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Introduction

In this paper a mathematical model of an age-dependent population with diffusion
in a bounded set of R® and with an external constraint is treated.

In this model, the dynamics-of the population is described by a function u(z, a, x)
such that for every open set Q of R* and every interval [ay,a,], the integral

J daf u(t,a,x)dx
ay 0

gives the number of individuals of age between a; and a, living at the time ¢ in the
region Q. Thus u(¢, a, x) represents the density of the individuals of age g at the time ¢
and at position x.

We assume that the population develops with a constraint depending on the
environment as follows: the density remains less than or equal to a given function
Y(t, a, x) and moreover, when it is strictly less than v, it is ruled by the usual partial
differential equation (see e.g. [3], [4], [5] and references there):

ou + du o s *)
- -— — AU U =7. *
ot da #

1) Here u(t, a, x) is the rate of mortality, characteristic of the species, that is
considered as divergent to + oo as @ — A4, where 4 is the maximal age for the
species;

* This work has been done within the framework of the cultural agreement between the Universities of
Bordeaux and Rome
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2) f(t,a, x) 1s a factor, possibly zero, that takes into account possible external
increase of population.

We further assume that:

3) birth is described by the “renewal equation™ (see e.g. [3], [4], and [5])

u(t,0,x) = JA p(t, a, x)ul(t,a, x)da,
4]

where 8 represents the rate of fertility;
4) the initial density of population in known;
S) the population does not leave the region Q, i.e.

ou
an
This problem can be solved in terms of variational inequalities and can be set

into equations as follows:
Find a function u such that

=0, on 0Q.

u<y,
8u+5u+ Au—F<0
ot da H y
t>0, O<a<Ad, xef
au+au+ du~f( =
o Taa T AT =
Ju
=0 >0, 0<a<d, xedQ
"

u(0, a, x) = uy(a, x), O<a<Ad, xe,
A

u(t,0,x) = f B, a, x)u(t, a, x)da, t>0, xeQ.
0

A problem of this kind with rigid control of birth, i.e. u(z, 0,2) = b(z, x), has been
studied by M. G. Garroni and L. Lamberti [2].

In this paper, using the results of existence and regularity of [2] and the methods
of M. Langlais {6], [ 7] we obtain the existence and the uniqueness of the solution
under weaker hypotheses than those of [2].

We also rediscover all the biologically intuitive properties connecting the
density of the population to the other parameters of the problem.

The plan of the paper is the following: In §I we introduce notations, hypotheses
and preliminary results. In §II we show existence, uniqueness and investigate the
properties of solutions. §III contains the proofs.

§1. Notations; Hypotheses, and Preliminary Results
I Notaiions

We denote by 2 a ‘bounded open subset of RY, w1th regular boundary 0Q and
generic element x = (x5, ..., Xy). 4148 the Laplacian and ¥ is the gradient
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N 2 6 a
A = ——— ; V = T ey T )
i:ZI axf (ax1 axN)
H(Q) and H*(Q) are the usual Sobolev spaces of order 1 and 2 (see [9], for

instance). By { , ) we denote the duality between H(Q) and its dual.
Let n be the unit exterior normal; the normal exterior derivative is defined by

0 N 0
61” B v:zl I 5xi )

T and A are two strictly positive and finite real numbers; 170, T[ and
ae€]0, A[. ¢ is the open set 0, TT x 0, A[.

If His a Hilbert space and U an open set of R?, L*(U; H) is the (Hilbert) space of
measurable functions of U with values in H s.t. [yllo(y)Ifdy < + oo.

Ifuis a real function, we denote by u™ its positive and by u~ its negative parts (so
that u =u™ —u™).

d, and 0, indicate partial differentiation in 2/(0; [ H*(2)]).

