
Numerical Algorithms 1 (1991) 21-44 21

N O N S Y M M E T R I C L A N C Z O S A N D F I N D I N G O R T H O G O N A L
P O L Y N O M I A L S A S S O C I A T E D W I T H I N D E F I N I T E W E I G H T S

Dan ie l L. B O L E Y 1,,, Sy lvan E L H A Y 2, G e n e H. G O L U B 3 , . .

a n d M a r t i n H. G U T K N E C H T 4

J Computer Science Department, University of Minnesota, Minneapolis, MN 55455, U.S.A.
2 Computer Science Department, University of Adelaide, Adelaide, South Australia, 5000
3 Computer Science Department, Stanford University, Stanford, CA 94305, U.S.A.
4 Interdisciplinary Project Center for Supercomputing, ETH Zurich, ETH-Zentrum, CH-8092 Zurich,
Switzerland

Received 26 September 1990

The nonsymmetric Lanczos algorithm reduces a general matrix to tridiagonal by generating
two sequences of vectors which satisfy a mutual bi-orthogonality property. The process can
proceed as long as the two vectors generated at each stage are not mutually orthogonal,
otherwise the process breaks down. In this paper, we propose a variant that does not break
down by grouping the vectors into clusters and enforcing the bi-orthogonality property only
between different clusters, but relaxing the property within clusters. We show how this
variant of the matrix Lanczos algorithm applies directly to a problem of computing a set of
orthogonal polynomials and associated indefinite Weights with respect to an indefinite inner
product, given the associated moments. We discuss the close relationship between the
modified Lanczos algorithm and the modified Chebyshev algorithm. We further show the
connection between this last problem and checksum-based error correction schemes for
fault-tolerant computing.

Subject classifications: AMS (MOS): 42C05, 65F30, 68M15, 65D99.

Keywords: Orthogonal polynomials, modified Chebyshev algorithm, nonsymmetric Lanczos
algorithm, based fault tolerance

1. Introduction

T h e Lanczos a l g o r i t h m was or ig ina l ly p r o p o s e d b y L a n c z o s [21] as a m e t h o d
for the recurs ive c o m p u t a t i o n of m i n i m a l p o l y n o m i a l s for s y m m e t r i c a n d n o n -

s y m m e t r i c mat r ices . Soon it b e c a m e v iewed as an ef f ic ient m e a n s to r educe a

genera l m a t r i x to t r id i agona l fo rm, f r o m which the resul t c an b e d e t e r m i n e d .

* The research reported by this author was supported in part by NSF grant CCR-8813493.
** The research reported by this author was supported in part by ARO grant DAAL03-90-G-0105

and in part by NSF grant DCR-8412314.

O J.C. Baltzer A.G. Scientific Publishing Company

22 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

More recently the same algorithm has become popular as a method to compute
some eigenvalues of large sparse matrices. In this context, for symmetric matrices,
the Lanczos algorithm has been studied extensively [5,24]. In particular, the
convergence of the algorithm, when used to compute eigenvalues, has been
extensively analysed in [19,23,28,30] [32, pp270ff]. However, the nonsymmetric
Lanczos algorithm has received much less attention. Besides some numerical
stability problems, the method suffers from the possibility of a breakdown from
which the only way to "recover" was to restart the whole process from the
beginning with different starting vectors [32, pp388ff]. Methods to continue in the
face of a breakdown have been proposed by [26], and more recently by [13,17,25].
In this paper, we propose a very similar way to continue the process in the face of
a breakdown, but defined from a somewhat different point of view.

The connection between the Lanczos algorithm and orthogonal polynomials
has also been studied extensively (e.g. [6,3,27,11,12,14,4,20]). In this paper, we
take one particular problem in the area of orthogonal polynomials and reduce it
to a matrix variant of the nonsymmetric Lanczos algorithm. The problem we
address is that of computing a set of indefinite weights for a discrete "inner
product" and the associated orthogonal polynomials given a set of initial mo-
ments or modified moments. It is well known that under certain (generic)
normality assumptions the solution can be found with the modified Chebyshev
algorithm for generating the recurrence coefficients for a sequence of orthogonal
polynomials [7,29,8,20,31]. In [8] the same problem is addressed in the context of
continous inner products and associated infinite sets of recurrence coefficients,
and the nongeneric modified Chebyshev algorithm developed therein is equiv-
alent to ours when the support of the weight function is just a finite set of points.
We attempt to address this problem in the context of finite dimensional matrix
relations, and show how a nonsymmetric Lanczos algorithm applied with a
particular pair of initial vectors may be used to generate the polynomials
orthogonal with respect to the unknown set of indefinite weights. The resulting
method is a simple generalization of the "lower triangular Lanczos" algorithm of
Kautsky and Golub [18].

Checksum schemes play a central role in Algorithm-based Fault Tolerant
Computing, in which temporary hardware errors occurring during the factoriza-
tion of a matrix (or related problems) can be detected and corrected without
having to repeat the entire computation from scratch [15,16,22]. We use the
simplest checksum scheme to illustrate the relation between it and the process of
obtaining the weights from the moments of a sequence of polynomials. We show
how a nonsymmetric Lanczos algorithm may be used to solve for the corrections
given a set of checksums.

The rest of this paper is organized as follows. We first describe the proposed
variant to the nonsymmetric Lanczos algorithm, then discuss the connection to
the problem of reconstruction of a sequence of orthogonal polynomials and the
associated indefinite weights, and then discuss the connection to the checksum-

D.L. Boley et al. / Nonsymmetric Lanczos and f inding orthogonal polynomials 23

based error correction problem. We conclude with a short discussion of some
numerical examples (collected in the appendices) and some conclusions.

2. Nonsymmetric Lanczos

We describe a modified nonsymmetric Lanczos process which recovers when
the left and right vectors are orthogonal, exactly the situation when the ordinary
nonsymmetric Lanczos process breaks down and must be restarted. We refer the
reader to [32, pp388ff] for the details for the standard nonsymmetric Lanczos
process upon which the following development is based. To orient the reader to
what follows, we summarize the process as follows. We are given a matrix A and
two initial vectors x 0 and Y0. In the standard process, we assume that these two
initial vectors are not mutually orthogonal. Assuming it does not break down, the
process generates a set of vectors X = [x0,.. ' . , xn_~] and Y= [Y0 , Yn-1] and a
tridiagonal matrix H with unit subdiagonal such that

A X = X H ,

A T y = YH,

y T x = D (a nonsingular diagonal matrix).

(la)

(lc)

Let X r = [x 0 , Xr_l] denote the first r columns of X and Yr denote the first r
columns of Y. At the r-th stage of the process, the vectors xr and Yr are
generated. The vector x r is generated by forming b~=Ax~_ 1, and then setting
x~ = b~- [x 0, . . . , xr_l]h~_ 1, where the coefficients h r _ 1 a r e chosen so that the
bi-orthogonality condition x~[Y0 Y~-1] = 0 holds. The vector y~ is computed
analogously. In exact arithmetic, only the last two pairs of vectors x~_ 2, Yr-z and
xr-1, Y~-~ enter into the computat ion of the next pair of vectors x , Yr" We could
rescale the vectors x~ and y~ to make YrVXr = 1, SO that D = ! (in which case, the
H in (lb) must be replaced by H'r) . We have chosen not to do so in this
exposition so that the polynomials that are generated by this algorithm in the
next section remain monic and to keep the exposition simple. However, such
scaling would enhance the numerical stability of the algorithm.

