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Products and tensor products of multivariate polynomials in B-patch form are viewed as lin- 
ear combinations of higher degree B-patches. Univariate B-spline segments and certain re- 
gions of simplex splines are examples of B-patches. A recursive scheme for transforming tensor 
product B-patch representations into B-patch representations of more variables is presented. 
The scheme can also be applied for transforming an n-fold product of B-patch expansions into a 
B-patch expansion of higher degree. Degree raising formulas are obtained as special cases. 
The scheme calculates the blossom of the (tensor) product surface and generalizes the pyrami- 
dal recursive scheme for B-patches. 
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1. Introduct ion 

B-patches, introduced in [13], form a basis for multivariate polynomials and 
are defined by a set of vector valued knots similar to how Bernstein polynomials 
over a triangle are defined using the corners of the triangle. In [6] B-patches are 
shown to coincide with certain regions of simplex splines. The univariate analog of 
B-patches are B-spline segments. The B-patch control points of a polynomial are 
found by evaluating its blossom. Moreover, the blossom of a polynomial given in 
B-patch form as well as the polynomial itself can be evaluated by a pyramidal 
scheme. See [3,11] for blossoms, also called polar forms. 

In this paper we mainly study how to convert products and tensor products of 
polynomials in B-patch form into linear combinations of B-patches of higher 
degree. This includes degree raising. In the univariate case the problem of finding 
the B-spline expansion of a product of two B-spline curves was studied in [10]. To 
achieve our goal we consider homogeneous B-patches together with their multi- 
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linear blossoms. The connection between blossoming and differentiation is particu- 
larly apparent in the homogeneous setting, and we utilize that blossoming algo- 
rithms can be interpreted as successive directional differentiations using the knots 
as directions of differentiation. 

An outline of this paper follows. In the rest of this section we introduce some 
notation. In section 2 we formulate our problem. Homogeneous B-patches are 
introduced in section 3. In section 4 we emphasize the connection between differen- 
tiation and blossoming. An explicit expression for the blossom of a product ofpoly- 
nomials in terms of the blossoms of the factors is given, theorem 2. In section 6 we 
present a recursive scheme for transforming tensor product B-patch representa- 
tions into linear combinations of B-patches of more variables. This can be used for 
converting tensor product B-spline surfaces into triangular B6zier patches. The 
scheme, given in theorem 5, calculates the blossom of the tensor product surface 
and generalizes the pyramidal recursive scheme for B-patches. The scheme may 
also be applied for transforming n-fold products of B-patch expansions into a 
B-patch expansion of higher degree. As a special case we obtain degree raising for- 
mulas given in [4]. In the univariate case the presented scheme includes schemes 
for B-splines developed in [10]. Finally, we have also included a section discussing 
some further properties of B-patches, section 5. 

In this paper the following notation is used. Let Z~_ = {/3 = (/~1, �9 �9 �9 :/~i ~ Z, 
/~i~>0}. For x~IR s,a,/~Z~._ ~we set I Ic~ = c ~ l + . . . + c ~ s , x  ~ .  = x ~  ~.... .x2d, 
Or! = Oq! . . .O~s!  , ( l : l )  ~___ I~1! /~ ! ,  = - / ~ ) !  when/3~<c~, 1.e. ~ i ~ o t i ,  l = 1, 
. . . ,  s, and e j denotes thej th  coordinate vector in IR s. The cardinality of a set E is 
denoted IEI. Le t  

rk, = . 
i=l 

For the homogeneous polynomials of degree k over IR s we write 

I ~erk~ 

and for the polynomials of degree ~< k over IR '-1 we write 

t 

The set of linear transformations from IR ~ into IRq is denoted L(IIV, lRq). 