2. Hypotheses

We consider a real-valued function g on @ x Q such that:

(1), ueC[0, T] x [0, 4[ x ), u(t,a,x) =0 in 0 x Q;

the behaviour of y at a = A4 is given by the divergency condition (see [5]):

1
O<t< A4, xe, limj wt,a—t+ 1,x)dt = + o0,
a>44 0
()2 a
A<t<T, xe, limJ wlt —a+o,0,x)de = + o0,
a—=AJ 0

we also assume that

(13 Vue[L=(€ x )]~
Given a real valued function § on ¢ x Q such that
(P BeL™(0 x Q),
B2 pt,a,x) =0, ae in @ x Q,
(#)s sup f [B*(t,a,x) + VAP (t.a,x)}da < ¢y < + 0.
(6,10, TT x 2 J 10, A[

Remark 1. The main hypothesis is (u),. It ensures that the solution of the problem
vanishes at a = A (see Theorem 3). If p is independent of ¢ (and of x), it can be
written more simply

A
j wayda = + oo;
0

(1), means that the integral of y is infinite on all line segments parallel to the first
besectrix in the plane (¢, a) whose end points are a = 0 and a = 4, and ¢ = 0 and
a=A.
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This amounts to the main modification of the hypotheses of [2], where y was
assumed to belong to L?.

Hypotheses (u); and (B); are technical. The others appear natural.

As to the data (uy, ¥, f), we assume at the outset that

uo € L2(J0, A[; H(Q)),
uy(a, x) = 0, a.e. in J0, 4] x Q,
The “obstacle”  is a regular function. More precisely  satisfies:
Y e LX(0; H(Q)),

W 0 x 3Q
=0, on (0 x 0Q,
W) on

oy oY

WY erox o

or TaacOx D,

0, a.e. in @ x Q,

Y(t,a, x)
) = uyp(a, x), a.e. in 0, 4[ x Q,

=
¥(0,a,x) >

W): y
W(t,0,x) = J B, a, x)(t,a,x)da, ae.in J0, T x Q,
1]

and note that, thanks to (), conditions (), make sense (see next section).
Finally, the right-hand side f satisfies

feL*(0 x Q),
flt,a,x) = 0, ae.in @ x Q.
Remark 2. (i) Conditions (), are as natural as the positivity of the data.
(ii) Conditions (), and (i), are usual when regular solutions are desired.

(iil) Another important modification to [2]is that no hypothesis is made on the
term .

3. Preliminary Results

We begin with a trace resuit that will be essential in what follows. This result is
known in case H(Q) is replaced by L*(Q) (see [1], [9]) or by H () (see [6]).

Lemma 0. 4, is a strictly positive real number and @, =10, T[ x 10, Ag[. Let
ue LXA(0o; HY(Q)) s.t. (0, + 0,)u belongs to L*(O; [ H(2)Y). Then:

i) for all ty in 10, T and all ay in 10, Ao[, u has a trace at t = t, belonging to
L2(]0, 4, x Q)andata = aybelonging to L*(]0, T x Q). The “trace applications”
are continuous in the strong and weak topology;

ii) the following equality (Ostrogradski formula) holds:

1
J {0 + B )u,uddida = - { j u* (T, a,x)dadx
o 2 10,40l x 2

+ J u(t, Ao, x) dt dx} -
10, T{x Q
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1 .

- ~{ j u2(0,a, x)dadx + f u*(t,0,x)dt dx} . )
2 10.40[x 2 10,TIx @

For the proof we can proceed as in [9] or adapt the proofs of [17, [6].

Remark 3. This result will be exploited both as it stands with 4, = A and in the
following form: 4, is such thata < 4, < A and wisa function defined on @ x Q2s.t.

ue L*(0; H(Q),
(0, + dau + pue LA(O: [HYQ)])

which implies that u satisfies the hypotheses of Lemma 0.
The second result concerns the regularity of the linear problems.

