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The preconditioned Barzilai-Borwein method is derived and applied to the numerical so- 
lution of large, sparse, symmetric and positive definite linear systems that arise in the 
discretization of partial differential equations. A set of well-known preconditioning tech- 
niques are combined with this new method to take advantage of the special features of the 
Barzilai-Borwein method. Numerical results on some elliptic test problems are presented. 
These results indicate that the preconditioned Barzilai-Borwein method is competitive and 
sometimes preferable to the preconditioned conjugate gradient method. 
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1. Introduction 

We are interested in the numerical  solution of  linear systems of  equations 

A x  = b, (1) 

where A E Nnx~ is large, sparse, symmetric  and positive definite (SPD). Sparse SPD 

linear systems arise frequently in areas such as structural analysis, oil reservoir  sim- 

ulation, fluid dynamics,  quantum chemistry, and in general, in problems that involve 

the discretization of  partial differential equations (PDE). 
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The solution of (1) is the unique global minimizer of the strictly convex quadratic 
function 

f ( x )  = 2 z t A z  - btx. (2) 

Hence, iterative methods that find local minimizers of differentiable functions can 
be applied to the solution of (1). In particular, we are interested in the use of the 
Barzilai-Borwein gradient method to solve (1). 

In 1988, Barzilai and Borwein [4] present a new choice of steplength for the 
gradient method that requires less computational work and converges much faster 
than the well-known steepest descent method for quadratic functions. The method, 
for the minimization of (2), is defined by 

1 
Xk+l = Xk -- - - g k ,  

Ctk 

where gk = A x k  - b, and the scalar ak is given by 

gtk- 1Agk-  i 
c~k-  g~-lgk-I  (3) 

Notice that the scalar ak, the inverse of the steplength at every iteration, is the Rayleigh 
quotient of A at the vector gk - l .  

In 1993, Raydan [14] establishes global convergence of the Barzilai-Borwein 
method for the strictly convex quadratic case. This result has recently been extended 
for the (not necessarily strictly) convex quadratic case by Friedlander et al. [7], to 
incorporate the method in a box constrained optimization technique. They report on the 
succesful behavior of this new method for very large problems. Glunt et al. [8] applied 
the Barzilai-Borwein method to the problem of molecular conformations in chemistry, 
and found a relationship with the shifted power method that adds understanding to 
the significant improvement obtained with the choice of steplength given by (3). In 
particular, they established that the inverse of the steplengths, ak,  are Rayleigh quotient 
approximations of the eigenvalues of the matrix A. See also Fletcher [6]. 

The numerical observations given in [7, 8] lead us to derive the preconditioned 
version of the Barzilai-Borwein (PBB) method in section 2. We also present some 
theoretical results that help us to decide which preconditioning techniques are suitable 
for this new method. In section 3 we describe well-known preconditioning techniques 
that have been used with the preconditioned conjugate gradient (PCG) method to solve 
problem (1). In particular, we study the use of the symmetric successive overrelaxation 
(SSOR) and the incomplete Cholesky (IC) techniques with the PBB method. In 
section 4 we present preliminary numerical results to test the effectiveness of the 
PBB method as compared with the PCG method. Finally, in section 5 we present 
some concluding remarks. 
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2. P r e c o n d i t i o n e d  vers ion  

We now derive the preconditioned version of the Barzilai-Borwein method. The basic 
idea is to transform the problem of minimizing (2), to that of minimizing a related 
quadratic functional 

= 2 y t ~ y  _ -~ty, (4) 
1 1  

where A = E - ' A E  - t ,  b = E - l b  and y = E t x  for some nonsingular matrix E. 
The motivation for minimizing f(y)  instead of f ( x )  is that if E makes the spectral 
condition number ~(.4) much smaller than ~;(A) or if it clusters the spectrum of .4, 
then the convergence of the Barzilai-Borwein method will be faster for f (y)  than for 
f ( x ) .  See [7, 8]. 