2. Problem formulation 

In this paper we will mainly focus on the following conversion problem. 
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P: For i = 1 , . . . ,  n let ~ . i } ~ r .  be a basis for the polynomials/ /~-1.  Further- 
more, let affine maps ~bl, �9 �9 �9 ,'~" be given, where ~bi : ]R s-1 ~ ]R s'-x. C~ the 
s - 1 variate polynomial defined as the following sum of products; 

/1 

h =  ~ _ c ~  ..... o: I-[po:,io~t,  (1) 
i=1 

where the sum is taken over all tuples ( a l , . . . ,  an) such that a t e  Fk,,s,. Given 
a basis {fi~}a~rk for/- /~t ,  where k = ( k l , . . . ,  kn). We want to find the repre- 

I1~ 
sentation of h relative to this basis. In this paper we will only consider the 
case that all the n + 1 bases involved are bases of B-patches. 

Some instances of P are: 

P I :  A p r o d u c t h  n ^ = 1-Ii=lJ~ can be written in the form (1) whenever st = s and 
fci = ~,~, a~,P~i by choosing cat ..... ~ = I-Jill a~, and ~bi equal to the identity on 
IR s-1 all i. 

P2: Setting n = 2 and pickingj'2 - 1 in P1, we obtain h = lfl. Finding the coeffi- 
cients of h in this case is commonly referred to as raising the degree off'l from 
kl to kx + k2. 

P3: If  s -  1 = ~,i~=l(Si- 1) in P and ~bl,... ,  ~bn are coordinate projections such 
that t, bt(x) = x / where x = (xX,.. . ,  x~), x / e ]R s'-l, then 

h ( x )  : 

Hence h is the typical element in the tensor product space 
u 71 |  | -1 

Note that any composition ~ = h o ~, o fh  in (1) with an affine map ~ will again 
be of the form (1). For example, let L be a line in R s-I and choose ~u : IR ~ R s-x such 
that  ~u(IR) = L, then ~ is the curve obtained by restricting the surface h to the line L. 

In our treatise of P we prefer to work with homogeneous polynomials. Recall, 
for k an integer, tha tH~ -t  and H~ are isomorphic vector spaces and that the homo- 
genizat ionf  �9 H~ o f f � 9  H~ -1 is given by 

f ( z , t )  = tk f ( t - l z ) ,  z �9149 

In this paper we will continue using a ^ notation to indicate t h a t f  is an inlaomoge- 
neous polynomial while the ^ will be omitted for its homogeneous version f .  We 
also let s denote the number of variables for homogeneous polynomials and s - 1 
for the corresponding inhomogeneous polynomials, rather than s + 1 and s. 

Let h �9 H~k I , where k �9 Z~_, be the homogenization of the polynomial h in eq. (1), 
and letp~,i,j5 �9 H~t be the homogenizations of/3a,i,f/. In the homogeneous version H 
of the problem P the polynomial h is given as follows. 
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H' .  

n 

h = IIP ',, o a , ,  (2) 
i=1 

where the sum is taken over the same set of indices as in (1), and where Ale  L(]lt s, 
R*') is defined by 

Aix  = t(c~i(t-lz), 1), x = (z, t) ~N s-1 x N. 

Corresponding to P1, P2, P3 we have the following instances of H. 

t l  

HI :  h = IIi=lJik 
H2: h(x)  = (x~) 2fl (x) where x = (Xl, . . . ,  x~) e R ~. 
H 3: A ix = ( z i, t) in (2) where x = (z l , . . . ,  z n , t) e R ~, z i e k s' - 1, t e R. 

3. B-patches 

Let us recapture some basic properties of B-patches. We follow the presentation 
in [6,13] except that we prefer to work with homogeneous polynomials. In addition 
we make use of  some vector/matrix notation, originally developed for spline 
curves in [8]. 

Let k, s be positive integers. The knot vector 

X = {x/'Je]i s : i = 1 , . . . , s , j  = 0 , . . . , k -  1} 

consists o f  ks  points such that Xa = {x/,a'}~=l is a set ofs  linearly independent vec- 
tors for all/~ = (/~1,... ,/~s) eZ~., 0.<1/31 ~ k -  1. One may think of X as a set o f s  
clouds associated with the points xl ,~ x ~,~ in R s, and where each cloud consists 
ofkpoints .  