Theorem 0. Under the hypotheses of Section 1.2, for all given
(o, b, ) e LA[0, A x Q) x L*(J0, T[ x Q) x L*0;[HY ()],
there exists a unique
ue LXO; HY(Q)) s.t. (0, + 0 )u + pu
belongs to L*(0; HY(Q)]'), which is solution of

Yoe L2(0; HY(Q)),
f (8, + O )u + pu, vy dtda + f Vu- Vvdtdadx = j {fivydida;
o 0

u(0, a, x) = uy(a, x), a.e. in 0, A[ x Q;
u(t,0,x) = b(t, x), a.e. in 0, T[ x Q.

Ox02

Moreover, if
(o, b, /) e L*(10, A[; H' () x L*(J0, T x H'(Q) x L0 x Q),

then the solution u is in L*(0; H*(Q)) and satisfies:

6u+0u+ 4 £, in @ x Q
RSl u— Au=f ae. in O x Q,
Jt  da H

ou

— =0, on O x 0Q,

on

”u”Lz((D;HZ(Q)) < c{llfllzox o ”%”Ll(o, T; H(Q))> Hb”LZ(o, T, HY(Q)>

|V#][m((p x sz)]”}-

These results can be proved by passing to the limit on those contained in [2].
One can also proceed as follows: first, prove the result for u = 0, by using for
instance Galerkin’s method ; then for bounded y by using a fixed-point method, and
finally for any p by a passage to the limit (see also [6] for bounded x and limit
conditions of Dirichlet type).
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§II. Results
1. Existence and Uniqueness

We consider the following problem:
Find
ue L*(0; H¥(Q))  s.t,
ou du
—+ =+ LY0 x Q),
Ey + P uue L*(0 x Q)
u(0,a, x) = uy(a, x), a.e.in 0, 4] x Q,
A

0

u(t,0,x) = j p(t, a, x)u(t,a,x)da, a.e. in 10, 7T x Q,

ou
— =0, on (0 x 00,
on
and is a solution of
u(t,a, x) < yY(t,a,x), a.e in @ x Q,
ou

du .
— + — + pu — Au <, ae @ xQ,
ot da

ou  Ou
0t da

J <_—+—+uu—Au~f)-(u—n//)dtdadx=0.
oxQ

We prove:

O

@

Theorem 1. Under the hypotheses of 1.2, the problem (1), (2) admits a unique solution.

The proof will be given at the end of the paper.

Remark 4. Under the previous hypotheses, problem (1), (2) is equivalent to the

variational inequality:
Find u satisfying (1) and solution of

Yoe L2(0 x Q), Yo<y, ae in@xQ!

0t da
We shall solve problem (1), (3).

d
J (_2_}_%4.'““—Au—f)-(u—u)dtdadXZO.
0%

2. Properties
A few side results can be deduced from the existence result.

Theorem 2. The solution of (1), (2) is positive.

¥ In what follows we shall omit writing a.e., if there is no danger of confusion

(3)
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Let, for i = 1,2, (i, B, up, ', f7) satisfy the hypotheses of Section 1.2; and let
' be the solution of the variational inequality (1), (3). If we assume that

prpt, BB uwl<ud, Yty </t im0 xQ,
then u' < u?, in O x Q.

Thus, we have the following properties, which are intuitive from a biological
viewpoint: the solution is positive, it decreases as a function of g, and increases as
function of the other parameters.

Hypothesis (1), has not yet been exploited.

Theorem 3. Under the hypotheses of 1.2, the solution of problem (1), (2) or (1), (3), is
such that

u(t, 4,x) =0, in JO, T x Q. 4

The proof of this result is immediate, and is independent of the remaining part
of the paper.
Let g be given in L2(¢ x Q) and w solution in L3¢ x Q) of
ow  ow

— e+ —+uw=g, in 0 x Q,
ot oa # g

w(0,a,x) = wo(a,x), in]0,4[ x Q,
w(t,0,x) = wy(t,x), in]0,T[ x @,
where w, and w, are elements of L2(]0, A[ x Q) and L3(]J0, T[ x Q) respectively.

