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Variable stepsize continuous two-step Runge-Kutta
methods for ordinary differential equations*
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A general class of variable stepsize continuous two-step Runge-Kutta methods is investi-
gated. These methods depend on stage values at two consecutive steps. The general convergence
and order criteria are derived and examples of methods of order p and stage order g = p or
qg=p—1 are given for p < 5. Numerical examples are presented which demonstrate that
high order and high stage order are preserved on nonuniform meshes with large variations
in ratios between consecutive stepsizes.
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1. Introduction

Consider the initial-value problem for systems of ordinary differential equations
(ODEs)

{ Y(x) =fx),  x€x,X], (1.1)
¥(x0) = Yo,

with sufficiently smooth function f : R® — R’. To compute a numerical approxima-
tion to the solution y(x) to (1.1) let there be given a nonuniform grid
Xg <X <...<Xy, Xy > X, and define h; =x,, —x;, i=0,1,...,N—1, and
& =hi/h_, i=12,...,N. We consider variable stepsize continuous m-stage
two-step Runge-Kutta (TSRK) methods of the form

* The work of the first author was supported by the National Science Foundation under grant NSF
DMS-9208048. The work of the second author was supported by the Italian Government.

© J.C. Baltzer AG, Science Publishers



348 Z. Jackiewicz, S. Tracogna | Continuous two-step Runge-Kutta methods
0+ Ohir) = (60 Oh(ict) + (1 — (60 )i
+hiy Z (€, O)f (YL)) + Ewi(&, 0)f (17)),
Y/ = (Emnlr) + (1 = w(€))(x)
Fhiy S (@€ (VL) + €€ (YD),

\ Jj=1

i=12,...,N—1,0¢€[0,1]. Here y,(x) is an approximation to y(x) and stage
values Y/ are approximations (p0531bly of low order) to y(x;+¢h;),

I

j=1,2,...,m. The vector ¢ = [cy,...,c,)" may, in general, depend on & although
we usually assume that it is constant Usually the variable stepsize will be chosen
according to some step selection scheme, i.e.,

hy = AT (x;,h),
where 4 is the maximum stepsize and for all 4 > 0 and x € [xy, X] we have
0<A<LT(x,h) <1,

compare Gear [5].
We will represent the method (1.2) by the following table of the coefficients

u&) | AG) | B&)
n(&,0) | nT(&,0) | wT(&,0)

where
u(&) = [ (&), -, um(&)",
(&, 8) = [01(&,0), .., vm(&: 0)],
w(§:,0) = [Wl(&,f)),---,wm(&,f?)] ,
A&) = (&)=, B&) = [bs(&is1-

For h; = h = const and § = 1 the formulas (1.2) reduce to TSRK methods investi-
gated recently by Jackiewicz and Tracogna [8]. Putting 4 = 0 they reduce to the
methods investigated in [7,9]. This paper generalizes the work of [8] to the contin-
uous methods (1.2) constructed directly on nonuniform meshes.

Let

YI = [Yil1' sy Yim]T)

S =, (xml’,
e=][l,...,1] € R"™.
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Then the method (1.2) can be written in more compact form as
yu(x; + 0§k ) =n(&i, O)yu(ximy) + (1 — n(&;, 0))yalx;)
+ hia (V1 (6, 0)f (Yiey) + Ew” (£, 0)F (Y1),
Y = u(€)yn(xio) + (e — u(&))ya(x:)
+ hi (A& (Yin) + &BE) (Y1),

i=1,2,...,N—1,6€[0,1]. We will always assume that the approximation y,(x)
is given on the initial interval [x,, x,]. This starting function should be computed by
some other self-starting method, for example, a continuous one-step method of
appropriate order.

Similarly as in [4,8], the methods (1.2) can be divided into four types depending
on the structure of the coefficient matrix B. For type 1 or type 2 methods, the matrix
B has the form

(1.3)

B = bzl A e 0 ,
by by A

with A =0 or X # 0, respectively. These methods are appropriate for nonstiff or
stiff differential systems in a sequential computing environment. For type 3 or
type 4 methods, the matrix B has the form

B =diag(\ A, ..., A),

with A = 0 or X # 0, respectively. These methods are appropriate for nonstiff or
stiff systems in a parallel computing environment.

In the recent paper [10] the potential for efficient implementation of TSRK
methods is investigated. The implementation issues addressed are the local error
estimation and changing stepsize using Nordsieck and interpolation techniques.
It is demonstrated that the constructed error estimates are very reliable in a fixed
and variable stepsize environment.

