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Products and tensor products of multivariate polynomials in B-patch form are viewed as lin-
ear combinations of higher degree B-patches. Univariate B-spline segments and certain re-
gions of simplex splines are examples of B-patches. A recursive scheme for transforming tensor
product B-patch representations into B-patch representations of more variables is presented.
The scheme can also be applied for transforming an n-fold product of B-patch expansions into a
B-patch expansion of higher degree. Degree raising formulas are obtained as special cases.
The scheme calculates the blossom of the (tensor) product surface and generalizes the pyrami-
dal recursive scheme for B-patches.
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1.Introduction

B-patches, introduced in [13], form a basis for multivariate polynomials and
are defined by a set of vector valued knots similar to how Bernstein polynomials
over a triangle are defined using the corners of the triangle. In [6] B-patches are
shown to coincide with certain regions of simplex splines. The univariate analog of
B-patches are B-spline segments. The B-patch control points of a polynomial are
found by evaluating its blossom. Moreover, the blossom of a polynomial given in
B-patch form as well as the polynomial itself can be evaluated by a pyramidal
scheme. See[3,11] for blossoms, also called polar forms.

In this paper we mainly study how to convert products and tensor products of
polynomials in B-patch form into linear combinations of B-patches of higher
degree. This includes degree raising. In the univariate case the problem of finding
the B-spline expansion of a product of two B-spline curves was studied in [10]. To
achieve our goal we consider homogeneous B-patches together with their multi-
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linear blossoms. The connection between blossoming and differentiation is particu-
larly apparent in the homogeneous setting, and we utilize that blossoming algo-
rithms can be interpreted as successive directional differentiations using the knots
as directions of differentiation.

An outline of this paper follows. In the rest of this section we introduce some
notation. In section 2 we formulate our problem. Homogeneous B-patches are
introduced in section 3. In section 4 we emphasize the connection between differen-
tiation and blossoming. An explicit expression for the blossom of a product of poly-
nomials in terms of the blossoms of the factors is given, theorem 2. In section 6 we
present a recursive scheme for transforming tensor product B-patch representa-
tions into linear combinations of B-patches of more variables. This can be used for
converting tensor product B-spline surfaces into triangular Bézier patches. The
scheme, given in theorem 5, calculates the blossom of the tensor product surface
and generalizes the pyramidal recursive scheme for B-patches. The scheme may
also be applied for transforming n-fold products of B-patch expansions into a
B-patch expansion of higher degree. As a special case we obtain degree raising for-
mulas given in [4]. In the univariate case the presented scheme includes schemes
for B-splines developed in [10]. Finally, we have also included a section discussing
some further properties of B-patches, section 5.

In this paper the following notation is used. Let Z}, = {8 = (81,...,5) : Bi€Z,
Bi=>0}. For =xeR’ a,feZ], we set |oj=a1+...+a,x*=x{"...x¥,
al =arl...q4l, (Igl) = |e!/a!, (g) = ol!/B!(a — B)! when B< o, i.e. Bi<ay,i=1,
..., s, and e/ denotes the jth coordinate vector in R’. The cardinality of a set E is
denoted |E|. Let

Tis = {ﬂeZi 8= Bi= k}.
i=1

For the homogeneous polynomials of degree k over R we write

5 . s
H; = Z A, x* :a,eR, xeR’ 3,

aeI‘kl_,

and for the polynomials of degree <k over R*~! we write

ch"l = Z a,x% : ageR, xeR!

le| <k

’

The set of linear transformations from R’ into R? is denoted L(R’, RY).