By computing w by the method of characteristics, it is clear that condition (u),
ensures that w(t, 4,x) =0, in J0, T[ x Q. !

This result can thus be applied to u, which satisfies the same hypotheses as w (see
[1D).

Remark 5. A few hypotheses may be weakened. For instance, the data do not have
to be positive, and y minimized by a regular function.

One can also weaken the formulations (1), (2), look for weak solutions and
study the regularity of the latter by dual estimates; this will allow to weaken the
hypotheses of .

The previous results still hold if one considers the interval J0, T x ]0, co[ x Q.

§111. Proofs

In order to obtain the existence in the V.L. (1), (3) a penalization method is used.
More precisely, for ¢ > 0, we seek u, e L2(0: H*(Q)) solution of

! 'We have indeed for g > ¢, xe Q

w(t,a,x) = exp( - J ulr,a —t+ 1, x)dr)[wo(a — 1, x)
0

T T
+j exp(‘f u(S,a—t+ S,x)dé))g(r,a -1+ r,x)dr];

o} 0

analogously for a < ¢, xeQ
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0u+6u+ 4 +1( =, in @ x Q
TR uu u;u—lp)—, in@x Q;

M(O, a, X) = uO(a: x)’ in ]Oa A[ X Q:
A

u(t,0,x) = f B(t, a, x)u(t, a, x) da, in 70, T[ x Q;
0

_6u =0 O x 0Q 5
=0, on @ x 09,
on ®)

and then, letting ¢ — 0, we obtain a solution of (1), (3).
From a technical viewpoint it is more convenient to work on a weaker
formulation of (5): we seek u, e L*(0: H'(Q2)) solution of

Yoe LA(0: H{(Q)),

J (0, + 8 )u + pu,vy>ditda + j Vu x Vvdtdadx
Y]

OxQ

&

1
+—j (u——w)J"vdtdadx:J Sfodtdadx;
ox0 0xQ

(0, a, x) = uy(a, x), in 0, A] x Q,

u(t,0,x) = J“ B(t, a, x)u(t, a, x) da, in 10, T[ x Q.

0

In order to pass from (6) to (5) it is sufficient to apply the regularity results to the
equations.

Remark 6. If we perform a change of variables u = e*il, f = "7, s = ™}, then @l is
solution of (5) or (6) with u replaced by ji = p + 4, f by fand y by . This will be
tacitly done in the sequel, with A sufficiently large (i.e. A > 3¢;, ¢, defined in (8)s).

1. Penalized Equations: The Case j Bounded

In this section y is assumed to be bounded in ¢ x Qi.e. hypotheses (u), is replaced
by

w3 peL>(0 x Q).
The following lemma is basic.

Lemma 1. Under the hypotheses of 1.2 with (u), replaced by (u)% and ¢ > 0, for all
be L2(10, TT x Q), there exists a unique ue L*(0: H'(Q)) such that

(6, + 8 ue L*(0: H(Q)])
which is solution of
Yoe L3(0; HY(Q)),
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OxQ

J {8 + 0 )u, v)di da + j l:(/% + Wuv + Vu - Vv + é(u — ¢)+detdadx

=j fodtdadx,
O x5

u(0, a, x) = uy(a, x), 10, A[ x &;
u(t, 0, x) = b(t, x), 10, TT x Q. N

Proof. The proof follows either by using the results of [ 2] or the results on the linear
problems and the technique of the maximal-monotone operators (see [7] for the
case of the Dirichlet problem).

Remark 7. Since
1 .
(=)t el 0 x Q), if  bel?(0,T;HY(Q)
€

then u satisfies

ue L*(0; H*(Q)),

al’:o, on ¢ x 08,

on
ou 0 1 .
—Lf+—u+()»+,u)u—Au+~(u—lp)+=f, in @ x Q,
ot  Oa 3

(By Theorem 0, because of (u)¥ the term pu is in L*(0 x Q)).
For the proof of Theorem 2 we need the following lemma.