2. Stability, convergence and order criteria

As in [8] we will use the recent approach by Albrecht [1-3] to investigate the con-
vergence and order conditions for the method (1.3). Define the (2m + 2) x (2m + 2)
matrices A(&;, 0) and B(,, 6) by

07 0 0
A(g,0) = g g “(gi) e— ;‘(&) |
0 0 n,0 1-n.0)
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0 0 00
Be,o)=| A& E& 00,
'UT(f,',e) gin(give) 00

and let
z4(x;,0) : = (Y1, YT, yu(x), ya(xi + 06:0)]T,
f(zn(x:,0)) : = V(Yi—l)va( Yi)T’f(yh(xi))af(yh(xi + ofihi—l))]T-
Then (1.3) can be written in the form of 4-method as defined by Albrecht [1]
zy(x;, 0) = A&, 0)zh(xi_1, 1) + B\ B(&, 0)f (24(x:, 6)), (2.1)

i=1,2,...,N—1,0¢€0,1], z4(x,1) = [07, YT, p4(x0), ys(x1)]"

The product of matrices A(¢;, 1) determines stability properties of (2.1). The
method (2.1) is said to be zero-stable if the product [[;—9.A(¢;_,, 1) is uniformly
bounded with respect to i and s. For constant stepsize (§; = 1) this is satisfied if
and only if —1 < n(1,1) <1 since the matrix .4(1, 1) has eigenvalues 1, —n(1, 1),
and eigenvalue 0 of multiplicity 2m (compare [8]). A similar criterion is also true
for variable stepsize methods. We have the following sufficient condition for
zero-stability of the methods (2.1).

Theorem 1
Assume that m < n(§;,1) < 1,i=1,2,...,N, where —1 < m < 0. Then the TSRK
method (2.1) is zero-stable.

Proof
We will investigate the uniform boundedness of the product of matrices

[T4¢. D,

v=s

where £, stands for the ratio of stepsizes 4, /h,_,. Consider the 2 x 2 matrix N; con-
sisting of the last two rows and columns of A4(§;,1). Applying to this matrix the
transformation

Ni——)Ni = S_IN,'S,

where

1l=-m 14+m
s=lim W)

it is easy to show that ||N;||; < 1. Put

100
S=10 10
00 S
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and define
A, 1) =S 4(E,, 1)S.

It can be verified by using induction that for s > 3

v=s 0 0 Ns,:—l ..... 1
where
U(E,) = [u(&), e —u(&,)]
and
Nrr—l ..... 1= Nrﬁr—l ~l
Since
“Nr,r—l ..... Al S UNARNN, 2l - -1 €1
the theorem follows. O

We define the local discretization vector h;_;d(x;,6) as a residuum obtained by
replacing z,(x;,8) in (2.1) by the exact value function z{x;, ) defined by

Z(xn 9 D)(xl 1 + Chx l) 7y(xi + EiChi—l)T7y(xi),y(xi + agihi—l)]Tv
where

y(xioy +chisy) = [y +ethiy)y oo p(xo + thi—l)]T~
This gives

hi_yd(x;,8) = z(x;,0) — A(&, 0)z(x;_1, 1) — ki) B(E;, 8)f (2(x;, ), (2.2)

and similarly as in [8], using the Taylor series technique, we obtain

hi—ld(xia 9) = h;_, [OTa d(xi)T, 0, dA(xh 9)]T,

where

hi_yd(x;) ZC#(& KL, (2.3)

x ld(xne) ZC (61’9))) (x,)h, 1 (24)
and where C,(¢;) and C,(&,0) are deﬁned by

6“6“ (—D*u(g) A& (c—e*'  &BE)!
! (p—1)1 (=117

Cu(&) = (2.5)
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g (=1)'n(&,0) v (&0 (c—e)'  &w(&,0)c ! (2.6)
p! p! (=1 (w—18 '

C,(&,0) =

Definition 1
The method is said to have order of consistency p if

Sup Ihi—l‘i(xi?gn = O(th)

and stage order of consistency g if
sup l|hi1d(x:)|| = O(K%),

where h = i — max{h,}.

Definition 2
The method has order of convergence p if

sup [y, (x; + 66h1) — y(x;: + 0&h;_1)| = O(H)

and stage order of convergence ¢ if

sup [|y(x; + &ichi_y) — Yi| = O(Y).

Remark
It follows from the form of the local discretization error A;_,d(x;, ) that the method
has order of consistency p if and only if C,(¢;,0) = C,(§,6) = ... = C,(§,0) =0
and it has stage order of consistency ¢ if and only if C(§) = Cy(§) =
= Cq—l (gx) =0.
Subtracting (2.1) and (2.2), we obtain
q(x;,0) = A(&;,0)q(x;_1, 1) + b B(&;, 0)¢(x;, 0) + hi_yd(x;,0), (2.7)
i=1,2,...,N, 6 €[0,1], where
q(x;,0) : = z(x;,0) — z,(x;,6),
t(x;,0) : = f(2(x;,0)) — f(z4(x;, 9)).