2, Problem formulation

In this paper we will mainly focus on the following conversion problem.
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P: Fori=1,...,nlet{Pai},c r,,, be a basis for the polynomlals - !, Further-
more, let afﬁne maps ¢, . . q; be given, where ¢; : R - R%! Cons1dcr the
s — 1 variate polynomial deﬁned as the following sum of products;

h=Y"ca, . | [ Poisi© b1 (1)
i=1

where the sum is taken over all tuples (@', ..., o") such that o/ e I'y, ;,. Given
abasis {Pa}qc 1, for i, !, wherek = (ki, ..., k). We want to find the repre-
sentation of k rélative to this basis. In this paper we will only consider the
case that all the n + 1 bases involved are bases of B-patches.

Some instances of P are:

P1: A product h= T, f“, can be written in the form (1) whenever s; = s and
fi= Za, @yiPoi i bY choosing ¢, o = []i) au and ¢; equal to the identity on
R alli.

P2: Setting n = 2 and plckmg f2 = 1in P1, we obtain h = lf’l Finding the coeffi-
cients of & in this case is commonly referred to as raising the degree of ﬁ from
kitok; + k.

P Ifs—1= E,_ (s;—1) in P and ¢y,..., ¢, are coordinate projections such
that ¢;(x) = x' where x = (x',...,x"), X eR%"!, then

h(x) Z Col,.. a"Pa‘ 1 -pa",n(xn)'

Hence h is the typical element in the tensor product space
le.. .
kl a o 0 k'l .

Note that any composition g = ho w of h in (1) with an affine map y will again
be of the form (1). For example, let L be a line in R*~! and choose w : R —R*~! such
that w(R) = L, then g is the curve obtained by restricting the surface hto theline L.

In our treatise of P we prefer to work with homogeneous polynomials. Recall,
for k an integer, that IT. *=1 and H are isomorphic vector spaces and that the homo-
genization f € Hj, of f e II5! is given by

flz,6) =*f(t'2), zeR*),teR.

In this paper we will continue using a " notation to indicate that f is an inhomoge-
neous polynomial while the ~ will be omitted for its homogeneous version f. We
also let s denote the number of variables for homogeneous polynomials and s — 1
for the corresponding inhomogeneous polynomials, rather than s + 1 and s.

Let heHy,, where keZ}, be the homogenization of the polynomial hineq. (1),
andletp,;, fi€ H" be the homogenizations of Py, f, In the homogeneous version H
of the problem P the polynomial 4 is given as follows.
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h="or,. o ] [ Puti 0 A 2)
i=1

where the sum is taken over the same set of indices as in (1), and where 4, e L(R’,
R*) is defined by

Aix = t(¢i(t712),1), x=(z,f)eR"! xR.
Corresponding to P1, P2, P3 we have the following instances of H.

H1: h=][L, £
H2: h(x) = (x,)*f;(x) where x = (xl, ., Xs) ERS.
H3: A;x = (Z,f)in(Q)wherex = (z!,...,2", 1) eR%, 2 e R, teR.

3.B-patches

Let us recapture some basic properties of B-patches. We follow the presentation
in [6,13] except that we prefer to work with homogeneous polynomials. In addition
we make use of some vector/matrix notation, originally developed for spline
curves in [8].

Letk, s be positive integers. The knot vector

={xeR:i=1,...,5j=0,...,k—1}

consists of ks points such that X = {x"#}]_, is a set of s linearly independent vec-
tors for all 8 = (By,...,0;) €Z],0<|8| <k — 1. One may think of X as a set of s

clouds associated with the points x'9, ..., x*? in R, and where each cloud consists
of k points.
Define Ag1,x, ..., Agsx to be the coordinate functions relative to the basis Xj
forR*;
5
x=7 dgjx(x)x¥, xeR’, (3)
Jj=1

whenever fe I'i;, 0<I<k — 1. Wenote that these coordinate functions are linear.
The following recursive, pyramidal algorithm calculates homogeneous B-
patches b}  of degree /;

bl x(x) = Z,\ﬂ_e,,,x(x)bﬂ Lix(®), Bely,l=1,..k, (4)
=

where bJ ,(x) = 1, and where o is the origin of R®. Here )\ ; x and b/ x are defined
to be zero for all S with a strictly negative component. Algorithm (4) is a generaliza-
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tion of the recurrence relation for multivariate Bernstein polynomials on sim-
plices.