Lemma 2. Under the hypotheses of Lemma 1,
1) if b is positive (in 10, T[ x Q), the same holds (in O x Q) for the solution of
problem (7).
More generally:
ity fori=1,2, let (', ul, ', ) satisfy the hypotheses of Lemma 1, and let u' be
the solution of (7). Then if

bt < b2, U

we have u' < u?.

iil) Lete; ande, 5.1.0 < &y < g, and let u' the solution of (7) fore = ¢, i = 1,2.
Then u < u?.

iv) Let p* and p* satisfy (W3 and let u' the solution of (7) for y = ', i=1,2.
Then, if b > 0, and p* < p?> we have u* < u'.

oSuy YY1/

Proof. These results are a consequence of the weak maximum principle, satisfied by
the degenerate elliptic operators. Since, by hypothesis, f and u, are positive, it is
clear that if b is positive the same holds for u.

The second property (comparison result) is also classic.

The third property is a standard property of the penalized equations (see [10],
L11], [7D).
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The last property is proved similarly; noting (u? — u!)* e L2(0; H{(Q)), we
obtain

J [0, + 0,J(u* — u'),(u? — u')* > dida
+ J (A + u)(@? — u)w? — u)*t dtdadx
0xQ
+ J V(@? - ul) - V@? — u") dtdadx
0x0
+ lj‘ [@* — )" — @ — )" 1? — ut)* dtdadx
€Joxa

+ J (u? — "y (w? — uY)* didadx = 0.
0xQ
The last two terms of this equality are positive (as b > 0 ensures that ' > 0,
i =1,2). The first one is also positive since
(@? — u)0,a,x) = (u? — ul)(,0,x) = 0.
It follows that (4?2 — u!)* =0, ie. v <ulin O x Q.
Problem (6) is solved by a fixed point method.

Lemma 3. Under the hypotheses 1.2, with (u), replaced by ()%, then problem (6)
admits a unigue solution in L*(0; H(Q)).

Proof. For a given w in L*(0; H'(Q)), Sw denotes the solution of (7) with

4
b1, x) = f (¢, a, x)w(t, a, x) da. ®)
0

S is an application of L%(@; H'(Q)) in itself. We are left with proving that S is
strictly contracting.

Let w; and w, be two elements of L*(0; H'(2)). By elementary computations
we obtain:

J [0, + 0,1(Swy — Sw,), Sw; — Sw,>dtda
@
+ J [(A + w)(Swy — Sw,)? + [V(Swy — Sw,)|*]dtdadx
OxQ

+ lj [(Swy — ¥)™ — (Swy — ¥)*] - [Sw; — Sw,]dtdadx =0.  (9)
& OxQ .

The penalization term, i.e. the last term, is positive; the initial data at ¢+ = 0 and
a=1{ are o ‘

A
[Swi — Sw,](0,4,x) =0,  [Sw, — Sw,](1,0,x) = f p(wy — wy)da.
0
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From equality (0) (see Section 1.3) we have:
J [0, + 8,](Swy — Sw,), Sw, — Sw,>dtda
4

1

=_ j [Sw, — Sw,]X(T, a, x)da dx
2 10, A » 2

1
+ ~J [Sw, — Sw,]* (2, 4, x)dtdx
2 j0,T[x 2

1 A 2
- —J [j B(w; — wy) da:| dtdx.
2 )10mixalldo

By substituting this in (9) and using (f); we have in particular
J [(A + w(Sw; — Swy)? + |V(Sw; — Swy)|*] dtdadx
oxQ

1
< —clj (wy — wy)? dtdadx
2 Joxa

and we deduce (see the choice of 1 in Remark 6) that S is strict contraction.

Before passing to the case of u whatsoever we draw from Lemma 2 a few
properties of the solution of (6).