It is convenient to partition g(x;,#) and #(x;, ) into four parts as follows

Q(J(Ci—;) J’(’(‘i-l + Chi—l))_ Y,
q\x; y(x; +&chiy) - Y;
i;g = - =

10 =1 5. 0,1) Y(x) — 4l

4(x;,0) y(x; + 06hi_y) — yu(x; + 06h;_y)
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and
t(x;_1) Flxioy +chiny)) —f(Yiy)
8x,,0) = | ix) | _ fO(xi+ &ichiy)) — f(Y3)
. t(’_xi-—h 1) F(x)) = f(a(x:))
1(x;,0) SO+ 0&h;_1)) — f(a(x: + 0&hi_y))

We can assume without loss of generality that
q(xo,6) = [OTa(I(xo)Tﬁ(xo),é(xo,e)]T~

Observe that g(x;,8) is the discretization error on the interval [x;, x;,,] while the
vector ¢(x;) represents the error of the stage values Y; computed at the current
step from x; to x;;. In what follows we will write §(x;,,) instead of §(x; 1)
and d(x,,,) instead of d(x;, 1), and we define # = max,{k;}.

After these preparations, we can now formulate the convergence and order
criteria.

Theorem 2
Assume that the TSRK method (2.1) is zero-stable, §(x,) = O(#"), §(x;) = O(#),
d(x) = O(F), d(x,,0) = O™ "),1=1,2,...,N—1,0€[0,1], h — 0, and that
o (&, De(xi_y) + EwT (€, 1)e(x;) = O(K), (2.8)
o (&, 0)1(xi-1) + EwT (€, 0)1(x)) = O(F™), (2.9)

/=1,2,...,N—1,6¢€]0,1], as h — 0. Then the method (2.1) is convergent with
uniform order p, i.e.,

q4(x;,6) =O(F),  h—0,
i=1,2,...,N—1, 6€[0,1], and the errors g(x;) = y(x; +&ch;i_y) — Y; of the
stages Y; are given by
g(x;) = hi i (A(E)t(xiy) + EB(E)H(x;)) + hiyd(x;) + O(F), (2.10)
where h;_d(x;) is defined by (2.3) with C,(§;) given by (2.5).

Proof
The equation (2.7) for 8§ = 1 takes the form

g(x;, 1) = A&, Dg(x;_y, 1) + b B(&, 1)#(x;, 1) + by d(x;, 1)

and its solution is

X,,l HA(§1 v (x0’ )

v=0
i—p—2

+th H A €1 —u B(£u+lvl)t(x;t+l1l)+d(xp.+111))’

=1 v=0
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i=1,2,...,N — 1. Substituting the above formula into (2.7), we get

i—2
q(xi) 0) = A(gia 0) HA(&'—I—V’ l)q(XO’ 1)

v=0
+hi—ld(xia0)+hi ZA(&" ) ( Xj— 1,1)
i— i—p—-3
+A §n Zhu H -A fz 1—vy u+171) (211)
p=0 v=0

+ b1 B(&, 0)t(x;, 0) + hi_, A(&;, 0)B(&-y, 1)t (x4, 1)
i—3 i—p—3

+ ‘A(fne) Zhu H A(fi—l—w I)B(§u+l1 l)t(x[kl-l, 1)’

p=0 v=0

i=12,...,N-1,0¢ [0, 1]. It can be verified that for i > 2 and s < i — 1 the pro-
ducts A(¢;,8) [T:26° A(£_1_,, 1) have the following structure

00 of o
i—1—s (is) (i)
0 0 foY o
b 'A — 11— 2‘ 22 b
AGO) [T A= o gl gl
00 G0 B850

7,5)

where o™, k,1=1,2, 8, and Bls” depend on the ratios of stepsizes &, &;_;, . . . , &,
and ﬂ(" (0) and ”)( 6) depend on &;,&,_y,...,&, and 6. Since by assumption the
TSRK method (2.1) is zero-stable, these elements are uniformly bounded with
respect to i and s. We have also

el ) EremenenD) 0 0
_ e—u(§))v (&, i—1(e —u(&))w (&i-1s
AGOBGLD = e, 1) w6 ) 0 o)
(1- U(fiaa))UT(fi—la 1) &.,(1- U(fiao))WT(fi—l, 1) 00
and it follows from equation (2.11) that
g(x;) = o4(xo) + o854 (x))
+ hiogd(x,) + hiy(e — u(&))d(x;) + Zh o d(x,42)
+ B (A& H(xi) + &B(E)H(x;)) (2.12)

+ A z(e —u(&N) (W (&1, )e(xieg) + Ew’ (&y, 1)i(xi_1))
+ Zhu gZIH_Z) Ep+l7 ) (x/z) + £u+lwr(£u+la l)t(xuﬂ))

p=0
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and
d(x;,0) = 65" (8)a(xo) + 85" (8)d(x,)

+ hi1d(x;,0) + iy (1 — (€, 0))d(x) +Zh BHD(0)d(X,42)

p=0

+ hi~l(vT(Eiw 0)t(x;_1) + EiWT(fia 0)t(x;)) (2.13)
+ h‘—z(l — (&, 0)) (W7 (&1, 1)e(xizg) + &ow” €y, 1)E(xiy))

+ zhuﬂl”+2 (£u+1v l)t(xy) + €u+lwr(§u+l, l)t(xy+l))a
p=0
i=1,2,...,N—1, 6 €0,1]. These equations and relations (2.8) and (2.9) imply
G(x;,6) = O(K) and formula (2.10) for ¢(x;). This completes the proof. O

We will not attempt to use this theorem to derive the more convenient form of
order conditions for (2.1) as was done in [8] for constant stepsize methods but con-
centrate instead on derivation of methods with stage order ¢q equal to p or p — 1,
where p stands for the order. We believe that such methods are the most useful
in practical computations. Methods of high stage order are characterized by the fol-
lowing result.