We want to give a vector/matrix formulation of (4). We fix an ordering of I'j,,
i.e.forevery Be I s thereis a corresponding number fe{1,2,. .., |I4}. Let

by = {bﬁ,x}ﬂer,,, (5)

be the row vector determined by this ordering.
Equation (4) may now be writtenfor/ = 1,2,. ..,k

b(x) = b () T (%), (6)
where T (x)for! = 0,...,k — lisa |l X |4 ¢ matrix with elements
a,j,X(x) for :B =a+ eJaJ = 1
T, 5x(*) =
aBx for ﬁ¢a+{e,...,e‘},

(e, B)€ s X Liys- (7)

The B-patches of degree k over X form a basis for Hi, so p € H; can be written
p=3 ey, 8)

ﬂ Ef'k',

or equivalently as the product p(x) = b%(x)c, where
c= {Cﬁ } ﬂ el 3

is a column vector with ordering determined by I'; ;. It follows that p can be evalu-
ated by the following algorithm which is sometimes called the dual to (6). For
I=1,...,k,

ck(x) = T3 (x)ci (), 9)
where ¢} (x) = ¢. Clearly p(x) = c%(x). Incomponent form (9) is written
§
chx(®) =) Agjx(*)chi x(%), Belkosl=1,... .k, (10)
=

where the /th degree homogeneous polynomial ¢/ 5,x 18 component B in the column
vector ci. This scheme generalizes the de Casteljau algorithm for Bézier patches on
trlangles

The B-patch coefficients in (8) for the polynomial p is found by blossoming p at
certain subsets of the knot vector X;

cg=Bp)(xM0, ..., xAmt e0 L AT, (11)
The blossom B(p) of pis defined according to the
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BLOSSOMING PRINCIPLE A

The vector space V of k-linear, symmetric forms from R® x ... x R* into R is iso-
morphic to Hy. In particular, for every f € Hj there exists uniquely a k-linear, sym-
metric form B(f) € ¥ coinciding with f on its diagonal;

f(x) =B(f)(x,...,x) forall xeR".

See[11,3] or standard textbooks on algebra.
The blossom of the polynomial p, and thereby the coefficients of p in (8), is found
by multilinear versions of the schemes (6) and (9), see [13,6];

By W', ..., u) = BOEH @, ..., YT, (12)
fori=1,2,...,k,and
BN, ) = TR ()BT W, i), (13)

forl=k—1,k—2,...,0. Duality of the two algorithms is revealed through the
equation

B, ..., d) = TSu)... TE (e
= BB, ... W )YB(EH W, b, (14)
forl=1,...,k

From propertlcs of homogeneous B-patches we eas1ly derive properties for inho-
mogeneous B-patches. The inhomogeneous B-patches {b %,x}ger,, where

ﬂ,X( ) :bﬂ’x(z, 1), zeR*™ 1,

form a basis for Hi‘l. Moreover, the B-patch coefficients of an inhomogeneous f
are found by blossoming the homogenization f.

4, Blossoms of products

In view of (11) we can solve our problem P if we are able to evaluate the blossom
of the polynomial # in H. In this section we concentrate on the case
h = [1i., fi o A;. This includes H1, H2 and the essential part of H3. We describe the
blossom of 4 in terms of the blossoms of the polynomials f;.

We shall repeatedly make use of the following correspondence between blossom-
ing and differentiation of homogeneous polynomlals For feHj and 0<I<kitis
shownin[11]that

k—I

duf(x) = - )93(f)( . d), deR, (15)

where d,f is the directional derivative of f in direction u. In particular for any
xeR’
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B(f) = D"f (),
where D”'g denotes the mth order total derivative of g e C"(R’), so that
D"g(x)(v,...,v") =dy...dmg(x), veR".