When this algorithm is used for its original purpose to find eigenvalues, the
algorithm reduces A to tridiagonal form H, from which the eigenvalues can be
more easily determined. The generated vectors X, Y can provide information
about the eigenspaces of A, although in practice this is not made use of due to
memory limitations. The generalization we propose below can also be used for
the same purpose, but beyond noting that it does reduce a matrix to a block
tridiagonal matrix H, we do not address this further in this paper.

The standard Lanczos process breaks down if at any stage the two computed
vectors x r, y~ are mutually orthogonal. At this stage, some recovery procedure is
required. In [32, pp388ff], the only recovery procedure proposed was to restart

24 D.L. Boley et al. / Nonsymmetric Lanczos and f inding orthogonal polynomials

the whole process f rom scratch with different start ing vectors. In this case, all the
computa t ion up to this point mus t be th rown away. In m a n y cases, such as in the
next section, the starting vectors are fixed by the p rob lem and cannot be changed.
Thus some method of recovery is essential.

In our generalized Lanczos method, the a lgor i thm groups the vectors X and Y
into clusters X = [X 1 X,,,] and Y = [Y1,-.. , Y,,], where the clusters satisfy the
or thogonal i ty condi t ions

y/Txj = 0 for i ~ j , (2a)

YTXi = Di is nonsingular , except maybe for the last cluster. (2b)

As each new vector is generated, the a lgor i thm determines whether it is appended
to the last cluster X k, Yk, or else the new vector starts a new cluster, the former
cluster being considered complete. This choice is de te rmined at each step based
on whether condi t ion (2b) is not satisfied, or is satisfied, respectively, at the
current stage. Unde r normal operat ion, each cluster consists of exactly one
vector, so that the algori thm is identical to the s tandard Lanczos process. At each
stage the two new vectors are generated as follows. As before, b r and cr are
formed by applying A to the last generated vector Xr_ 1 and A T to the last
generated Y~-I, respectively. Next a pair of vectors h~_l, g~-i is found such that
b~ - [X1, . . . , X~]hr_ 1 is or thogonal to [Y1 Y k] and C r - [Y1 , Yk]g~-I is
or thogonal to [X1 Xk], where Xi, Yk denote the clusters conta in ing the last set
of x, y vectors generated, which may or may not be completed. If D k =- ykTXk is
nonsingular , such a h ,_ 1 and g r - l can be found. In this case the clusters X k, Yk
are ended, and the new vectors Xr = b ~ - [x 0 , . . . , xr_l]hr_a, y~ = c r -
[Y0 Yr--1]g~--a start new clusters Xk+a, Yk+~, respectively.

The breakdown in the s tandard algori thm corresponds to the s i tuat ion where
the diagonal block D k is singular. In this case, the new vector x~ is chosen in the
following manner and does not start a new cluster. The vector b~ i s projected onto
the or thogonal complement of the last cluster X k by forming br = b r - X k X ~ b r ,

where XkX~^ is the or thogonal projector onto the s p a c e COLSPX k. Then the
coefficients hr_ 1 are computed so that /~r-- [X1,-.- , Xk-1]hr-1 is o r thogonal to
[Y1 Yk-l]- The new vector is then x r = br - [X 1 Xk_l]h~_ 1. The result is
that the new vector xr is or thogonal to [Y~,.. . , Yk-1] as in the s tandard process,
but, unlike the s tandard process, it is or thogonal to X k instead of Yk"

The vector yr is generated in the analogous way, by forming c~=ATy~_I,
project ing it on to the or thogonal complemen t of Yk to obta in ~ , and subtract ing
multiples of co lumns [Y1 Yk-1] SO that the final result ing vector y r = [l - -
Y k Y ~ -) C r - [Y1 Y k - 1] g r - 1 is or thogonal to [X a , Xk_l] and Yk. Here gr-1 is
a vector of coefficients analogous to hr_ ~.

After the vectors x~, y~ are de te rmined in this manner , they are appended to
the last clusters X k, Yk, respectively. In this way the dus te r s Yk, Xg are extended
together until D k =- y T x k becomes nonsingular , when bo th clusters are ended

D.L. Boley et al. / Nonsymmetric Lanczos and f inding orthogonal polynomials 25

and new ones started. Normal ly this latter condit ion happens at every stage. The
resulting set of vectors will satisfy

A X = X H ,

ATE = YG,

y T x = D, a block diagonal matrix,

(3a)

(3b)

(3c)

where H and G are unit upper Hessenberg matrices. Since y T A X = y T X H = D H ,
and x T A T y = x T y G = D T G , we have the relation GTD = D H . Since a block
diagonal matrix times an upper Hessenberg matrix is block upper Hessenberg, it
follows that G and H are block tridiagonal, with the partit ioning defined by the
cluster dimensions. This implies that in computing the coefficients hr_l , gr-1 or
hr-1, g~-I at each stage, only the last two pairs of clusters X~, Y~, i = k - 1, k,
must be used, at least in exact arithmetic. F rom [13] it follows moreover that on
completion of a cluster, only the first pair of vectors f rom the clusters Xk_l , Yk-1
contribute to x~ and y~, while before completion of a cluster, none of the vectors
from X k_ 1, Yk-1 contribute, cf. the example in appendix 2.

The vectors xr_l and y~_ 1 are generated in this manner until one of them is
found to be all zero. When this happens, we could choose to continue with the
zero vector, or with a randomly chosen b~ or c~ and re-orthogonalize, until both
x~, Yr are zero, for some r. However, for our application below, it suffices to
terminate the process when just one vector is zero. We summarize the entire
process in appendix 1.

Let Kr- - - [x0 , . . . , Ar-lxo] be the Krylov sequence generated by x 0 and L~ =
[Y0 (A T) r-ly0] be the Krylov sequence generated by Y0- We note that each x~
is a linear combinat ion of Axe_ 1, Xo , . . . , x~_ 1, for all r, regardless of how the
vectors are grouped into clusters. Hence C O L S P X r = C O L S P K r and COLSPY~=
COLSPL~ for every r. Hence if r is any index for which the matrix LV~K~ is
nonsingular, then x,, yr are vectors that start a new pair of clusters, and they are
the unique vectors defined (up to scaling) by x~ = [I - KA'LV_K~ ~)\-lrT'--L r/,aXr_ 1 and
y~ [I L~(T -1 T T = -- K~L~) Kr]A .V~-l. AS noted above, the other vectors must be
chosen so that all the vectors in each cluser are independent , and we have chosen
(arbitrarily) to make the vectors in each dus te r mutual ly orthogonal. Thus we
conclude that the first vector in each dus te r is uniquely defined up to a scale
factor, but the remaining vectors are not uniquely defined.