Theorem 3
Assume that (2.1) is zero-stable, §(x,) = O(F"), §(x;) = O(K’), and that it has order
of consistency p — 1 and stage order of consistency p, i.e.,

éu(Ei’ 9) = 0’ C/L(él) = 0’

foru=1,2,...,p— 1,0 €[0,1] and that C’p(éi, 1) = 0. Then the method has order
of convergence p and stage order of convergence p, i.e.,

4(x,0) =0()  and  g(x;) = O(K)
ash—0fori=1,2,...,N-1,0€[0,1].
Proof
It follows from the definition of g(x;) and #(x;) that
[l2Cxe)Il < Lilg(x)l;

where L is the Lipschitz constant for the function f. This inequality, the zero-sta-
bility of the method (2.1), and equation (2.12) imply that there exists a constant M
independent of 4 and ratios of stepsizes such that

lae)ll < M3 hylla()l| + 009,

u=0
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i=1,2,...,N. Hence, using standard arguments we obtain ||g(x;)|| = O(K’).
Using (2.13) we have also |§(x;, 8)| = O(#’) which completes the proof. O
3. Examples of methods

Consider first one-stage TSRK methods of the form

wé) | al® | Mg
n(&0) | v&6) | w(o)

Solving C;(£,0) =0 and C,(¢,6) =0 for v(£,6) and w(¢,8), C5(¢,0) =0 for
n(&,8), C,(&€) =0 for a(§) and C,(¢) =0 for u(€) we obtain a two parameter
family of methods depending on ¢ and A. The coefficients are

2 2
u() =£(20—2c ~2/\2—cl-fclx\+c {—20\5),
N W7
a(§)=5(" ;LCC_EI ?-c/\f)’
_ £0(6c — 6¢” — 360 + 3ch + 3cfE — 26°€)
(&, 6) = 6% — 3t + 30— 1 !
gy — £0(1 + £0)(2c — 0+ 3c%¢ — 2c£6)
v(6,6) = (1 —c+ct)(6c* € ~3ct+3c—1)’
-— 2 —_—

W(E, 6) = 0(1 +£0)(1 — 4c + 3c” + 0 — 2c£0)

(1 —c+ct)(l —3c+3ct —6c%)
These methods are zero-stable if
m<n(€,1) <1, (2.14)

where —1 < m < 0 (compare theorem 1).
The function 77(£,1) — 1 can be expressed as

(€ = D(c=fi)(e =f)(e = fi)(c ~ f)
(e ~f5)(c —f6) ’

where
£ —3 466 + 382 - V3VA,
| 125 ’
P _ -3+66438 +V3VA]
2 — 12&. ’

_3-36+9€ +3¢ - V3VA,
1266 — 1) ’

g
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_ 336497 +3¢8° +V3VA,
12¢(£ - 1) ’
A, =346 -2 — 48 4+ 38,
A, =3 4+26+ 136 + 1268 +13¢* + 26 + 3¢5

It is easy to check that the inequality (2.14) is satisfied for (¢, c) belonging to the
region shaded in figure 1. Choosing, for example, ¢ = 5/4, the condition (2.14) is
satisfied if 0 < £ < 2.32015. In addition, if 9/14 < £ < 6/5, then

LA, Dlleo = 1.

In the next section we will demonstrate the effect of these restrictions on the ratio £
on the accuracy of numerical computations for type 1 methods (i.e., A = 0).

The functions f| and f;, in figure 1, have both the horizontal asymptote ¢ = 2/3
for £ — 400 and both approach this asymptote from below. The function f; has a
slant asymptote for £ — +oo. Therefore, there are no values of ¢ for which the
inequality (2.14) is satisfied for every £ > 0.

In figure 2, ¢, stands for the value of ¢ corresponding to the largest interval of §
for which (2.14) is satisfied. This value is ¢ = 0.655858 and the corresponding &,,,, is
11.7512.

Putting, for example, A = 1/2 we obtain a one-parameter family of type 2
methods of order 3 and stage order 3 depending on ¢. We will next choose
¢ = (6 £ v/6)/6 so that for constant stepsize (¢ = 1) and for § = 1 these methods
reduce to the A,-stable methods constructed in [6]. It can be verified that if

Ja

4

\ ﬁt/
3.5
3
2.5
zero-stability
) 2 /,/
A b
1.5 v
1
fi
0.5 7.
r‘<kf2 3
0 — T/
0.5 1 1.5 2 2.5 3 3.5 4
&

Figure 1.
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¢ = (6 — v/6)/6 this method is zero-stable if 0 < £ < 2.29041 and if ¢ = (6 + v/6)/6
this method is zero-stable if 0 < £ < 2.56508. In this last case, however, the method
is not defined for ¢ = (v6 — 1)/5.

