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The nonsymmetric Lanczos algorithm reduces a general matrix to tridiagonal by generating 
two sequences of vectors which satisfy a mutual bi-orthogonality property. The process can 
proceed as long as the two vectors generated at each stage are not mutually orthogonal, 
otherwise the process breaks down. In this paper, we propose a variant that does not break 
down by grouping the vectors into clusters and enforcing the bi-orthogonality property only 
between different clusters, but relaxing the property within clusters. We show how this 
variant of the matrix Lanczos algorithm applies directly to a problem of computing a set of 
orthogonal polynomials and associated indefinite Weights with respect to an indefinite inner 
product, given the associated moments. We discuss the close relationship between the 
modified Lanczos algorithm and the modified Chebyshev algorithm. We further show the 
connection between this last problem and checksum-based error correction schemes for 
fault-tolerant computing. 
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1. Introduction 

T h e  Lanczos  a l g o r i t h m  was  or ig ina l ly  p r o p o s e d  b y  L a n c z o s  [21] as a m e t h o d  
for  the recurs ive  c o m p u t a t i o n  of  m i n i m a l  p o l y n o m i a l s  for  s y m m e t r i c  a n d  n o n -  

s y m m e t r i c  mat r ices .  Soon  it b e c a m e  v iewed  as an  ef f ic ient  m e a n s  to r educe  a 

genera l  m a t r i x  to t r id i agona l  fo rm,  f r o m  which  the  resul t  c an  b e  d e t e r m i n e d .  
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More recently the same algorithm has become popular as a method to compute 
some eigenvalues of large sparse matrices. In this context, for symmetric matrices, 
the Lanczos algorithm has been studied extensively [5,24]. In particular, the 
convergence of the algorithm, when used to compute eigenvalues, has been 
extensively analysed in [19,23,28,30] [32, pp270ff]. However, the nonsymmetric 
Lanczos algorithm has received much less attention. Besides some numerical 
stability problems, the method suffers from the possibility of a breakdown from 
which the only way to "recover" was to restart the whole process from the 
beginning with different starting vectors [32, pp388ff]. Methods to continue in the 
face of a breakdown have been proposed by [26], and more recently by [13,17,25]. 
In this paper, we propose a very similar way to continue the process in the face of 
a breakdown, but defined from a somewhat different point of view. 

The connection between the Lanczos algorithm and orthogonal polynomials 
has also been studied extensively (e.g. [6,3,27,11,12,14,4,20]). In this paper, we 
take one particular problem in the area of orthogonal polynomials and reduce it 
to a matrix variant of the nonsymmetric Lanczos algorithm. The problem we 
address is that of computing a set of indefinite weights for a discrete "inner 
product" and the associated orthogonal polynomials given a set of initial mo- 
ments or modified moments. It is well known that under certain (generic) 
normality assumptions the solution can be found with the modified Chebyshev 
algorithm for generating the recurrence coefficients for a sequence of orthogonal 
polynomials [7,29,8,20,31]. In [8] the same problem is addressed in the context of 
continous inner products and associated infinite sets of recurrence coefficients, 
and the nongeneric modified Chebyshev algorithm developed therein is equiv- 
alent to ours when the support of the weight function is just a finite set of points. 
We attempt to address this problem in the context of finite dimensional matrix 
relations, and show how a nonsymmetric Lanczos algorithm applied with a 
particular pair of initial vectors may be used to generate the polynomials 
orthogonal with respect to the unknown set of indefinite weights. The resulting 
method is a simple generalization of the "lower triangular Lanczos" algorithm of 
Kautsky and Golub [18]. 

Checksum schemes play a central role in Algorithm-based Fault Tolerant 
Computing, in which temporary hardware errors occurring during the factoriza- 
tion of a matrix (or related problems) can be detected and corrected without 
having to repeat the entire computation from scratch [15,16,22]. We use the 
simplest checksum scheme to illustrate the relation between it and the process of 
obtaining the weights from the moments of a sequence of polynomials. We show 
how a nonsymmetric Lanczos algorithm may be used to solve for the corrections 
given a set of checksums. 

The rest of this paper is organized as follows. We first describe the proposed 
variant to the nonsymmetric Lanczos algorithm, then discuss the connection to 
the problem of reconstruction of a sequence of orthogonal polynomials and the 
associated indefinite weights, and then discuss the connection to the checksum- 
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based error correction problem. We conclude with a short discussion of some 
numerical examples (collected in the appendices) and some conclusions. 

2. Nonsymmetric Lanczos 

We describe a modified nonsymmetric Lanczos process which recovers when 
the left and right vectors are orthogonal, exactly the situation when the ordinary 
nonsymmetric Lanczos process breaks down and must be restarted. We refer the 
reader to [32, pp388ff] for the details for the standard nonsymmetric  Lanczos 
process upon which the following development is based. To orient the reader to 
what follows, we summarize the process as follows. We are given a matrix A and 
two initial vectors x 0 and Y0. In the standard process, we assume that these two 
initial vectors are not mutually orthogonal. Assuming it does not break down, the 
process generates a set of vectors X = [x0,.. ' . ,  xn_~] and Y=  [Y0 . . . .  , Yn-1] and a 
tridiagonal matrix H with unit subdiagonal such that 

A X =  X H ,  

A T y  = YH,  

y T x  = D (a nonsingular diagonal matrix). 

(la) 

(lc) 

Let X r = [x 0 . . . .  , Xr_l] denote the first r columns of X and Yr denote the first r 
columns of Y. At the r-th stage of the process, the vectors xr and Yr are 
generated. The vector x r is generated by forming b~=Ax~_ 1, and then setting 
x~ = b~-  [x 0, . . . ,  xr_l]h~_ 1, where the coefficients h r _  1 a r e  chosen so that the 
bi-orthogonality condition x~[ Y0 . . . . .  Y~-1] = 0 holds. The vector y~ is computed 
analogously. In exact arithmetic, only the last two pairs of vectors x~_ 2, Yr-z and 
xr-1, Y~-~ enter into the computat ion of the next pair of vectors x ,  Yr" We could 
rescale the vectors x~ and y~ to make YrVXr = 1, SO that D = ! (in which case, the 
H in (lb) must be replaced by H'r) .  We have chosen not  to do so in this 
exposition so that the polynomials that are generated by this algorithm in the 
next section remain monic and to keep the exposition simple. However, such 
scaling would enhance the numerical stability of the algorithm. 

When this algorithm is used for its original purpose to find eigenvalues, the 
algorithm reduces A to tridiagonal form H, from which the eigenvalues can be 
more easily determined. The generated vectors X, Y can provide information 
about the eigenspaces of A, although in practice this is not made use of due to 
memory limitations. The generalization we propose below can also be used for 
the same purpose, but  beyond noting that it does reduce a matrix to a block 
tridiagonal matrix H, we do not address this further in this paper. 

The standard Lanczos process breaks down if at any stage the two computed 
vectors x r, y~ are mutually orthogonal. At this stage, some recovery procedure is 
required. In [32, pp388ff], the only recovery procedure proposed was to restart 
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the whole process f rom scratch with different  start ing vectors. In  this case, all the 
computa t ion  up to this point  mus t  be th rown away. In m a n y  cases, such as in the 
next  section, the starting vectors are fixed by the p rob lem and cannot  be changed.  
Thus  some method  of recovery is essential. 

