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Abstract. We present a simple model for age dependent population diffusion 
when the dynamics is submitted to external constraints. Existence, uniqueness 
and dependence on the parameters of the solution are discussed. 
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Introduction 

In this paper a mathematical model of an age-dependent population with diffusion 
in a bounded set of  ~3 and with an external constraint is treated. 

In this model, the dynamics:of the population is described by a function u(t, a, x) 
such that for every open set f2 of R 3 and every interval [al, a2],  the integral 

fil  da f r~ u(t,a,x)dx 

gives the number of individuals of age between al and a 2 living at the time t in the 
region g2. Thus u(t, a, x) represents the density of  the individuals of age a at the time t 
and at position x. 

We assume that the population develops with a constraint depending on the 
environment as follows: the density remains less than or equal to a given function 
~b(t, a, x) and moreover, when it is strictly less than ~b, it is ruled by the usual partial 
differential equation (see e.g. [3], [4], [5] and references there): 

~u 0u 
- -  + -  - + --f. (,) 
~t c~a 

1) Here #(t, a, x) is the rate of mortality, characteristic of the species, that is 
considered as divergent to + oo as a--* A, where A is the maximal age for the 
species; 

* This work has been done within the framework of the cultural agreement between the Universities of 
Bordeaux and Rome 
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2) f ( t ,  a, x) is a factor, possibly zero, that takes into account possible external 
increase of population. 

We further assume that: 
3) birth is described by the "renewal equation" (see e.g. [3], [4], and [5]) 

u( t ,O ,x )=f~ f i ( t , a , x )u ( t ,a , x )da ,  

where fl represents the rate of fertility; 
4) the initial density of population in known; 
5) the population does not leave the region •, i.e. 

Ou 
- -  = 0, o n  0~2. 
0r 

This problem can be solved in terms of variational inequalities and can be set 
into equations as follows: 

Find a function u such that 

u~<0, 
~u 0u 
Ot + ~a + #u - A u - f  <~ 0 

+ ~ a  + ~u  - A u  - (u  - O)  = O 

Ou 

t t > 0 ,  
0 < a < A ,  x6f2 

- - = 0 ,  t > 0 ,  0 < a < A ,  xe0f2, 
0r 

u(O, a, x) = uo(a, x), 0 < a < A, x ~ ~2, 

u ( t ,O ,x )= f i f i ( t , a , x )u ( t , a , x )da ,  t > 0 ,  xe~2. 

A problem of this kind with rigid control of birth, i.e. u(t, O, u) = b(t, x), has been 
studied by M. G. Garroni and L. Lamberti [2]. 

In this paper, using the results of existence and regularity of [2] and the methods 
of M. Langlais [6], [7] we obtain the existence and the uniqueness of the solution 
under weaker hypotheses than those of [2]. 

We also rediscover all the biologically intuitive properties connecting the 
density of the population to the other parameters of the problem. 

The plan of the paper is the following: In w we introduce notations, hypotheses 
and preliminary results. In w we show existence, uniqueness and investigate the 
properties of solutions. w contains the proofs. 

w Notat ions~ H y p o t h e s e s ,  and Pre l iminary  Resul ts  

1. Notations 

We denote ~by ~ a bounded open subset of ~N, with regular boundary 0~ and 
'generic dement ~ c= (xl,.~.., xN). 2t "is the Laptacian and V is the gradient 
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A = ,=2a v = , . . . , o 2 =  " 

Ha(Q)  and H2((2) are the usual Sobolev spaces of  order  1 and 2 (see [9], for 
instance). By ( , ) we denote  the duali ty between HI(f~)  and its dual. 

Let  t /be  the unit  exterior no rmal ;  the normal  exterior derivative is defined by 

0 u r 
Or/ ~ r/i �9 

i = 1 OXi 

T and A are two strictly positive and finite real numbers ;  tE]0 ,  T [  and 
a 6 ] 0 ,  A[. (9 is the open set ]0, T [  x ]0, A[. 

I f  H i s  a Hi lber t  space and U an open set of  R p, L2(U; H )  is the (Hilbert)  space of  
measurable  functions of  U with values in H s.t. ~v[[v(y)[[~dy < + ~ .  

I f  u is a real function,  we denote  by u + its positive and by u -  its negative parts  (so 
that  u = u + - u - ) .  

0, and 0, indicate part ial  differentiat ion in ~'((P;  [Ha(O)] ' ) .  

