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S O M M A R I O :  Nel  presente lavoro si esamina con un parti- 
colare metodo di perturbazione la stabilita dei sislemi vibranti 
a due gradi di liberth eccitati parametricamente e con resistenza 
viscosa. 

Si ottengono espressioni analitiche in forma esplicita in seconda 
approssimazione dei confini fra stabilitil ed instabilitY. Si d~ 
anche un criterio di massima per giudicare entro quali limiti 
l'approssimazione risulta accettabi/e. 

Si pone in evidenza come anche helle vibrazioni eccitate pa- 
rametricamente /o smorzamento possa avere un effetto instabili z- 
zante analogo a quel/o gih noto nei sistemi elastici non conser- 
vativi. 

S U M M A R Y :  The stability of vibrating O,stems having two 
degrees of freedom subjected to parametric excitation and with 
viscous damping are studied with a special perturbation method. 

Analytical expressions in explicit form in second approxi- 
mation are obtained for the transition from stabili O, to insta- 
bility../1 general criterion for judging the limits within which 
the approximation is acceptable is indicated. 

I t  is shown that even in parametrically excited vibrating 
systems damping can have a destabilising effect similar to the 
destabilising effect known to exist in nonconservative elastic 
s_ystems. 

1. Introduction. 

In a previous paper [1] the author considered the regions 
of  instability of  vibrating systems with one degree of  
freedom subjected to parametric excitation and viscous 
damping by applying a special method of perturbation 
that gives excellent appro:dmatlon in cases relevant to 
technical applications and in such a way that the regions 
of  instability are expressed simply, in terms of parameters 
suitable for the applications. 

However, in technical problems it is not always ad- 
missible to formulate a phenomenon with only one degree 
of freedom, even if in the phenomenon in question dif- 
ferent degrees of  freedom in different frequency intervals 
are considered. Further, as is known [21, [31, [41, when 
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more than one degree of freedom is considered new types 
of  instability appear and the effects of  damping may be 
different from the effects expected, as will be seen in 
this paper. For, in the case of  one degree of freedom, 
stable and unstable solutions are separated by periodic 
solutions whereas with multiple degrees of  freedom the 
transition from stable to unstable solutions may occur 
even in correspondence with nonperiodic solutions. 
Furthermore, the connexions, including those due to 
damping, between the various degrees of  freedom, in- 
troduce new possibilities of instability. 

Many studies in which parametric excitation plays a 
part have appeared over the past few years, including 
some on parametric excitation in general (see [3] Chap. IV, 
[4] [5] and annexed references). These last studies mainly 
establish general methods for seeking the regions of  
instability and stability, and these methods make it pos- 
sible to identify some of the properties of  these regions 
and to determine them in first approximation. 

Tondl [6] deals with interesting applications to the 
problems of  the stability of  rotating shafts and he goes 
on to develop, with reference to studies of  Russian workers, 
a special method [6] App. III,  suitable for determining 
fields of stability in general. But this method too is vir- 
tually applicable only in first approximation and not even 
in this case are explicit formulas supplied for the transition 
from stability to instability, nor is the approximation of 
the results .obtained discussed. 

This paper deals with a peculiar method of perturbation, 
which differs from those proposed by other workers and 
which permits the transition to successive approximations 
and enables one to obtain explicit formulas for the tran- 
sition from stability to instability. To apply the method 
to concrete cases we only examine the cases of  systems 
with two degrees of  freedom and with constant coefficients 
of  inertia and viscous damping and coefficients of  elas- 
ticity varying according to a harmon2c law with equal 
frequency and phase (on the other hand the method 
expounded can be extended also to systems with several 
degrees of  freedom). It is thus possible to appraise the 
effects of  the successive approximations on the solutions 
in first approximation and, as the formulas are in explicit 
form, some highly interesting peculiarities of  behavior 
due to damping can be highlighted. In fact, the method 
shows that in parametric instability too, in the so-called 
mixed cases, damping can have a destabilising effect 
similar to that found by Ziegler [7], Bolotin [8], and 
Hermann [9], for nonconservative elastic systems with 
two degrees of freedom. 

DECEMBER 1~7 243 



2. List  of  symbols .  

if/l ,  m2 

k l l ,  k12 = k z t ,  k~z = 

A k t l ,  Ak.l~ = Akz~ ,  Ak2~ : 

r l l ,  r12 = r a l ,  r22 = 

/ = 

/~'1~ 1/'2 = 

0)I, (02 = 

A K , , ,  AK,~ = A K e h  AKo.~= 

Rll, Rt~ = Rul, R..~ = 

R,.  = ( R , ,  + R ~ ) / 2  = 

coefficients of inertia of the system 
(> o) 
free coordinates starting from the 
resting position 
mean coefficients of the elastic 
rigidity of the system 
amplitude of the variations of the 
coefficients of rigidity 
coefficients of viscous damping 
angular frequency of the variation 
in rigidity 
time 
principal coordinates (see Sec. 3) 
principal angular frequencies (see 
Sec. 3) 
amplitude of the rigidity variations 
in the principal coordinates 
coefficients of viscous damping in 
the principal coordinates 
mean viscous damping coefficient 
(of the direct coefficients in the 
principal coordinates). 

Non dimensional magnitudes: 

~0 = 1/2 cot 

G ~ (02/(O1 

yH = A K ~ / A K H  = 1 O) 

y~o. = A K I ~ / A K ,  t 

ym = AK~o_/AK~ 

h = R , / (2m~m)  

o,i = R~/R , , ,  

01~. = R ,~ /R , .  

Or ) = R~2/Rm.  

As obvious (On + ~.~)/2 = 1. 

3. Transformat ion  into pr inc ipa l  coordinates.  

Let us consider a system with two degrees of freedom, 
with constant inertia and viscous damping parameters 
and with harmonically variable elastic parameters with 
equal frequency and phase (3). This set of conditions is 
not only of great interest in the case of linear vibrations 
with variable elastic parameters but also occurs normally 
in the. study of the stability, according to the small per- 
turbation method, of periodic solutions of systems with 
two degrees of freedom with cubical nonlinear elasticity 
viscous damping, and harmonic excitation. 