In our generalized Lanczos method,  the a lgor i thm groups the vectors X and Y 
into clusters X = [X 1 . . . . .  X,,,] and  Y =  [Y1,-.. ,  Y,,], where the clusters satisfy the 
or thogonal i ty  condi t ions 

y/Txj = 0 for i ~ j ,  (2a) 

YTXi = Di is nonsingular ,  except maybe  for the last cluster. (2b) 

As each new vector is generated, the a lgor i thm determines  whether  it is appended  
to the last cluster X k, Yk, or else the new vector starts a new cluster, the former  
cluster being considered complete. This choice is de te rmined  at each step based 
on whether  condi t ion (2b) is not  satisfied, or is satisfied, respectively, at the 
current  stage. Unde r  normal  operat ion,  each cluster consists of exactly one 
vector, so that  the algori thm is identical to the s tandard  Lanczos process. At  each 
stage the two new vectors are generated as follows. As before, b r and  cr are 
formed by applying A to the last generated vector Xr_ 1 and A T to the last 
generated Y~-I, respectively. Next  a pair  of vectors h~_l, g~-i  is found  such that  
b~ -  [X1, . . . ,  X~]hr_ 1 is or thogonal  to [Y1 . . . . .  Y k ]  and C r -  [Y1 . . . .  , Yk]g~-I is 
or thogonal  to [X1 . . . . .  Xk ], where Xi, Yk denote  the clusters conta in ing  the last set 
of x, y vectors generated, which may  or may  not  be completed.  If D k =- ykTXk is 
nonsingular ,  such a h ,_  1 and g r - l  can be found.  In this case the clusters X k, Yk 
are ended,  and the new vectors Xr = b ~ -  [ x 0 , . . . ,  xr_l]hr_a,  y~ = c r -  
[Y0 . . . . .  Yr--1]g~--a start new clusters Xk+a, Yk+~, respectively. 

The  breakdown in the s tandard  algori thm corresponds  to the s i tuat ion where 
the diagonal  block D k is singular. In this case, the new vector x~ is chosen in the 
following manner  and does not  start a new cluster. The  vector b~ i s  projected onto  
the or thogonal  complement  of the last cluster X k by forming br = b r - X k X ~ b r ,  

where XkX~^ is the or thogonal  projector  onto  the s p a c e  COLSPX k. Then  the 
coefficients hr_ 1 are computed  so that  /~r-- [X1,-.- ,  Xk-1]hr-1  is o r thogonal  to 
[Y1 . . . . .  Yk-l]- The  new vector is then x r = br - [X 1 . . . . .  Xk_l]h~_ 1. The  result is 
that  the new vector xr is or thogonal  to [Y~,.. . ,  Yk-1] as in the s tandard  process, 
but,  unlike the s tandard  process, it is or thogonal  to X k instead of Yk" 

The  vector yr is generated in the analogous way, by forming c~=ATy~_I, 
project ing it on to  the or thogonal  complemen t  of Yk to obta in  ~ ,  and  subtract ing 
multiples of co lumns [Y1 . . . . .  Yk-1] SO that  the final result ing vector y r =  [ l - -  
Y k Y ~ - ) C r  - [Y1 . . . . .  Y k - 1 ] g r - 1  is or thogonal  to [X a . . . .  , Xk_l] and Yk. Here gr-1 is 
a vector of coefficients analogous to hr_ ~. 

After  the vectors x~, y~ are de te rmined  in this manner ,  they are appended  to 
the last clusters X k, Yk, respectively. In this way the dus te r s  Yk, Xg are extended 
together until  D k =- y T x  k becomes nonsingular ,  when  bo th  clusters are ended  
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and new ones started. Normal ly  this latter condit ion happens at every stage. The 
resulting set of vectors will satisfy 

A X  = X H ,  

ATE = YG,  

y T x  = D, a block diagonal matrix, 

(3a) 

(3b) 

(3c) 

where H and G are unit  upper Hessenberg matrices. Since y T A X  = y T X H  = D H ,  
and x T A T y =  x T y G = D T G ,  we have the relation GTD = D H .  Since a block 
diagonal matrix times an upper Hessenberg matrix is block upper  Hessenberg, it 
follows that G and H are block tridiagonal, with the partit ioning defined by the 
cluster dimensions. This implies that in computing the coefficients hr_l ,  gr-1 or 
hr-1, g~-I at each stage, only the last two pairs of  clusters X~, Y~, i = k - 1, k, 
must  be used, at least in exact arithmetic. F rom [13] it follows moreover  that on 
completion of a cluster, only the first pair of vectors f rom the clusters Xk_l ,  Yk-1 
contribute to x~ and y~, while before completion of a cluster, none of the vectors 
from X k_ 1, Yk-1 contribute, cf. the example in appendix 2. 

The vectors xr_l  and y~_ 1 are generated in this manner  until one of them is 
found to be all zero. When this happens, we could choose to continue with the 
zero vector, or with a randomly chosen b~ or c~ and re-orthogonalize, until both 
x~, Yr are zero, for some r. However, for our application below, it suffices to 
terminate the process when just one vector is zero. We summarize the entire 
process in appendix 1. 

Let Kr- - - [x0 , . . . ,  Ar-lxo]  be the Krylov sequence generated by x 0 and L~ = 
[Y0 . . . . .  (A T) r-ly0] be the Krylov sequence generated by Y0- We note that each x~ 
is a linear combinat ion of Axe_ 1, Xo , . . . ,  x~_ 1, for all r, regardless of how the 
vectors are grouped into clusters. Hence C O L S P X  r = C O L S P K  r and COLSPY~= 
COLSPL~ for every r. Hence if r is any index for which the matrix LV~K~ is 
nonsingular, then x,, yr are vectors that start a new pair of clusters, and they are 
the unique vectors defined (up to scaling) by x~ = [I - KA'LV_K~ ~)\-lrT'--L r/,aXr_ 1 and 
y~ [ I  L~( T -1 T T = -- K~L~) Kr ]A .V~-l. AS noted above, the other vectors must  be 
chosen so that all the vectors in each cluser are independent ,  and we have chosen 
(arbitrarily) to make the vectors in each dus te r  mutual ly orthogonal.  Thus we 
conclude that the first vector in each dus te r  is uniquely defined up to a scale 
factor, but  the remaining vectors are not  uniquely defined. 