We will need Leibniz’ formula for the mth derivative of a product of n functions.

LEMMA1
Assumefi,...,f,€ C"(R’). Then

l..d,,milj!f,-: > ﬁ(Hd,,,)f,-. (16)

hU.UL={1,..m} i=1 \jel
In;=0
Here the sum is taken over ordered n-tuples (I, . . ., I,) of sets I; = Z.
Proof
The lemma follows by induction on m using the product rule d,(fg)
= gd.f +fd.g. O

In addition to the product rule for differentiation the chain rule will be useful.
For ge C™(R?) and 4 e L(R’, R?) the chain rule takes on the form

dy(g 0 A)(x) = (dsug) 0 A(x),
which yields
D™(go A)(x)(',...,u") = D"g(Ax)(4u',..., 4u™), u'eR’. (17)
We can now blossom a product of polynomials by blossoming its factors.
THEOREM 2
Let keZ,. Assume fieH} and 4;eL(R’,R%) for i=1,2,...,n. The |k|-th

degree homogeneous s-variate polynom1a1 [T, fi o Aihas |k|- lmear blossom given
by

B(ﬁﬁ OA,') (ul, ulkl = fIB(ﬁ)(AlUL)7 (18)
i=1 (l;) AT A {1 k) i=1
|Ii|=ki

where A; Uy, is the sequence {4t} .-
Proof

Assume first that s; = s and 4, is the identity on R* all i. Then fj, . . ., f, will satis-
fy (16). The polynomial f; is of degree k;, so that D/f;(x) = 0 for j>k;. Conse-
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quently, if m = |k|, the nonzero terms in the sum (16) appear only for |I;| = k; all i.
Hence

Dkl (ﬁﬁ) (x)('vl, .. ,'Ulkl) = Z ﬁDk'ﬂ(x) ({vj}jel,)7
i=1

RU..Uy={1,...Jk]} i=1
[il=ki

when f;e H; alli.

Suppose then f;e H} and 4;e L(R*, R") so that f; o 4;€ Hj . The previous equa-
tion remains valid if we replace f; by f; o 4;. Application of the chain rule (17) yields
the conclusion of the theorem. 0O

Consider the conversion problems P1, P2, P3 when the number of factors
equals n = 2. For the respective problems let 4, f;, /5 be the homogenizations of
hell i,‘}_,q Jrell ;c',_l and f, e IT ;22_1 asin H1, H2, H3. For these problems theorem 2
specializes as follows, o

Assume first that / is the product h = fif; as in P1. The blossom of the polyno-
mial 4 of H1is given by

B, ..., o) = (‘) S BU(ULBU)U).

kl;ctkz I|U12={1,...,k|+k2}
| i|=k

In the degree raising problem P2 we have fz =1landh=1 fl In this case the blos-
som of #in H2 is given by

1
(kll':;kZ) I]U12={1,...,k|+k2} jel

1=k

For the tensor product h=fi ®f, of P3 we have h = (fj o 41)(f2 o 43), where

Ay, A, are given by H3, and

BR) (W, . .., 1) =

1

(k‘;;kz) Nuly=(1,...k) +kg)
[ril=k;

B (R, ..., da%R) = B(f1)(41U1)B(f2)(A42Up,).

The last two blossoming formulas also appear in [11] as propositions 11.2 and
13.2.In[11] the latter is spoken of as a degree joining formula.