There is some freedom in the choice of b,, t?~, and at least one choice leads to a
very special structure in the block diagonal matrix D. As we have described it, /~
is chosen orthogonal to the part of the last cluster X k generated up to that point.
But the modified Lanczos process can work if b r is any l inear combinat ion of
br = Axr_ 1 and columns of X k as long as the chosen vector is linearly indepen-
dent of X k. Unless b~ ~ COLSPX k (in which case x~ = 0), it is necessary and
sufficient that b r contribute to this linear combination. In particular, we could
choose b~ = b r, after checking that it is independent of X k. Such a choice leads to
a very particular structure in the diagonal blocks D k, when they are bigger than

26 D.L. Boley et al. / Nonsymmetr ic Lanczos and f ind ing orthogonal polynomials

1 • 1, which we now demonstrate. Suppose yj, Y j+l are two consecutive vectors
in cluster Yk,k and x r_ 1, Xr are in the corresponding cluster X k. Suppose further
that we choose bi+l =bi+a and c~+1 = c~+1 at every step i. Then the matrix
element Dj, r lies within the diagonal block D k and satisfies the identity:

Dj,r=yTXr=YT(br- [X 1 Xk_l]hr_l) :YTbr:Y?AXr_l.
We also have a similar identity for the element Dj+X,r_~, which also lies within
the diagonal block Dk:

- - �9 �9 �9 ~ ^) T

Dj+l,r-l=Y?+lXr-1 (ej+l [Y1, Yk-1]gj Xr-l=eT+lXr-l=YTAXr-l"
Hence Dj+l,r_ 1 = Dj,~. Since this is true for any j , r for which the indicated
elements of D lie within the same diagonal block, it follows that the diagonal
blocks D k are Hankel matrices. Furthermore, since every leading principle
submatrix of D k is singular, it also follows that D k is lower anti-triangular, by
which we mean that all entries above the main anti-diagonal are zero. We repeat
that this is under the assumption that the vectors within each individual cluster
are not mutually orthogonalized. In our implementation, we have chosen not to
make this choice, but rather we have chosen to orthogonalize the vectors within
each cluster in order to enhance numerical independence. Then D k is still lower
anti-triangular with identical elements on the anti-diagonal. Yet other choices are
discussed in [13]; in particular, by redefining the elements of X k, Yk after
completing the cluster one can make D k an anti-diagonal unit matrix.

3. Indefinite weights and polynomials from the moments

We show how the nonsymmetr ic Lanczos process may be used to solve the
problem of computing a sequence of polynomials h0, ha, . . , orthogonal with
respect to some unknown inner product given only the generalized moments
defined in terms of another known sequence of polynomials to, q , Specifi-
cally, we are given a sequence of n monic polynomials t T (z) = [t 0 (z) tn_l(z)]
of exact degrees generated by the recurrence z t T (z) = t T (z) T + tn(z)er~, where T

T [0 ,0, 1] is the n-th coordi- is the matrix of recurrence coefficients. Here e, -
nate unit vector. Since all the polynomials are monic and of exact degree, T is a
unit upper Hessenberg matrix (i.e., the subdiagonal entries are all l 's). We call T
the recurrence matr ix for the sequence of polynomials tT(z). If T is given, the
n-th degree polynomial t , (z) is the monic polynomials whose zeroes z0 , . . . , z ,_ 1
are the eigenvalues of T. If the polynomial t~ (z) is given, the last column of T
can be chosen so that the eigvenvalues of T are exactly the zeroes z 0 , zn_l of
t,,(z), without affecting any of the preceding polynomials t o t~_ 1. We define
the vector of zeroes z - [z0 , . . . , z ,_l] .

Next, we are given the n initial moments Sio - (t i , to),,, i = 0 , . . . , n - 1, where
(. , �9),. is the discrete indefinite inner product defined in terms of some un-
known, but arbitrary, set of weights w - [w 0 , w~_l] over the given set of points

D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials 27

z. We wish to compute another sequence of monic polynomials hT(z)=
[h0(z) hn_l(z)] of exact degree which are orthogonal with respect to this
unknown set of weights, and then to determine the weights themselves. In this
particular situation where we are given n points and n initial moments , the
weights are uniquely determined, but below we discuss the case where we are
given fewer moments, in which case an additional condit ion is imposed to
uniquely determine the weights. It is not always possible to find such a sequence
h'r(z), but in any case we would like to find some sequence ha-(z) such that
h 0 hi_ 1 are all orthogonal (wrt to this inner product) to h i , . . . , hn_ 1, for any
i for which this is possible (a detailed discussion of this can be found in [8]).

Since the polynomials h i are all monic and of exact degree we have that
ho(z) = to(Z) = 1. Analogous to the relations for t, we have the relations zhW(z)
= hX(z)H+ h , (z) e [, where H is the unit upper Hessenberg recurrence matrix
for the polynomial sequence h'r(z). We assume that h ~(z) is also the polynomial
whose zeroes are exactly the points z (this is always possible), that is h , = t, =
I - I (z - zi). In the case where both sequences t and h are orthogonal to some
ordinary definite inner product, both T and H are tridiagonal, and the method
we propose is then equivalent to the " L T L " algorithm [18] for generating the
matrix H directly from T.

Though the matrix T can represent an arbitrary sequence of n monic poly-
nomials, two particular sequences are typically encountered. Often the monomials
1, z, z2 , . . . , z n-~ are used. In this case, the recurrence matrix T is the upper
Hessenberg companion matrix corresponding to t , (z) , whose zeros are exactly
the points z 0 z ,_ r Another typical sequence is the set of polynomials
orthogonal with respect to ordinary definite continuous inner product defined
over some interval. In this case, it is well known that the sequence t is generated
by a three term recurrence, so T is a tridiagonal matrix [10,7].

In either case, we can select the first n + 1 such polynomials, for any arbitrary
value of n depending only on the number of polynomials we wish to compute or
the number of moments we may know. In the case of the second choice of the
polynomials orthogonal with respect to a continuous inner product, it is known
that these n + 1 polynomials will also be mutually orthogonal with respect to a
discrete inner product defined over a finite collection of points and weights which
are, respectively, the eigenvalues and the squares of the first components of the
normalized eigenvectors for the n x n matrix T [10]. This matrix T can be
generated by the symmetric Lanczos algorithm [2,3].

We define the generalized Vandermonde matrices V r and V n, whose i, j - th
entries are, respectively, ty(zi) and hy(zi) for i, j = 0 , n - 1:

tT(o) hT(Zo)]
V r = , Vn= . (4)

tT(zn_l) hT(Zn_l)

28 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

If we define the diagonal matrix Z - - D I A G (Z 0 2 n _ l) , then V r satisfies Z V r =
VrT. (Recall that t , (z i) = h~(z i)= 0.) Fur thermore V r is nonsingular. And we
have the analogous relation Z V H = VHH.

The two sequences t and h are related by h j (z) = t j (z) + t j _ l (z) u j _ a , j
+ .. . +to(Z)Uoj, for j = 0 , 1 , n - 1 , and scalars uij. We can group all the
uij 's into a unit upper triangular matrix U, and collect all these relations into one
matrix relation h T -- t ru . In terms of the Vandermonde matrices: V H = VrU. We
can define the Gram matrix of mixed moments S - V f W V n, where W---
DIAG(w o w,,_ 1). Notice that the first column s o of S is exactly the given data
[S0o , s,,_l.0] T, since h0 = to = 1.

We can construct some relations among the various matrices that will be seen
to be exactly those appearing in the Lanczos process. First we see that Z V u =
V n H = VrUH and Z V n = Z V r U = VrTU. Hence, T U = UH.

We also have that TTs = T T v T W V H = V T Z W V H. Since Z and W are both
diagonal and hence commute, we can continue the equality with V f W Z V n =

w v , , n = s n .

Finally we have that the matrix s T u = VnVWVrU = VnVWVn is jus t the Gram
matrix of moments of the polynomials h i, and by assumption this matrix is
supposed to be diagonal, or if not possible at least block diagonal.