The system of differential equations representing the 
vibrations of the system under consideration (Fig. 1) may 
ahvays be expressed easily in the form: 

mixl + ( k n -  A k l ~ c o s , o t ) x l  + ( k l ~ f -  Ak ,~cosoot)x~ + 

+ r n x l  + r ,~x~ = 0 (3.1) 

,n~ + ( k ~ -  ,~k~cos ~ot)x, + (ko.o.__ Ak~cos ~t)xz + 
+ r~tx~ + r~ux~ = 0 

(1) In the present work 711 has been defined equal to 1. In 
other cases however it may be useful to define the y's in other 
ways: for this reason we have left the symbo k yl1 (> 0). 

(e) Note that the amplitude may be positive or negative 
(the variations in the parameters may be either in phase or in 
counterphase). 

fi .  %- k.-  ~ . . o . o t  ~ " 5 " 5, 

5 "  % " 52"~% c°*~e $ " ~ " % 

F i g .  1.  S c h e m e  o f  t h e  v i b r a t i n g  s y s t e m .  

with 

r , l  >I 0 ,  r22 >>- 0 ,  r l l ro . z - -  rt22 >I 0 .  

The meaning of the symbols is indicated in Sec. 2. 

As in applying the method of perturbation the viscous 
terms and the variations in the elastic terms are regarded 
as small it is useful to carry out a transformation of coor- 
dinates by means of which the two equations are uncou- 
pled in the other terms. Let us call these the principal  

coordinates of the system and denote them as w,, w.o and 
call the corresponding vibrations principal  vibratio#s. Of 
all the possible transformations let us choose as the sim- 
plest and most significant the one for which the coupling 
coefficients, both elastic and viscous, remain equal. 

Let us consider the differential system obtained from 
(3.1) omitting the terms that are to be regarded as small 
according to what has just been said: 

re, x1  + k , , x l  + k ,ox~  : 0 
.. 

#I.~Xo "~- k,2-~1 " ~  k22X2 = 0 .  
(3.2) 

As is well known, it has a general solution with the 
f o r m  : 

x, = Xl('~in(coxt + ¢,) + .4: sln(c~2t + g~) 

~..(1).  . xT(2) - - 
x2 = -'£2 sln(oJ# + 9,) + A2 sln(o~e/ + q:2), 

(3.3) 

where: 

c,J1 \ 1 

2 / 2 \ m ,  + ~ )  + \ m ,  too./ mlm~ 
~oo, (3.4) 

a..r(' ) o 
~ .  k,~ - -  ,;I, ~ 

- -  = f/1 = (3.5) 

with 

All -- /Pll (o2 

A.12~ k,2 
(3.6) 

m l -  ala2m2 = 0 .  (3.7) 

X, )  Apl2) , , , g,,  ¢2 are constants dependent on the initial 

conditions. 

Let us first assume that o~12 and ~o.o~ are different. Let 
ool denote the smaller of the two (that is a = w z / w t  > 1). 
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Let the reference system be chosen in such a way that 
m and n~ are both positive. As the following always 
holds ku- -m~o, , s  > 0, kn--mtwo.~ < 0, it follows that 
&~ = ks, is always negative. 

Supposing that: 

= + 

x2 = t V J , - ,,s V - J  ,,,s 

(3.8) 

we have: 

 tVJ+ s/Vg 
lPi = 

~t, ~- {12 

1l/ 2 
f i t  ~ (12 

(3.9) 

These wl and w= are principal coordinates and with 
equal coupling coefficients. Indeed by multiplying the 
second (3.1) equation by at and adding it to the first and 
multiplying the second (3.1) by as and subtracting it to 
the first, bearing in mind the preceding positions, with 
some transitions we reach the differential system: 

re,w, + m, w t S w , -  aKucoso~t • w , -  AKt~cos,ot • w.2 + 

+ RtltV* -~- Rtgw2 : 0 

(3.10) 

IlI*W2 + I l I ,  coo.21V2 - AKstcoscot • w , -  A K e o . c o s o ~ t  • ms  -[- 

-~- R2tl ; t  + R221;2 = 0 

with 

fls 
elK** 

t~ t ~- CL 2 
- -  ( dkn  + 2dktgat + Aks~.a~) 

AKls = g l K 2 t -  "Vata2 
f.ti -q- (/2 
- -  ( a / e l l -  Akt..a2 + d k t o . a , - -  

- -  Ak.,2a, ao) (3.11) 

o 

- -  ( Akn  - -  2/Akt2a2 + Aksga~) zJ K 2  2 ~ * 
fl I -~ Cl 2 

R*I = a----!---~ (r** + 2&o.a, + rs2a]) 
cz, --~ u 2 

Rt2 : R21 : ~//6t1~-~ (r t l  - -  r l s a S  + & s a t - -  r . , = m a s )  (3.12) 
GI -~ (/2 

Rss - -  a-------!---1 (rn -- 2r,sas + rs.,.a~_). 

It is R**/> 0, Rg~ 1> 0, R n R s s - - R t ~  ~/> 0. 

Let us now go over to the nondimensional form. By 
introducing the aondimensional symbols listed in Sec. 2 
into (3.10) and denoting with ' the derivatives with re- 
spect to 9, by simple substitutions and transformations 
we obtain: 

(-O/2)Swt" + wl(1 - -  ~.yncos2~o)- ws,o, t2cos29 + 

+ wl'h.QO** + ws'hDOts = 0 

(3.13) 

(Q/2)sws" - -  w~,~v,gcos2~ + ws(~s - -  ,~vsscos2~) + 

+ w,'bS20,o~ + ws'bD~ss = O. 

4. Premises  on stability. 

We would recall some results taken from the general 
literature on linear systems with periodic coefficients. 

System (3.13) admits of particular solutions of the form 

. , t  = = ( 4 . 1 )  

with constant 7,  more generally complex (determined 

up to 2ni, n any integer, i ---- V / -  1), and with f ( ~ )  and 
~(~) periodic with period ~r. With a simpler expression 
of the exponent we also obtain: 

wx = e~¢(~),  w2 = e~g(~) ,  (4.2) 

with constant v more generally complex (determined up 
to hi) and with f (9 )  and g(9) periodic with period 2zt. 