Define Aa,l,x,...,  Aa,,,x to be the coordinate functions relative to the basis Xa 
forR*; 

$ 

x = ( 3 )  

if1 

whenever ~ e Fl~, 0 .<< l ~< k - 1. We note that these coordinate functions are linear. 
The following recursive, pyramidal algorithm calculates homogeneous B- 

patches bt~,x of degree l; 
$ 

bt~,x(x) = EA~-el , j ,x(X)b~--leLx(X ), ~ e F t , ~ , l =  1 , . . . , k ,  (4) 
j=l  

where b~ = 1, and where o is the origin o f R  s. Here )~,j,x and b~, x are defined 
to be zero for all/~ with a strictly negative component. Algorithm (4) is a generaliza- 
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tion of the recurrence relation for multivariate Bernstein polynomials on sim- 
plices. 

We want to give a vector/matrix formulation of (4). We fix an ordering of El,s, 
i.e. for every ~ �9 Fl,s there is a corresponding number/~ �9 { 1 ,2 , . . . ,  [Fl,s [}. Let 

b~ = {b~,~}~r,~ (5) 

be the row vector determined by this ordering. 
Equation (4) may now be written for l = 1 ,2 , . . . ,  k 

fix(X) = b~l (x) rlx-' (x ), (6) 

where Tlx(x) for l = 0 , . . . ,  k - 1 is a [Fl,sl x ]Ft+l,~] matrix with elements 

( A,~j,x(X) for ~ = c~ + e/,j  = 1 , . . . , s ,  
Tl,z,x (x) = 0 f o r / ~ r  + {el, . . . ,er 

(~,~) eri,, x/%~:.  (7) 
The B-patches of degree k over X form a basis for H~,, sop e H~ can be written 

p= ~ c~b~,,~, (8) 
~rks  

or equivalently as the productp(x) = bkx(x) c, where 

is a column vector with ordering determined by l'k,s. It follows tha tp  can be evalu- 
ated by the following algorithm which is sometimes called the dual to (6). For 
l = 1 , . . . , k ,  

4(x)  = r~-'(x)4-1(x), (9) 
where c~ = c. Clearlyp(x) -- ckx(x). In component form (9) is written 

$ 

4,xCx) = ~ ~,j,xCx)4:,l,,,xCx), ~ r k _ ~ , l  = 1,...,k, (10) 
1--I 

where the lth degree homogeneous polynomial ~ ,x  is component ~ in the column 
vector ctx. This scheme generalizes the de Casteljau algorithm for B6zier patches on 
triangles. 

The B-patch coefficients in (8) for the polynomialp is found by blossomingp at 
certain subsets of the knot vector X; 

c a = ~(p) (x l '~  x l ' a ' - l , . . . ,  xS'~ xS'a'-l). (11) 

The blossom ~B (p) ofp is defined according to the 
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BLOSSOMING PRINCIPLE k 

The vector space V of k-linear, symmetric forms from ~ x . . .  x ]R ? into ]R is iso- 
morphic to H~. In particular, for everyf  ~ H~: there exists uniquely a k-linear, sym- 
metric form ~ (f)  E V coinciding w i th f  on its diagonal; 

f ( x )  = ~ ( f ) ( x , . . . , x )  for all x ~ R  s. 

See [11,3] or standard textbooks on algebra. 
The blossom of the polynomialp, and thereby the coefficients ofp in (8), is found 

by multilinear versions of the schemes (6) and (9), see [13,6]; 

~(btx)(ul , . . .  , d ) =  ~(btx-1)(ul,...,ut-1)Ttx-~(ut), (12) 

for l  = 1 , 2 , . . . , k ,  and 

~(ckx-t)(ut+l,... ,u ~) = Ttx(Ut+~)~(ckx-I-l)(ut+2,.. . ,uk), (13) 

for l = k - 1, k - 2 , . . . ,  0. Duality of the two algorithms is revealed through the 
equation 

~ (p ) (u l , . . .  ,u k) = T ~  Tkx-1 (uk)c 

= $ ( b t ) ( u l , . . .  ,ul)fl3(ckx-t)(ut+l,... ,uk), (14) 

f o r / =  1 , . . . , k .  
From properties of homogeneous B-patches we easily derive properties for inho- 

mogeneous B-patches. The inhomogeneous B-patches {b~,x}fl~F,~, where 

1), s-', 

form a basis for/-/~-1. Moreover, the B-patch coefficients of an inhomogeneous f 
are found by blossoming the homogenizationf.  