2. Hypotheses 

We consider a real-valued funct ion/x  on (9 x O such that :  

(#)a # s C ~  x f I ) ,  i~(t,a,x)>>.O in ( ~ x f 2 ;  

the behaviour  of  # at a = A is given by the divergency condi t ion (see [5]):  

I' 

f 
0 < t < A ,  x e ~ 2 ,  l im p ( z , a - t + r , x )  dr = + oo, 

( /02  o+A ~ o  [~ 
A < t <  T, xe f2 ,  lira p ( t - a + ~ , c ~ , x ) d c ~ =  + oo; 

a ~ A .  0 

we also assume that  

(~)~ v p  ~ [L~(r • 0 ) ]  =. 

Given a real valued funct ion/3  on (9 x (2 such that  

(/3), /3~L+(C ~ • ~),  

(/3)2 flU, a, x) >~ O, a.e. in O x f2, 

(fl)3 sup [ [fl2(t,a,x) + [Vfila(t,a,x)]da <~ cl < + ao. 
(t.x)~]0, T[ • Q d ]0,A[ 

Remark 1. The main  hypothesis  is (#)2- It  ensures that  the solution of  the p rob lem 
vanishes at a = A (see Theo rem 3). I f  # is independent  o f  t (and of  x), it can be 
writ ten more  simply 

f A p(a) = + oo ; da 
0 

(#)2 means  that  the integral of/~ is infinite on all line segments parallel to the first 
besectrix in the plane (t, a) whose end points  are a = 0 and a = A, and t = 0 and 
a ~ A .  
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This amounts to the main modification of the hypotheses of [-2], where # was 
assumed to belong to L p. 

Hypotheses (#)3 and (/~)3 are technical. The others appear natural. 
As to the data (u0, @,f), we assume at the outset that 

Uo ~ L2(]0, A[; H 1 (f2)), 

uo(a,x ) >~ O, a.e. in ]0,A[ • f2, 

The "obstacle" @ is a regular function. More precisely @ satisfies: 

(@)1 

@(t,a,x) >1 O, 

@ s L2((9; H2(a)), 
9@ 
~-q >~ 0, on (9 • Of 2, 

9@ 0@ 
~-  + faa ~ L2((9 x a), 

a.e. in (9 x fl, [ 
(@)2 ~ @(O,a,x) >>, uo(a,x), a.e. in ]0,A[ • ~2, 

[ a . e .  

and note that, thanks to (@)1, conditions (@)2 make sense (see next section). 
Finally, the right-hand side f satisfies 

f~  L2((9 • 0), 

f(t, a, x) >~ O, a.e. in (9 x ~. 

Remark 2. (i) Conditions (@)2 are as natural as the positivity of the data. 
(ii) Conditions (@)1 and (@)2 are usual when regular solutions are desired. 

(iii) Another important modification to [2] is that no hypothesis is made on the 
term #@. 

3. Preliminary Results 

We begin with a trace result that will be essential in what follows. This result is 
known in case Hi(f2) is replaced by LZ(f2) (see [-1], [9]) or by H~(f2) (see [6]). 

Lemma O. Ao is a strictly positive real number and (9o = ]0, T[ x ]0,AoE. Let 
ueLZ((9o;Hl((2)) s.t. (@, + Oa)u belongs to L2((9o; [HI(f2)]'). Then: 

i) for all t o in ]0, T[ and all ao in ]0, Ao[,, u has a trace at t = to belonging to 
L2(]0, Ao[ x f2)andata = ao belonging to L2(]0, T[ x f2). The"traceapplications" 
are continuous in the strong and weak topology; 

ii) the following equality (Ostrogradski formula) holds: 

Ieo((~ + ga)u,u) dtda = ~ { IlO,Ao~• 

+ f lo,r[• u2(t, Ao, x)dtdx} - 
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-- l~{f]o,Ao[• U2(O,a,x)dadx + f]o,T[• U2(t,O,x)dtdx } . (0) 

For the proof  we can proceed as in [9] or adapt the proofs of El], [6]. 

Remark 3. This result will be exploited both as it stands with A0 = A and in the 
following form: Ao is such that a < A0 < A and u is a function defined on (9 x f2 s.t. 

u ~ L2((9 ; H~((2)), 

(8, q- 8a)U "4- #uEL2((9: [H1((2)] ') 

which implies that u satisfies the hypotheses of Lemma 0. 
The second result concerns the regularity of the linear problems. 