Our derivation is similar to the derivation of the preconditioned conjugate gra- 
dient method, see [3]. Let C be a positive definite matrix factored in the form 
C = E E  t, and consider the quadratic functional (4). The matrix A is clearly symmet- 
ric. Moreover, since A is positive definite, A is also positive definite. The similarity 
transformation 

E - t A E  t = E - t E - I A  = C - I A  

reveals that A and C -1A have the same eigenvalues, and so the spectral condition 
number of A is completely determined by C and A. 

Consider the application of the Barzilai-Borwein method to ]'(y). The iterations 
are described by 

= Ayk - b, (5) 

N 

Yk+, = Yk - =--gk, (6) ~k 

, (7) 

where a0 ~ 0 and Yo are arbitrarily chosen. 
Let xk = E - t y k ,  for all k. Simple calculations based on (5)-(7) and the defini- 

tions of A and b_ show that 9k = Egk and 

htk_lAhk-1 

~ k - -  9tk_lhk_ l , 

where hk- i  = C-19k-1. Now, using (6) we obtain the recursion formula 

N 

Etxk+l  = E txk  - :--gk, 
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and also 
1 

Xkq-I : X k  - -  =-hk.  
O~le 

Now, applying A and subtracting b in both sides of (8), we have that 

gk+~ = 9k - L A h k .  

Therefore, the sequence {xk} is produced by the following algorithm: 

(8) 

Preconditioned Barzilai-Borwein (PBB) algorithm 

Given xo E Nn, ao a nonzero real number and C a SPD n x n  matrix. Set go = A x o - b .  
For k = 0, 1 , . . .  (until convergence) do 

Step 1. Solve Chk = 9k for hk; 
Step 2. Set Pk = Ahk; 
Step 3. Set Xk+ 1 : X k - -  l-Lh~k k, 

1 . Step 4. Set gk+~ = gk - ~-~-kPk, 
ht~pk. 

Step 5. Set ak+l = g~.hk' 

End do. 

The matrix C is called the preconditioning matrix and A the preconditioned ma- 
trix. Notice that every iteration of the PBB algorithm involves two inner products, 
two scalar-vector multiplications, two vector additions, one matrix-vector multipli- 
cation and solving a system of linear equations with the preconditioning matrix C. 
Theorem 1 establishes the convergence of the PBB algorithm when applied to the 
minimization of (2). 

Theorem 1. Let f be the strictly convex quadratic function given by (2). Let {xk} 
be the sequence generated by the PBB algorithm, C = E E  t an SPD preconditioning 
matrix, and x ,  the unique minimizer of f .  Then, the sequence {xk} converges to x, .  

Proof Since C and A are SPD matrices, then A is also an SPD matrix. Therefore, 
using theorem 1 in [14], we conclude that the sequence {Yk} given by (6) and generated 
by the Barzilai-Borwein method, converges to the unique global minimizer of (4), i.e., 

lim Yk = .~-l'~. 
k-- -+oo 

Now, using that xk = E - t y k  for all k, and the definitions of A and "b, we obtain 

lim xk = E - t  lim Yk = E - t A - I " b  = A - l b  = x . ,  
k --+ oo k -+ cx~ 

and the result is established. [] 
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Our next result establishes the Q-linear rate of convergence of the PBB method 
under a restrictive assumption on the eigenvalues of the matrix A. Nevertheless, we 
present this result because it will help us to decide which preconditioning strategies 
are suitable for this new method. First, let us introduce some notation. For a given 
preconditioned matrix A we assume that {vl, v2, �9 �9 �9 vr,} are orthonormal eigenvectors 

of J~ associated with the eigenvalues {,~1, A2, . . . ,  An} such that 

0 < /~min = ,~1 ~ ,~2 ~ " ' "  ~ ,~n = )~max. 