4. Blossoms of products 

In view of(11) we can solve our problem P if we are able to evaluate the blossom 
of the polynomial h in H. In this section we concentrate on the case 
h = 1 - I i L l f i  o Ai. This includes H I ,  H2  and the essential part of  H3.  We describe the 
blossom ofh in terms of the blossoms of the polynomialsJ~. 

We shall repeatedly make use of the following correspondence between blossom- 
ing and differentiation of homogeneous polynomials. F o r f  e H~ and 0 ~< l ~< k it is 
shown in [ 11 ] that 

k-I  
k! ~ . . , ut), ui 

d~, . . . d d f ( x )  - ( k - l ) !  ~ ( f ) ( x ' ' ' ' ' x ' u l ' "  e]R s, (15) 

where d~f is the directional derivative o f f  in direction u. In particular for any 
x e ]i s 
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~B(f) = 1 Dk f (x ) ,  

where Drag denotes the mth order total derivative ofg e C m (RS), so that 

Dmg(x ) (v l , . . . , v  m ) = d o , . . . d ~ g ( x ) ,  v i e r  s . 

We will need Leibniz' formula for the mth derivative of a product ofn functions. 

LEMMA 1 
Assumef l , . . .  ,f,, e Cm(R~). Then 

flCn ) = E 
i=l Ito...oln={1,...,m} i=l Xjeli 

/,nb=O 

Here the sum is taken over ordered n-tuples (I1, �9 �9 �9 In) of sets Ii ~ X. 

(16) 

Proof  
The lemma follows by induction on m using the product rule do(f g) 

= gdof  +fdog.  [] 

In addition to the product rule for differentiation the chain rule will be useful. 
For g e C m (R q ) and A e L(R s, Rq) the chain rule takes on the form 

dv(g o A)(x) = (dxvg) o A(x), 

which yields 

D m ( g o A ) ( x ) ( u l , . . . , u m ) = D m g ( A x ) ( A u l , . . . , A u m ) ,  u i e R  s. (17) 

We can now blossom a product of polynomials by blossoming its factors. 

THEOREM 2 
Let keZ~_. Assume f,.eH~' and AieL(RS, R s') for i =  1 ,2 , . . .  ,n. The [kl-th 

degree homogeneous s-variate polynomial I-L~I fi o Ai has Ikl-linear blossom given 
by 

~3 f i  0 Ai  ( u l , . . .  u [kl) -- 1 ~ 1-I~3(fi)(A'V")' (18) 

x t 

Ihl=k~ 

where Ai UI, is the sequence {Aiuj}jEic 

Proof  
Assume first that si = s and Ai is the identity on R s all i. T h e n f l , . . .  ,fn will satis- 

fy (16). The polynomial j5 is of degree ki, so that DJJ}(x) - -0  for j>k t .  Conse- 
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quently, ifm = [k[, the nonzero terms in the sum (16) appear only for IIi[= ki all i. 
Hence 

D Ikl fi (x)(vl,..., v Ikl) = 

whenj~ ~ His all i. 

n 

I~ u...u1~--{1,...,Ikl} i=i 
IX,,lfks 

Suppose thenj~ e H~' and Aie L(R s, R s') so thatj~ o Aie His. The previous equa- 
tion remains valid if we replacej~ byj~ o A i. Application of the chain rule (1 7) yields 
the conclusion of the theorem. [] 

Consider the conversion problems P1, P2, P3 when the number of factors 
equals n = 2. For the respective problems let h,fl,f2 be the homogenizations of 

H s?-I as ~ Hk zs-+k21 ,fl^ e H~ Ikt-1 and~ e k2 in H1,1-12, H3. For these problems theorem 2 
specializes as follows. 