In the case in point, as this is a system with two sec- 
ond order differential equations, we obtain, as known, 
four exponents v and hence if v are all distinct four pairs 
of functions f(v) and g(9), or four linearly independent 
solutions out of which the general solution is constructed. 
If the v values all possess a real part less than zero the 
general solution vanishes as 9 increases and in that case 
there is asymptotic stability; if some of the v values have 
a real part zero whilst the others remain less than zero 
the general solution is bounded (it does riot vanish as 
increases) and there is stability; if finally some of the ,, 
values have a real part greater than zero general solution 
is not bounded as 9 increases and there is instability. These 
conclusions as to stability or instability are valid even 
in the case of multiple values of exponents v except in 
the case of a multiple value zero, in which case there is in 
general instability likewise. 

In the transitions from stability to instability one of the 
v values thus has a real part zero, but the reverse is not 
always true, for there may be another v with a real part 
greater than zero (a); further, in the absence of viscous 
damping the v values have a real part zero throughout 
the region of stability and the transition from stability 
to instability occurs at values of v whose imaginary parts 
are also equal, that is there are two coincident values 
o f  ,, [21. 

Hence, to determine the conditions in which the transi- 
tion from stability to instability occurs with damping, 
we must first of all determine when the real part of a v 
is equal to zero and then check that all the other v values 
do not possess a real part greater than zero; in the absence 
of damping we have to seek the point when two v values 
are coincident with a real part zero and then check that 
the other two v values have not a real part greater than 
zero. 

The conditions in which v has a real part equal to zero 
are determined here by a perturbation method. 

5. Descr ipt ion of  the perturbation method.  

The method of perturbation consists in obtaining so- 
lutions of (3.13) in the form of a series development of 
the parameter x, developing also D/2 in series of n, start- 

(a) Contrary to what happens in cases of systems with one 
degree of freedom where one of the two characteristic exponents 
has a real part zero and the other is certainly not positive. 
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ing with the generating solutions for ~ = 0, ~[2  = an, 
h = 0. I t  is assumed that ~. is always sufficiently small 
for all the developments to be convergent. It is known [3] 
that the instabilities are in the neighborhood of  /2/2 
equal to l / m ,  a i m  (called direct cases) or (a + 1 ) / 2 m  

(called mixed cases) with m being any positive integer; 
a0 correspondingly assumes different values and there are 
different developments. We shall suppose that in the cases 
under consideration the a0 values will all be distinct, 
which first of  all require s that a # 1, or as already as- 
sumed ~o2 # ~o~. The instabilities for the various values 
of  m are said to be of order m. Further, the term b on which 
the damping depends is also supposed to be small; for 
the instabilities to be of order m, h must be of  the same 
order as ~r~ that is: 

b 
h = l,~.m , p = -  (5.1) 

~m 

For equations (4.2) the solutions are put in the form: 

wi = e ~ f  , u,~ = e"~g , (5.2) 

f ---- f o  + ~.fx + ~ 2  + . . .  (5.3) 

g = go + ~-gx + ~.~g2 + . . .  (5.3') 

,, : vo + x. vi + ~.2 r~ + . . .  (5.4) 

.c2/2 = an + a l x  + a2~ ~ + . . .  (5.5) 

where vo, va, re, . . .  are more generally complex like v; 
an, ai, az . . . .  real like ~2/2 and  fo ,  f~ ,  f e  . . . . .  go, gi ,  gu . . . .  
periodic with period 2~. 

By substituting the above expressions in (3.13) and 
separating the terms of the same order in z we obtain the 
following equations for x0, xY, x.~ respectively: 

l ao~(voZfo + 2,'0f0' +)co") +)r0 = 0 (5.6) 

ao~(,'o~go + 2,,ogo' + g o " )  + aZgo = 0 

l ao2(,,o~fl + 2,,of(+fl") +f i  = Hi (5.7) 
ao2(vo~gi + 2,~gl' + g l  ") + a~gl = K~ 

I ao~(,,o~f., + 2,,of~' +f~") + A  = 1-12 (5.8) 
ao2(,,o2go. + 2,,og~' + g~") + a~g~ = K2 , 

where /-/1 arid K1 are expressions containing fo and go, 
their derivatives and complex exponential functions of 
9, Ho. and K~ containing f0, go, f i ,  g l ,  their derivatives and 
likewise complex exponential functions of  ~0: these expres- 
sions may easily be obtained by carrying out the above 
substitutions. 

Equations (5.6) enable us to determine the generating 
functions f0 and go for ~. = 0. For the various values of  
a0 stated above and except for one multiply constant 
(assumed to be 1) all these functions have the form, 

for a0 = l / m :  

vo = 0 f o  = e mi~° + 2oe -mt* (5.9) 
g o = O  

,~ = ± ( a  + 1)mi f0 = 0 ( 5 . 9 ' )  

f o r  an ~ el / i l l  : 

vo= 0 fo = o (5.1o) 
go = e ral~' + 2oe -'n*~' 

a + l  
,'0 ---= ± ........ mi f0 = e ~m*~ (5.10') 

£/ 

go = O, 

for a0 = (a + 1)/2m: 

1 - - a  
,'o = 1 + a  mi )co = e ""*~ (5.11) 

go = ~oe-"" 

a - - 1  
,'o = a +---"~ ati f o  = e - ' ~  (5.11') 

go = 2oe mfq' , 

for an = ( a - -  1)/2m: 

l + a  
vo = 1---~7 ~ mi fo = e"~  (5.12) 

go = 2oe -m** 

l + a  
,'o = a ~ 1  mi  )co = e -ml* (5.12') 

go = ~¢oe ml~. 

20 is an unknown constant, more generally complex, 
which may assume two values, as will be shown later on. 
Thus starting from the four generating solutions iust given, 
for each value of  an in the neighborhood of  which there 
may be instability, we can obtain four particular solutions 
for constructing the general solution. We would point 
out right away, without going into further detail, that, 
as may easily be checked by the development of  the cal- 
culations, there are unbounded solutions only as from 
the generating solutions containing the parameter ~o: 

and so from now on we shall be concerned only with 
these latter solutions. 