Lemma 4. Under the hypotheses of Lemma 3, the solution u of problem (6) is positive,
it depends in an increasing manner on (B,uq, . f) and on ¢, and it depends in a
decreasing way on p.

Proof. It is sufficient to prove that the results of Lemma 2 still hold for the previous
fixed point. We prove, for instance, the last property.

Let p* and p? with ! < p?, and let §* the application S corresponding to y = g/,
i=1,2. Set

w0 =0, i=1,2,
Wt = Siyhn), nz0, i=1,2.

From the last part of Lemma 2 we have 0 < u*! < u»!. Let now v*2 be the solution
of (7) with p = p?, w = u*?, in (8). From Lemma 2 if follows 0 < u?? < v?? (see
(i1)), 2% < u''? (see (iv)). Finally, let 0 < ©?? < u''2. An easy induction shows that
¥n = 0,0 < »®" < ub", and since the sequence (u""), converges to the solution ' of
(6) with u = ', we obtain the desired result. MW

Remark 8. Note that (6), and thus also (5), has been solved under the hypothesis u
bounded.

2. Penalized Equation: General Case

In order to pass from the case of bounded u to that of an arbitrary u we introduce
the sequence (i), defined by
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U = u A n=Inf(u,n), neN.

As we know how to solve (5) and (6) with p replaced by y*, we perform a passage to
the limit.

Lemma 5. Under the hypotheses of Section 1.2, for all ¢ > 0 there exists a unique u, in
L*0; HY(Q)) s.t. (0, + O.)u, + pu,e L*(0; [HY(Q)Y) and is a solution of (6).

Proof. Let us start by proving the existence.
Let u, be the solution of (6) with u = " (see Lemma 3). Let v = u, in (6);
integrating by parts (i.e., using equality (0)) we have:
1

1
—J uX(T,a,x)ydadx + «J uX(t, A, x)dt dx
2 Joarxe 2 Jiorixe .

1
+ j [(A + w2 + |Vu,|* + —(u, — )T u,] dtdadx
ox0 &

1
=J f-u,,dtdadx+*f uz da dx
OxQ 10,A[ x @

4 2
+ J [j B, a,x)ut, a, x):| dtdx. (10)
o.rixeldo

Since for all n we have u, > 0 in ¢ x Q, we have
j (wu? + 12 + |Vu|?) dt dadx < k, S ay
OxQ

where k is a constant independent of # and &.

From equation (6) we can now deduce ([0, + J,]u, + p'u,), bounded in
L*(0; [H*(2)]"). On the other hand (see Lemma 4), the sequence (u,), is decreasing.
Thus from the sequence (u,), we can extract a sequence (i), such that for k - o«

U, — U, in LY(@; H*(R)) weakly,
oy, —w in L0 x Q) weakly,
0, + 8w + pru — h in LA(O;[HY(R2)]) weakly.

k— o
The monotonicity of u, ensures that
U, — U, in L@ x Q) strongly,
(e — )" >, — )" in LHO x Q) strongly.
Hypothesis (u); ensures that for ¢ in 2(¢ x Q) and k sufficiently large

j \/Euk(pdtdadxzj ﬁukq)dtdadx—»J \/ﬁusrpdtdadx
OxQ OxQ k—oJ OoxQ

and thus (\/p* w,) converges to \/ﬁ u, in (0 x Q) and

W= S
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Similarly, ([6; + 6,Ju + p*]u,) converges in 2'(0; H(Q)]) to (&, + 0,)u, + pu,
and & = (6, + O )u, + uu,.

In order to show that u, is solution of the penalized equation (6) we have yet to
verify the initial conditions. We do this using the results of Section 1.3.

Let A4, be such that 0< 4, < 4. From the above we deduce (setting
0o =10, T[ xJ0, 44[) for k — o0

U, — u, in L2(0y; HY(Q)) weakly,
@, + 0w = (6, + 0 )u,  in LA0y; [HY(Q)]) weakly,
consequently (see Lemma 0)
10, a, x) = u,(0, a, x) in L2(]0, Ao[ x Q) weakly,
(2,0, x) - u(2,0, x) in L*(J0, TT x Q) weakly.