We summarize these relations as follows:

T U = UH, (5a)

TTs = S H , (5b)

s T u = D, a diagonal or block diagonal matrix, (5c)

the first column s o of S is the vector of given initial modified moments

[Soo ,s,,_,,0] T, (Sd)

the first column u 0 of U is e 1 = [1, 0 0] T, (5e)

T is given. (5f)

These are just the right ingredients to run the nonsymmetr ic Lanczos process
starting with the matrix A = T and initial vectors x 0 = e 1, Y0 = So, to generate U,
S and H, corresponding to the X, Y, H , in the notat ion of the previous section.
The choice x o = e 1 is not artificial, it expresses the initial condi t ion relating the
two sequences t and h, namely that h 0 = t 0. In the case that a diagonal D exists,
the generated vectors X and Y will be exactly the U and S. Otherwise the vectors
X will still be a unit upper triangular matrix U, which defines a sequence of
polynomials h à = ta`U. However, Y will not be exactly the matrix S. But it will
still be true that for every i, the first i columns of Y and of S will span the same
space, namely the Krylov space COLSP[$0, TT$0 (TT)i-I$0]. Since the first
column Yi, of each generated Lanczos cluster Yk is uniquely defined up to
scaling, the corresponding column si~ of S must be the same, up to scaling.
Hence the orthogonali ty conditions that [x 0 x,._,] is or thogonal to

D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials 29

[x~, , x ,_ l] will still be valid for each index i k denot ing the first co lumn of a
cluster.

The matrix U defines the polynomials hi(z) in terms of the given polynomials
ti(z), i = 0, 1 so the Lanczos process has, in effect, generated the polynomi-
als h~(z), as il lustrated by the example in appendix 3. Once the U is known, one
can solve for the weights themselves using the first co lumn of the relation
S = v T w v n , namely

s0-- V w. (6)
Note that (6) can be used directly wi thout recourse to the Lanczos algori thm, but
the above discussion shows how the polynomia l sequence hT(z) can be generated
in terms of tT(z) directly f rom the momen t s wi thout comput ing the correspond-
ing weights at all.

In the case that only I of the weights are nonzero, the Lanczos process will
terminate at the l-th stage�9 This can be seen because the polynomials hi, h1+1,...
will all be zero on those points with nonzero weights, hence the corresponding
columns of S will be entirely zero. Let U/, S / denote the partial U, S, respec-
tively, generated in this case (i.e. columns 0 , . . . , l). The Lanczos process has
generated the first l + 1 polynomials hi(z), i = 0 , . . . , I. We can compute the first
l + 1 columns of V H a s VrU/. The last co lumn of VrU I will be the vector
[h i (z0) , . . . , h / (z ,_ 1)] T and have zero entries exactly on those points with nonzero
weights. Thus one can determine f rom this last co lumn which points have
nonzero weights.

Knowing which entries of w are nonzero, we can delete the zero entries of w
together with the corresponding rows of V r in formula (6). We are then left with
n equat ions in l unknowns. We can then select jus t the first l of these equat ions
to get an l • l system of linear equat ions for the l nonzero weights wi, , . . . , wi,:

�9 T \ O . . . / - - 1
= (Vi),,...i, �9 (7)

L S l - 1,0 I

In the above, the nota t ion /vT~0.. . I-1 denotes the submatr ix of Vr -r obta ined by k *" T) i l . . . i t
extracting rows 0 . . . 1 - 1 and columns i l . . . i t. It is easily verified that this
submatr ix is nonsingular . No te that in (7), only the first l mixed momen t s appear.

If it is known in advance that the n u m b e r l of nonzero weights is at mos t some
given number d, then the Lanczos process is guaranteed to terminate in at most d
steps, and only the first d + 1 rows and columns of S are required to solve for the
weights. But the top left (d + 1) • 1) parts of S and U are completely
de te rmined through the Lanczos process by the first m = 2d + 1 initial momen t s
S O 0 , . . . , S2d,O , due to the fact that the generat ing matr ix T in the Lanczos process
is upper Hessenberg and the generated U is upper triangular. Hence if only the
first m momen t s are known, one can fill out the remaining entries in the initial
vector s o with arbitrary fill values, and then carry out the Lanczos process as

30 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

before. In this case, the Lanczos process should be terminated when the first
d + 1 entries of a generated Yt are all zero, corresponding to the first d + 1 entries
of column s t being all zero. If 1 weights are nonzero, this condit ion cannot occur
before the l-th stage, since the leading top left l x l block of S will be
nonsingular. The matrix U~ generated by the Lanczos process is still upper
triangular and hence is independent of the choice of fill values for s o . In fact, only
the first m entries in each generated Lanczos vector need be computed, and only
the top left m x m part of T need be referenced. Thus the generated U~ can be
used to solve for the weights in exactly the same way as outlined above. If any
multiple vector clusters arise, it is necessary to relax the orthogonali ty condit ion
within the S (but not the U) clusters to linear independence, by enforcing
orthogonality among the first rn entries of each generated s vector, but this does
not affect the generated U matrix.

If there is an infinite sequence of modified moments si0, i = 0, 1, 2 , . . . , arising
from a continuous formal inner product, the same argument can be used to show
that the Lanczos algorithm can be applied using only the first m = 2 d + 1
modified moments to obtain the first d formal orthogonal polynomials h/,
j = 0 , . . . , d - 1 with respect to this formal inner product. This is discussed further
in the next section.

4. Equivalence of the Lanczos and the modified Chebyshev algorithms

The problem of the previous section can also be solved with the modified
Chebyshev algorithm [7,8,20,29,31] or, in cases where the classical algorithm
breaks down, by its nongeneric extension [8]. This approach and the connect ion
between the nonsymmetr ic Lanczos and the modified Chebyshev algorithms will
be discussed in this section.

Some relations between the two algorithms have been observed before, e.g. in
[20]. Clearly, the two methods produce recurrence coefficients of formally or-
thogonal polynomials. But while the Lanczos algorithm has as input an n X n
matrix A and two n-vectors x 0 and Y0, the Chebyshev algorithm starts with a set
of initial modified moments sio and a corresponding recurrence matrix T. (The
unmodified moments are the special case of modified moments where T is the
downshift matrix with ones on the first subdiagonal and zeroes elsewhere.)
Normally it takes 2n modified moments si0 , i = 0 , . . . , 2n - 1, to determine the n
columns of the normalized tridiagonal matrix H. The n x n lower triangular
matrix S is therefore extended to a 2n x n matrix S, of which the modified
Chebyshev algorithm generates recursively column by column along with the
columns of H. Actually only the elements si~ , i = k, k + 1 , . . . , 2 n - k - 1 of
column k (k = 0, 1 , . . . , n - 1) are computed, since sik = 0 if i < k, while for
i >i 2 n - k the moment s2n,0 would be needed. (For simplicity we assume the
normal (generic) case where the algorithm does not break down, but our argu-

D.L. Boley et al. ,/Nonsymmetric Lanczos and finding orthogonal polynomials 31

ments extend to the general case.) If instead Lanczos input is given, one can
choose any 2n x 2n recurrence matrix T (unit Hessenberg), compute the corre-
sponding polynomials t~, i = 0 , . . . , 2n - 1, and the modified moments

Sio-y~ t i (A)xo , i = 0 , 2 n - 1.
Started with these data the modified Chebyshev algorithm produces t h e n exactly
the same H and thus the same polynomials h0 , . . . , hn_ 1, hn as one obtains with
the Lanczos algorithm. If A is a nonderogatory matrix of rank n, and x 0 and Y0
are not unluckily chosen, h , is the minimal polynomial of A.

However, in order to prove that the two algorithms are equivalent, we need
conversely to be able to specify for given modified moments S0o,..., s2n-l,0 and
given recurrence matrix T some Lanczos input A, x 0, Y0 that will produce the
same H.