Once f0 and go are obtained, H1 and I(1 prove to be 
known functions of  ~ in the form of  a linear combination 
of  exponential functions of the type e+vt~ with p = m, 
m + 2 .  

To obtain fx and g, we must now integrate equations 
(5.7). For f l  and gx to be periodic, as they must be, the 
terms e~mt% known as secular terms, which_x~ould give 
rise to nonperiodic particular integrals, must be zero in 
/-/1 and KI. The condition in which the secular terms are 
cancelled supplies two complex equations and hence 
four real equations in the five unknown quantities Re,~0, 
Revl, Im20, ImvI (real and imaginary parts of  ,~o and vl) 
and al. As in the transition from stability to instability 
it is necessary that Revi = 0, the above four equations 
generally make it possible to determine the remaining 
four unknowns. Then f l  and gl (periodic functions in 
2n) are determined by integrating equation (5.7) with 
secular terms zero in the way stated earlier. These f i  
and g~ values are sums of  the particular integrals of  the 
complete system (5.7)plus the periodic part of  the gen- 
eral integral of  the associated homogeneous system. 
This latter part  is in the same form as the generating 
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solution with 21 in place of  20(4); the part in m ~ *  may 
without loss of  generality be incorporated in that of  the 
generating solution, for the general solution is defined 
except for a multiply constant assumed to be 1. 

Once fx and gl are obtained, /-/2 and Ks prove to be 
known functions of 9 in the form of a linear combination 
of  exponential functions of  the type e*a~* with q = m, 
m =t= 2, m + 4. So that fs and g2 may be periodic the sec- 
ular terms in Hz and Kz must be made equal to zero. 
The related cancelling condition supplies another four 
equations in the five unknowns Re2~, Rev2, Ira)q, Imvz 
and as, by means of which, since Revs=  0 at the boundary 
of instability, the remaining four unknowns are determined. 

Later fs and gz may be determined, still taking into ac- 
count a term in 22e -m*v' with 20. as complex unknown 
constant, proceeding by successive approximations. The 
calculations rapidly become more complicated, however, 
and so we shall confine ourselves to determining the 
boundaries of  stability as far as terms of  the order of  ~ ,  
that is (oversigning the magnitudes for Re vl ---- Re ~ = 0) 
in the form: 

~ / 2  = a0 + a ~ .  + a~ ,z .  

As a0, "d~ and ~ depend through p also on b, the above 
relation sets the boundaries of  the possible regions of 
instability in the form ~=f(~ . ,h ) ,  i. e. in a form that, 
even though it contains many terms, is always explicit 
and such that successive approximations add only terms 
of  a higher order in ~. and b without affecting the terms 
already obtained. This is the advantage of  the new method 
we are proposing. 

It has therefore enabled us to discuss the results obtain- 
ed and to draw interesting conclusions. 

Before turning to these, we would like to give an example 
of  the procedure described above for m = 1 in the direct 
case for 12/2 in the neighborhood of  a0 = 1 and in the 
mixed case for 12/2 in the neighborhood of  a0 = (a + 1)/2. 

In the case of  an= 1, Eqs. (5.3), (5.35, (5.4), (5.5), become: 

f = f o +  ~-A+ ,,%o, 

v----- vo+  x v l  + ~svs, 

12/2 = an + ~al + ~3as, 

)Co = e t~ + 2oe -*~" 

, o = 0  

v o = O  

a o = l  . 

(5.13) 

Equations (5.6) become: 

fo" + fo = O, ,go" + aSgo = 0 (5.14) 

and are identically satisfied by the f0 and go assumed. 
Equations (5.7) become: 

f ( "  +./'1 = H i ,  g~" + a~gl = 1(1, (5.15) 

where, taking account of fo and go, 

H 1  = y l l ( e  ¢~' --~ 2oe - t ~ )  2 +2a~(e**+ 20e-~) 

- -  2(v~ + men) ( ie '~--  i20e-'~) (5.16) 

1(1 = ~,l~(e ¢~ + 2oe -t~) 2 2pOts(ie~"--i2°e-t~) " 

(4) indeed the homogeneous differential system in the systems 
(5.6) (5.7) (5.8) has always the same form. 

The conditions in which the secular terms, which are 
those in e** and e-~* in Hi ,  vanish are: 

I y112o/2 + 2al - -  2i(vx + P0n) = 0 (5.17) 

~,n/(220) --{- 2al + 2i(,1 + #,on) = O. 

Assuming 20 = [201(cos0o + isenOo), v~ = v m  + i,,H we 
have: 

l yn 1 2olcos0o -q- 4al + 4v,, = 0 
,lcos0o/12o [ + 4 a t -  4vii = 0 

l yn[ Aolsin00 - -  4/~Ou-- 4vlR = 0 

ynsinOo/] 2o1 -- 4pen - -  4vm = 0 

(5.18) 

and hence 

12ol = 1 ,  vl, = 0 ,  sin0o = 4(/,.on + ,,1R)/~ll (5.19) 

~, = ~: C ~ , s , / 1 6 - - ( ~ , ~ , ~  + ~,R)s. (5.19') 

Taking account of  equation (5.5) in first approximation, 
we have: 

12/2 = 1 ~ V/~,.s?2n/16~(bon + Y.vxn) 2 . (5.20) 

Then, assuming vm = 0, we obtain the expressions 
of  12 on the boundary of instability in first approximation, 
which we shall denote as 12t', .¢21" in terms of  the param- 
eters of  the system: 

~('/D'I\ = 2 ~: 2 V/Y.~ys~l)i6 ~ b~Q3n . (5.21) 

As for 12t '< /2 < 9t"  the value of  vm is positive, 
when 12 lies between the above two values there is in- 
stability. 