Theorem 0. Under the hypotheses of  Section 1.2, for all given 

(uo, b , f )6L2([O,A[ • (2) x L2(]0, T[  • ~2) x L2((9; [H1((2)]'), 

there exists a unique 

uEL2( (9;HI(O))  s.t. (•t -k •a)U q- #U 

belongs to L2((9; Ha(O)]'), which is solution of  

Vv e L2((9; H~(O)), 

u(O,a,x) = uo(a,x), a.e. in ]0, A[ • f2; 

u(t, O, x) = b(t, x), a.e. in ]0, T[  • f2. 

Moreover, i f  

(uo, b, f)~L2(]O,A[;H'(f2))  • L2(]0, T[  • Hi(O))  • L2((9 • f2), 

then the solution u is in L2((9; H2(~2)) and satisfies: 

Ou 3u 
~t + ~a + PU - Au = f,  a.e. in C x f2, 

Ou 
- O ,  on go x Of 2, 

/UI[L~(o;H2(o)) ~< e {llfllL2(~ • ~), [luo[lL2(0, w;L,,(~)), IlbllL2(0, T;~,(~)), 

IV#IEL=(~ • ~)~}. 

These results can be proved by passing to the limit on those contained in [2]. 
One can also proceed as follows: first, prove the result for # = 0, by using for 
instance Galerkin's method; then for bounded # by using a fixed-point method, and 
finally for any # by a passage to the limit (see also [6] for bounded # and limit 
conditions of  Dirichlet type). 
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w R e s u l t s  

1. Existence and Uniqueness 

We consider the following p rob lem:  
Find 

u ~ L2((9 ; H2(~2)) s.t., 

•u gu 
Ot ~- ~a + #u~L2((9 • ~ ) '  

u(0, a, x) = uo(a, x), a.e. in ]0, A[  x 12, 

u(t, 0, x) = a, x)u(t, a, x) da, 

Ou 
- - =  0,  o n  (9 x ~f2, 

and is a solution of  

u(t, a, x)  <<. ~O(t, a, x), a.e. in (9 • f2, 

M. G. Garroni and M. Langlais 

a.e. in ]0, T [  x f2, 

(1) 

Ou Ou 
~t + ~aa + pu - Au <. f ,  a.e. in (9 x f2, 

r • ~ + ~a + pu - A u - �9 (u - ~ ) d t  da dx = 0. (2) 

We prove:  

Theorem 1. Under the hypotheses o f  I.2, the problem (1), (2) admits a unique solution. 

The p r o o f  will be given at the end of  the paper.  

Remark  4. Under  the previous hypotheses,  p rob lem (1), (2) is equivalent  to the 
variat ional  inequality:  

Find u satisfying (1) and solution of  

VvE L2((9 X O), VV ~< r  a.e. in (9 x ~ 1 ,  

r215 ~ + ~a + # u - -  A u -  �9 (v - u ) d t d a d x  >~ O. (3) 

We shall solve p rob lem (1), (3). 

2. Properties 

A few side results can be deduced f rom the existence result. 

Theorem 2. The solution o f  (1), (2) is positive. 

In what follows we shall omit writing a.e., if there is no danger of confusion 
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Let, f o r  i = 1,2, (gi, fli Uio ' tpi,fi) satisfy the hypotheses o f  Section 1.2; and let 
u i be the solution o f  the variational inequality (1), (3). I f  we assume that 

1 U 2, ~1 f l  #2 ~ #1, fil <~ fi2, Uo <~ <~ 02, <~ f 2 ,  in (9 x f2, 

then u 1 <~ U 2, in (9 x O. 

Thus, we have the following properties, which are intuitive from a biological 
viewpoint: the solution is positive, it decreases as a function of #, and increases as 
function of the other parameters. 

Hypothesis (#)2 has not yet been exploited. 

Theorem 3. Under the hypotheses o f  L2, the solution o f  problem (1), (2) or (1), (3), is 
such that 

u(t, A,  x) = O, in ]0, T[  x ~. (4) 

The proof  of  this result is immediate, and is independent of  the remaining part  
of  the paper. 

