, H. L.: General population theory in age-time continuum. J. Franklin Inst. 293, 199 214 (1972)
- 6. Langlais, M.: Solutions fortes pour une classe de problèmes aux limites dégénérés. Comm. in Partial Differential Equations 4 (8), 869-897 (1979)
- 7. Langlais, M. : A degenerating elliptic problem with unilateral constraints. Nonlinear Analysis, Theory, Methods, Applications. 4 (2), 329-342 (1980)
- 8. Langlais, M.: Sur un problème de dynamique de population. Publications A.A.I. Université Bordeaux I, $N^{\circ} 8001 - 8004$ (1980)
- 9. Lions, J. L., Magenes, E.: Problèmes aux limites homogènes et applications, tome 1. Paris: Dunod 1968
- 10. Mignot, F., Puel, J. P.: Solution maximum de certaines in6quations variationnelles paraboliques. C.R.A.S. S6rie A t. 280, 259-262 (1975)
- 11. Mignot, F., Puel, J. P.: Inequation variationnelles et quasi variationnelles du premier ordre. J. Math. pures appl. 55, 353-378 (1976)

Received October 30, 1980