The situation of the previous section is special, since there the set of zeroes
z 0 z ,_ 1 of t, is prescribed, and the support of the weight function is a subset
of it. We can then assume that tn+~(z)= Zitn(Z), i = 0, 1 , . . . , and thus s~0 =
s~+a.0 = . . . =s2~_1 ,0=0 since S~o- (t ~, to) w. Application of the modified
Chebyshev algorithm to these data yields the n x n matrices S and H. (All
additional elements of S that occur in the formulas are zero.) But the first n /2
columns of H are independent of the choice si0 = 0, i = n, n + 1 , since these
first n/2 columns of H are normally determined by the first n moments, as
noted above.

As suggested in the previous section, cf. (5), we can then apply the nonsymmet-
ric Lanczos algorithm with A - T, x 0 - e 1, Y0- So to generate H. Like the
modified Chebyshev algorithm it generates Y - S and H column by column, but
it produces additionally X--- U. Note that this Lanczos problem has then a very
special structure. Since x 0 = e 1, the matrix U is unit upper triangular, and, in view
of STU = D, the matrix S is lower triangular (or block tower triangular), as we
know of course from its original definition. Therefore, once the first j (block)
columns of S and D are known, the first j (block) columns of U could be found
by the standard recurrence for inverting a triangular matrix.

In the more general situation where the support of the weight function is not
known and thus possibly h n 4: t , , the relations (5a) and (5b) need no longer hold
for n x n matrices. But, assuming that infinite sequences of polynomials tj and
modified moments Sio are given, we can still derive the analogue of (5a)-(5f) for
infinite matrices H, S, T, and U, cf. [8], with T being arbitrary unit upper
Hessenberg. We could then formally run both the modified Chebyshev algorithm
and the Lanczos algorithm, starting the latter with A - T, x 0 - e l , Y0- So, and
they would produce the same result. Fur ther inspection of the dependencies
shows that for producing the first n columns of H it normally suffices to know
the first 2n modified moments and to compute a (decreasing) finite number of
zlements of the columns of S and U. So, after all, we still only need finite
sequences { tj } and { sg0 } if the support of the weight function is a finite set and
thus A has finite rank.

32 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

We conclude that the nonsymmetr ic Lanczos algorithm and the modified
Chebyshev algorithm are indeed equivalent in the sense that, theoretically, all the
problems that can be solved with one can as well be solved with the other,
whereby both produce identical results. Since T can be chosen to be the shift
matrix, it follows that also the classical (unmodified) Chebyshev algorithm is
equivalent to the Lanczos algorithm. We have moreover seen f rom this equiv-
alence that when nonsymmetr ic Lanczos is applied to an upper Hessenberg
matrix T and is started with x 0 - e l , it suffices to compute the columns of S.
Likewise, if it were applied to a lower Hessenberg matrix and started with
Y0 - ex, it would be sufficient to compute the columns of U. Computa t ional costs
and storage could thus be reduced by half. However, in practice such a special
choice of one initial vector may not be advisable.

5. Application to weighted checksum error correction scheme

We examine a particular application of the above reconstruction that occurs in
the use of weighted checksum schemes for detection and correction of temporary
or transient hardware errors that might occur during the course of a computat ion.
The problem we address is to detect and correct up to d temporary hardware
errors that might occur during the solution of an n • n system of linear equations
of the form A x = b. We consider algorithms that solve such systems of linear
equations by factoring the matrix A into A = pTLR (a s in Gaussian elimination
with partial pivoting), A = QR, or some similar form, where P is a permuta t ion
matrix, L is unit lower triangular, R is upper triangular, and Q is an orthogonal
matrix [9]. To simplify the exposition, we let Q denote the factoring matrix:
either the orthogonal matrix just noted or the product pTL for Gaussian
elimination. In either case, Q-1 represents the " row operat ions" applied to the
matrix A to reduce it to the upper triangular form R = Q-1A.

To detect and correct up to d hardware errors, we need at least m - 2d + 1 << n
checksums on each row of A. Let M = [l[Vm] be the n x (n + m) matrix of
checksums, where Vm is the n • m matrix of checksum coefficients, consisting of
the first m columns of V r from (4). Given any matrix A, we can compute m
independent checksums on each row, to obtain the n x m matrix of checksums
A c - A V,,. We can append this to A to form the augmented matrix A M - A M =
[A [At]. The operations represented by Q-1 are applied to A m, yielding the
checksummed factorization A M = QR M = Q[R I R~], where R~ = Q-1A~ is the
result of applying the row operations represented by Q-1 to the checksums A~.
The checksums can then be used to detect errors by forming the n x m checksum
difference matrix F = RMN, where

D.L. Boley et al. ,/Nonsymmetric Lanczos and finding orthogonal polynomials 33

is the weighted checksum matrix. The checksum difference matrix F---
Q-I[A I A c] N = R F m - Q-1Ac is simply the difference between the checksums
computed from the resulting R and the row operat ions Q-a applied to the
original checksums A~ from the starting matrix A. Hence if no hardware errors
occur, F will be entirely zero. Under the assumption that at most d errors have
occurred in any row, it can be shown conversely that if F is entirely zero, then no
errors have occurred during the computat ion [1]. Therefore an error is detected in
a row of RM exactly when the corresponding row of F is not entirely zero.
Furthermore, the nonzero entries of F can be used to determine what that error
was and where it occured, so that a correction can be applied.

Suppose far is a nonzero row of u Then the corresponding row of the
computed RM has an error, which we now show how it may be computed. Let
r~ - [tar [r~] be the corresponding row of the correct R M to be determined. Let
e ~ = [e ar [e~] be the net error in that row o f R M. That is, the row of RM actually
computed is r~t + e~t and satisfies (r~ + e ~ t) N = f ar. Since r~ is the correct row,
we have r ~ N = 0 and e ~ N = f T . If we assume (as in [1]) that the errors occur in

1"= O, and we have the the matrix R itself, not in the checksums R~, then e c
relation

eTVm =fT. (8)
We obtain the m-vector f T from the checksum difference matrix, and our goal

is to solve for the n-vector of errors e T. In the case m = n, the matrix V,, is square
and nonsingular, so e T can be obtained directly by solving the system (8). But
more typically, we assume that at most d << n entries of the vector e T are
nonzero, meaning at most d individual errors occurred during the factorization.
In this case, we compute only m = 2d + 1 << n checksums per row. We know at
most d entries of e are nonzero, but we do not know exactly how many are
nonzero nor which ones they are.

We can apply the following interpretation to (8). Since V m is generated by a
sequence of polynomials t T, we can interpret the vector e as a vector of unknown
weights. Then the vector f is seen to be a vector of moments: fi = ~to, ti)e" Thus
we can interpret f as the vector of initial moments s o of the previous section, and
e as the vector of weights w, and use the nonsymmetr ic Lanczos algorithm as
outlined above to solve for e from the " m o m e n t s " f . We run the Lanczos
algorithm with matrix T and starting vectors u 0 = [1, 0 0] T and s o = f , where
T is the recurrence matrix for the polynomials defining the given checksum
coefficients V m. We can also use the Chebyshev algorithm to accomplish the same
task.

If l ~< d is the number of errors that have occurred in the row of R , this process
will stop after l steps, generating l + 1 columns U t on the right and S t on the left,
as outlined in the previous section just above eq. (7). The zero entries in the last
column of VmUt mark the posit ions of the nonzero entries in the error vector ear.
Then the values of these errors are obtained by solving the linear system (7). No te

34 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

that, unlike the process in [1], it is not necessary to solve an eigenproblem to
determine the positions of the errors.