For a given preconditioning matrix C = E E  t, we define the E-norm in ~n as follows. 
For any z E ~n, 

llzll  = I I z ' z l l 2  

Theorem 2. Let f be the strictly convex quadratic function given by (2). Let {xk} 
be the sequence generated by the PBB algorithm, and x ,  the unique minimizer of f .  
Let the matrix C --- E E  t be chosen such that the eigenvalues of A satisfy 

)~max < 2 x / ~ m i n .  (9) 

Then, the sequence {xk} converges Q-linearly to x .  in the E-norm with convergence 

factor ~ = (Am~ - / ~ m i n ) / / ~ r n i n  �9 

Proof It suffices to prove that the sequence {Yk} given by (6) and generated by the 

Barzilai-Borwein method converges Q-linearly to y,  = j - l ~  in the Euclidean norm 
with convergence factor ~. Indeed, for any integer k 

I l y .  - y k l l 2  = II(x. - xk)ll  
Let us define ek = y,  - Yk for all k. Using (5) and (6), we have for any integer k 

1 ( ~ k I -  A)ek. 
e k + 1 .~. ~l Z 

Now for any initial error eo, there exist constants ~ ,  ~ , . . . ,  dOn such that: 

(10) 

eo=~-~d~iv i  . 
i=1 

Using (10) we obtain for any k, 

/t 

Z , 4 k +  I ,. 
e k + l  ~ "*i vz~ 

i = 1  

(11) 

where 

~k di. (12) 
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Using (10)-(12) we obtain 

n 

~k+l = ~ ( ~ k - r -  i--1 
= ~ 5k -- A~ d~vi. 

~k 
i=l 

By the orthonormality of the eigenvectors we have 

Ilek+~ll~ : ~ (d~) 2 ~k = ~ 2 
i=l \ ~k / 

m a x  (13) 

Since ~k is the Rayleigh quotient of Z. at the vector 9k-I, then it satisfies for all k 

0 < Amin ~ ~k ~ Amax. (14) 

Therefore, 

m a x  
i 

~k--Ai ~ Amax-Amin (15) 
~k Amin 

Finally, combining (13)-(15) gives 

Ilek+i 112 ~ ell~ll2 
Amax -- Amin 

where E -- < 1, 
)~min 

as we wanted to prove. [] 

3. Suitable preconditioning techniques 

Theorem 2 from the previous section states that the PBB method converges fast if Amax 
is close to Amin (i.e., ~2(-4) ~ 1), and )~min is away from zero. On the other hand, 
Barzilai and Borwein [4] proved R-superlinear convergence if .4 possesses two distinct 
eigenvalues. In practice, this speed of convergence is observed whenever A possesses 
few eigenvalues. So, a heuristic version of the Barzilai and Borwein result can be 
written as follows: the PBB method performs well when the spectrum of A has been 
clustered in very few groups. In conclusion, the features that a good preconditioning 
matrix must have for the PBB method are quite similar to the features that a good 
preconditioning matrix must have for the preconditioned conjugate gradient (PCG) 
method. See Golub and Van Loan [9]. 

The PCG method has been extensively applied to the solution of large sparse 
SPD linear systems, see for instance [1-3, 10, 12, 13, 15]. There are many equivalent 
formulations of the PCG algorithm. However, the version that has proved to be the 
most efficient, and the one used throughout this work, is the following procedure: 
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Preconditioned conjugate gradient (PCG) algorithm 

Given xo E Nn and C an SPD n x n matrix. 
Set go = Axo - b, solve Cho = 9o and set do = -ho .  
For k = O, 1 , . . .  (until convergence) do 

Step 1. Set Pk = Adk; 
9~hk . Step 2. Set ~k = dtkpk, 

Step 3. Set xk+l = xk + ~kdk; 
Step 4. Set gk+l = gk + ~kPk; 
Step 5. Solve Chk+l = gk+l for hk+l; 

g~+jhk+j. 
Step 6. Set flk = g~hk ' 

Step 7. Set dk+ l : --hk+l +/Skdk; 

End do. 

Notice that every iteration of the PCG method involves two inner products, three 
scalar-vector multiplications, three vector additions, one matrix-vector multiplication 
and solving a system of linear equations with the preconditioning matrix C. 