Let 9 be given in L2((9 x s and w solution in L2((9 • Q) of 

c?w •w 
~ - + ~ a a + # W = g ,  i n ( g x O ,  

w(O, a, x)  = Wo(a, x), in ]0, A[ x O, 

w(t, O, x)  = wl(t,  x), in ]0, T[  • f2, 

where w0 and Wl are elements of  L2(]0, A E • Q) and L2(]0, T[- • O) respectively. 
By computing w by the method of  characteristics, it is clear that condition (#)2 

ensures that w(t, A, x) = 0, in ]0, T[  • O. 1 
This result can thus be applied to u, which satisfies the same hypotheses as w (see 

[13). 
Remark  5. A few hypotheses may be weakened. For instance, the data do not have 
to be positive, and ~ minimized by a regular function. 

One can also weaken the formulations (1), (2), look for weak solutions and 
study the regularity of  the latter by dual estimates; this will allow to weaken the 
hypotheses of  0. 

The previous results still hold if one considers the interval ]0, T[  x ]0, oo [ x O. 

w Proofs 

In order to obtain the existence in the V.I. (1), (3) a penalization method is used. 
More precisely, for e > 0, we seek u~ ~ L2((9: H2(0))  solution of 

1 We have indeed for a > t, x E [2 

( ;  )I w(t,a,x) = exp - #(r,a - t + r,x) dr wo(a - t,x) 
o 

+ exp # (&a- t+O,x )  dO 9(z ,a - t+~ ,x)  dz ; 
0 \ d O  

analogously for a < t, x e 0 
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~u ~3u 1 
~t  +-~a + # u - A u + - ( u ~  - ~ ) +  = f ,  in (9 x O; 

u(O,a,x) = uo(a,x), in ]0,A[ • 0 ;  

u(t,O,x)=f]/3(t,a,x)u(t,a,x)da, 

tu  
- - = 0 ,  one5 x t O ,  
t~ 

in]0 ,  T [ x O ;  

(5) 

and then, letting e -+ 0, we obtain a solution of (1), (3). 
From a technical viewpoint it is more convenient to work on a weaker 

formulation of (5): we seek u= ~ L2((9: Hi(Q)) solution of 

VV 6 L2((_9 : H i (O ) ) ,  

f ( ( t ' + 8 ~ ) u + p u ' v ) d t d a + I  ~• 

if f> + - (u - O) + vd tdadx  = dtdadx;  
g ~)xg] d r  

u(O, a, x) = uo(a, x), in ]0, A[ x O, 

u(t,O,x)=f~(t,a,x)u(t,a,x)da, in ]0, T[ x O. 

In order to pass from (6) to (5) it is sufficient to apply the regularity results to the 
equations. 

Remark 6. If we perform a change of variables u = eatfl,f= ea~ ~p = eat~, then/~ is 
solution of (5) or (6) with # replaced by/~ = / l  + 2 , f b y f a n d  ~ by ~. This will be 
tacitly done in the sequel, with 2 sufficiently large (i.e. 2 > lc2 1, cl defined in (fl)3). 

1. Penalized Equations: The Case # Bounded 

In this section/a is assumed to be bounded in 6 x O i.e. hypotheses (#)z is replaced 
by 

(~), i,~L~176 x n). 
The following lemma is basic. 

Lemma 1. Under the hypotheses of  I.2 with (#)2 replaced by (#)'~ and ~ > O, for all 
b~L2(]0, T[ x O), there exists a unique u~ L2(@: HI(O)) such that 

(t3 t + 6~a)U 6 L2((.O : Hi(Q)] ') 

which is solution o f  

VV E L2((9 ; HI (O) ) ,  
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f f [  ' ] ( ( O , + ~ a ) u , v ) d t d a +  ( 2 + # ) u v + V u ' V v + - ( u - ~ p ) + v  d t d a d x  
0 Ox~ 5 

= f f v d t d a d x ;  

u(O,a,x) = uo(a,x), ]0, A[ • (2; 

u(t, O, x) = b(t, x), ]0, T[ • (2. (7) 

Proof  The proof follows either by using the results of [2] or the results on the linear 
problems and the technique of the maximal-monotone operators (see [7] for the 
case of the Dirichlet problem). 

Remark  7. Since 

then u satisfies 

1 
- ( u  - $)+ EL2((9 • (2), if b~L2(O, T;HI((2)) 

u ~ L2((9; H2((2)), 

Ou 
- - =  0, on  (9 x •O, 

Ou 3u 1 
- - +  + ( 2 + p ) u - A u + - ( u - ~ p ) +  = f ,  in ( 9 •  
Ot 7a 5 

(By Theorem 0, because of (#)* the term #u is in L2((9 • (2)). 
For the proof of Theorem 2 we need the following lemma. 