Assume first that h is theproduet h =]~2 as in P1. The blossom of the polyno- 
mial h of i l l  is given by 

1 
~(h)(ul'"" "'U/q+k2)= (kl+k2~ ~ ~(fl)(UII)~2)(UI2)" 

kl ] I, Ul2={1,...,kl+k2} 
IX, l=k~, 

In the degree raising problem P2 we have]2 = 1 and h = 1]1. In this case the blos- 
som ofh in H2 is given by 

~(h)(ul,.. " , u/q+k2 ) _ / ~_'~I E ~(fl)(Ul,) H uss" 
~kll~|k2 ) ',Ul2={l,...,kl+k2} ,El2 

lid=k, 

For the tensor product h =]1 | of P3 we have h = (fl o A1)(f2 o A2), where 
A1, A2 are given by H3, and 

1 ~ ~(fl)(AIU1)~(f2)(A2U,,). 
-- ,,,,, 

It~l=ks 

The last two blossoming formulas also appear in [I I] as propositions I 1.2 and 
13.2. In [I I] the latter is spoken of as a degree joining formula. 

5. Further properties o f  B-patches 

In this section we discuss properties of inhomogeneous B-patches like rotation 
and translation. Also, some further properties of  B-patches are derived as easy con- 
sequences of  the close relation between blossoming and differentiation. 
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Differentiation formulas for B-patches can be found in [14,4]. In our matrix no- 
tation such a formula can be written 

k! bk_l(x)Tk_t(vl  ) Tk_1 (vt). (19) d ~ , . . ,  d d b k ( x )  - (k - l)! "'" 

The proof follows easily from the recurrence relation (12) and the diagonal proper- 
ty of blossoms if we observe the connection (15) between derivatives of a homoge- 
neous polynomial and its blossom. A differentiation formula for inhomogeneous 
B-patches is immediate from the corresponding homogeneous formula; 

k! d u ' " "  dutbk(z) = (k - l)! bk- l (z) r  k-l(t/l, 0 ) . . .  Z k-1 (d,  0), 

where u i, z ~ IR s-1 . 
Using this interpretation of blossoming as differentiation we have a simple 

proof that the monomials  are B-patches. To see this we differentiate the monomial 
(1 1 along the coordinate axes obtaining 

1 ~ 
k~.(det)3' . . .  (des) 3' . x '~ = 6~,3, a,  f leFk,s .  

Hence according to eq. (11) the homogeneous s-variate monomials of degree k 
satisfy 

I l!x  (20) a! = bk'x(X)' x I s'aE-rk ' 

where 

X =  {x ~'j : x i'j = d , i =  1 , . . . , s , j =  O , . . . i k -  1}. 

We shall also see that translates of inli0mogeneous monomials are B-patches, 
This is a cdnsequence of the following, more general B-patch property. 

LEMMA 3 
L e t X  = {x/dcRS : i = 1, . . ,  , s , j  = 0 , . . .  , k -  1} be a knot set for homogeneous 

B-patches of degree k, and assume A is a nonsingttiar s • s matrix. Then 

b ,Ar(x) = k -x  ba,x(A x),  x E R S ,  a c F k # ,  

whereAX = { A x  ~'j : i =  1 , . . . , s , j  = O , . . . , k -  1}. 