We now present two of the most popular preconditioning techniques for the PCG 
method. The first one is based on the SSOR iterative method to solve linear systems 
of equations [17]. Let the SPD matrix A be decomposed as 

A = D + L + L  t, 

where D and L are the diagonal and lower triangular parts of A, respectively. The 
SSOR iterative method to solve (1) can be formulated as a one-stage algorithm (see [3, 
17]): 

Cxk+l = Rxk  + b, 

where C - / ~  = A and 

The matrix C is the SSOR preconditioning matrix, and w is a real scalar parameter 
between 0 and 2. The choice of w has been studied for the iterative solution of large 
sparse linear systems of equations. An excellent overview of the development of this 
topic can be found in Young [16]. 

For the SSOR preconditioning scheme, the optimal value of w (i.e., the value 

of w that minimizes n2(-4)) has been shown to be 

2 
(.t) ~r = 

1+(2 

where 
xt D x  

= m a x -  
z#o xt A x  
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and 
x t ( L D - I  L t _ I D ) x  

5 = max 
z#o xt A x  

Unfortunately, # and 5 are difficult to obtain in practice and only rough estimates are 
available. However, it has also been established that the rate of convergence of the 
CG method with SSOR preconditioning is very insensitive to the estimates of # and 5, 
see [3]. In our numerical experiments we use the SSOR preconditioning scheme with 
the PBB method and also with the PCG method to compare their performance. In 
both cases, we approximate the value w* with a simple scheme that is closely related 
to our model problem. 

We also use, in our numerical experiments, another important strategy to precon- 
ditioning that is based on incomplete Cholesky factorizations of the matrix A. Given 
the SPD matrix A, by an incomplete Cholesky (IC) factorization we mean a relation 
of the form 

A = ~,~t + R, 

w h e r e / ,  is lower triangular, has some preestablished sparsity structure and approxi- 
mates the exact Cholesky factor of A. The matrix R is not zero and IIRII, hopefully, is 

small compared to IIAII. In this case, the preconditioning matrix is given by C = ~ t .  
One way to obtain such incomplete factorization is tosuppress the fill-in that appears 
during the factorization process, i.e., if aij = 0 then lij = O. 

An interesting modification of the incomplete factorization is obtained by stump- 
ing, during the process, the neglected values of the exact Cholesky factor of A to the 
diagonal, i.e., 

//, 

E r ~ j = O  for 1 <~i~<n.  
j ---- l  

This so-called modified incomplete Cholesky (MIC), introduced by Gustafsson [ l l ] ,  
guarantees that the preconditioning matrix C is an SPD matrix if A is weakly diag- 
onally dominant. In our numerical experiments, the coefficient matrices are weakly 
diagonally dominant, and so the MIC produces a feasible preconditioning strategy. 

Concus et el. [5] show that MIC has a strong effect on the eigenvalue distribution 

of the preconditioned matrix .A. In fact, )~min ~ 1 if the MIC scheme is used [5, 
13]. This property, on the smallest eigenvalue of A, has positive effects on the 
performance of the PBB method. 

4. Numerical experiments 

In this section, we present results of numerical experiments that were designed to 
test the effectiveness of the PBB method as compared with the PCG method. The 
test problems are large, sparse, SPD linear systems arising from the discretization of 
elliptic PDE problems. All our experiments were run on a SparcStation II in double 
precision FORTRAN with a machine epsilon of about 2 x 10 -16. 
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For our model problem, consider the elliptic partial differential equation 

0 a(x,V)_~ z _ N • +3"u = f , (x ,v ) ,  (16) 
Ox 

where 3' ~> 0 is a real scalar parameter, and the positive function a(x, y) and the 
function f l ( x , y )  are given. We pose (16) on the unit square 0 ~< x ~< 1, 0 ~ y ~< 1, 
with homogeneous Dirichlet boundary conditions, i.e., we seek a function u that is 
continuous on the unit square, satisfies (16) in the interior of the unit square, and 
equals zero on the boundary. 

We discretize (16) using the five-point centered finite difference scheme on a 
uniform m x m grid with h = 1/(m + 1) and the natural ordering, producing a linear 
system Ax = b of order n = m 2. The matrix A has the following block tridiagonal 

A = 

form 
AI D2 
D2 A2 

",. " .  