Lemma 2. Under the hypotheses o f  Lemma 1, 
i) i f  b is positive (in ]0, T[ x ~), the same holds (in (9 x (2)for the solution o f  

problem (7). 
More 9enerally: 
ii) for  i = 1,2, let (b i, u~, ~i , f i )  satisfy the hypotheses o f  Lemma 1, and let u i be 

the solution o f  (7). Then i f  

1 U20, ~11 f l  ~ 2 b 1 ~< b 2, U0 ~< ~< ~2, ~ f  , 

we have u 1 <~ u 2. 
iii) Let 51 and e2 s.t. 0 < 51 < 52 and let u i the solution o f  (7) for  5 = 5i, i = 1, 2. 

Then u 1 <~ u 2. 
iv) Let #1 and p2 satisfy (#)* and let u i the solution o f  (7) for  # = #i, i = 1, 2. 

Then, i f  b >1 O, and #1 < #2 we have u 2 <~ u 1. 

Proof  These results are a consequence of the weak maximum principle, satisfied by 
the degenerate elliptic operators. Since, by hypothesis, f and Uo are positive, it is 
clear that if b is positive the same holds for u. 

The second property (comparison result) is also classic. 
The third property is a standard property of the penalized equations (see [10], 

[11], [7]). 
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The last p roper ty  is p roved  similarly; noting (u 2 -  u~)+e  L2((9; Hi(Q)) ,  we 
obtain  

f ( [ G  

+ 

+ Oa](u 2 - ul), (u 2 -- ut)  + )  dtda 

f (,l + #1)(uS - u b ( u  2 - u ' )  + dt da dx 
(o x f2 

+ [ V(u  s - u ~) . V (u  2 - u~)+  dt da dx 
J r 

+ 1 [ [(u s - ~ )+  - (u ~ - O ) * ] ( u  s - u b  § d t d a d x  

+ [ (#2 _ #t)u2(u2 _ ul)+ dtdadx = O. 
d (~xs 

The last two terms of  this equali ty are positive (as b ~> 0 ensures that  u i ) 0, 
i = 1, 2). The  first one is also posit ive since 

(u 2 - ul)(0, a, x) = (u s - ut)(t, 0, x) = 0. 

It  follows that  (u a - ut) + = 0, i.e. u s ~< u I in (9 x f2. 

P rob lem (6) is solved by a fixed point  method.  

Lemma  3. Under the hypotheses 1.2, with (#)s replaced by (#)3, then problem (6) 
admits a unique solution in L2((9; Ha(f2)). 

Proof For  a given w in LS((9; Ht(f2)),  Sw denotes the solution of  (7) with 

b ( t , x ) = f ] f l ( t , a , x ) w ( t , a , x ) d a .  (8) 

S is an appl icat ion of  Ls((9; Hi(f2))  in itself. We are left with proving that  S is 
strictly contract ing.  

Let w 1 and w a be two elements of  L2((9; Ht(f2)).  By elementary computa t ions  
we obtain:  

~ ( [ ~ t  At- Oa](SWl  - S w 2 ) , S w 1  - S w 2 >  dt da 

+ [ [-(• -~ # ) ( S w  I - -  S w 2 )  2 -~ I V ( g w 1  - Swz)lE] dt dadx 
J Ox~ 1; 

At- -- [ ( S w  I - -  I//) + - -  ( S w  2 - I~) + ]  �9 [ S w  1 - Sw2]dtdadx = 0. (9)  

The penal izat ion term, i,e. the last term, is posit ive;  the initial da ta  at t = 0 and 
a = 0 are 

[Sw I - Sw2](O,a,x) -- O, [Sw I - Sws](t,O,x) = ~A[j(W t -- ~2)da. 
J o  
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F r o m  equali ty (0) (see Section 1.3) we have:  

f ( [O t .A~ ~a'](Sw I __ Sw2)  ' S w  I _ S w 2 )  dt da 
0 

_ 1 ~ [SwI - Sw2]2(T ,a ,x )dadx  
2 .]lo,a[• 

~- ~ [Sw I -- Sw2] 2 (t, A, x) dt dx 
]O,T[ x 

2If ,0,T x  [fA j2 o~(Wl - w2)da dtdx. 

By substi tut ing this in (9) and using (fl)3 we have in part icular  

f [(2 -}- /*)(Sw 1 -- Sw2) 2 At- [V(Sw 1 - Sw2)[ 2] dt da dx 
~)• ~ 

lC  1 I ( W 1 -  w2)2dtdadx 
2 d~•  

and we deduce (see the choice of  2 in R e m a r k  6) tha t  S is strict contract ion.  