In order to use this method, we need the recurrence matrix T and the first m
columns of the generalized Vandermonde matrix V,,. If T is given, we may apply
the recurrences ZVm = V,,,T tO obtain V,,,, where Z is the diagonal matrix of
eigenvalues of T. If we desire instead to use the polynomials orthogonal with
respect to some given inner product, it is necessary to generate T. This can be
done by the symmetric Lanczos algorithm [10,3,2], or somewhat less stably by the
nonsymmetric Lanczos algorithm as outlined in the previous section, starting with
the shift matrix (i.e. the recurrence matrix for the monomials z ~) and the ordinary
moments with respect to the given inner product.

6. Numerical examples

We first illustrate the generalized Lanczos algorithm with an 8 x 8 example.
The input A, x 0, Y0, and the generated vectors X, Y, coefficients H, G, and the
products D = Y'rX, yTAX are all listed in appendix 2. The method was run
twice, once as described, and once with the orthogonalization within each cluster
turned off. This last choice was made to illustrate the Hankel structure in the D.
The method returned four clusters of dimensions 2, 4, 1, 1, respectively, indicated
by the partitioning lines.

One can note several properties we have indicated above, besides the Hankel
structure in D when orthogonalization within clusters is turned off. Even when
this orthogonalization is applied, the diagonal blocks D k still maintain a Hankel-
like, lower anti-triangular, structure. Also note that the initial vectors in each
cluster remain unchanged in the second run. These initial vectors are x;, Yi, i = 0,
2, 6, 7. One can also see that the H and G do not turn out identical in this
algorithm, unlike the situation in the standard Lanczos method. But they do turn
out identical when the orthogonalization within clusters is turned off. We note
that one sees much more structure in the numerical examples than was indicated
above.

In appendix 3 we give a short example illustrating the reconstruction of a set of
indefinite weights, given a few initial moments. This corresponds exactly to the
problem of reconstructing an error vector given a checksum difference vector
computed using checksums during the course of some matrix factorization
algorithm. In the example, we have used a set of checksum coefficients generated
using a sequence of orthogonal polynomials, but it would be equally possible to
do it with the monomials, in which case the checksum coefficients would be just
the entries from the ordinary Vandermonde matrix. Using orthogonal polynomi-
als tends to yield checksum coefficients that are better scaled, and if we relaxed
the requirement that the polynomials be monic, we would improve the scaling
even further.

D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials 35

7. Conclusions

We have outlined a nonsymmetric matrix Lanczos procedure that can continue
when a generated pair of vectors are mutually orthogonal. This process has been
defined in constructive fashion and entirely in terms of matrices. We then showed
the connection between the matrix process and the moments and weights with
respect to a discrete indefinite inner product. We showed how the matrix process
with a particular pair of initial vectors corresponds exactly to the process of
generating a matrix of recurrence coefficients for polynomials orthogonal with
respect to an unknown, indefinite, weight function, starting with a set of initial
moments, as done by the Chebyshev algorithm. We finally indicated how the
problem of error correction in an algorithm-based checksum scheme embedded in
a matrix factorization process can be cast as a problem of computing indefinite
weights from the moments for a set of orthogonal polynomials. In the appendices
2 and 3 we illustrate the Lanczos process with non-diagonal blocks and the
process of computing the unknown weights for an inner product with some
numerical examples.

There is much more structure in the results of the Lanczos algorithm than we
have indicated here. We have not addressed the issue of how the nonsymmetric
Lanczos algorithm might be used to solve the matrix eigenproblem. We have
indicated that there are several places within the algorithm where we have choice
of scaling, and we have chosen certain scalings to enhance the clarity of the
presentation of the algorithm, and to keep the corresponding polynomials monic.
We have not discussed how the choice of scalings might be used to improve the
numerical stability, nor have we addressed the need for re-orthogonalization of
the Lanczos vectors to maintain biorthogonality. All these aspects are left for
future work.

References

[1] C.F. Anfinson, R.P. Brent and F.T. Luk, A theoretical foundation for the weighted checksum
scheme in: Proc. SPIE ool 975 Adoanced Algorithms and Architectures for Signal Processing 1II,
paper 2, 1988.

[2] D.L. Boley and G.H. Golub, A survey of matrix inverse eigenvalue problems, Inverse
Problems, Vol. 3 (Physics Trust Publications, Bristol, England, 1987) pp 595-622.

[3] C. de Boor and G. Golub, The numerically stable reconstruction of a Jacobi matrix from
spectral data, Lin. Alg and Appl. 21 (1978) 245-260.

[4] C. Brezinski, Pad~-Type Approximants and General Orthogonal Polynomials, ISNM, Vol. 50
(Birkhauser, Basel/Stuttgart, 1980).

[5] J. Cullum and R. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue Computa-
tions, Vol. I: Theory (Birkh~iuser, Boston, 1985).

[6] G. Cybenko, An explicit formula for Lanczos polynomials, Lin. Alg. and Appl. 88/89 (1987)
99-115.

[7] W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. and Stat. Comput. 3 (1982)
289-317.

36 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

[8] G. Golub and M. Gutknecht, Modified moments for indefinite weight functions, Numer.
Math. 57 (1990) 607-624.

[9] G. Golub and C. Van Loan, Matrix Computations 2/e (Johns Hopkins, 1989).
[10] G. Golub and J. Welsch, Calculation of Gauss quadrature rules, Math. Comp. 23 (1969)

221-230.
[11] W.B. Gragg, The Pad~ table and its relation to certain algorithms of numerical analysis, SIAM

Rev. 14 (1972) 1-62.
[12] W.B. Gragg, Matrix interpretations and applications of the continued fraction algorithm,

Rocky Mountain J. Math. 4 (1974) 213-225.
[13] M.H. Gutknecht, A completed theory for the unsymmetric Lanczos process and related

algorithms, SIAM J. Matrix Anal., 1989, submitted.
[14] M.H. Gutknecht, The unsymmetric Lanczos algorithms and their relations to Pad6 approxima-

tion, continued fractions, the qd algorithm, biconjugate gradient squared algorithms, and fast
Hankel solvers, preprint, 1990.

[15] K.H. Juang and J.A. Abraham, Algorithm-based fault tolerance for matrix operations, IEEE
Trans. Comput. C-33 Nr. 6 (June 1984) 518-528.

[16] J.Y. Jou and J.A. Abraham, Fault-tolerant matrix arithmetic and signal processing on highly
concurrent computing structures; Proc. IEEE 74 Nr. 5, special issue on fault tolerance (May
1986) 732-741.

[17] W. Joubert, Lanczos methods for the solution of nonsymmetric systems of linear equations in:
Proc. Copper Mtn. Conf. on Iteratioe Methods, April 1-5, 1990; submitted to SIAM J. on Sci.
and Stat. Comput.

[18] J. Kautsky and G.H. Golub, On calculation of Jacobi matrices, Lin. Alg. and Appl. 52/53
(1983) 439-455.

[19] S. Kaniel, Estimates for some computational techniques in linear algebra, Math. Comp. 20
(1966) 369-378.

[20] M. Kent, Chebyshev, Krylov, Lanczos: Matrix Relationships and Computations, Ph.D. Thesis,
Stanford Univ. Computer Sci. Report STAN-CS-89-1271, June 1989.

[21] C. Lanczos, An iteration method for the solution of the eigenvalue problem linear differential
and integral operators, J. Res. Natl. Bur. Stand. 45 (1950) 255-282.

[22] F.T. Luk and H. Park, An analysis of algorithm-based fault tolerance, J. Parallel Distr.
Comput. 5 (1988) 172-184.

[23] C.C. Paige, The computation of eigenvalues and eigenvectors of very large sparse matrices,
Ph.D. Thesis, London Univ., 1971.