Din-  l Am- l Dm 
Dm Am 

where each Ai is a square and symmetric tridiagonal matrix of order m, and each Di 
is a diagonal matrix of order m. Since 3' is a nonnegative real number and a(x, y) > 0 
on the unit square, the matrix A is symmetric and positive definite. Notice that for any 
vector z E Nn, the cost of the matrix-vector multiplication Az is approximately 5n. 
Finally, notice that for 3' = 0 and a(x, y) = 1 our model problem is the classical 
Dirichlet problem for which A is ill-conditioned. 

We ran an implementation of algorithms PBB and PCG to solve problem (16) 
for different functions a, different values of the parameter ~, and different values of 
the dimension n (i.e., different step sizes h). We used the SSOR, the IC, and the MIC 
preconditioning strategies described in section 3 for both algorithms. The parameter co 
associated with the SSOR technique was chosen in the following way: 

2 
c o =  f o r 0 ~ < 7 ~ < l .  

1 + 0.67 + 2.6h 

This choice of co has been discussed by Axelsson and Barker [3] for 7 = 0. For this 
case, they proved that ~2(C-1A) = O(1/h) .  We extended the choice of co for '7 > 0 
based on numerical experience. 

In all our experiments, the function fl  in (16) is defined to have the constant 
value 1. We start the process in both algorithms at x0 = ( 0 , 0 , . . . , 0 )  t and we set 
c~0 = 1 in algorithm PBB. We stop the process, in both algorithms, whenever 119k 112 
10 -8 x 1190112" 

In our first experiment we fix the parameter 7 = 0 and the function a(x, y) = 
1, and we study the number of iterations required for both methods and the three 
preconditioning techniques, for different values of n. Figures 1 and 2 show the number 
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Figure 1. Number of iterations required for the PBB method when 7 = 0 and a(x,  y) = 1. 

of iterations required for the PBB method and the PCG method, for different values 
of n, respectively. We can see that, in all cases, the number of iterations increases as 
n increases. However, in general, the PCG method requires fewer iterations than the 
PBB method. For SSOR and MIC the difference oscillates between 5 and 10%, and 
for IC it oscillates between 30 and 50%. It may also be observed that the number of 
iterations required by the IC scheme is significantly higher than the number of iterations 

needed by the SSOR and the MIC techniques. Indeed, the smallest eigenvalue of J~, 
in the IC case, is very close to zero for large n, and this represents a negative effect 
for both methods. In particular, for the PBB method the convergence deteriorates, as 
we discussed in section 3, when the scalar c~k approaches the smallest eigenvalue, and 
this eigenvalue is very close to zero. On the other hand, in the MIC case, )~min ~ 1, 
which is a nice feature for the PBB method. Moreover, for SSOR and MIC, it has 
been established that ~2(A) = O(1/h), see [3, 11]. Consequently, from now on, 
we will only report on the behavior of the two methods with the MIC and SSOR 
preconditioning techniques. 

The second experiment was chosen to demonstrate the effect of increasing the 
parameter 3' on the effectiveness of the PBB method as compared with the PCG 
method. Figures 3 and 4 show the number of iterations and the computational work, 



B. Molina, M. Raydan / Preconditioned Barzilai-Borwein method 55 

180 

160 

140 

120 
r,, 
o 

100 

~ 80 .13 

E 
"1  

z 
60 

40 

IC 

SSOR 

MIC 
J 

20 

0 1  I I I I I I I 

0 0.5 1 1.5 2 2.5 3 3.5 4 
Dimension of the problem (n) x 104 

Figure 2. Number of iterations required for the PCG method when 7 = 0 and a(:r,fl) = 1. 

respectively, required for both methods and both preconditioning schemes when they 
are applied to the model problem (16) with the dimension fixed at n = 40 x 103. It can 
be seen that the number of iterations required by the PCG is smaller than the number 
required by the PBB method, although the difference is not significant. Furthermore, 
when 3' increases the two methods tend to require the same number of iterations, 
and this number of iterations decreases. This is a consequence of the decrease in 
the spectral condition number of J~ and the fact that the smallest eigenvalue of A is 
bounded away from zero. Finally, it is worth mentioning that MIC performs better 
than SSOR for both methods. 