There is some freedom in the choice of b,, t?~, and at least one choice leads to a 
very special structure in the block diagonal matrix D. As we have described it, /~ 
is chosen orthogonal to the part  of the last cluster X k generated up to that point. 
But the modified Lanczos process can work if b r is any l inear  combinat ion of 
br = Axr_  1 and columns of X k as long as the chosen vector is linearly indepen- 
dent  of X k. Unless b~ ~ COLSPX k (in which case x~ = 0), it is necessary and 
sufficient that b r contribute to this linear combination.  In particular, we could 
choose b~ = b r, after checking that it is independent  of X k. Such a choice leads to 
a very particular structure in the diagonal blocks D k, when they are bigger than 
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1 • 1, which we now demonstrate.  Suppose yj, Y j+l are two consecutive vectors 
in cluster Yk,k and x r_ 1, Xr are in the corresponding cluster X k. Suppose further 
that we choose bi+l =bi+a and c~+1 = c~+1 at every step i. Then the matrix 
element Dj, r lies within the diagonal block D k and satisfies the identity: 

Dj,r=yTXr=YT(br- [ X 1 ..... Xk_l]hr_l) :YTbr:Y?AXr_l. 
We also have a similar identity for the element Dj+X,r_~, which also lies within 
the diagonal block Dk: 

- -  �9 �9 �9 ~ ^ ) T  

Dj+l,r-l=Y?+lXr-1 (ej+l [Y1, Yk-1]gj Xr-l=eT+lXr-l=YTAXr-l" 
Hence Dj+l,r_ 1 = Dj,~. Since this is true for any j ,  r for which the indicated 
elements of D lie within the same diagonal block, it follows that the diagonal 
blocks D k are Hankel  matrices. Furthermore,  since every leading principle 
submatrix of D k is singular, it also follows that D k is lower anti-triangular, by 
which we mean that all entries above the main anti-diagonal are zero. We repeat 
that this is under  the assumption that the vectors within each individual cluster 
are not mutually orthogonalized. In our implementation,  we have chosen not to 
make this choice, but rather we have chosen to orthogonalize the vectors within 
each cluster in order to enhance numerical  independence.  Then D k is still lower 
anti-triangular with identical elements on the anti-diagonal. Yet other choices are 
discussed in [13]; in particular, by redefining the elements of X k, Yk after 
completing the cluster one can make D k an anti-diagonal unit matrix. 

3. Indefinite weights and polynomials from the moments 

We show how the nonsymmetr ic  Lanczos process may be used to solve the 
problem of computing a sequence of polynomials h0, ha, . . ,  orthogonal with 
respect to some unknown inner product  given only the generalized moments  
defined in terms of another known sequence of polynomials to, q , . . . .  Specifi- 
cally, we are given a sequence of n monic polynomials t T ( z )  = [ t 0 ( z  ) . . . . .  tn_l(z)]  
of exact degrees generated by the recurrence z t T ( z ) =  t T ( z ) T +  tn(z)er~, where T 

T [0 . . . .  ,0, 1] is the n-th coordi- is the matrix of recurrence coefficients. Here e,  - 
nate unit vector. Since all the polynomials are monic  and of exact degree, T is a 
unit upper Hessenberg matrix (i.e., the subdiagonal entries are all l 's). We call T 
the recurrence matr ix  for the sequence of polynomials tT(z). If T is given, the 
n-th degree polynomial t , ( z )  is the monic polynomials whose zeroes z0 , . . . ,  z ,_  1 
are the eigenvalues of T. If the polynomial t~ ( z )  is given, the last column of T 
can be chosen so that the eigvenvalues of T are exactly the zeroes z 0 . . . .  , zn_l of 
t,,(z), without affecting any of the preceding polynomials t o . . . . .  t~_ 1. We define 
the vector of zeroes z - [z0 , . . . ,  z ,_l] .  

Next, we are given the n initial moments  Sio - ( t i ,  to),,, i = 0 , . . . ,  n - 1, where 
( . ,  �9 ),. is the discrete indefinite inner product  defined in terms of some un- 
known, but arbitrary, set of weights w - [w 0 . . . .  , w~_l] over the given set of  points 
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z. We wish to compute  another  sequence of monic  polynomials hT(z)= 
[h0(z) . . . . .  hn_l(z)]  of exact degree which are orthogonal with respect to this 
unknown set of weights, and then to determine the weights themselves. In this 
particular situation where we are given n points and n initial moments ,  the 
weights are uniquely determined, but  below we discuss the case where we are 
given fewer moments,  in which case an additional condit ion is imposed to 
uniquely determine the weights. It is not  always possible to find such a sequence 
h'r(z), but in any case we would like to find some sequence ha-(z) such that 
h 0 . . . . .  hi_ 1 are all orthogonal (wrt to this inner product)  to h i , . . . ,  hn_ 1, for any 
i for which this is possible (a detailed discussion of this can be found in [8]). 

Since the polynomials h i are all monic and of exact degree we have that 
ho(z ) = to(Z ) = 1. Analogous to the relations for t, we have the relations zhW(z) 
= hX(z )H+ h , ( z ) e  [, where H is the unit upper Hessenberg recurrence matrix 
for the polynomial  sequence h'r(z). We assume that h ~(z) is also the polynomial  
whose zeroes are exactly the points z (this is always possible), that is h ,  = t, = 
I - I ( z -  zi). In the case where both sequences t and h are orthogonal to some 
ordinary definite inner product,  both T and H are tridiagonal, and the method 
we propose is then equivalent to the " L T L "  algorithm [18] for generating the 
matrix H directly from T. 

Though the matrix T can represent an arbitrary sequence of n monic  poly- 
nomials, two particular sequences are typically encountered. Often the monomials  
1, z, z2 , . . . ,  z n-~ are used. In this case, the recurrence matrix T is the upper 
Hessenberg companion matrix corresponding to t , (z ) ,  whose zeros are exactly 
the points z 0 . . . . .  z ,_  r Another  typical sequence is the set of polynomials 
orthogonal with respect to ordinary definite continuous inner product  defined 
over some interval. In this case, it is well known that the sequence t is generated 
by a three term recurrence, so T is a tridiagonal matrix [10,7]. 

In either case, we can select the first n + 1 such polynomials, for any arbitrary 
value of n depending only on the number  of polynomials we wish to compute  or 
the number  of moments  we may know. In the case of the second choice of the 
polynomials orthogonal with respect to a continuous inner product,  it is known 
that these n + 1 polynomials will also be mutually orthogonal with respect to a 
discrete inner product  defined over a finite collection of points and weights which 
are, respectively, the eigenvalues and the squares of the first components  of the 
normalized eigenvectors for the n x n matrix T [10]. This matrix T can be 
generated by the symmetric Lanczos algorithm [2,3]. 

We define the generalized Vandermonde matrices V r and V n,  whose i, j - th  
entries are, respectively, ty(zi) and hy(zi) for i, j = 0 . . . .  , n - 1: 

tT( o) hT(Zo) ] 
V r =  , Vn= . (4) 

tT(zn_l) hT(Zn_l) 



28 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials 

If we define the diagonal matrix Z - -  D I A G ( Z  0 . . . . .  2 n _ l )  , then V r satisfies Z V r =  
VrT. (Recall that t , ( z i ) =  h~(z i )=  0.) Fur thermore  V r is nonsingular. And  we 
have the analogous relation Z V  H = VHH. 

The two sequences t and h are related by  h j ( z ) = t j ( z ) + t j _ l ( z ) u j _ a ,  j 
+ .. .  +to(Z)Uoj, for j = 0 ,  1 . . . .  , n - 1 ,  and scalars uij. We can group all the 
uij 's  into a unit upper triangular matrix U, and collect all these relations into one 
matrix relation h T -- t ru .  In terms of the Vandermonde  matrices: V H = VrU. We 
can define the Gram matrix of mixed moments S - V f W V  n, where W--- 
DIAG(w o . . . . .  w,,_ 1). Notice  that the first column s o of  S is exactly the given data  
[S0o . . . .  , s,,_l.0] T, since h0 = to = 1. 