We may now proceed to the next approximation. 
By integrating equations (5.15) (taking into account Eqs. 
(5.16) where the secular terms have been cancelled) we 
obtain: 

eS** + 2oe-S** 
f l  = - - y n  16 + 21e-*~° 

(5.22) 

~ l s e s ' , + 2 0 e - 3 ' ~  C,22o ) e,, 
gl : 2 a s - 9  + - - - -  2/1o1~.i ~ + 

e-¢~, 
+ ( - ~ +  2p0zs20i) a2 - 1" 

In the same way as in the first approximation, the Hz 
and Ks values are then determined; the secular terms, 
that is those in e*¢ and e-t¢ in/-/2, are cancelled; the four 
consequent secular equations are solved and we obtain 
for Re v2 = 0 the values of  

v21 = O, 21 = - -  i l ion (5.23) 

and 

2 2 2 2 2 
- y n  ;'Iz 1 y12 1 p ~11 .~ 
as = 2 

2 2 2p Ql~, 
64 8 a 2 - 9  8 a 2 - 1  a z - 1  

(5 .Z3 ' )  

We thus arrive at the corrective term a2x z which, added 
to the values (5.21), yields the expressions of  /2 on the 
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boundary of_instability in second approximation, denoted 
as 32=' and ¢&% as shown in the final table. 

Further approximations may be obtained by proceeding 
in the same way. 

In the mixed case of  a0 = ( a  + 1)/2, Eqs. (5.3), (5.Y), 
(5.4), (5.5), become: 

g = go + ~.gi + v.~g~ 
v = vo + m,l + ~ v 2  

32t 2 = ao + v.a~ + ~.~a~ 

f o ~  8~¢ 

g o =  ~oe -~" (5.24) 
,~ = i ( 1 - -  ,)/(1 + ,1) 

n o = ( - +  1)12. 

The values of fo and go given satisfy (5.6) identically. 
In Eqs. (5.7) 

Hi  = (yne ~* + ~,~2oe-~*) e=¢* + e-n** 2.ai e*r -- 
2 + ao 

2 
- -  2(ao,,1 + 2onpao) (,'o + i)e'~- 2~,o.g, ao(vo-- i)~oe-~* 

(5.25) 

e 2~ + e - ~ ¢  2a ta2  
KI= (y22~ae -~* + ~,12e ~v') ~- 2oe-*r- 

2 ao 
2 

- -  2(ao,a + 2022/,ao) (,,o - -  i)~oe-*r-- 20i2pao(,'o + i)e'*. 

From the conditions in which the secular terms, that 
is those in et¢ of H i  and in e-l¢ of  K1, are cancelled, we 
obtain: 

t yl~,to + 4a~ lao - -  4(ao z,,i + 0u pao) (,,o + i) = 0 (5.26) 
~,,~/~ + 4a~al/ao- 4(ao~,,1 + e ~ a a o ) ( ~ o -  i) = 0 .  

Assuming 2.o = 12ol(cosoo + isinoo), ,,i = ,,m + i,at we 
have: 

and it is obvious that there is instability for ~ t ' <  .q < 
< 321". Continuing on, we obtain the successive approx- 
imations. 

The same results axe obtained starring from the other 
two generating solutions (see (5.11')) lone-** ' g o =  
= ~.0e+¢¢, ~0 = i ( a  -~ 1 ) / ( .  I 1). 

By the same procedure starting from other values of  
a0 we obtain the pair of  values at which the real part 
of  a characteristic exponent is zero. There is always in- 
stability when, ceteris paxibus, 32 lies between at least 
one of  these pairs and there is stability when it lies in 
none of  them. 

The expressions of  ~ '  and ~" obtained in second ap- 
proximation, i. e. including second order terms, are shown 
hereunder, 

32o = 2ao = 2 

2 2 
i/~±~. ' ( ~,,1 

_'~7" ---- 2 1 V t .  16 h=q]l \--~- + 8(a=--  1) + 
.(2" "-) 

1'~'~ ~2- + t) 2 OL (5.30.1) 
+ 8(a ~ -- 9-------) a gT~ 1 

32o = 2no = 2a 

[ 1/W~2t ~-~ .~,2 __( y~2 -i- y]_o 
~" ) = 2La V [ / ~ - - 0 - ~ o 2 , _  \64a  a ' 8a(1--  9a2 f 
f2." 

~" a25) / 20~z = 
~:lo. 

+ Set"--t,,-- y2 + hz ~,1 ---- :a 2 2a /A (5.30.II) 

. o +  1 , , = ,  
Zo[cosOo 

T - ~  + - - g -  , , .  = 
2aal a + 1 yl= 1 

cosOo 
a + l  2 ,'u = ~  4a [ ' ~  

a +  1 y1= 1 2o[sin0 ° m n + T  , ' l n = T  
. +  1 Yl= 1 

/~022 + T "IR = ~ ~ sineo, 

from which it follows that: 

(5.27) 

a + 1 "~ (t'0== a + 1 "~ (,Qn + - T - " W  + + --5-""V 
a l  ~ 4-  

2 pa~ + --y- , , iR] ( , , ~  + . + 1  ) 
ViR 

1 / v h 2  [ a + l  "~ . + 1  X 
• / / T g ; - - k  + - -g -"W (vQ= + - g - , - V .  

(5.28) 

Taking (5.5) into account and assuming ,,1R = 0, -are 
obtain the expressions of  32 on the boundary of  instability 
in first approximation (recalling that (0u + Q~u)/2= 1): 

I 

321 ' \  _ 2 ] /Vh~.  2 
__ / --  a + 1 :F - -  V 16.  --h2Q1102g 

Q I  tt V ~ i l @ 2  2 

(5.29) 

O o = 2 a o =  a +  1 

[ _ ~  1 1/~'hv~" .., 

o- V 2i 0-.- 
2 2 2 

Yll y l t  y22 

+ 16(1 + .) (3 + a) 16(1 - -  a2) 1 6 a ( a ' - -  1) + 

2 2 
y22 y12 + 

1641 + .) (1 + 3.) 32 . ( .  + 1) 

( _+ - -  - - ~  a - - h  2 

(5.30.111) 

32o = 2ao = . -  1 no value of  ~ '  and 12--"; 

f o r  tl/ = 2 :  

32o = 2no = 1 

yl2 1 . yl~ \ 
- -  / \ ' g £ +  16 . ~ - - 4 + 7 9 7 ~ )  ~ 
32- 

1/( y"" (5.30.IV) 
[ \  16 - -  16,  2 /  
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~0 ~ 2~0 ~ 

\ = = r  " _ ( 4 ,  
- -  / L 2 \24a  a st 16a 1 -  4a~ 1-~a,] 
!2" 

] / (  ~'%~ :'%'~' .~ ~!~7 (5.30.V) 

~o = 20o = (~ + i ) / 2  

°-- '"  
- -  / 4(5 + a) ( 3 - -  ~) + .q- 

2 2 

/ 

] ~ (  ylly12 Y~zY~ 

• (1 + ~) ( 3 - -  a) -~ (1 + a ) ( 3 a - -  

a - - 1  
~o = 2ao = - -  

2 
no value of [2' and o -  ; 

1 

(5.30.VI) 

for m = 3 in second approximation no value of  ~ '  and 
.q" is obtained. 