(0, a, x) = ug(a, x), Yn =0, in 0, A[ x Q,

A A
wlt,a,x) = f Pu, da —»J Pu, da in L2(00, T[ x Q) strongly,
o] 0
u, satisfies
10, a, x) = uy(a, x), in J0, A[ x Q,
A

u,(1,0,x) = f fu.da, in]0,T[ x Q
0

and is a solution of (6).

Let us now prove unigueness. Let u; and u, be two solutions of (6) and let
u=u; —uy; Wetake v = u - yjo 4,; " as test function in the equation admitting u,
and u, as solutions. Taking the difference and using (0) we have

1

1
*j w*(T,a,x)dadx + -J u(t, Ay, x)dt dx
2 10,40[x 2 10,T[xQ

+ J [(/1 + W+ |Vul* + éu{(u1 — )t —(uy— ¢)+}X]O’AO[:| dtda dx

1 A 2
=—J l:j ﬂuda] dt dx.
2Jw1ixeldo

Since the penalization term is positive we have in particular:

1
j [iu? + |Vul*]dtdadx < —c, J wdtdadx.
o x 2 2 OxQ
Letting A4, tend to A we obtain the result: u = 0.
Remark 9. The sequence (u,), converges strongly in L2(¢ x ) to the solution u, of

).

! yr denotes the characteristic function of the set F
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We can now solve problem (5).

Lemma 6. Under the hypotheses of Section 1.2, there exists a unique u, in
L2(0; HX(Q)) 5.1. (0u/0t) + (Oug/0a) + uu, belongs to LA(@ x Q) and is solution of
the penalized problem (5).

Proof. We make use of the regularity of the linear problems. If we set

1
g=f—-@w—-¥~,
£

A
b= j Pu, da,
0
where u, is solution of (6), then u, is solution in L*(¢; H*(Q)) of

Yve LX(0; H(Q)),

J <[6,+6a]u+,uu,v>dtda+f Vu-Vvdtdadx=f g - vdtdadx,
0

ox0 oxQ
(0, a, x) = uy(a, x), in 10, A[ x Q,
u(t,0,x) = b(¢, x), in 70, TT x Q.
The regularity result can now be applied. W
Collecting the results of Lemmas 4, 5 and 6 we obtain:

Lemma 7. Under the hypotheses of Lemma 6, the solution of problem (5) depends in an
increasing way on (B, ug,\,f) and ¢ > 0, and in a decreasing way on u.

We are now in a position to prove the results announced at the beginning.

3. Proofs of the Results

Consider the sequence (1,), -, of solutions of the penalized problem (5). We already
know (see (11) and Lemma 7) that

J [pu? + Au? + |Vu,|*]drdadx <k,  k independent of ¢ > 0,
Ox 8

and that the sequence u, is decreasing, as ¢ decreases to 0.
We show that

(1 (u, — |//)+> is bounded in L2(@ x Q). (12)
& >0

The properties of y imply that (4, — ) is an element of L*(¢: H'(Q)). For all 4,
such that 0 < 4, < A we have (setting ¢, = ]0, T[ x 10, A,D)

Lo <[% T u](us ) (e~ w>+>drda T
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+ J' [:/I(ua - '/J)(us - lp)+ + V(us - lp) : V(ua - l/f)+
Op % 2
1
+ —(u, — Y)(u, — x//)*}dtdadx
&
%) 0
_ J <f— W _ —‘fl’ — G+ WY, @, — ¢)+>dtda
o

+ j V- V(u, — )t dtdadx. (13)
0o x 2
The condition dy/on = 0, on @ x 0L ensures that
J Ay (u, — )" dtdadx = —j Vi x V(u, — )" dtdadx;
O x 2

Og X 2

since A, pu and \ are positive, the right member of equality (13) is bounded from
above by

oy oy .
Lﬁwn( _E-$+Aw>("s“‘ﬁ) dt da dx.