We can construct some relations among the various matrices that will be  seen 
to be exactly those appearing in the Lanczos process. First we see that Z V  u = 
V n H =  VrUH and Z V  n = Z V r U =  VrTU. Hence, T U =  UH. 

We also have that TTs  = T T v T W V H  = V T Z W V  H. Since Z and W are both  
diagonal and hence commute,  we can continue the equality with V f W Z V n =  

w v , , n  = s n .  

Finally we have that the matrix s T u  = VnVWVrU = VnVWVn is jus t  the Gram 
matrix of moments  of the polynomials h i, and by  assumption this matrix is 
supposed to be diagonal, or if not  possible at least block diagonal. 

We summarize these relations as follows: 

T U =  UH, (5a) 

TTs  = S H ,  (5b) 

s T u  = D, a diagonal or block diagonal matrix, (5c) 

the first column s o of S is the vector of given initial modified moments  

[Soo . . . .  ,s,,_,,0] T, (Sd) 

the first column u 0 of U is e 1 = [1, 0 . . . . .  0] T, (5e) 

T is given. (5f) 

These are just  the right ingredients to run the nonsymmetr ic  Lanczos process 
starting with the matrix A = T and initial vectors x 0 = e 1, Y0 = So, to generate U, 
S and H,  corresponding to the X, Y, H ,  in the notat ion of the previous section. 
The choice x o = e 1 is not artificial, it expresses the initial condi t ion relating the 
two sequences t and h, namely that h 0 = t 0. In the case that a diagonal D exists, 
the generated vectors X and Y will be exactly the U and S. Otherwise the vectors 
X will still be a unit upper triangular matrix U, which defines a sequence of 
polynomials h à  = ta`U. However,  Y will not be exactly the matrix S. But it will 
still be true that for every i, the first i columns of  Y and of S will span the same 
space, namely the Krylov space COLSP[$0, TT$0 . . . . .  (TT)i-I$0]. Since the first 
column Yi, of each generated Lanczos cluster Yk is uniquely defined up to 
scaling, the corresponding column si~ of S must  be  the same, up to scaling. 
Hence the orthogonali ty conditions that [x 0 . . . . .  x,._,] is or thogonal  to 
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[x~, . . . .  , x ,_ l ]  will still be valid for each index i k denot ing the first co lumn of a 
cluster. 

The  matrix U defines the polynomials  hi(z ) in terms of the given polynomials  
ti(z ), i = 0, 1 . . . . .  so the Lanczos process has, in effect, generated the polynomi-  
als h~(z), as il lustrated by the example in appendix  3. Once the U is known,  one 
can solve for the weights themselves using the first co lumn of the relation 
S = v T w v n ,  namely 

s0-- V w. (6) 
Note  that (6) can be used directly wi thout  recourse to the Lanczos algori thm, but  
the above discussion shows how the polynomia l  sequence hT(z) can be generated 
in terms of tT(z) directly f rom the momen t s  wi thout  comput ing  the correspond-  
ing weights at all. 

In the case that  only I of the weights are nonzero,  the Lanczos process will 
terminate  at the l-th stage�9 This can be seen because the polynomials  hi, h1+1,...  
will all be zero on those points  with nonzero  weights, hence the corresponding 
columns of S will be entirely zero. Let U/, S / denote  the partial  U, S, respec- 
tively, generated in this case (i.e. columns 0 , . . . ,  l). The  Lanczos process has 
generated the first l + 1 polynomials  hi(z),  i = 0 , . . . ,  I. We can compute  the first 
l + 1 columns of V H a s  VrU/. The  last co lumn of VrU I will be the vector 
[h i ( z0 ) , . . . ,  h / ( z ,_  1)] T and have zero entries exactly on those points  with nonzero 
weights. Thus  one can determine f rom this last co lumn which points  have 
nonzero weights. 

Knowing  which entries of w are nonzero,  we can delete the zero entries of w 
together with the corresponding rows of V r in formula  (6). We are then left with 
n equat ions in l unknowns.  We can then select jus t  the first l of these equat ions 
to get an l • l system of linear equat ions for the l nonzero weights wi, , . . . ,  wi,: 

�9 T \ O . . . / - - 1  
= ( Vi ),,...i, �9 (7) 

L S l -  1,0 I 

In the above, the nota t ion  /vT~0.. . I-1 denotes  the submatr ix  of Vr -r obta ined  by k *" T ) i l . . . i  t 
extracting rows 0 . . .  1 - 1  and columns i l . . .  i t. It is easily verified that  this 
submatr ix  is nonsingular .  No te  that  in (7), only the first l mixed momen t s  appear.  

If it is known  in advance that  the n u m b e r  l of nonzero  weights is at mos t  some 
given number  d, then the Lanczos process is guaranteed to terminate  in at most  d 
steps, and only the first d + 1 rows and columns of S are required to solve for the 
weights. But the top left ( d +  1 ) •  1) parts  of S and U are completely  
de te rmined  through the Lanczos process by the first m = 2d  + 1 initial momen t s  
S O 0 , . . .  , S2d,O , due to the fact that  the generat ing matr ix  T in the Lanczos process 
is upper  Hessenberg and the generated U is upper  triangular. Hence  if only the 
first m momen t s  are known,  one can fill out  the remaining entries in the initial 
vector s o with arbitrary fill values, and then carry out  the Lanczos process as 
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before. In this case, the Lanczos process should be terminated when the first 
d + 1 entries of a generated Yt are all zero, corresponding to the first d + 1 entries 
of column s t being all zero. If 1 weights are nonzero, this condit ion cannot  occur 
before the l-th stage, since the leading top left l x l  block of S will be 
nonsingular. The matrix U~ generated by the Lanczos process is still upper  
triangular and hence is independent  of the choice of fill values for s o . In fact, only 
the first m entries in each generated Lanczos vector need be computed,  and only 
the top left m x m part  of T need be referenced. Thus the generated U~ can be 
used to solve for the weights in exactly the same way as outlined above. If any 
multiple vector clusters arise, it is necessary to relax the orthogonali ty condit ion 
within the S (but not  the U) clusters to linear independence,  by enforcing 
orthogonality among the first rn entries of each generated s vector, but  this does 
not  affect the generated U matrix. 

If there is an infinite sequence of modified moments  si0, i = 0, 1, 2 , . . . ,  arising 
from a continuous formal inner product,  the same argument  can be used to show 
that the Lanczos algorithm can be applied using only the first m = 2 d +  1 
modified moments  to obtain the first d formal orthogonal polynomials h/, 
j = 0 , . . . ,  d -  1 with respect to this formal inner product.  This is discussed further 
in the next section. 

4. Equivalence of the Lanczos and the modified Chebyshev algorithms 

The problem of the previous section can also be solved with the modified 
Chebyshev algorithm [7,8,20,29,31] or, in cases where the classical algorithm 
breaks down, by its nongeneric extension [8]. This approach and the connect ion 
between the nonsymmetr ic  Lanczos and the modified Chebyshev algorithms will 
be discussed in this section. 