P r o o f  
Let p ~ H i. According to eq. (11) and theorem 2 for n = 1 the polynomial p o A 

has the following expansion in B-patches on X, 

p o  A = 
3erk~ 
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where Va = {xl,~ x1 '~-1, . . . ,  x~'~ x~'a*-l}. The knot set A X  also defines a 
B-patch basis. In the above equation choose p equal to the basis polynomial 
p = b~,Ax. Then according to eq. (11) we have ~B(p) (A V~) = d~,~. [] 

As a consequence of lemma 3 translates of a set of inhomogeneous B-patches 
are obtained by applying linear transformations to the knot set: 

b ~ , ~ x ( z ) = b ~ , x ( z - a ) ,  a , z ~ R  s-1 (21) 

whenever the s x s matrix A is given by 

A x = ( z + t a ,  t), x = ( z , t )  EIR ~. 

Similarly we may rotate a basis of B-patches by applying appropriate matrices 
to the knot set. 

Choosing A to be as in (21) we find that the translated s - 1 variate monomials 
o f  degree <. k are inhomogeneous B-patches defined by the knot set obtained by 
applying A to X of(20). 

In general, applying an arbitrary nonsingular s x s matrix A to the knot set of 
the monomials yields a new B-patch knot set Y = [a l , . . . ,  a l , . . . ,  aS,. . . ,  a s] consist- 
ing o fk  copies of each column a i of A. An example of such a basis is the Bernstein 
polynomials. If A has columns a i = ( z  i, 1)E R s all i, the inhomogeneous B-patches 
defined by the knot set Y are the s - 1 variate Bernstein polynomials over the sim- 
plex in IR s- 1 with vertices z l , . . . ,  z ~. 

Recognizing translates of the monomials as B-patches can be useful for the eva- 
luation of polynomials given as linear combinations of B-patches. Suppose we 
want to evaluate the inhomogeneous polynomial j" at quite a number of points in 
~ - I  and that we know the coefficients of j" relative to some given B-patch basis, for 
example the Bernstein basis. Instead of using algorithm (10) for every point of eva- 
luation, it would be more efficient to transform the representation o f f  into mono- 
mial basis centered at some point a E ~s-1 using algorithm (13) and then evaluate 
J" at the given points. Stability considerations should determine the choice ofa. 

6. A blossoming scheme for (tensor) products 

Given knot sets X 1 , . . . , X  n such that X i defines a basis b~ of si-variate B- 
patches of degree k~. In this section we give two recursive algorithms for calculating 
the blossom of the polynomial h where 

h is given in H with {F~,i}~Fk,~, = b~, for i = 1 , . . . , n .  (22) 

This yields two algorithms for solving P, including P1, P2, P3. The algorithms 
are mutually dual. 
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In order to give algorithms for manipulating polynomials given in the form 
(22) we shall make use of the vector/matrix notation developed in section 3. In ad- 
dition we need the Kronecker product of matrices, also called the tensor product 
of matrices. 

Let A and B be # x u and ~ x rl matrices respectively. The Kronecker-product 
of A and B, A | B is a p2~ x vr/matrix defined as 

[ al,lB al,2B . . .  ax,~B] 

a2,1B a2,2B . . .  a2,uB [ 
A @ B =  . . . ] , (23) 

k auj B au,zB . . .  a~,uB_l 

where ai,j is the typical element of A. Some properties of the Kronecker product 
will be useful. Let A, B, C, D, E be matrices of dimensions # • u, ~ • rl, p • a, v • p 
and r /x  cr respectively. The Kronecker-product | has the following properties, 

(1) bilinearity, 
(2) associativity, A | (B | C) = (A | B) | C, 
(3) A | B r = (A | B) r, 
(4) (A | B)(D | E) = AD | BE. 

See e.g. [7]. When the components in the matrices A, B are differentiable functions 
over R s, we have the product rule 

dv(A @ B) =(dvA) @ B + A | (dvB) (24) 

for the derivative of the matrix valued map A | B. For the Kronecker product of 
n matrices we use the notation @n=iEi = El @ E2 @ . . .  @ En. 