6. D i s c u s s i o n  o f  the  resul ts  obta ined .  

Let us consider instabilities of  the first order, that is 
for m = 1 (see (5•30.I,II,III)). In all three cases the mean 
value of  the region of  instability is equal to its X2o value 
plus terms in second approximation due both to the var- 
iation in rigidity and to the damping, whereas the ampli- 
tude of  the region depends on the terms in first approxi- 
marion not in second. To discuss the amplitude of  the 
regions of  instability effectively it is useful to re-introduce 
the dimensional expressions given in the list of symbols• 
Using ~o0 to denote the angular frequencies in the neigh- 
borhood of  which there is instability in the various cases 
and co' ~o ~ to denote the limits of  the region of instability, 
we have Q): 

for ~o0 = 2 o91 , 

,ol [ , \ ~ 2  - -  4 (6.1) \ /711 (0X/ 

for o~o = 2 ~ ,  

F \ m - - ~ )  - -  4 (6.2) 
\ #/1 ~ 2 /  

f o r  f.Oo ~ ¢.Ol ~ o25 

~ " - -  o; K,~ - . . . .  1 R n + R . ~  ~. (6.3) 

On comparing these relations with [1], we see that for 
the instabilities in the direct cases within the order of 

(b) Note that the various quantities are referred to the mass 
mt because the AK and the R for the particular choice of prin- 
cipal coordinates are referred to it too. 

approximation adopted the results are the same as those  
for a single degree of  freedom. There is no instability i f  

AKn A~R2 

The instability of  the mixed case, characteristic of  systems 
with more than one degree of  freedom, has a peculiar 
trend because the amplitude of  the region of  instability 
decreases with the mean damping R~ = ( R n  + R22)/2 
but increases as the ratios On = Rn/R~ and t~u = R2~/R,n 
move away from 1. Thus, given the same mean damping 
Rm, the more R, t  and Ru2 differ the greater is the region 
of  instability, that is to say, the more uneven the distri- 
bution of  damping between the two main modes of  vi- 
bration and the closer either R u  or R~2 gets to vanishing 
point, the larger is the region of instability of  the mixed 
type. 

For  the region of instability of  the mixed type there 
is thus a possible destabilising effect due to damping, as 
Ziegler [7], Bolotin [S] and Herrmann [91 found for n o n -  

conservative elastic systems. Further, it is clear that the 
expressions for the case without damping are obtained 
for vanishing damping only when ~u and ¢2a are equal 
to one another (and hence equal to 1), whereas other 
expressions are obtained i f  ¢xl and e22 differ from one 
another (we remind the reader that on + Q~ = 2). 

Given the same Qn, 022, the curves for vanishing mean 
damping contain all the ones with mean nonzero damping, 
and this does not occur i f  the ¢ values vary too;  the case 
without damping (Q11-----¢22) may be less unstable than 
a case with damping but with .on # ~2. 

And likewise, as there is no instability in the case in 
point if  

AKt2 AKin. 
= I I<1 

when 011 differs sufficiently from 02~ it is always possible 
with the same AK12 to find instability whatever be the 
value of mean damping Rm = (Rll + Roo.)/2. 

On discussing the results for m = 2 (see (5.30.IV, V, V-I)) 
we see that the mean value of the region of instability still 
depends on second approximation terms, but due only 
to the variation in rigidity. The amplitude of  the region 
of  instability depends also on terms, still in second ap- 
proximation, due to damping. Thus, given the same damp- 
ing, the amplitude of  the regions of  instability is smaller 
than in the cases in which m = 1 and instability begins 
when there are greater variations in rigidity. For  mixed 
type instabilities there may be a destabilising effect due 
to damping and in any case, given the same mean damping, 
the amplitude of  the region of  instability increases the 
more Qn differs from ~u. 

Note that in the direct cases the amplitudes of  the re- 
gions of  instability are not the same as for the corresponding 
cases with one degree of freedom, as they are affected 
also by variations in the coupling terms in the rigidities. 

To complete the picture, we decided to find the con- 
ditions in the original system in Sec. 1 for which ~u = ~29.. 
From the definition of ~n and ~22, taking into account 
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expressions (3.12) and (3.4) (3.5) (3.6) (3.7), with a few 
trasformations we find that ~1----- t ~  if 

( rlx rm ~ ( k l l  km~ + 4 rx2k~______~2 O. (6.6) 
7111 ~11£ / 7111 ~I12 / 7111ti12 

It  will be noted that this condit ion is satisfied if, for 
example: r~l : m, = rm : mu and rw. = 0 (~). 

7. The approximation of  the resul ts .  

When we reviewed the terms in  second approximation 
we saw that some of  them, in addition to increasing as 
~. increases, increase as a approaches some characteristic 
values which we will denote as 0.. As a is always assumed 
to be greater than 1 we have: 

for ~20 = 2 ,  0. = 1 and 3 

for -(2o = 2 a ,  0. ---- 1 

for ~20= a + l ,  0 . = 1  

for / 2 0 = 1 ,  0 * = 2  

for ~20 = (a + 1) /2 ,  0 . = 3  

for -(20 = a ,  no value for 0. .  

(7.1) 

Proceeding by successive approximations there appear 
other terms of a higher order in  Y. which introduce some 
other characteristic values 0*. In  order not  to overload 
this discussion we will merely quote the results without  
report ing the stages in the calculation, which are anyway 
based on the method we have described. 