Some relations between the two algorithms have been observed before, e.g. in 
[20]. Clearly, the two methods produce recurrence coefficients of  formally or- 
thogonal polynomials. But while the Lanczos algorithm has as input an n X n 
matrix A and two n-vectors x 0 and Y0, the Chebyshev algorithm starts with a set 
of  initial modified moments  sio and a corresponding recurrence matrix T. (The 
unmodified moments  are the special case of modified moments  where T is the 
downshift  matrix with ones on the first subdiagonal and zeroes elsewhere.) 
Normally  it takes 2n modified moments  si0 , i = 0 , . . . ,  2n - 1, to determine the n 
columns of the normalized tridiagonal matrix H.  The n x n lower triangular 
matrix S is therefore extended to a 2n x n matrix S, of which the modified 
Chebyshev algorithm generates recursively column by column along with the 
columns of H. Actually only the elements si~ , i = k, k + 1 , . . . , 2 n -  k -  1 of 
column k (k  = 0, 1 , . . . ,  n -  1) are computed,  since sik = 0 if i < k, while for 
i >i 2 n -  k the moment  s2n,0 would be needed. (For  simplicity we assume the 
normal  (generic) case where the algorithm does not  break down, but  our argu- 
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ments extend to the general case.) If instead Lanczos input is given, one can 
choose any 2n x 2n recurrence matrix T (unit Hessenberg), compute  the corre- 
sponding polynomials t~, i = 0 , . . . ,  2n - 1, and the modified moments  

Sio-y~ t i (A)xo ,  i = 0  . . . .  , 2 n -  1. 
Started with these data the modified Chebyshev algorithm produces t h e n  exactly 
the same H and thus the same polynomials h0 , . . . ,  hn_ 1, hn as one obtains with 
the Lanczos algorithm. If A is a nonderogatory matrix of rank n, and x 0 and Y0 
are not unluckily chosen, h ,  is the minimal polynomial  of A. 

However, in order to prove that the two algorithms are equivalent, we need 
conversely to be able to specify for given modified moments  S0o,..., s2n-l,0 and 
given recurrence matrix T some Lanczos input A, x 0, Y0 that will produce the 
same H. 

The situation of the previous section is special, since there the set of zeroes 
z 0 . . . . .  z ,_ 1 of t, is prescribed, and the support of the weight function is a subset 
of it. We can then assume that tn+~(z)= Zitn(Z), i = 0, 1 , . . . ,  and thus s~0 = 
s~+a.0 = . . .  =s2~_1 ,0=0  since S~o- ( t  ~, to) w. Application of the modified 
Chebyshev algorithm to these data yields the n x n matrices S and H. (All 
additional elements of S that occur in the formulas are zero.) But the first n /2  
columns of H are independent  of the choice si0 = 0, i = n, n + 1 . . . .  , since these 
first n/2  columns of H are normally determined by the first n moments,  as 
noted above. 

As suggested in the previous section, cf. (5), we can then apply the nonsymmet-  
ric Lanczos algorithm with A -  T, x 0 - e  1, Y0-  So to generate H. Like the 
modified Chebyshev algorithm it generates Y -  S and H column by column, but  
it produces additionally X--- U. Note  that this Lanczos problem has then a very 
special structure. Since x 0 = e 1, the matrix U is unit upper triangular, and, in view 
of STU = D, the matrix S is lower triangular (or block tower triangular), as we 
know of course from its original definition. Therefore, once the first j (block) 
columns of S and D are known, the first j (block) columns of U could be found 
by the standard recurrence for inverting a triangular matrix. 

In the more general situation where the support  of the weight function is not 
known and thus possibly h n 4: t , ,  the relations (5a) and (5b) need no longer hold 
for n x n matrices. But, assuming that infinite sequences of polynomials tj and 
modified moments  Sio are given, we can still derive the analogue of (5a)-(5f) for 
infinite matrices H,  S, T, and U, cf. [8], with T being arbitrary unit upper 
Hessenberg. We could then formally run both the modified Chebyshev algorithm 
and the Lanczos algorithm, starting the latter with A - T, x 0 - e l ,  Y0-  So, and 
they would produce the same result. Fur ther  inspection of the dependencies 
shows that for producing the first n columns of H it normally suffices to know 
the first 2n modified moments  and to compute  a (decreasing) finite number  of 
zlements of the columns of S and U. So, after all, we still only need finite 
sequences { tj } and { sg0 } if the support of the weight function is a finite set and 
thus A has finite rank. 
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We conclude that the nonsymmetr ic  Lanczos algorithm and the modified 
Chebyshev algorithm are indeed equivalent in the sense that, theoretically, all the 
problems that can be solved with one can as well be solved with the other, 
whereby both produce identical results. Since T can be chosen to be the shift 
matrix, it follows that also the classical (unmodified) Chebyshev algorithm is 
equivalent to the Lanczos algorithm. We have moreover  seen f rom this equiv- 
alence that when nonsymmetr ic  Lanczos is applied to an upper Hessenberg 
matrix T and is started with x 0 - e l ,  it suffices to compute  the columns of S. 
Likewise, if it were applied to a lower Hessenberg matrix and started with 
Y0 - ex, it would be sufficient to compute  the columns of U. Computa t ional  costs 
and storage could thus be reduced by half. However, in practice such a special 
choice of one initial vector may  not be advisable. 

5. Application to weighted checksum error correction scheme 

We examine a particular application of the above reconstruction that occurs in 
the use of weighted checksum schemes for detection and correction of temporary  
or transient hardware errors that might occur during the course of a computat ion.  
The problem we address is to detect and correct up to d temporary  hardware  
errors that might occur during the solution of an n • n system of linear equations 
of the form A x  = b. We consider algorithms that solve such systems of linear 
equations by factoring the matrix A into A = pTLR ( a s  in Gaussian elimination 
with partial pivoting), A = QR, or some similar form, where P is a permuta t ion  
matrix, L is unit lower triangular, R is upper triangular, and Q is an orthogonal  
matrix [9]. To simplify the exposition, we let Q denote the factoring matrix: 
either the orthogonal matrix just noted or the product  pTL for Gaussian 
elimination. In either case, Q-1 represents the " row operat ions" applied to the 
matrix A to reduce it to the upper triangular form R = Q-1A. 

To detect and correct up to d hardware  errors, we need at least m - 2d  + 1 << n 
checksums on each row of A. Let M =  [l[Vm] be the n x (n + m) matrix of 
checksums, where Vm is the n • m matrix of checksum coefficients, consisting of 
the first m columns of V r from (4). Given any matrix A, we can compute  m 
independent  checksums on each row, to obtain the n x m matrix of checksums 
A c - A  V,,. We can append this to A to form the augmented matrix A M - A M  = 
[A [At]. The operations represented by Q-1 are applied to A m, yielding the 
checksummed factorization A M = QR M = Q[R I R~], where R~ = Q-1A~ is the 
result of applying the row operations represented by Q-1 to the checksums A~. 
The checksums can then be used to detect errors by  forming the n x m checksum 
difference matrix F = RMN, where 
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is the weighted checksum matrix. The checksum difference matrix F--- 
Q-I[A I A c ] N = R F m -  Q-1Ac is simply the difference between the checksums 
computed  from the resulting R and the row operat ions Q-a  applied to the 
original checksums A~ from the starting matrix A. Hence  if no hardware errors 
occur, F will be  entirely zero. Under  the assumption that at most  d errors have 
occurred in any row, it can be  shown conversely that if F is entirely zero, then no 
errors have occurred during the computat ion [1]. Therefore an error is detected in 
a row of RM exactly when the corresponding row of F is not  entirely zero. 
Furthermore,  the nonzero entries of  F can be  used to determine what  that error 
was and where it occured, so that a correction can be  applied. 