We also study the effect of increasing the parameter 3' on the computational 
work required by the PBB and the PCG methods. Figure 4 shows the number of 
floating point operations required when the two methods are applied to the model 
problem when a(z,  fl) = 1, with different values of "7 and n = 40 x 103. It may be 
observed that, in all cases, the PBB method requires less computational work than the 
PCG method. The difference in the required work is approximately 10% and tends to 
increase when 7 increases, which is not in general a significant improvement. 

In our third experiment we fix the parameter 7 = 0 and we define the function 
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Figure 3. Number of iterations required for the PBB and the PCG methods for different values of -y 
when a(x,y) = 1 and n = 40 x 103. 

a(z, y) as follows: 

]0000 for (x,y) �9 [0,0.75] x [0,0.75], 
for (x,y) �9 [0.75,1] • [0,0.75] U [0,0.75] x [0.75,1], (17) 

a(x'Y)= I,O.1 for (x ,y ) �9  

Notice that A, for this particular choice of a(x, y), is very ill-conditioned. We study 
the behavior of both methods and both preconditioning techniques, for different values 
of n. Figure 5 shows the number of iterations required for the PBB method and the 
PCG method to achieve convergence. We can see that, in all cases, the number of 
iterations increases as n increases. However, in general, the PCG method requires 
fewer iterations than the PBB method. For MIC the difference oscillates between 5 
and 20%, and for SSOR the difference oscillates between 5 and 15%. It is worth 
mentioning that, in this very ill-conditioned case, the SSOR technique performs better 
than the MIC technique. 

Figure 6 shows the number of floating point operations required when the two 
methods are applied to the model problem when a(x,y) is given by (17) with dif- 
ferent values of n. It may be observed that, in all cases, the PCG method requires 
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Figure 4. Floating point operations required for the PBB and the PCG methods for different values of -y 
when a(z,fl) = 1 and n = 40 x 10 3. 

less computational work than the PBB method. The difference in the required work 
oscillates between 5 and 10%, which is not a significant improvement. 

5. Concluding remarks 

We have introduced the preconditioned Barzilai and Borwein method and compared 
it with the preconditioned conjugate gradient method when they are both applied 
to the large sparse SPD linear systems that arise from the discretization of elliptic 
differential equations. Our preliminary numerical results indicate that the PBB method 

is comparable and sometimes preferable to the PCG method, whenever A, is not 

extremely ill-conditioned and the smallest eigenvalue of A is not too close to zero. 
This conclusion should be a surprise because the Barzilai and Borwein method is the 
gradient method with a different choice of steplength, and the classical gradient method 
is never expected to be competitive with the conjugate gradient method for large sparse 

SPD linear systems. However, when the matrix A is extremely ill-conditioned, the 
PCG method is still a better option. 
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Figure 5. Number of iterations required for the PBB and the PCG methods for different values of n 
when a(z,y) is given by (17). 

It is important to observe that the PCG method requires the storage of one ad- 
ditional vector when compared to the PBB method. In fact, if the storage of the 
preconditioning matrix C is not considered, the PBB method requires 3 storage vec- 
tors and the PCG method needs 4 storage vectors. The PCG method also requires 
one additional scalar-vector multiplication and one additional vector summation per 
iteration. These additional requirements are not negligible for very large problems. 

From a theoretical point of view, the rate of convergence of the Barzilai and Bor- 
wein method remains as an open question. See [4, 6, 8] for some comments on this 
matter. Based on a restrictive assumption, we have presented a rate of convergence 
result (theorem 2) whose sole purpose is to motivate the choice of preconditioning 
strategies with the PBB method. In fact, as pointed out by one of the referees, the PBB 
method performs better in practice than what one would expect from the conclusion of 
theorem 2. This gap between theory and practice is an interesting topic that deserves 
further investigation. 

Finally, we want to stress that in our experiments we have chosen preconditioning 
techniques that have been designed for the PCG method. In the near future, we would 
like to study the possibility of finding suitable preconditioning techniques especially 
designed for the PBB method. 
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Figure 6. Floating point operations required for the PBB and the PCG methods for different values of n 
when a(z, y) is given by (17). 
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