Consider next the two-stage methods given by

u(§)  au(d) e A(6) 0
uz(€) azl(f) ag(§) b(ﬁ) A(€)

0 w6 wEd) | wi(Ed) w&0)

where we have chosen 7(¢, §) = 0 to guarantee that the resulting methods are zero-
stable for any ratio of stepsizes. Solving the system of equations C,(¢,6) =0,
p=1,2,3,4, for v;(&§,0) and w;(&,0), the system C,(§) =0, u=1,2, for a;(§)
and C;(¢) = 0 for u;(£) we obtain a family of variable stepsize continuous methods
of order 4 and stage order 4 which depend on the parameters c,, ¢, A, and 4. The
coefficients of these methods are quite complicated and are not reproduced here.
We could choose the free parameters c;, ¢;, A, and b in such a way that when the
stepsize is kept constant and 8 = 1 the resulting discrete method has good stability
properties. Choosing, for example, A =0, ¢; = 2.15183, ¢, = —3.00706, and
b = 2.87785 we obtain a type 1 method of the form

uy (£) = —€(1.73943 — 1.15774¢ — 0.581684¢%),
uy(£) = £(4.75706 — 0.835826¢ — 3.92123¢2),
ay; () = £(0.48891 + 1.23582¢ + 0.395434¢%),

0.68 \
0.67
fi
0.66 N —
Copp [———1 S_j.c_’_’_r_—:_—__?,ré
3|
¢ 0.65 zero-stability I
I
/| |
0.64 I'r
[
|
0.63 7 :
|
I
0.62
: 4 6 8 10 12 14
E §max
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ay(€) = —£(0.076508 + 0.078078¢ — 0.18625¢7),
a (€) = —£(1.33709 + 0.892194¢ + 2.66569¢7),
() = £(0.209237 + 0.0563681¢ — 1.25554¢2),

v,(€,0) = —£26(0.776729¢ — 0.0513301£0 — 0.0400127£6
+ 0.0969201£26 — 0.00853995¢26° — 0.00748917¢°6%)/
(0.205034 + 0.152237¢ — %),
v,(€,0) = —£26(0.223271¢ — 0.0147549¢0 — 0.0115017¢6°
— 0.0969201¢%0 + 0.00853995¢28" + 0.00748917¢6°)/
(2.48143 — 0.529613¢ — £%),
wi (€, 60) = 6(0.581011 + 0.09660789 — 0.179714¢6
—0.0398426£6% — 0.0419613£%6* — 0.0104657£°6°)/
(0.996778 — 1.32688¢ — £7),
w,(£,6) = 6(0.212903 — 0.04947020 — 0.0658535¢0
+ 0.0204023¢6” — 0.0153761£%6* + 0.00535919¢°6°)/
(0.510423 4 0.949509¢ — £7).
For £ =1 and 6 = 1 these formulas reduce to the type 1 method

0 | 212016 0.031664 0 0
0 | —4.89497 —0989938 | 287785 0
0 | 119223 —0.122001 | —0.304963 0.234739

obtained in [8] whose interval of absolute stability is approximately (—2.27,0).
Choosing A = 3/4, ¢, = 0.716383, ¢, = 2.17828, b = 2.70983 we obtain a type 2
method of the form

u (£) = —£(0.0251613 + 0.562435¢ — 0.587597¢2),
1, (€) = —£(0.959201 + 2.40963¢ — 3.36883¢2),
a,,(€) = —£(0.0559807 + 0.453683¢ — 0.674571¢?),
a,5(€) = —£(0.00279765 + 0.108752¢ + 0.0869733¢2),
ay (€) = —£(2.1341 + 1.94371¢ — 3.86747¢%),
a(€) = —£(0.106652 + 0.465923 + 0.498639¢7),

v,(£,6) = £6(0.805994 — 0.7475516 + 0.1721686
—0.342021£6 + 0.422962£6° — 0.109588¢6°)/
(0.0515473 4 0.526104¢ + &%),
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v,(£,60) = £6(0.194006 — 0.1799396 + 0.04144156°
+ 0.342021£60 — 0.422962£6” + 0.109588¢6°)/

(0.889689 — 2.18568¢ + £2),
wi (€, 0) = 6(0.970258 — 0.2227126 + 1.29878¢6

— 0.397494£6% — 0.9677996%6% + 0.333221¢%6%)/

(0.651164 + 1.24886¢ — £2),
w,(€,60) = —6(0.0345129 — 0.02408839 + 0.0461988¢0

— 0.0429926£6% — 0.0344255¢%6 + 0.0360409¢°6%)/
(0.0704293 + 0.41072¢ — £2).
For £ = 1 and @ = 1 these formulas reduce to the 4-stable type 2 method

0 0.164905 —0.198522 0.75 0
0 —0.210337 -1.07121 2.70983 0.75

0 | 0128015 —0.284316 | 1.12692 0.0203846

obtained in [8].