Suppose far is a nonzero row of u Then the corresponding row of the 
computed  RM has an error, which we now show how it may  be computed.  Let 
r~ - [tar [ r~] be the corresponding row of the correct R M to be  determined. Let 
e ~  = [e ar [e~] be the net error in that row o f R  M. That  is, the row of RM actually 
computed  is r~t + e~t and satisfies (r~ + e ~ t ) N = f  ar. Since r~ is the correct row, 
we have r ~ N =  0 and e ~ N  = f T .  If we assume (as in [1]) that the errors occur in 

1"= O, and we have the the matrix R itself, not  in the checksums R~, then e c 
relation 

eTVm =fT. (8) 
We obtain the m-vector f T from the checksum difference matrix, and our goal 

is to solve for the n-vector of errors e T. In the case m = n, the matrix V,, is square 
and nonsingular, so e T can be  obtained directly by  solving the system (8). But 
more typically, we assume that at most  d << n entries of  the vector e T are 
nonzero, meaning at most  d individual errors occurred during the factorization. 
In this case, we compute  only m = 2d  + 1 << n checksums per row. We  know at 
most  d entries of e are nonzero, but  we do not  know exactly how many  are 
nonzero nor which ones they are. 

We can apply the following interpretation to (8). Since V m is generated by  a 
sequence of polynomials t T, we can interpret the vector e as a vector  of  unknown 
weights. Then the vector f is seen to be a vector of  moments:  fi = ~to, ti)e" Thus 
we can interpret f as the vector of initial moments  s o of the previous section, and 
e as the vector of  weights w, and use the nonsymmetr ic  Lanczos algorithm as 
outlined above to solve for e from the " m o m e n t s "  f .  We run the Lanczos 
algorithm with matrix T and starting vectors u 0 = [1, 0 . . . . .  0] T and s o = f ,  where 
T is the recurrence matrix for the polynomials  defining the given checksum 
coefficients V m. We can also use the Chebyshev algorithm to accomplish the same 
task. 

If l ~< d is the number  of errors that have occurred in the row of R ,  this process 
will stop after l steps, generating l + 1 columns U t on the right and S t on the left, 
as outlined in the previous section just  above eq. (7). The zero entries in the last 
column of VmUt mark the posit ions of the nonzero entries in the error vector  ear. 
Then the values of these errors are obtained by  solving the linear system (7). No te  
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that, unlike the process in [1], it is not necessary to solve an eigenproblem to 
determine the positions of the errors. 

In order to use this method, we need the recurrence matrix T and the first m 
columns of the generalized Vandermonde matrix V,,. If T is given, we may apply 
the recurrences ZVm = V,,,T tO obtain V,,,, where Z is the diagonal matrix of 
eigenvalues of T. If we desire instead to use the polynomials orthogonal with 
respect to some given inner product, it is necessary to generate T. This can be 
done by the symmetric Lanczos algorithm [10,3,2], or somewhat less stably by the 
nonsymmetric Lanczos algorithm as outlined in the previous section, starting with 
the shift matrix (i.e. the recurrence matrix for the monomials z ~) and the ordinary 
moments  with respect to the given inner product. 

6. Numerical examples 

We first illustrate the generalized Lanczos algorithm with an 8 x 8 example. 
The input A, x 0, Y0, and the generated vectors X, Y, coefficients H,  G, and the 
products D = Y'rX, yTAX are all listed in appendix 2. The method was run 
twice, once as described, and once with the orthogonalization within each cluster 
turned off. This last choice was made to illustrate the Hankel structure in the D. 
The method returned four clusters of dimensions 2, 4, 1, 1, respectively, indicated 
by the partitioning lines. 

One can note several properties we have indicated above, besides the Hankel 
structure in D when orthogonalization within clusters is turned off. Even when 
this orthogonalization is applied, the diagonal blocks D k still maintain a Hankel- 
like, lower anti-triangular, structure. Also note that the initial vectors in each 
cluster remain unchanged in the second run. These initial vectors are x;, Yi, i = 0, 
2, 6, 7. One can also see that the H and G do not turn out identical in this 
algorithm, unlike the situation in the standard Lanczos method. But they do turn 
out identical when the orthogonalization within clusters is turned off. We note 
that one sees much more structure in the numerical examples than was indicated 
above. 

In appendix 3 we give a short example illustrating the reconstruction of a set of 
indefinite weights, given a few initial moments.  This corresponds exactly to the 
problem of reconstructing an error vector given a checksum difference vector 
computed using checksums during the course of some matrix factorization 
algorithm. In the example, we have used a set of checksum coefficients generated 
using a sequence of orthogonal polynomials, but  it would be equally possible to 
do it with the monomials, in which case the checksum coefficients would be just 
the entries from the ordinary Vandermonde matrix. Using orthogonal polynomi- 
als tends to yield checksum coefficients that are better scaled, and if we relaxed 
the requirement that the polynomials be monic, we would improve the scaling 
even further. 
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7. Conclusions 

We have outlined a nonsymmetric matrix Lanczos procedure that can continue 
when a generated pair of vectors are mutually orthogonal. This process has been 
defined in constructive fashion and entirely in terms of matrices. We then showed 
the connection between the matrix process and the moments  and weights with 
respect to a discrete indefinite inner product. We showed how the matrix process 
with a particular pair of initial vectors corresponds exactly to the process of 
generating a matrix of recurrence coefficients for polynomials orthogonal with 
respect to an unknown, indefinite, weight function, starting with a set of initial 
moments,  as done by the Chebyshev algorithm. We finally indicated how the 
problem of error correction in an algorithm-based checksum scheme embedded in 
a matrix factorization process can be cast as a problem of computing indefinite 
weights from the moments  for a set of orthogonal polynomials. In the appendices 
2 and 3 we illustrate the Lanczos process with non-diagonal blocks and the 
process of computing the unknown weights for an inner product  with some 
numerical examples. 

There is much more structure in the results of the Lanczos algorithm than we 
have indicated here. We have not addressed the issue of how the nonsymmetric 
Lanczos algorithm might be used to solve the matrix eigenproblem. We have 
indicated that there are several places within the algorithm where we have choice 
of scaling, and we have chosen certain scalings to enhance the clarity of the 
presentation of the algorithm, and to keep the corresponding polynomials monic. 
We have not discussed how the choice of scalings might be used to improve the 
numerical stability, nor have we addressed the need for re-orthogonalization of 
the Lanczos vectors to maintain biorthogonality. All these aspects are left for 
future work. 
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Appendix 1 

MODIFIED NONSYMMETRIC LANCZOS ALGORITHM 

Below is a simple summary  of the modified nonsymmetr ic  Lanczos algorithm. 
The computat ional  details (especially in steps 2.2, 2.3) are omit ted to ease the 
clutter in this summary.  For  example, it was shown in the text just  below eq. (3c) 
that H and G are block tridiagonal, hence many  of the entries in h, ~ are zero, 
at least in exact arithmetic. But computat ional  experience with Lanczos methods 
in floating point arithmetic has shown the need to re-bi-orthogonalize in order to 
maintain the properties of bi-orthogonality among the vectors X, Y, and block 
tridiagonality of H,  G (cf. [32, p391], [9], etc.). 
Input: n • n matrix A and two n-vectors x0, Y0. 
1. ( * initialization * ) 