The polynomial h of (22) may be written as a product 

h(x) = ~ ( x ) C  k, 

where k = (kl, . . . ,  kn), and where C k are the coefficients in the sum (2) written as 
a column vector and the row vector B k contains the associated products of B- 
patches. More formally, let the knot sets X 1 , . . . ,  X ~ be as in (22).Using the vector 
valued maps ,,,1 . . ,  m, .. bxl , . bx, such that 0 ~< mi <~ ki for i = 1, ., n we construct the vec- 
tor valued map 

n 

B m = @(bT]  o Ai), (25) 
i=1  

where A1, . . .  ,An are the linear maps used in H and m = (mx, . . .  ,mn). The map 
/i ~ is a row vector with ]Fr,,i,sl I ' "  ]Fm,,s, [ components, and the typical component 
I-[~.-1 (b:i,x, o Ai) is a homogeneous s-variate polynomial of degree Im]. Further- 
more, let C k be the column vector defined by 
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where the sum is taken over all tuples (m],.. . ,  a n) such that &i eFk,sl. Here e ~' 
denotes the (~/)th coordinate vector in RIr*;*, I, and ~i is the integer associated with 
mi in the ordering of Fk,.,, that is used for the vector/matrix notation introduced 
in section 3. The blossom ofh can be written as the product 

(h)  (u~, . . . , u 'k') = tS k(u~,  . . . , u %  C k, (27) 

where for O = (0, . . . ,  0)<~m<~k we define B m to be the componentwise blossom 
ofB m. 

In order to give recurrence relations for B k we introduce the matrix valued map 
Am,i defined by 

i - 1  n 

Am,i(u) = ~ l ~ , j  | r~cj(aiu) | ~ Iuj , (28) 
j = l  j = i + l  

where T~,J is the matrix valued map defined in (7), and I~,j is the #j x #j identity 
matrix with #j = [F mj,sj [. 

PROPOSITION 4 

For Iml i> 1 we have 
tl 

rn~13m-~' ruX t~(u',...,ulml) = y ]  Iml , , . . . ,u lml- l )Am_a, i (ul"l ) ,  (29) 
i=1  

r n l > 0  

where B~  ( ) = 1. 

Proo f  
The chain rule together with eq. (19) for the derivative ofb~j yield 

~ ( b ~  o aj)(x) "J ,,mj-1 &)(x)~-~(&u) .  = (d~jubxj)(Ajx) = mj~Oxj o 

Using property 4 of the Kronecker product and eq. (24), this yields 
n 

- e  1 duBm(x) = E mjBrn (x)Am-eLJ (u)" 
]--I 

mj>o 

We set u equal to ulml and differentiate this equation [ml - 1 times with respect to 
x in the directions u l , . . .  ,ulml-l. This result~ in (29) utilizing the relation (15) 
between blossoming and differentiation. [] 

Proposition 4 offers a method to compute the blossom of the polynomial h in 
(22). Using (29) we may compute the blossoms of all the products of B-patches 
found in the sum in eq. (2). The blossom ofh is then obtained by taking a linear corn- 
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bination. Alternatively we may derive a scheme for evaluating the blossom of h 
starting with the coefficients in (2). Define for m, k ~ Z~_ such that O ~<m ~<k and 
Ik - ml > 0 the column vector 

~an(ul,...,ulk-ml) = ~ ki----~lAm,i(ulk-ml)em+d(ul, ulk-ml-1), (30) 
i=l Ik " ' "  

mi < ki 

where ek( ) = C k is given by (26). Equation (30) builds up a multilinear form recur- 
sively. The next theorem shows that this recurrence offers a method for evaluating 
the blossom ofh which is dual to the one based on (29). 

THEOREM 5 
Suppose h is given by (22) and let B m, e m be defined by (27), (30). Then for 

l ~ {0, 1 , . . . ,  Ikl} we have 

~ ( h ) ( u l , .  . . , uV ,  I) = E ( ~ )  Bm(ul,...,ulml)em(u Iml+l ...,ulkl). (31) 
i-i=, (,~',) 

O<~m<~k 

In particular we have e ~ = ~ (h). 