[24] B. Parlett, The Symmetric Eigenoalue Problem (Prentice Hall, 1980).
[25] B.N. Parlett, Reduction to tridiagonal form and minimal realizations; preprint submitted to

SIAM J. Matrix Anal., 1990.
[26] B.N. Parlett, D.R. Taylor and Z.A. Liu, A look-ahead Lanczos algorithm for unsymmetric

matrices, Math. Comp. 44 (1985) 105-124.
[27] H. Rutishauser, Der Quotienten-Differenzen-Algorithmus, Mitt. Inst. angew. Math. ETH, Nr.

7 (Birkh~user, Basel/Stuttgart, 1957).
[28] Y. Saad, On the rates of convergence of the Lanczos and the block Lanczos methods, SIAM J.

Num. Anal. 17 (1980) 687-706.
[29] R. Sack and A. Donovan, An algorithm for Gaussian quadrature given modified moments,

Numer. Math. 18 (1972) 465-478.
[30] D. Scott, Analysis of the symmetric Lanczos process, Univ. of Calif., Berkeley, Electronic Res.

Lab. Report UCB/ERL M78/40, 1978.
[31] J. Wheeler, Modified moments and Gaussian quadrature, Rocky Mtn. J. Math. 4 (1974)

287-296.
[32] J.H. Wilkinson, The Algebraic Eigenoalue Problem (Clarendon Press, Oxford, 1965).

D.L. Boley et al. / Nonsymmetric Lanczos and f inding orthogonal polynomials 37

Appendix 1

MODIFIED NONSYMMETRIC LANCZOS ALGORITHM

Below is a simple summary of the modified nonsymmetr ic Lanczos algorithm.
The computat ional details (especially in steps 2.2, 2.3) are omit ted to ease the
clutter in this summary. For example, it was shown in the text just below eq. (3c)
that H and G are block tridiagonal, hence many of the entries in h, ~ are zero,
at least in exact arithmetic. But computat ional experience with Lanczos methods
in floating point arithmetic has shown the need to re-bi-orthogonalize in order to
maintain the properties of bi-orthogonality among the vectors X, Y, and block
tridiagonality of H, G (cf. [32, p391], [9], etc.).
Input: n • n matrix A and two n-vectors x0, Y0.
1. (* initialization *)

Set all clusters X I, Y/ (for all l) to "empty" .
Set first clusters X 0 := [x0], Y0 := [Y0]-
If y~x o = 0 then set k := 0 else set k "= 1; (* current cluster index *)
Set i.'= 0, (* vector index *)

2. Until x i = 0 or y i = 0 do begin
(* main loop �9)
2.1. (* al~ply matrix operator to expand Krylov sequence *)

Set b := A x i and ~ := A Ty..
2.2. (* bi-orthogonalize against previous clusters *)

Find coefficient vectors h~, ~ such that
b := b - [X 0 Xk_l]h i is orthogonal to [Y0 Yk-l] and
c -'= ~ - [u , Yk- 1] g~ is orthogonal to [X 0 Xk- 1].

2.3. (* if current cluster nonempty, orthogonalize within the cluster *)
If cluster pair X k, Yk nonempty then

find coefficient vectors h,., g; so that
X i + 1 : : l) - - X k h i is orthogonal to X k and
Y;+1 := c - Ykg~ is orthogonal to Yk.

2.4. (* append pair of new vectors to current cluster. *)
Set X k := [Xk, xi+ l].
Set Yk := [Yk, Y~+1].

2.5. (* if current cluster complete, make next cluster " cu r r en t " , . . . *)
(* . . . so next vector will be the first vector in that next cluster *)
If YkvXk is non-singular then

Set k : = k + 1.
2.6. Set i : = i + 1 .

End Until Loop.
Results: vectors X = [X0, . . . , XI,], Y = [Y0,---, Yk], and coefficients H, G, satis-

fying (3a)-(3c).

38 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

A p p e n d i x 2

LANCZOS ALGORITHM EXAMPLES

Input matrix A Initial vectors
Xo Yo

0 0 0 0 0 0 0 --1
1 0

1 0 0 0 0 O, 0 0
1 0

0 1 0 0 0 0 0 0
0 1

0 0 1 0 0 0 0 0
0 0

0 0 0 1 0 0 0 0
0 0

0 0 0 0 1 0 0 0
0 - 1

0 0 0 0 0 1 0 0
0 0

0 0 0 0 0 0 1 0
0 0

1.0 - 0 . 5
1.0 0.5

0 1.0
0 0
0 0
0 0
0 0
0 0

Generated
1.0 0

0 1.0
0 0

1.0 0
0 1.0
0 0
0 0
0 0

right vectors X
0 - 0 . 5
0 0

1.0 0
0 0.5
0 0

1.0 0
0 1.0
0 0

1 . 0 1 . 0

- 1 . 0 1 . 0

- 1 . 0 - 1 . 0

1.0 1.0
- 1 . 0 1 . 0

- 1 . 0 - 1 . 0

1.0 - 1.0
1.0 1.0

0 0
0 1.000

1.000 0
0 0
0 - 1.000

- 1 . 0 0 0 0

0 0
0 0

0.5 - 0.75
1.0 0.50

0 1.00
0 0
0 0
0 0

Generated left vectors Y

1.000 - 0 . 1 6 7 0.182 - 0 . 3 0 0
- 1.000 0.167 - 0.182 0.300

1.000 -0 .167 0.182 - 0 . 3 0 0
- 1.000 0.167 - 0.182 - 0.700

1.000 - 0.167 - 0.818 - 0.150
- 1.000 - 0.833 - 0.091 - 0.350

0 0 - 1 . 0 0 0 0.150
0 - 1 . 0 0 0 0.091 0.350

Right-Hand coefficients H
0 0 0 - 1 . 0
0 0 0 0

0

0

0 0 0.5 - 0 . 5
1.0 0 0 1.5

0 1.0 0 1.0
0 0 1.0 - 1.0

0 0 0 1.0

0 0 0 0

- 2 . 0
0
0
0

1.0

- 1 . 0

1.000
- 1 . 0 0 0

1.000
- 1 . 0 0 0

1 . 0 0 0

- 1 . 0 0 0

1.000
1.000

1.000
- 1 . 0 0 0

1.000
- 1 . 0 0 0

1 . 0 0 0

- 1 . 0 0 0

1.000
- 1 . 0 0 0

D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials 39

0 - 1.000
1.000 1.000

Lef t -Hand coefficients G
0 0 0 - 1.000
0 0 0 0

0 1.000 - 0.833 - 0.028 0.197 - 0.742 - 2.000 0
0 0 1.000 - 0 . 0 7 6 0.537 0.705 0 0
0 0 0 1.000 0.059 0.628 0 0
0 0 0 0 1.000 - 0 . 1 5 0 0 0

0 0 0 0 0 1.000 0 - 1.000

0 0 0 0 0 0 1.000 0

0
1.000

1.000
0.500

Block diagonal matr ix D = y T x
0 0 0 0
0 0 0 0

0 0 0 0 0 - 1.000 0
0 0 0 0 - 1.000 0.167 0
0 0 0 - 1.000 0.091 - 1.182 0
0 0 - 1 . 0 0 0 0.150 - 0 . 6 5 0 - 0 . 0 5 0 0

0 0 0 0 0 0 2.000 0

0 0 0 0 0 0 0 - 2.000

Block Tridiagonal matrix yTAX
1.000 0.500
1.000 - 0.500

0 0
0 0
0 0
0 - 1.000

0 0

0 0

0 0 0 0
0 0 0 - 1.000

0
0

0
0

X with

1 0
1 1
0 1
0 0
0 0
0 0
0 0
0 0

0 1 0 0 - 1 1
0 0 1 0 1 - 1
1 0 0 1 1 1
0 1 0 0 1 1
0 0 1 0 1 - 1
0 0 0 1 1 - 1
0 0 0 0 1 1

non-orthogonal ized clusters

1 0 0 0 1 1

Below are the results when the vectors within each cluster are not orthogonalized.