Set all clusters X I, Y/ (for all l) to "empty" .  
Set  first clusters X 0 := [x0], Y0 := [ Y0]- 
If y~x o = 0 then set k := 0 else set k "= 1; ( * current  cluster index * ) 
Set  i.'= 0, ( * vector index * ) 

2. Until x i =  0 or y i =  0 do begin 
( * main loop �9 ) 
2.1. ( * al~ply matrix operator to expand Krylov sequence * ) 

Set  b := A x i and ~ := A Ty.. 
2.2. ( * bi-orthogonalize against previous clusters * ) 

Find coefficient vectors h~, ~ such that 
b := b - [X 0 . . . . .  Xk_l]h i is orthogonal to [Y0 . . . . .  Yk-l] and 
c -'= ~ - [ u . . . .  , Yk-  1 ] g~ is orthogonal to [ X 0 . . . . .  Xk- 1 ]. 

2.3. ( * if current  cluster nonempty,  orthogonalize within the cluster * ) 
If cluster pair X k, Yk nonempty  then 

find coefficient vectors h,., g; so that 
X i +  1 : :  l) - -  X k h  i is orthogonal to X k and 
Y;+1 := c -  Ykg~ is orthogonal to Yk. 

2.4. ( * append pair of  new vectors to current  cluster. * ) 
Set  X k := [Xk, xi+ l]. 
Set Yk := [Yk, Y~+1]. 

2.5. ( * if current  cluster complete, make next cluster " cu r r en t " , . . .  * ) 
( * . . .  so next vector will be the first vector in that next cluster * ) 
If YkvXk is non-singular then 

Set  k : = k +  1. 
2.6. Set  i : = i + 1 .  

End Until Loop. 
Results: vectors X = [X0, . . . ,  XI,], Y =  [Y0,---, Yk], and coefficients H,  G, satis- 

fying (3a)-(3c). 
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A p p e n d i x  2 

LANCZOS ALGORITHM EXAMPLES 

Input  matrix A Initial vectors 
Xo Yo 

0 0 0 0 0 0 0 --1 
1 0 

1 0 0 0 0 O, 0 0 
1 0 

0 1 0 0 0 0 0 0 
0 1 

0 0 1 0 0 0 0 0 
0 0 

0 0 0 1 0 0 0 0 
0 0 

0 0 0 0 1 0 0 0 
0 - 1  

0 0 0 0 0 1 0 0 
0 0 

0 0 0 0 0 0 1 0 
0 0 

1.0 - 0 . 5  
1.0 0.5 

0 1.0 
0 0 
0 0 
0 0 
0 0 
0 0 

Generated 
1.0 0 

0 1.0 
0 0 

1.0 0 
0 1.0 
0 0 
0 0 
0 0 

right vectors X 
0 - 0 . 5  
0 0 

1.0 0 
0 0.5 
0 0 

1.0 0 
0 1.0 
0 0 

1 . 0  1 . 0  

- 1 . 0  1 . 0  

- 1 . 0  - 1 . 0  

1.0 1.0 
- 1 . 0  1 . 0  

- 1 . 0  - 1 . 0  

1.0 - 1.0 
1.0 1.0 

0 0 
0 1.000 

1.000 0 
0 0 
0 - 1.000 

- 1 . 0 0 0  0 

0 0 
0 0 

0.5 - 0.75 
1.0 0.50 

0 1.00 
0 0 
0 0 
0 0 

Generated left vectors Y 

1.000 - 0 . 1 6 7  0.182 - 0 . 3 0 0  
- 1.000 0.167 - 0.182 0.300 

1.000 -0 .167  0.182 - 0 . 3 0 0  
- 1.000 0.167 - 0.182 - 0.700 

1.000 - 0.167 - 0.818 - 0.150 
- 1.000 - 0.833 - 0.091 - 0.350 

0 0 - 1 . 0 0 0  0.150 
0 - 1 . 0 0 0  0.091 0.350 

Right-Hand coefficients H 
0 0 0 - 1 . 0  
0 0 0 0 

0 

0 

0 0 0.5 - 0 . 5  
1.0 0 0 1.5 

0 1.0 0 1.0 
0 0 1.0 - 1.0 

0 0 0 1.0 

0 0 0 0 

- 2 . 0  
0 
0 
0 

1.0 

- 1 . 0  

1.000 
- 1 . 0 0 0  

1.000 
- 1 . 0 0 0  

1 . 0 0 0  

- 1 . 0 0 0  

1.000 
1.000 

1.000 
- 1 . 0 0 0  

1.000 
- 1 . 0 0 0  

1 . 0 0 0  

- 1 . 0 0 0  

1.000 
- 1 . 0 0 0  
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0 - 1.000 
1.000 1.000 

Lef t -Hand  coefficients G 
0 0 0 - 1.000 
0 0 0 0 

0 1.000 - 0.833 - 0.028 0.197 - 0.742 - 2.000 0 
0 0 1.000 - 0 . 0 7 6  0.537 0.705 0 0 
0 0 0 1.000 0.059 0.628 0 0 
0 0 0 0 1.000 - 0 . 1 5 0  0 0 

0 0 0 0 0 1.000 0 - 1.000 

0 0 0 0 0 0 1.000 0 

0 
1.000 

1.000 
0.500 

Block diagonal matr ix D = y T x  
0 0 0 0 
0 0 0 0 

0 0 0 0 0 - 1.000 0 
0 0 0 0 - 1.000 0.167 0 
0 0 0 - 1.000 0.091 - 1.182 0 
0 0 - 1 . 0 0 0  0.150 - 0 . 6 5 0  - 0 . 0 5 0  0 

0 0 0 0 0 0 2.000 0 

0 0 0 0 0 0 0 - 2.000 

Block Tridiagonal matrix yTAX 
1.000 0.500 
1.000 - 0.500 

0 0 
0 0 
0 0 
0 - 1.000 

0 0 

0 0 

0 0 0 0 
0 0 0 - 1.000 

0 
0 

0 
0 

X with 

1 0 
1 1 
0 1 
0 0 
0 0 
0 0 
0 0 
0 0 

0 1 0 0 - 1  1 
0 0 1 0 1 - 1  
1 0 0 1 1 1 
0 1 0 0 1 1 
0 0 1 0 1 - 1  
0 0 0 1 1 - 1  
0 0 0 0 1 1 

non-orthogonal ized clusters 

1 0 0 0 1 1 

Below are the results when the vectors within each cluster are not  orthogonalized.  