Before passing to the case o f /*  whatsoever  we draw f rom L e m m a  2 a few 
propert ies  of  the solution of  (6). 

L e m m a  4. Under the hypotheses o f  Lemma 3, the solution u o f  problem (6) is positive, 
it depends in an increasing manner on (8, Uo, 6 , f )  and on ~, and it depends in a 
decreasing way on/*. 

Proof. I t  is sufficient to prove  tha t  the results of  L e m m a  2 still hold for  the previous 
fixed point.  We prove,  for  instance, the last proper ty .  

Let/ .1 and/*2 with/*1 ~< #2, and let S i the appl icat ion Sco r re spond ing  to # =/*i, 
i = 1,2. Set 

u i'~ = 0 ,  i =  1,2, 

u i'"+1 = Si(ui'n), n >~ 0, i = 1,2. 

F r o m  the last pa r t  o f L e m m a  2 we have 0 ~< u 2'1 ~< u ~'1. Let n o w  i) 2 ' 2  be the solution 
o f (7 )  with/* = / ,2 ,  w = u 1'1, in (8). F r o m  L e m m a  2 if follows 0 4 u 2'2 ~ v 2'2 (see 
(ii)), v 2'2 4 u 1'2 (see (iv)). Finally, let 0 ~ u 2'2 4 u 1'2. An easy induct ion shows that  
Vn ~> 0, 0 ~< u 2'n ~< u ~'", and since the sequence (ui'"), converges to the solution u ~ of  
(6) with # = #~, we obtain  the desired result. �9 

Remark 8. Note  that  (6), and thus also (5), has been solved under  the hypothes is  # 
bounded.  

2. Penalized Equation: General Case 

In order  to pass f rom the case of  bounded  p to that  o f  an arbi t rary  p we introduce 
the sequence (P.)n~ defined by 
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#" = # /x n = Inf(#, n), n e ~d. 

As we know how to solve (5) and (6) with # replaced by #", we perform a passage to 
the limit. 

Lemma 5. Under the hypotheses o f  Section L2,for all e > 0 there exists a unique ue in 
Lz((9; Hi(O)) s.t. (Or + aa)u, + #u~eL2((9; [Ht(Q)]  ') and is a solution of  (6). 

Proof. Let us start by proving the existence. 
Let u, be the solution of (6) with # = #" (see Lemma 3). Let v = u, in (6); 

integrating by parts (i.e., using equality (0)) we have: 

1 ~ flOAtxaU2.(T,a,x)dadx +-~ flo,rt• dtdx 

f 1 + [(,~ + #")u. ~ + IVu.I 2 + -(u. - ~l,)+u,]dtdadx 
r 

f o f if = �9 undtdadx + u~cladx 
e x  2 ]0,A[x.Q 

+ t ,a ,x)u , ( t ,a ,x  dtdx. (10) 
,,/ ]O,T[ x O L,)O 

Since for all n we have u, >/0 in (9 x f2, we have 

I , nu2 U 2 (l~ , + , + [Vu,12)dtdadx <~ k, (11) 
(~• 

where k is a constant independent of n and e. 
From equation (6) we can now deduce ([it + t ,]u,  + #"u,), bounded in 

L2((9; [Hi(f2)]'). On the other hand (see Lemma 4), the sequence (u,), is decreasing. 
Thus from the sequence (u,), we can extract a sequence (Uk)k such that for k ~ oo 

U k "--4' U e 

J # k u  k ~ W 

(~t -~- ~a)Uk "~- #kUk --+ h 
k-+ oo 

The monotonicity of u. ensures that 

U k -+ R e 

(Uk - -  '1') + --'  (Ue - -  ~ )  + 

in L2((9; Hi(f2)) weakly, 

in L2((9 • Q) weakly, 

in L2((9; l-Hi(O)] ') weakly. 

i n  L2( (9  • ~-2) strongly, 

i n  L2( (9  x ~'2) strongly. 

Hypothesis (#)1 ensures that for r in @((9 x f2) and k sufficiently large 

f x /TkUkq~dtdadx:  f xf#Uk~~ I o• k-oo. ~• 

and thus (x/-~ Uk) converges to x f #  u~ in ~'((9 x f2) and 

W = N ~ l l e .  
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Similarly, (lOt + 3,]Uk + pk]uk) converges in N'((9;Ha((2)] ') to (0~ + G)u~ + #u~ 
and h = (0t + 0~)u~ + pu~. 