However, the disadvantage of these methods is that they are not well defined for
all positive values of €. For example, the type 1 method listed above is not defined
for £ =0.535279 and & = 1.33255 and the type 2 method is not defined for
& = 0.540925 and £ = 1.64476 and in practical implementations we should restrict
the ratio to stay away from these values by some safe margin.

We can avoid these complications choosing ¢, and ¢,, ¢, # ¢,, from the interval
[0, 1]. In this case it can be verified that the methods are well defined for every £ > 0.
The example of such a method of type 1 is listed below.

C1=1/3, C2=2/3, T’:—O,

(€)= —5(12+99§+252),
() = _w,
an(§) = _€<3T+£>2,
a,(6) = _%,
an () = -0 112§+7g2)’
an(§) = —52(6;75)’

18
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5 — 063 (—8 + 186 — 1267 — 126¢ + 366°¢ — 276°¢)
uibf) = ST+ E2+0 ’
06 (16 — 360 + 246* + 120¢ — 366%¢ + 276%¢)
nl66) = H+O(1+20) ’
(16 — 126 + 360¢ — 366°¢ + 246°¢> — 276°¢%)
41+82+9) ’
0(—8 + 126 — 186¢ + 366°¢ — 126°¢* + 276°¢?)
8(1+&)(1+2¢) ‘

Wl(é‘a 0) =

Wz(éa 0) =

Its interval of stability for £ = 1 and # = 1 is approximately (—1.134,0).

Similarly we can obtain variable stepsize continuous TSRK methods of types 3
and 4 which reduce to the methods obtained in [8] when £ =1 and § = 1. The
details of these methods are omitted.

We will conclude this section with the construction of the 3-stage TSRK method
of type 1 of order 5 and stage order 5, where, again, we have chosen n(§,4) = 0 to
guarantee that the resulting methods are zero-stable for any ratio of stepsize. Sol-
ving the system C,(§) =0, p=1,2,3 for ay;(§), C:(§) =0 for ©(£) and
C,(£0)=0,p=1,2,3,4,5for v;(§0),j = 1,2,3 and w;(§,6), j = 1,2, we obtain
a family of variable stepsize continuous methods which depend on the parameters
€y, €2, €3, b1, b31, b3y and ws.

Choosing ¢; = 1/8, ¢, = 1/4, ¢; = 3/4, and b,), by, b3, and w; in order to obtain
satisfactory stability properties when the stepsize is kept constant and § = 1, we
obtain a type 2 method of the form

£(336 + 136 + 208 + €)

o= 128 :
s (€) :#gﬁ),

u3(§) = — 3¢(42 - 3:& +13¢8%) |

ay(g) = - LAY s+6)
a,,(€) = _6(6+€)(87J6rg£)(14+§),
a(6) = — B 5)(582; ; (1)965 +176).
() = -4 L8,

an(e) = ~E0+E).

96
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_£(83+17¢)

as(8) = 480

asc(6) = — £(24 — 2125 +138) ,
(€)= (84— 6llg +13¢%) ’
(€)= — £(588 — 538985 +2218%) )

b21 = 1/4, b31 = -3, b32 =3,

v, (£,0) = 883(—270 + 456 — 2706* + 4808° — 1020¢ + 1206*¢ — 9606°¢
+ 19206*¢ — 810£% + 806°¢> — 7200*€* + 15366°€%)/(75(7 + £)(7 + 2£)),
vy(&,0) = €(630 — 10560 + 6306° — 11206° + 2430¢ — 2706%¢ + 21606°¢
— 43200°¢ + 162067 — 1606°€% + 14406°¢* — 30720°¢%)/
(30(3 +£)(6 +€)),
v3(€,8) = £3(—1890 + 3150 — 18906 + 33606° — 3150¢ + 3906%¢ — 31206°¢
+ 62406%¢ — 162087 + 1600°8* — 14406°€* + 30726°¢%)/
(150(1 +£)(2 + £)),
wi(€,0) = 8(378 + 3150 — 6306% + 1836¢ + 10206°¢ — 27208°¢ + 2430¢
+ 12008°¢* — 36006°¢> + 9726° + 4806°¢* — 15366°¢%)/
(152 +£)(6 + 6)(7 + €)),
w,(£,0) = (—945 — 3150 + 126067 — 4590¢ - 10206°¢ + 54406°¢ — 6075€°
— 12006°€% + 72006°¢* — 2430¢> — 4806°¢* + 30726°¢°)/
(I5(1 +8)(3 + &)(7 +2¢)),
wy(€,8) = 3/5.
The stability interval of this method with £ = # = 1 is approximately (—0.537,0).