0 0 - 1.000 1.000 0 0 
0 - 1.000 0.167 - 1.157 0 0 

- 1.000 0.091 - 1.182 - 0.227 0 0 
0.150 - 0 . 6 5 0  - 0 . 5 5 0  0.125 2.000 0 

0 0 0 2.000 0 - 2.000 

0 0 0 0 - 2.000 0 
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Y with non-orthogonalized clusters 
1 - 1  1 - 1  

- 1  1 - 1  1 
1 - 1  1 - 1  

- 1  1 - 1  0 
1 - 1  0 0 

- 1  0 0 - 1  
0 0 - 1  1 
0 - 1  1 - 1  

0 0 
0 1 
1 0 
0 0 
0 - 1  

- 1  0 
0 0 
0 0 

H with 
- 1  

1 
- 1  

1 
- 1  

1 
- 1  

1 
1 

1 
- 1  

1 
- 1  

1 
- 1  

1 
- 1  

non-orthogonalized cluster 
0 0 0 - 1  
0 0 0 0 1 

1 0 0 0 0 - 2  
0 1 0 0 2 0 
0 0 1 0 1 0 
0 0 0 1 - 1  0 ( 

0 0 0 0 1 0 - 

0 0 0 0 0 0 1 0 

G with non-orthogonalized clusters 
0 - 1  
1 1 

0 0 0 - 1  
0 0 0 0 

0 1 0 0 0 0 
0 0 1 0 0 2 
0 0 0 1 0 1 
0 0 0 0 1 - 1  

0 0 0 0 0 1 

0 0 0 0 0 0 

1)= y T x  
0 1 
1 1 

0 
0 

- 2  C 
0 (~ 
0 C 
0 C 

0 - 1  

0 

with non-orthogonalized clusters 
0 0 0 0 
0 0 0 0 

0 0 0 0 0 - 1  
0 0 0 0 - 1  1 
0 0 0 - 1  1 - 2  
0 0 - 1  1 - 2  1 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 
0 

0 0 
0 0 
0 0 
0 0 

2 0 

- 2  
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y T A X  with non-orthogonalized clusters 
1 1 
1 0 

0 0 0 
0 0 0 

0 0 0 0 - 1  
0 0 0 - 1  1 
0 0 - 1  1 - 2  
0 - 1  1 - 2  1 

0 0 0 0 0 

0 0 0 0 0 

0 
- 1  

1 0 
- 2  0 

1 0 
- 1  2 

2 0 

0 

0 
0 

0 
0 
0 
0 

- 2  

0 

Appendix 3 

P O L Y N O M I A L  A N D  W E I G H T  R E C O N S T R U C T I O N  E X A M P L E  

We use the vector of points z = [1, 2 , . . . ,  8] T. Assume only d = 2 weights are 
nonzero, so we need only m = 2d  + 1 = 5 initial moments  S0o,... ,  s40. 

In the context of checksumming the L U  factorization [9] of a matrix A = L U, 

this corresponds to computing m = 5 checksums on each row of the 8 • 8 matrix 
A, allowing up to d = 2 errors per row. If V 5 is the 8 • 5 matrix of checksum 
coefficients, then the checksums computed  on A will be A V 5. The checksum 
difference vector f ,  a 5-vector, is one row of the checksum difference matrix F, 
which is the difference between the checksums on the resulting U and the row 
operations L applied to the original checksums A V 5. 

One can use the symmetric Lanczos algorithm [10,3,2] to find the tridiagonal 
matrix T that generates the monic polynomials orthogonal over points z with 
weights 1 , . . . ,  1: 

4.500 5.250 0 0 0 0 0 0 
1.000 4.500 4.000 0 0 0 0 0 

0 1.000 4.500 3.536 0 0 0 0 
0 0 1.000 4.500 3.048 0 0 0 
0 0 0 1.000 4.500 2.462 0 0 
0 0 0 0 1.000 4.500 1.762 0 
0 0 0 0 0 1.000 4.500 0.942 
0 0 0 0 0 0 1.000 4.500 

The 

t o =  

t I = 

corresponding polynomials are (from ztT( Z ) = IT( Z ) T + t n ( z ) e~) 

zt o - 4.5t 0 = z - 4.5 

t 2 = zt  1 - 4.5q - 5.25t 0 = z 2 -  9z + 15 
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T h e  checksum coeff ic ients  V 5 can be  f o u n d  b y  eva lua t ing  the first  f ive such 
po lynomia l s  on the poin ts  z. One  could  also use the n o n - s y m m e t r i c  Lanczos  
a lgor i thm itself to genera te  T, V r direct ly,  s tar t ing  wi th  the m o m e n t s  of  the 
monomia l s  1, z ,  2 2, 23 , . . .  over  the po in t s  z with weights  1 , . . . ,  1. 

T he  vector  of  initial m o m e n t s  we use is s o = [ - 4, - 25, - 34, 90, 277.714, * ,  
, ,  , ]T, where  the * 's s tand  for  unspec i f ied  fill  values.  In  o u r  c h e c k s u m  
example ,  we use f T =  [ - -4 ,  - -25,  --34,  90, 277.714] as o u r  example .  

The  Lanczos  process  te rminates  af ter  2 steps, genera t ing  the vec tors  

1.000 - 6.250 4.000 
0 1.000 - 2 . 0 0 0  
0 0 1.000 
0 0 0 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

& 
- 4.000 0 0 

- 25.000 101.250 0 
- 34.000 202.500 0 

90.000 - 405.000 * 
277.714 * * 

T he  �9 's de no t e  entr ies  depend ing  on  the fill values  in s o. Th ese  need  no t  be  
compu ted .  ., 

T he  first three po lynomia l s  o r t hogona l  wi th  respec t  to the u n k n o w n  inner  
p roduc t  are der ived f rom U3: 

h o = / o  = 1  

h~ = t 1 - 6.25t o = z -  10.75 

h 2 = t 2 - 2t I - 4t  o = z z - l l z  + 28. 

N o t e  the zeroes of  h 2 are z 3 = 4 and  z 6 ~. 7, as is shown  in the G e n e r a l i z e d  
V a n d e r m o n d e  mat r ix  VrU3: 

J -r .~j 

1 . 0 0  

2.00 
3.00 
4 . 0 0  

5.00 
6.00 
7.00 
8 . 0 0  

1 . 0 0  - 9 . 7 5  1 8 . 0 0  

1 . 0 0  - 8 . 7 5  1 0 . 0 0  

1 . 0 0  - 7 . 7 5  4 . 0 0  

1 . 0 0  - 6 . 7 5  0 

1 . 0 0  - 5 . 7 5  - 2 . 0 0  

1.00 - 4.75 - 2.00 
1 . 0 0  - 3 . 7 5  0 

1 . 0 0  - 2 . 7 5  4 . 0 0  
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C o r r e s p o n d i n g  to the zeroes  in the last  c o l u m n  of  V rU  3, the  n o n z e r o  weights  
are w 3, w 6. W e  solve the sys tem (7): 

- 4.0 1.0 w 3 l : llw6] 
to ob ta in  the so lu t ion  w 3 = 5, w 6 = - 9. So the f inal  set of  weights ,  c o r r e s p o n d i n g  
to the e r ror  vec to r  in the checksum p r o b l e m  is w = e = [0, 0, 0, 5, 0, 0, - 9, 0] a'. 

We  could  also do  the same c o m p u t a t i o n  us ing the m o n o m i a l s  t~(z)=z ~, 
i = 0, 1 . . . .  ,7.  In  this case T would  be  the  c o m p a n i o n  m a t r i x  for  the  p o l y n o m i a l  
t s = (z  - 1 ) . . .  (z  - 8). T h e  steps are  exac t ly  the same as above.  