In order to show that u~ is solution of the penalized equation (6) we have yet to 
verify the initial conditions. We do this using the results of Section 1.3. 

Let Ao be such that 0 ~< Ao < A .  From the above we deduce (setting 
(90 = ]0, T[  x ]0, AoD for k ~  oo 

uk ---~ u~ 

(% + G)uk ~ (~, + G)u~ 

consequently (see Lemma 0) 

Uk(O, a, x) ~ u~(O, a, x) 

uk(t, O, X) ~ u~(t, O, X) 
As 

Uk(O, a, x) = uo(a, x), Vn >~ O, 

Uk(t, a, x) = fluk da ~ flu. da 
0 0 

u~ satisfies 

u~(O, a, x) = uo(a, x), 

u~(t,O,x)=f~flu~da, 

and is a solution of (6). 

in L2((9o; Hi(f2)) weakly, 

in L2((9o ; [HI(f2)] ') weakly, 

in L2(]0, Ao[ x ~2) weakly, 

in L2(]0, T[  x (~) weakly. 

in ]0 ,  A[ x Q, 

in L2(]0,  T [  X Q) strongly, 

in ]0 ,A[  x ~2, 

in ]0, T[  x s 

Let us now prove uniqueness. Let u 1 and u 2 be two solutions of (6) and let 
u = ul - u2. We take v - u �9 )00,aor 1 as test function in the equation admitting Ua 
and u2 as solutions. Taking the difference and using (0) we have 

I f  u2 (T ,a , x )dadx+~f  u2(t, Ao, x)dtdx 
]0,Ao[ • f2 ]0,T[ x f2 

L [  ' + ] + ('~-k#)u2+lVul2+-u{(ul--O)+-(uz-~ Ix) }ZlO,Ao[ dtdadx 
oX.Q 8 

1 I [ I " ;  , a l  ~ = - u dtdx. 
2 j ] o , r [  x ~ L,JO J 

Since the penalization term is positive we have in particular: 

f( ~cll f u2 ~o• [ 2u2 + [Vu[2]dtdadx <. 

Letting Ao tend to A we obtain the result: u = 0. 

Remark 9. The sequence (u,), converges strongly in L2((9 x f2) to the solution u, of 
(6). 

Zv denotes the characteristic function of the set F 
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We can now solve problem (5). 

Lemma 6. Under the hypotheses of Section L2, there exists a unique u~ in 
L2((9;HZ(f2)) s.t. (OuJOt) + (OuJaa) + #u, belongs to L2((9 x f2) and is solution of 
the penalized problem (5). 

Proof. We make use of the regularity of the linear problems. If we set 

1 
g = f - - ( u ~  -- ~)+, 

where u~ is solution of (6), then u~ is solution in L2((9; Hl(f~)) of 

Vv s L2((9;/-/1 (f~)), 

f ([~''~-Oa]U-]-#u'v) ~xg"d Vu'VI)dtdadx:;(~xf2 g.1)dtdadx, 
u(O, a, x) = uo(a, x), in ]0, A[ x f2, 

u(t, O, x) = b(t, x), in ]0, T[ x f2. 

The regularity result can now be applied. �9 

Collecting the results of Lemmas 4, 5 and 6 we obtain: 

Lemma 7. Under the hypotheses of Lemma 6, the solution of problem (5) depends in an 
increasing way on (~, uo, ~ , f )  and e > O, and in a decreasing way on #. 

We are now in a position to prove the results announced at the beginning. 

3. Proofs of the Results 

Consider the sequence (u~)~ > o of solutions of the penalized problem (5). We already 
know (see (11) and Lemma 7) that 

f [#U 2 + ~.U 2 -'~ ]Vue[ 2] ~ k, independent e > 0, dt da dx k of  
#xD 

and that the sequence u~ is decreasing, as e decreases to 0. 
We show that 

( ! ( u ~ -  0)+)~>o is bounded in L2((9 • Q). (12) 

The properties of @ imply that (u~ - @) § is an element of Lz((9:HI(f2)). For all Ao 
such that 0 < Ao < A we have (setting (90 = ]0, T[ x ]0, AoD 
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+ f  I ;~(u~-O)(u~-~)+ q - v ( u ~ - ~ ) ' v ( u ~ - ~ ) +  d~o x f2 