For Q0 = 2, as the calculation is extended to approxi- 
mations of the order 2k (k = 1, 2, 3 . . . .  ), there appear 
in  the expression of the limit curve of stability terms in 
~2~ that increase when  a approaches the characteristic 
value 0. ---- 11 + 2k I' that is, in addit ion to 1 and 3, the 
values 5 and 7 and so on ;  for -(2o = 1, on  extending the 
calculation to approximations of  the order 2k (k = 1, 
2, 3, . . . )  terms in  ~2~- appear that increase when a ap- 
proaches 0. = I1 4- kl, that is, in addition to 2, the values 
1, 3, 4 . . . .  ; for f20 = a and D-0 = (a + 1)/2 proceeding 
to the approximation of  the fourth order we find that 
0. = 1; in  the other cases reviewed here there appear to 
be no new characteristic values of  a. 

The approximate formulas quoted are therefore suffi- 
ciently approximate when x is sufficiently small, bu t  the 
closer a gets to the above characteristic values the smaller 
must  the y. value be. 

The problem of  the convergence of  the proposed pro- 
cedure is a difficult one to solve and still more difficult 
is the problem of determining at what value of  x depending 
upon  a we should stop in  order to obtain a given approxi- 
matiom However,  a review of  the formulas quoted and 
of  the successive approximations provide guidance as to 
the limits within which the regions of  instability obtained 
by applying (5.30) are sufficiently approximate for tech- 
nical purposes. 

(6) In this particular case the condition Qtt = ~22 coincides 
with the one for which the damped system with constant coef- 
ficients still allows the principal modes [10], but generally 
the two conditions do not coincide. 

First of  all in  technical problems we may suppose that 
the elastic energy stored in the system (in nondimensional  
form) 

1 . 
(1 - -  ylt xcos2~)w~ + - ~ - ( a  ~ - -  y~o.xcos29)w~- 

- -  yt2Y.cos2 9 • w~w~. = 0 

is positive definite for any value of  9. It  is necessary that: 

1 - - y u x > 0  a~ 4- ~ '22x>0 

(1 - -  ytl xcos29) ( a °- - -  y~9.xcos29) - -  ylo.~x~cos~2~0 > 0. 

(7.2) 

This amounts  to assuming that the system is stable in  
static condit ion,  that is for [2 vanishing. 

In  the particular case of  the numerical examples, that 
will be given in  Sec. 9, in  which yll, and y~2 are both 
positive, the formulas above written become: 

1 - -  yll~- > 0 a ° - -  y.o2x > 0 

(1 - -  Yu~) (a S - -  y.o2~.) - -  rm2y. ~ > 0 .  (7.3) 

O n  not ing  then the corrective terms, we may conclude 
generally that we may rely upon  a sufficient approximation 

(7.4) 

for ]y~21 -< y11, if x 2 ~< 4 ( a - -  0.)2/(rt2°-~,11 : Iv4), 

considering the corresponding characteristic 0. values for 
each limit curve. Ceteris paribus, the approximation is 
better for/20 = 2a and/2-0 = a than for/-2-0 = 2 and/20 = 1, 
if ym > yll and viceversa for yH < ym. The approximation 
improves for 0. values corr isponding to larger values of  k. 

In any case a precise check on  the approximation of the 
results may be obtained by determining the stability or 
instability by the exact method presented in  the next 
section. The availability of an exact method in  no way 
detracts from the importance of the results obtained with 
the approximate method described, for the exact method 
requires repeated numeric integration with different initial 
condit ions of  the differential system (3.13) and also re- 
peated calculations to determine the conditions of  tran- 
sition from stability to instability. It  therefore demands 
a great deal of  computer  time and, moreover,  it obviously 
supplies no analytical expression. The exact method is, 
on the other hand, very useful for checking the approxi- 
mate results obtained. Clearly, since the error increases 
as x increases, one need only carry out  the check in  the 
condit ions of maximum y. considered to be sure that 
there are smaller errors for smaller ~. values. This justifies 
the determinat ion for a first orientation of  a maximum 
value for y. as stated in  this paragraph. 

8. Checking the limits of  stability with numeric i n -  
tegra t ion .  

As a check on  the procedure adopted and to gauge 
the degree of  approximation, as just stated, we determined 
the limits of instability exactly by applying Floquet 's  
theory directly. This required numeric integrat ion of the 
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system (3.13) with assigned initial conditions, which was 
done by the normal method of Runge and Kutta on an 
IBM 7040 digital computer at the Milan Polytechnic 
Computing Center. 

In accordance with Floquet 's theory [3] the 16 values 
for ~ = n of the functions wl and w2 and of their deriv- 
atives were determined, that is the 16 values 

~1,  = , p . ( ~ ) .  ~ ,  = , ~ ' 1 , ( ~ ) .  

a~, = ,,,~,( ~)  . ~,a, = " '~ , (  ' 0  

( i =  1, 2, 3, 4) 

b) a = 1 . 5 ,  ~ 1 = 1 ,  
y~z = a = 1.5, 

yz2 = V ' a - =  1.22475, 

0 n = ~ - = l ,  0z2=0-5  
b = 0 ,  0.025, 0.05, 

that is in the absence of damping or in the presence of  
damping with equal direct dampings. 

We would point out that in this particular case in which 

?H 712 ?22 

1 ~Z2  a ' 

with the four quaterns of  fundamental initial conditions 

~v,(0) = ~ , ,  u,',(0) = ~ ,  

~v~t(0) = ,h~, lv'.-t(0) = ,h~ 

( ~ j , = l  f o r j = i ,  ~ j ~ = 0  f o r j ~ i ) .  

The characteristic equation with the symbols adopted 
is thus valid 

the amplitudes of  the regions of  instability of the first order 
(that is for m = 1) are equal to one another. 

The calculations were bounded by the more restrictive 
of  the two conditions: 

- - t h a t  z should not exceed the value at which static 
instability occurs (that is at O vanishing) as for (7.3); 

- -  that x should be such that we can rely on a sufficient 
degree of  approximation as expounded in Sec. 7. 

det IIo ,--   'all = 0 (8.1) 

where o is the characteristic factor (7). Solving the 4th 
degree equation (8.1) we obtain the four o, values whose 
modulus ]al I is easy to calculate. Even when a single 
lail > 1, there is instability. By keeping b and ~. fixed 
and varying 0,  by doing the calculation a few times in the 
neighborhood of  the values obtained by the approximate 
method and interpolating as required, we arrive at the 
values for O at which the transition from stability to 
instability occurs. 