4. Numerical examples

In this section we report the results of some numerical experiments on the equa-
tion Al in (6]

{y’(x) =’ (x)/2,  x€[0,20] @
y(0) =1,
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with the solution y(x) = 1/4/1 4+ x and on the system B2 in [6]

J’:l ==y +¥y y1(0) =2,
}’Iz =y1— 2y + 3 ¥2(0) =0, (4.2)
Y3 =Y — Vs, J’3(0) =1,

which is a model of a linear chemical reaction. We will investigate first the influence
of the zero-stability condition on the accuracy of numerical computations. Con-
sider the one-stage TSRK method of order 3 and stage order 3 corresponding to
¢ = 5/4. The coefficients of this method are

=252
4
ag) = XY,
_ £20(15 — 660 — 3060 + 16£67)
_ 26%0(40 + 75¢ — 160 — 40£0)(1 + £6)
v(&m) = (456 +22)(56 - 1) ’
W(E.0) = 26(24£0 — 11)(1 + £6)

(45¢ +22)(5¢-1)

We have integrated first the problem (4.1) and (4.2) with constant stepsize
h=1/16, 1/32 and 1/64 and the results are presented in tables la and 1b.
In these tables p stands for the average of the values

log(es(x,) /ex(x)) / log2,

Table la

Constant stepsize, problem (4.1).

h P q err n
1/16 3.0167 3.0219 5.46E-6 320
1/32 3.0079 3.0166 7.29E-7 640
1/64 3.0037 3.0061 9.43E-8 1280
Table 1b

Constant stepsize, problem (4.2).

h p q err n
1/16 3.0385 3.0122 1.74E-12 320
1/32 3.0155 3.0031 2.19E-13 640

1/64 2.9427 2.9338 J.11E-14 1280
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Table 2a

Variable stepsize, r = 6/5, problem (4.1).

hy p q err n

1/16 3.0157 3.0212 2.16E-6 1242.50
1/32 3.0013 3.0096 7.45E-7 1184.50
1/64 2.9946 3.0011 2.35E-7 1907.50
Table 2b

Variable stepsize, r = 6/5, problem (4.2).

hy D q err n

1/16 3.0540 3.0316 1.24E-11 391.85
1/32 3.0299 3.0107 7.98E-12 707.45
1/64 3.0189 3.0109 6.79E-12 872.60

where e, (x;) is the absolute error at the grid point x;; ¢ stands for the average stage
order computed by

log(se,(x; /se,,/2 /log2

where se,(x;) is the average absolute error of the stage values; err stands for the
average error and » for the number of steps.

Next, we integrated these problems with variable stepsize chosen according to
the rule

2rand—1
hnew = hold’ 3

Table 3a

Variable stepsize, r = 2, problem (4.1).

hy }/ q err n

1/16 2.8761 2.8921 9.81E-6 482.10
1/32 2.8950 2.9070 7.20E-6 501.95
1/64 2.8556 2.8760 4.083E-6 590.35
Table 3b

Variable stepsize, r = 2, problem (4.2).

hy )/ q err n

1/16 3.0024 2.9932 9.63E-12 451.10
1/32 2.9934 2.9866 9.96E-12 458.05

1/64 2.9910 2.9875 1.06E-11 463.70
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Table 4a

Variable stepsize, r = 3, problem (4.1).

hy 4 q err n

1/16 2.6804 2.6913 9.31E-6 501.50
1/32 2.6682 2.6816 7.63E-6 492.15
1/64 2.7034 2.7247 7.21E-6 537.80
Table 4b

Variable stepsize, r = 3, problem (4.2).

hy )4 q err n

1/16 2.8978 2.8874 9.01E-12 415.10
1/32 2.8806 2.8719 8.92E-12 426.50
1/64 2.8584 2.8545 9.33E-12 447.25

where rand stands for the random number with uniform distribution. In order to
avoid the use of too small or too large steps, whenever A, was less than 0.001
or greater than 0.3, it was automatically set as 2h,q or 1hy4 respectively. We
have chosen the initial stepsize h, = 1/16, 1/32, and 1/64, and the ratio r equal
to 6/5, 2, and 3. In the variable stepsize case we have solved the problem (4.1)
and (4.2) 20 times, each time computing the average order and stage order over
the interval [0,20] according to the same rule followed for the constant stepsize
case, as well as the error at the endpoint x = 20 and the number of steps. This
error was computed using the continuous TSRK method for an appropriate
value of the parameter 6. In tables 2a—4b, we present the averages of these results
over 20 runs. In all these tables A, stands for initial stepsize, p for the order, g for the
stage order, err for absolute error at x = 20, and n for the number of steps.