The regularity of  and that of u, imply

on <[§ + a% + u}(us — ), — l//)+>dlda

0 K . )
=.[@Oxg|:g+a—ajl(u€‘_¢) (ua_'ﬁ) dt da dx
+ J pl(u, — y)*)* dtdadx. 14
0o x Q2

A further consequence is (see condition (),)
(ua - ¢)+(09 a, X) = [(us - l//)(o, a, X)]+ =0
and (see again (i),)

A +
(us - ¢)+(15 07 x) = [(ue - l//) ' (l: 09 JC)]+ < I:f ﬁ(ue - l//)da:l

< f B, — )™ da.
4]

Therefore, the first term of the left side of (13) is minorized by (integrating by parts
(14) and taking into account (8);)

- lclj [(w, — ¥)* 1 dtdadx.
2 O x 2

Dividing both sides of (13) by ¢ we obtain
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A 1
—J [(u, — ¥)* > dtdadx + ;J V(u, — ) "> dt dadx
Oox 2

£ Oo % 2

1
+—2J [(u, — )" dtdadx
€ @ > Q2

sj [f—%—a—w—Aw]Mdtdadx
Op x 2 a

&
L J [y — 9)* T2 dt dadsx. (15)
28 Ox0

If we make 4, tend to 4 we can replace 0, by ¢ in (15) and deduce (12); thus from
(5) it follows that

ou,  Ou, . i
( Yoy ey pt, — Aus) is bounded in L*(0 x Q),
dt  da £>0

and also (see the regularity of the linear problem)
(us)e>0 bounded in L2(07H2(Q))

The monotonicity of the sequence (u,) ensures that it converges strongly in
L*(0 x Q),1.e. u, > uin L*(© x Q) for ¢ » 0. On the other hand, we can extract a
subsequence (i), such that when & — 0

uy —u  in L2(0; H*(Q)) weakly,

0o 0
[— +—+ u] Uy — Ay — 1 in L*(0 x Q) weakly.
0t  da

It is clear that
ou
— =0, on O x 0Q
on

and (see proof of Lemma 5)

[= a+a+ 4
o T a T
It follows (see also Lemma 5)
u(0, a, x) = uy(a, x), in 10, A[ x Q;

A
u(t,0,x) = j Puda, in 70, T[ x Q.
0

Finally, [as (1/e)(u, — )" is bounded in L2(0 x Q)], we deduce that (u — y)* =0,
ie.

u<y, in0xQ.
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Let now v be an element of L*(¢ x Q), s.t. v < Y in @ x Q. Note that for all v

o @
[ ([k+_+u}u£, — —f>(u—us,)dtdadx
oxa \| 0t da

= lj [0 ~¥)" ~ e — )71 — uy)dtdadx > 0. (16)
& Joxa

The strong convergence of u, in L*(@ x Q) insures that the limit u satisfies
inequality (3): it is sufficient to make ¢ tend to 0 in (16). W

As to uniqueness note that if ' and u? are two solutions of (1), (3), then the
difference u = u' — u? satisfies

ou ou
— + —+ uu — Au {udidadx <0,
oxo |0t da

u(0,a,x) =0, in 10, A[ x £,

A
u(t,0,x) = j puda, in 10, T[ x Q,
0

ou

— =0, on (0 x 0Q.
an

Since

ou Ou ou ou
— 4 — 4+ dtdadx = lim — 4+ — 4+ dtdad
Lm[ar oa ’“‘”}” e AOMLM[at Ga ””]” o

the proof that # = 0 is along the lines of that of Lemma 5. W

The proof of Theorem 1 is thus completed. That of Theorem 2 is immediate
from Lemma 7.
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