5. Further properties of B-patches

In this section we discuss properties of inhomogeneous B-patches like rotation
and translation. Also, some further properties of B-patches are derived as easy con-
sequences of the close relation between blossoming and differentiation.
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Differentiation formulas for B-patches can be found in [14,4]. In our matrix no-
tation such a formula can be written

dy ... dybS(x) = (k’:! i P (x)TE () ... T (W), (19)

The proof follows easily from the recurrence relation (12) and the diagonal proper-
ty of blossoms if we observe the connection (15) between derivatives of a homoge-
neous polynomial and its blossom. A differentiation formula for inhomogeneous
B-patches is immediate from the corresponding homogeneous formula;

dy ... dbk(z) = K

(k=01
whereu, ze R,
Using this interpretation of blossoming as differentiation we have a simple
proof that the monomials are B-patches. To see this we differentiate the monomial
(la|!/a!)x* along the coordinate axes obtaining

Bl (2) T (W,0) ... T (4, 0),

1 af

H(del)f" ...(def)ﬂ‘%x =bapy  ,B€lk,
Hence according to eq. (11) the homogeneous s-variate monomials of degree k
satisfy

!
|—Z—!'x°‘ = b’;’x(x), xeR’, aelkg, (20)

where
X={:x=¢i=1,...,5j=0,...,k-1}.

We shall also see that translates of iniomogeneous monomials aré B-patches.
This is a consequence of the following, more general B-patch property.

LEMMA3
Let X = {x¥¥eR*:i=1,...,5j=0,...,k = 1} be a knot set for homogeneous
B-patches of degree k, ahd assume A is a nonsingular s x smatrix. Then

b’;’Ax(x) = b’;,x(A_lx), xeR’, el
where AX = {Ax"/ :i=1,...,5j=0,...,k—1}.

Proof
Let pe Hi. According to eq. (11) and theorem 2 for n = 1 the polynomial p o 4
has the following expansion in B-patches on X,

pod= > B(p)(AVs)bx,
ﬂEF)",
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where Vg = {x'0,... xbA=1 x50 .. x%%~1} The knot set AX also defines a
B-patch basis. In the above equation choose p equal to the basis polynomial
p = b~ 4. Thenaccordingtoeq. (11) we have B(p)(A4V3) = bayp- 0

As a consequence of lemma 3 translates of a set of inhomogeneous B-patches
are obtained by applying linear transformations to the knot set:

b 1x(2) = bk y(z—a), a,zeR*! (21)
whenever the s x smatrix 4 is given by
Ax = (z+1ta,t), x=(z,1)eR’.
Similarly we may rotate a basis of B-patches by applying appropriate matrices
to the knot set.

Choosing A to be as in (21) we find that the translated s — 1 variate monomials
of degree <k are inhomogeneous B-patches defined by the knot set obtained by

applying 4 to X of (20).
In general, applying an arbitrary nonsingular s x s matrix 4 to the knot set of
the monomials yields a new B-patchknotset ¥ = [a!,...,d!,...,d',...,a| consist-

ing of k copies of each column a' of 4. An example of such a basis is the Bernstein
polynomials. If 4 has columns &' = (', 1) e R all i, the inhomogeneous B-patches
defined by the knot set Y are the s — 1 variate Bernstein polynomials over the sim-
plex in R*~! with vertices z', ..., 2°.

Recognizing translates of the monomials as B-patches can be useful for the eva-
luation of polynomials given as linear combinations of B-patches. Suppose we
want to evaluate the inhomogeneous polynomial f at quite a number of points in
R*~! and that we know the coefficients of f relative to some given B-patch basis, for
example the Bernstein basis. Instead of using algorithm (10) for every point of eva-
luation, it would be more efficient to transform the representation of £ into mono-
mial basis centered at some point @€ R*~! using algorithm (13) and then evaluate
£ at the given points. Stability considerations should determine the choice of a.

6. A blossoming scheme for (tensor) products

Given knot sets X',..., X" such that X* defines a basis b’,‘; of s;-variate B-
patches of degree k;. In this section we give two recursive algorithms for calculating
the blossom of the polynomial # where

h is given in H with {p,;} =b4 fori=1,...,n (22)

aely,,

This yields two algorithms for solving P, including P1, P2, P3. The algorithms
are mutually dual.
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In order to give algorithms for manipulating polynomials given in the form
(22) we shall make use of the vector/matrix notation developed in section 3. In ad-
dition we need the Kronecker product of matrices, also called the tensor product
of matrices.