We would point out that on occasion it is of  interest, 
for checking the curves of  ~ '  and .q--" obtained by the 
proposed approximate method, to determirte not only 
when one of  the [ a~. I becomes > 1 but also when a second 
b e c o m e s  s o .  

The applications will be set forth in the next paragraph. 

9. N u m e r i c  appl ica t ions .  

Some numeric applications were carried out. As the 
main purpose of these applications is to evidence some 
aspects of the results that are obtained by applying the 
proposed method and to check their degree of approxi- 
mation, we have assigned the data for art unspecified 
system, already referred to the principal coordinates, and 
we may in successive works go into the behavior of  
particular vibrating systems that arise in the technical 
applications. We first of  all considered the foUowing 
cases by means of  the second approximation formulas 
(5.30): 

a) a---- 2.5, y u = l ,  
y2.~ = a = 2.5, 

yl2 = V / a =  1.58115, 

(7) As is known, the characteristic factors a are related to 
the corresponding characteristic exponents ~ by a = e"'. 

Therefore: 

for a = 2.5 the limit curves of  stability for t20----2a, 
a +  1, a have been limited up to maximum value 
~ .=  0.715, which satisfies the 3rd of  the (7.3), for 
0 0 = 2 ,  ( a + l ) / 2 ,  1 up to the maximum value 

~. = 2 1 2.5 - -  3] /(~'1~. ~/y22/~'11) = 0.4 which satisfies (7.4) 
with a t = 3 ,  and for O 0 = 1  likewise up to 

Y. = 2 1 2.5 - -  2] /0'12 ~/~,22/~,H) whose value is still 0.4, 
which is also obtained from (7.4) with ac = 2; 

for a = 1.5 the limit curves of  stability have also been 
limited to the ma.~mum value ~. = 0.6 which satisfies 
the 3rd of  the expression (7.3), while the limitation of  
(7.4) is less and less restrictive. 

The results have beert plotted in Fig. 2 for the case 
a = 2.5 and in Fig. 3 for the case a = 1.5. These figures 
show the limit curves of instability and are drawn up 
the afore said limit value of y.: the zones lying between 
the two branches of the limit curves are unstable. The 
mean lines of the regions of instability are also shown 
(these actually differ for the various values of  b but this 
difference, being very small, is not shown on the diagram). 
In the cases m = 1 (that is for 00 = 2a, a + 1, 2) the 
mean curve in first approximation would be constant 
equal to 00 (while the amplitude would be the same): 
the difference in the mean line from 00 thus gives an 
indication of  the magnitude of  the terms in 2rid approxi- 
marion. In  the cases m = 2 (that is for/2-o = a, (a + 1)/2,1), 
as already stated, there is no instability in 1st approxima- 
tion, and both the mean line and the amplitude depend on 
the terms in 2rid approximation. 

The results obtairted with the approximate formulas 
(5.30) have been checked for the maximum values of  
~- by the exact method expounded in Sec. 8. The conditions 
for the transition from stability to instability obtained 
with this method are indicated with small circles in 
Figs. 2 and 3. 
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F i g .  2. R e g i o n s  o f  i n s t a b i l i t y  fo r  a = 2.5,  }'11 = 1, Y12 = ' ~ v / a  - = 1.5812, ym = a = 2.5, ezl = e m  = 1, ~o12 = 0.5 
w i t h o u t  a n d  w i t h  d a m p i n g .  
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Fig.  3. Regions  o f  instability for  a = 1.5, yll  = 1, y12 - ~ / ~ ' =  1.2247, yss = a = 1.5, 
wi thou t  and wi th  damping.  

e u - - - - Q 2 ~ = l ,  els=0.5 
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Fig.  4. Reg ions  o f  instabi l i ty  fo r  a = 2.5, y i l  = 1, yl2 ~-- "~/a-  = 1.5812, y22 = a = 2.5, b = 0.025, el2 - -  0.5 
and w i t h  unequa l  direct  d a m p i n g  coefficients ell, e2s. 
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3.4 

52 

32 

3O 

28 

2.5 

2.4 

20 

p~t = 0.25 ~ I , , ~  

~,, = ~ . T s  . . . . .  

o . ~ .  . / /  I/ I 

It  will be noted that the errors are fairly small, and as 
these errors depend upon  terms in  ~.* with k >I 3, they 
decrease at least with the cube of  y.. 

Using the same values of  a, yzz, y~s, y~s and e*s as in  
the previous cases, in Fig. 4 for a = 2.5, h = 0.025 and 
in Fig. 5 for a = 1.5, h = 0.05, we have considered the 
cases in which  o~x and e~ are no t  equal bu t  have the val- 
ues 0xl = 0.25 and 02s = 1.75, or  011 = 1.75 and os~ = 0.25 
(i.e. very different from one another) to show up the 
destabilising effect described earlier. For  the purpose of  
comparison the curves for ~,1 = 0as = 1 are indicated 
by a dash-line in  the same figures. The curves have been 
plotted up to the l imit values of  n stated earlier and as a 
check on the adequacy of  their approximation we have 
determined and indicated with small circles the transi t ion 
from stability to instability by the exact method of  Sec. 8 
at the maximum values of  ~. considered. 

I t  is clear that, in the direct cases, given the same mean 
damping,  if elt increases (and .o~ decreases) the regions 
of  instability of  the direct cases ~20 = 2 and 120 = 1, 
in  which the incidence of e*~ is higher, decrease. I f  instead 
om increases (and 0*x decreases) it is the regions of  insta- 
bility of  the direct cases 120 = 2a, ~20 ---- a, in  which 0~ 
has a greater effect, that decrease. Whereas in  the mixed 
cases the region of  instability always increases, sometimes 
considerably, as the difference between ~xz and qss in-  
creases. The diagrams thus show quantitatively the de- 
stabilising effect o f  the viscous damping described earlier. 
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Fig. 5. Regions of instability for a = 1.5, ? u  = 1, ylu='V¢~ - 
= 1.2247, ys2 = a = 1.5, h = 0.05, ~12 = 0.5 and with une- 
qual direct damping coefficients On, 0ss. 
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