We can see from tables la, 1b, 2a and 2b that for constant stepsize and for
r = 6/5 (which implies that ||.A(¢, 1)||, = 1) the order and stage order are almost
exactly 3 as predicted by theorem 3. We observe a slight reduction in order and
stage order for example (4.1) and for r = 2 (compare table 3a) in spite of the fact
that for this ratio the variable stepsize TSRK method is always zero-stable. We
do not observe a similar reduction for the problem (4.2) (compare table 3b). For
r = 3 the zero-stability condition is violated whenever

rand > %(log3 2.32015+ 1)

and this is reflected in a somewhat bigger reduction in order and stage order as
given in table 4a and some reduction as given in table 4b.

We will demonstrate next that for the method of order p and stage order p the
stage order is not affected significantly by the additional requirement that
C,(¢) =0, i.e., that the stage order of consistency is p + 1 (compare theorem 3).
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To this end, conmsider the method 1 with m=1 ¢=3/4, C,(£6) =
Cy(6,6) = C5(§,0) =0, Cy(€) = Cao(€) =0 (and C4(¢) #0), and the method 2
with the additional requirement that C;(§) = 0. The coefficients of these methods
are listed below.

Method 1:
443
uig) =412
a(&) = M) A Z%a
20(9 — 66 + 18£0 — 16£6°
77(5,9)=5 ( 1;+9§§ < ),
262024 + 27¢ — 166 — 24£6)(1 + 59)
v(§,0) = (1+36)(10 + %)
_20(5 + 8¢0)(1 + €8)
w(&,6) = (1+36)(10 +9¢)
Method 2:
_278(14 )
u(f) —m‘;
94438
) = 8T 435010 + 98
AE) = 3(4 + 36)(5 + 6¢)

8(1 + 3£)(10 +9¢)
For this method 7(¢, 6), v(&, 8), and w(, §) are defined as for method 1.

Table 5a
Method 1, C;(¢) # 0, problem (4.1).

By r q err n

1/16 2.8328 2.8194 1.51E-6 450.55
1/32 2.8206 2.8111 1.23E-6 580.40
1/64 2.7814 2.7709 5.61E-7 574.10
Table 5b

Method 1, C5(£) # 0, problem (4.2).

ho p q err n

1/16 2.8782 2.8590 5.60E-12 563.55
1/32 2.8846 2.8644 6.55E-12 464.70

1/64 2.8668 2.8402 5.79E-12 556.20
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Table 6a

Methed 2, C;(£) = 0, problem (4.1).

hy p q err n

1/16 2.8503 2.8562 5.26E-7 523.65
1/32 2.7920 2.8008 3.59E-7 519.90
1/64 2.8111 2.8239 3.83E-7 544.80
Table 6b

Method 2, C3(€) = 0, problem (4.2).

hy p q err n

1/16 2.7161 2.7156 5.51E-13 510.60
1/32 2.7303 2.7458 9.86E-7 483.95
1/64 2.7214 2.7372 4.37E-13 590.50

We have again integrated problem (4.1) and (4.2) 20 times with the ratio r =2
using both methods and the averages of these results are presented in tables Sa—
6b. They are again in agreement with theorem 3.

We will next test how well the order and stage order of the method are preserved
in a variable stepsize environment for the methods which are zero-stable for any
ratio of stepsizes £. This is true if, for instance, n(¢,8) = 0, and the examples of
such methods are given in section 3. We present in tables 7a and 7b the results of
numerical experiments on the problem (4.1) and (4.2) using the type 1 two-stage
TSRK method of order 4 and stage order 4 with ¢; = 1/3, ¢, =2/3, b5, = 1/2,

Table 7a

TSRK with m = 2, p = g = 4, problem (4.1).

hy )4 q err n

1/16 3.8845 3.8823 2.71E-7 558.25
1/32 3.8497 3.8451 1.04E-7 547.80
1/64 3.8503 3.8439 9.17E-8 550.05
Table 7b

TSRK with m =2, p = g = 4, problem (4.2).

hy P q err n

1/16 3.8364 3.8443 5.19E-13 463.65
1/32 3.8416 3.8474 5.77E-13 508.40

1/64 3.8475 3.8513 4.80E-13 636.90
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Table 8a

TSRK with m = 3, p = g = 5, problem (4.1).

hy ¥/ q err n

1/16 4.8562 4.8619 7.09E-9 510.00
1/32 4.8905 4.8953 8.01E-9 562.20
1/64 4.8900 4.8972 3.27E-9 581.90
Table 8b

TSRK with m = 3, p = g = 5, problem (4.2).

hy P q err n

1/16 4.8361 4.8539 1.48E-12 461.30
1/32 4.8516 4.8737 1.59E-12 440.55
1/64 4.8949 49126 1.51E-12 508.95

and with u(£), A(£), v(£,0), and w(€, ) listed in section 3. In tables 8a and 8b we
present the selection of numerical experiments using the three-stage method of
order 5 and stage order 5 given in section 3.

As before, we have solved the problem (4.1) and (4.2) 20 times with r = 2 and
with the stepsize chosen according to the rule discussed at the beginning of this
section. The results obtained are again in very good agreement with theorem 3.
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