Let 4 and B be p x v and £ X n matrices respectively. The Kronecker-product
of Aand B, 4 ® Bisa u€ x vypmatrix defined as

a1,1B al,zB . al,,,B
az,lB azlzB e az’,,B

A®B=| | : . (23)
a, B a, 2B ... a,,B

where a; ; is the typical element of 4. Some properties of the Kronecker product
will be useful. Let 4, B, C, D, E be matrices of dimensions u X v, X n,p X o,V X p
and n x orespectively. The Kronecker-product ® has the following properties,

(1) bilinearity,

(2) associativity, 4 ® (B ®C)=(4B)®C,
(3) AT®BT=(4®B)",

(4) (A®B)(D®E)=AD®Q BE.

See e.g. [7]. When the components in the matrices 4, B are differentiable functions
over R’, we have the product rule

d(A®B) = (d,4) ® B+ A® (d,B) (24)

for the derivative of the matrix valued map 4 ® B. For the Kronecker product of
nmatrices we use the notation ®}_ | E; = E1QE; ®@ ... E,.
The polynomial 4 of (22) may be written as a product

h(x) = B*(x)C*,

where k = (k1, . ..,k,), and where C* are the coefficients in the sum (2) written as
a column vector and the row vector B* contains the associated products of B-
patches. More formally, let the knot sets X!, ..., X" be as in (22).Using the vector

valued maps ")} Y- ., b such that 0 <m; <k;fori=1,...,nwe construct the vec-
tor valued map

B = ®(b’"’ o 4)) (25)
where Ay, ..., A, are the linear maps used in H and m = (my, ...,m,). The map
B™ is a row vector with |y, 5| . . . |I'm,s,| components, and the typical component

[T (B xS o A4;) is a homogeneous s-variate polynomial of degree |m|. Further-
more, let C* be the column vector defined by
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Ck = Z Cal,....a (® e&‘) ) (26)
i=1

where the sum is taken over all tuples (c!,...,a") such that o/ € I', ;. Here e®
denotes the (&)th coordinate vector in RI%|, and & is the integer associated with
o in the ordering of I',, that is used for the vector/matrix notation introduced
in section 3. The blossom of 4 can be written as the product

B(h)(',...,uH) =BG, ..., u¥)CF, (27)

where for 0 = (0,...,0) <m<k we define B™ to be the componentwise blossom
of B™.

In order to give recurrence relations for B* we introduce the matrix valued map
Ay, ; defined by

i—1 n
Ami(u) = Q) I, ® Tyi(A) ® ) 1, (28)
j=1 J=itl

where Ty is the matrix valued map defined in (7), and I, is the y; x y; identity
matrix with g; = |y g |-

PROPOSITION 4
For|m|>1wehave

B™(u,...,u") = %B'”_ei(ul, o umY A (), (29)
i=1

m>0

where B2() = 1.

Proof
The chain rule together with eq. (19) for the derivative of b';’, yield

-1 -
du(by) 0 A))(x) = (dauby)) (4sx) = my(by; " 0 A)(x) Ty~ (Ay).
Using property 4 of the Kronecker product and eq. (24), this yields

AB(3) = 3 B () A1 0.

m1>0

We set u equal to «/™l and differentiate this equation |m| — 1 times with respect to
x in the directions #!,...,ul™~! This results in (29) utilizing the relation (15)
between blossoming and differentiation. O

Proposition 4 offers a method to compute the blossom of the polynomial 4 in
(22). Using (29) we may compute the blossoms of all the products of B-patches
found in the sumin eq. (2). The blossom of A is then obtained by taking a linear com-
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bination. Alternatively we may derive a scheme for evaluating the blossom of 4
starting with the coefficients in (2). Define for m,keZ], such that O<m<k and
|k — m| >0 the column vector

km,

e, .., ulmly = Api(F=myem+e ()t =y (30)

m,<k

where C¥( ) = Ckis given by (26). Equation (30) builds up a multilinear form recur-
sively. The next theorem shows that this recurrence offers a method for evaluating
the blossom of 4 which is dual to the one based on (29).