0 0 - 1.000 1.000 0 0
0 - 1.000 0.167 - 1.157 0 0

- 1.000 0.091 - 1.182 - 0.227 0 0
0.150 - 0 . 6 5 0 - 0 . 5 5 0 0.125 2.000 0

0 0 0 2.000 0 - 2.000

0 0 0 0 - 2.000 0

40 D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials

Y with non-orthogonalized clusters
1 - 1 1 - 1

- 1 1 - 1 1
1 - 1 1 - 1

- 1 1 - 1 0
1 - 1 0 0

- 1 0 0 - 1
0 0 - 1 1
0 - 1 1 - 1

0 0
0 1
1 0
0 0
0 - 1

- 1 0
0 0
0 0

H with
- 1

1
- 1

1
- 1

1
- 1

1
1

1
- 1

1
- 1

1
- 1

1
- 1

non-orthogonalized cluster
0 0 0 - 1
0 0 0 0 1

1 0 0 0 0 - 2
0 1 0 0 2 0
0 0 1 0 1 0
0 0 0 1 - 1 0 (

0 0 0 0 1 0 -

0 0 0 0 0 0 1 0

G with non-orthogonalized clusters
0 - 1
1 1

0 0 0 - 1
0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 2
0 0 0 1 0 1
0 0 0 0 1 - 1

0 0 0 0 0 1

0 0 0 0 0 0

1)= y T x
0 1
1 1

0
0

- 2 C
0 (~
0 C
0 C

0 - 1

0

with non-orthogonalized clusters
0 0 0 0
0 0 0 0

0 0 0 0 0 - 1
0 0 0 0 - 1 1
0 0 0 - 1 1 - 2
0 0 - 1 1 - 2 1

0 0 0 0 0 0

0 0 0 0 0 0

0
0

0 0
0 0
0 0
0 0

2 0

- 2

D.L. Boley et al. / N o n s y m m e t r i c Lanczos and f ind ing orthogonal po lynomia ls 41

y T A X with non-orthogonalized clusters
1 1
1 0

0 0 0
0 0 0

0 0 0 0 - 1
0 0 0 - 1 1
0 0 - 1 1 - 2
0 - 1 1 - 2 1

0 0 0 0 0

0 0 0 0 0

0
- 1

1 0
- 2 0

1 0
- 1 2

2 0

0

0
0

0
0
0
0

- 2

0

Appendix 3

P O L Y N O M I A L A N D W E I G H T R E C O N S T R U C T I O N E X A M P L E

We use the vector of points z = [1, 2 , . . . , 8] T. Assume only d = 2 weights are
nonzero, so we need only m = 2d + 1 = 5 initial moments S0o,... , s40.

In the context of checksumming the L U factorization [9] of a matrix A = L U,

this corresponds to computing m = 5 checksums on each row of the 8 • 8 matrix
A, allowing up to d = 2 errors per row. If V 5 is the 8 • 5 matrix of checksum
coefficients, then the checksums computed on A will be A V 5. The checksum
difference vector f , a 5-vector, is one row of the checksum difference matrix F,
which is the difference between the checksums on the resulting U and the row
operations L applied to the original checksums A V 5.

One can use the symmetric Lanczos algorithm [10,3,2] to find the tridiagonal
matrix T that generates the monic polynomials orthogonal over points z with
weights 1 , . . . , 1:

4.500 5.250 0 0 0 0 0 0
1.000 4.500 4.000 0 0 0 0 0

0 1.000 4.500 3.536 0 0 0 0
0 0 1.000 4.500 3.048 0 0 0
0 0 0 1.000 4.500 2.462 0 0
0 0 0 0 1.000 4.500 1.762 0
0 0 0 0 0 1.000 4.500 0.942
0 0 0 0 0 0 1.000 4.500

The

t o =

t I =

corresponding polynomials are (from ztT(Z) = IT(Z) T + t n (z) e~)

zt o - 4.5t 0 = z - 4.5

t 2 = zt 1 - 4.5q - 5.25t 0 = z 2 - 9z + 15

42 D.L. Boley et al. , /Nonsymmetr ic Lanczos and f inding orthogonal polynomials

T h e checksum coeff ic ients V 5 can be f o u n d b y eva lua t ing the first f ive such
po lynomia l s on the poin ts z. One could also use the n o n - s y m m e t r i c Lanczos
a lgor i thm itself to genera te T, V r direct ly, s tar t ing wi th the m o m e n t s of the
monomia l s 1, z , 2 2, 23 , . . . over the po in t s z with weights 1 , . . . , 1.

T he vector of initial m o m e n t s we use is s o = [- 4, - 25, - 34, 90, 277.714, * ,
, , ,]T, where the * 's s tand for unspec i f ied fill values. In o u r c h e c k s u m
example , we use f T = [- -4 , - -25, --34, 90, 277.714] as o u r example .

The Lanczos process te rminates af ter 2 steps, genera t ing the vec tors

1.000 - 6.250 4.000
0 1.000 - 2 . 0 0 0
0 0 1.000
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

&
- 4.000 0 0

- 25.000 101.250 0
- 34.000 202.500 0

90.000 - 405.000 *
277.714 * *

T he �9 's de no t e entr ies depend ing on the fill values in s o. Th ese need no t be
compu ted . .,

T he first three po lynomia l s o r t hogona l wi th respec t to the u n k n o w n inner
p roduc t are der ived f rom U3:

h o = / o = 1

h~ = t 1 - 6.25t o = z - 10.75

h 2 = t 2 - 2t I - 4t o = z z - l l z + 28.

N o t e the zeroes of h 2 are z 3 = 4 and z 6 ~. 7, as is shown in the G e n e r a l i z e d
V a n d e r m o n d e mat r ix VrU3:

J -r .~j

1 . 0 0

2.00
3.00
4 . 0 0

5.00
6.00
7.00
8 . 0 0

1 . 0 0 - 9 . 7 5 1 8 . 0 0

1 . 0 0 - 8 . 7 5 1 0 . 0 0

1 . 0 0 - 7 . 7 5 4 . 0 0

1 . 0 0 - 6 . 7 5 0

1 . 0 0 - 5 . 7 5 - 2 . 0 0

1.00 - 4.75 - 2.00
1 . 0 0 - 3 . 7 5 0

1 . 0 0 - 2 . 7 5 4 . 0 0

D.L. Boley et al. / Nonsymmetric Lanczos and finding orthogonal polynomials 43

C o r r e s p o n d i n g to the zeroes in the last c o l u m n of V rU 3, the n o n z e r o weights
are w 3, w 6. W e solve the sys tem (7):

- 4.0 1.0 w 3 l : llw6]
to ob ta in the so lu t ion w 3 = 5, w 6 = - 9. So the f inal set of weights , c o r r e s p o n d i n g
to the e r ror vec to r in the checksum p r o b l e m is w = e = [0, 0, 0, 5, 0, 0, - 9, 0] a'.

We could also do the same c o m p u t a t i o n us ing the m o n o m i a l s t~(z)=z ~,
i = 0, 1 ,7. In this case T would be the c o m p a n i o n m a t r i x for the p o l y n o m i a l
t s = (z - 1) . . . (z - 8). T h e steps are exac t ly the same as above.