+ - (u~ - O)(u~ - O) + dt da dx 
8 

_ - f  ( f _  80 Off ( 2 + # ) O , ( u ~ -  O ) + ) d t d a  
~o ~t c3a 

+ l" V 0 �9 V(u~ - 0) + d tdadx .  (13) 
d ~oXf2 

The condition 00/gq ~> 0, on C x 9f2 ensures that 

f d O " ( u ~ - O ) + d t d a d x > ~ -  I V O •  
OoX.q ~)o x f2 

since 2, # and 0 are positive, the right member of equality (13) is bounded from 
above by 

. . . .  + A 0 (u~ - 0)  + d tdadx .  
~o • a 8t 8a 

The regularity of 0 and that of u~ imply 

~o ~S + ~ + # (u~ - O)(u~ - 0 )  + d t d a  

= + (u~ - 0)  § �9 (u~ - 0) + d t d a d x  
(90 x f~ 

+ ~ #[(u~ -- O)+]2dtdadx .  (14) 
d 0oXt2 

A further consequence is (see condition (0)2) 

(u~ - 0 )  § (0 ,  a ,  x )  = [(u~ - 0 ) ( 0 ,  a ,  x ) ]  + = 0 

and (see again (0)2) 

1;: 1+ (u~ - 0)+(t, 0,x) = [(u, - 0)" G0 ,x ) ]  § <~ ~(u, - O)da 

Therefore, the first term of the left side of (13) is minorized by (integrating by parts 
(14) and taking into account (fl)3) 1; 

- ~c1 [(u~ - 0)+3 2 d tdadx .  
12x~ 

Divid ing both sides of  (13) by e we obtain 
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f I f ]V(u~ tp)+12dtdadx 2e Oo• $)+]2dtdadx+e ~o• 

1 $ - q,)+]2dtdadx 
+ ~-  0o• 

+ •  - -  ~-e 1 [-(u3 @)+]2dtdadx. (15) 

I f  we make A o tend to A we can replace (90 by (9 in (15) and deduce (12); thus f rom 
(5) it follows that  

8t + ~a + I~u~ - Au~ is bounded in L2((9 x f2), 
/e> 0 

and also (see the regularity of  the linear problem) 

(u~)~ > 0 bounded in L2((9; H2(~2)). 

The monotonic i ty  of  the sequence (us) ensures that  it converges strongly in 
L2((9 • ~),  i.e. u~ ~ u in L2((9 x (2) for ~ ~ 0. On the other hand, we can extract  a 
subsequence (u~,)~, such that  when ~' --, 0 

u~, ~ u in L2((9 ; H2(~ ) )  weakly, 

+ ~a + I1 u~, - Au,, ~ l in L2((9 x ~)  weakly. 

It is clear that  

0u 
- -  = 0 ,  o n  (9 x 0(2 
8q 

and (see p roof  of  Lemma 5) 

8 8 
l = I ~  + ~a + l~lu - Au. 

It follows (see also Lemma 5) 

u(O,a,x) = uo(a,x), in ] 0 ,A[  • ~ ;  

u(t,O,x)=f  uaa, in ]0, T[  x ft. 

Finally, [as (1/a)(u, - 6) + is bounded  in L 2((9 x Q)], we deduce that  (u - 6) + = 0, 
i.e. 

u~<6 ,  in (9 x ~. 
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Let now v be an element o f  L2((9 • (2), s.t. v ~< ~ in (9 • ~2. Note  that  for all v 

3 
+ - f ) ( v  u~,)dtdadx 

=2 ~• [ (v-O)+-(u~' -~ ' ) - -] (v-u~ ' )d tda&>~ (16) 

The strong convergence o f  u~, in L;((9 x 17) insures that  the limit u satisfies 
inequality (3): it is sufficient to make d tend to 0 in (16). �9 

As to uniqueness note that  if u 1 and u 2 are two solutions of  (1), (3), then the 
difference u = u 1 - u 2 satisfies 

r215 ~+~aa+ PU- Au udtdadx<. O, 

u(0, a, x) = 0, in ]0, A[  x f2, 

0u 
- - = 0 ,  on (9 x ~?fL 
0~ 

Since 

~• & +~a +pu udtdadX=Ao~A eo• +~a+#U udtdadx 

the p roo f  that  u = 0 is along the lines o f  that  of  Lemma 5. �9 

The p r o o f  o f  Theorem 1 is thus completed. That  of  Theorem 2 is immediate 
f rom Lemma 7. 
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