THEOREM 5
Suppose 4 is given by (22) and let B™, €™ be defined by (27), (30). Then for
1€{0,1,...,|k|} wehave
)
B, ..., uM) = Z B (..., umhem@m W), (31)
i (Ilmll)
osm<k
In particular we have €% = B(h).

Proof
We show eq. (31) by downward induction on /. Equation (31) reduces to eq.
(27) for I = |k|. Suppose (31) is true for some / < |k|. Define F;forj = 1,...,nby

Fi(m) = B¢ (..., w1 A ()™ WL L u)

for e/ <m< k. The recurrence relation (29) yields

k
Z L”'l-B"'(ul,...,u""')(‘f"'(ul"'h“l,...,u"“)

L]
ook (I'"|)
k n k ]
-> (l,,,))z =3 > ?j(m)@%%'
Ol':rlnﬂ: Il o = eilgl;<k Il
- (R) K—m & —m;
=Y ) Fm+d)E NP > Z 5t( +¢)
= i1 (,',,,',)I -m e (,' '|)m<k
O<m<k—el O<ms<k <k

k
= > “ gl arhem i L uH),
I I 1 bl ) ?
=]—
g, (%)
For the last equality we have used eq. (30). The last expression is the right hand
side of (31) with / replaced by / — 1, and the theorem is shown. O
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For computational purposes it is useful to have the component versions of the
recurrences (29), (30). Let €7, . denote the typical component in €™ and

.....

o = BT (B ol X1 © A;)) the typical component of B™. With )\, ; x the coordi-
nate functlon defined in (3) the recurrence relations (29) and (30) are given as
follows in component form. For |m|>1 and (@',...,0") €l X ... X ', ,
we have

o d'(u “Iml)
Z 2 Z’\d-w xi(AU™BEE i (L umEh (32)
m,>0

Forlk—m|>1and(a!,...,0") €l pm 5 X ... X [, ;, wehave
m a"(u |k—m|)
~ ki—m —mly@m -
= > = ’Z,\,,,,,,X.(A ket +e ® wter (W) (33)
m,~<k,

In (32), (33) €' is the ith coordinate vector in R” when used as a superscript, and
when used as a subscript ¢’ is the jth coordinate vector in R¥.

By means of (32), (33) we can make algorithms for solving problems P, P1, P2,
P3. Let us takea closer look at P2.

EXAMPLE (DEGREE RAISING)
Let k, g be nonnegative integers. Given an inhomogeneous B-patch basis b" for

I 1 We want to express the elements in b" in terms of an arbitrary given B- patch
bas1s for IT; .. In order to achieve this let ¥ = {1,...,1} < R where the integer 1
is repeated q times. The univariate homogeneous B- patch basis b% of degree g con-
sists of the single polynomial bq Y(t) =t4. With 4 : x> x,, where x=(x1,...,%s),
the typical element in (b% o A) ® bk is given by (x5)7Bk 4 (x). Therefore, according
to H2 and eq. (11) we can raise the degree of b x from ktok + q by evaluating the
blossom of the product (b y o A)b’;, x- Blossommg this product, eq. (32) specia-
lizes to

B (..., u+9) = q (uk+q) R I A

s~g-1,a

Z’\a—elj, l/c+q qu . ( l)'-"l/(+q_l)

q,a—ef

for a.€ I'k . Similarly, based on (33) we may derive degree raising formulas recur-
ring on the coefficients. For the case g = 1 the formula (34) reduces to the degree
raising formula given in [4], proposition 6.1.
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