P r o o f  

We show eq. (31) by downward induction on l. Equation (31) reduces to eq. 
(27) for l = [k]. Suppose (31) is true for some l ~< ]k]. Define :Yj forj  = 1, . . . ,  n by 

~Tj (m)  = B m - e j  ( u l ,  . . . , u l m l - ] ) A m _ e ,  j ( u l m l ) e m ( u l m l + l ,  . . . , u Ikl) 

for e/~< m ~< k. The recurrence relation (29) yields 

E 
Imlf/ 

O<~m<~k 

(~) Bm(ul,...,ulml)em(u ]m[+l . . . , U  ]kl) 
('~') 

= E r a  
Iml=l 

O ~ m ~ k  

n 

,m,=,-I (,':',) 
O<~m<.k-eJ 

Iml=/-1 
O<.m<.k 

eJ <~m<<.k 

= • k j - m j  
-~[ ~j(m 

O <~m <~k mj<kj 

For the last equality we have used eq. (30). The last expression is the right hand 
side of (31) with l replaced by l - 1, and the theorem is shown. [] 
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For computational purposes it is useful to have the component versions of the 
recurrences (29), (30). Let C m~,,...,~ denote the typical component in e m and 
Bma~,...,a ~ = ~11i=1  ~ ' R  r n /fin,od,X, o A i ) )  the typical component ofB m. With ~a,j,X the coordi- 
nate function defined in (3) the recurrence relations (29) and (30) are given as 
follows in component form. For Iml i> 1 and ( a l , . . . ,  a ~) e Fr~,s, • -.. x F,,,n: . 
we have 

Baml,...,~, (ul , . - - ,  u Iml) 

n $ 
m i  ~ x . . i / ' j  ] m l ' " " - e  i = ~ -~-~TL. .Aa~_e~, j ,x~Aiu )l);-, ..... a i_eJ , . . . , a~(u l , . . . , u lm[-1 ) .  (32) 

i=1 I " ' 1  j___ 1 

ra i  > O 

For I k - ml/> 1 and ( a l , . . . ,  a n) SFm~,s~ x . . .  x Fm,,s, we have 

em :ul  , u lk-ml)  
c~l , . . . ,Otn k ~ �9 . . 

___ k i  - m i  /~a,j ,x ,(Aiulk-ml)er~+e~a,+e j ~(U 1, �9 �9 �9 u l k -ml -1 ) .  (33) 
i=1 I k -  ml = . . . . . . . . . .  

m i  < k i  

In (32), (33) e i is the ith coordinate vector in ]R n when used as a superscript, and 
when used as a subscript eJ is thej th  coordinate vector in ~s'. 

By means of (32), (33) we can make algorithms for solving problems P, P1, P2, 
P3. Let us take a closer look at P2. 

EXAMPLE (DEGREE RAISING) 
Let k, q be nonnegative integers. Given an inhomogeneous B-patch basis bkx for 

//~-1. We want to express the elements in/~k x in terms of an arbitrary given B-patch 
basis for//],+~q. In order to achieve this let Y = { 1 , . . . ,  1} ___ IR where the integer 1 
is repeated q times. The univariate homogeneous B-patch basis b q of degree q con- 
sists of the single polynomial b~,r(t) = tq. With A : x--* xs, where x = (x l , . . . ,  xs), 
the typical element in (b q o A) | bkx is given by (xs)qb~,x(X). Therefore, according 
to H2  and eq. (11) we can raise the degree of/~, x from k to k + q by evaluating the 
blossom of the product (bq, r k o A)b~, x .  Blossoming this product, eq. (32) specia- 
lizes to 

q -,-+q--, ,-l ,k, I ~q'k  (u l  . U k+q) + q --q,o~, ' ' "  ' : ~ - " - ' (  u~ )sL~q-l,ct( u , ' ' "  uk+q-1) 

+v- k (u, ' . . . ,  

j=l 

for a s irk:. Similarly, based on (33) we may derive degree raising formulas recur- 
ring on the coefficients. For the case q = 1 the formula (34) reduces to the degree 
raising formula given in [4], proposition 6.1. 
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