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A general class of variable stepsize continuous two-step Runge-Kutta methods is investi- 
gated. These methods depend on stage values at two consecutive steps. The general convergence 
and order criteria are derived and examples of methods of order p and stage order q = p or 
q = p - I are given for p < 5. Numerical examples are presented which demonstrate that 
high order and high stage order are preserved on nonuniform meshes with large variations 
in ratios between consecutive stepsizes. 
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1. I n t r o d u c t i o n  

Cons ide r  the ini t ia l -value p r o b l e m  for  systems o f  o r d i n a r y  different ia l  eq u a t i o n s  

( O D E s )  

y ' ( x ) = f ( y ( x ) ) ,  

y(xo)  = Y0, 

x e Ix0, x ] ,  
(1.1) 

wi th  sufficiently s m o o t h  f u n c t i o n f  : R '  ~ R ' .  T o  c o m p u t e  a numer ica l  a p p r o x i m a -  

t ion  to  the so lu t ion  y ( x )  to (1.1) let there  be given a n o n u n i f o r m  grid 

)Co < xt < . . .  < xN, XN >_ X ,  and  define hi = xi+l - x;, i = 0, 1 , . . . , N -  1, an d  
~i = hi~hi-i, i =  1 , 2 , . . . , N .  W e  cons ide r  var iab le  stepsize c o n t i n u o u s  m-s tage  
two-s tep  R u n g e - K u t t a  ( T S R K )  m e t h o d s  o f  the f o r m  
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yh(x ,  + O(ihi_l : 7 / ( ( i ,  O)yh(Xi_l) -~- (1 - 77(~i , O) )yh(Xi) 

m 

+ h,_, E (vj((i, O)f( }r/_ l ) Jr- ~iWj((,, O)f(Y{)), 
j=l 

Y~ =uj((,)yh(xi_,) + (1 - uj(r )yh(x,) (1.2) 

m 

+ hi_ ' Z (a j , ( ( , ) f (Y{_ , )  + (,bj~((g)f(Y{)), 
j=l 

i = 1 , 2 , . . . ,  N - 1, 0 �9 [0, 1]. Here yh(x) is an approx imat ion  to y(x) and stage 
values Y{ are approximat ions  (possibly of  low order) to y(xi+cjhi), 
j = 1 , 2 , . . . ,  m. The vector c = [cl,. �9 �9 era] r may, in general, depend  on ~ a l though 
we usually assume that  it is constant .  Usually the variable stepsize will be chosen 
according to some step selection scheme, i.e., 

h i = hr(xi, h), 

where h is the m a x i m u m  stepsize and for all h > 0 and x �9 [Xo, X] we have 

o < A < r (x ,  h) _< 1, 

compare  Gear  [5]. 
We will represent the m e t h o d  (1.2) by the following table of  the coefficients 

~(~i) 
~(~,o) 

A(~i) 
nr(~,o) 

where 

U(~i) = [Ul(~i), . . . ,Urn(~i)] T, 
"U(~i,O) = ['UI(~i,O),... ,'Um(~i,O)] T, 
w(~,, 0) = [w,(~;, 0 ) , . . . ,  wm(~,, 0)] ~, 

A(~i) = [ajs(~i)]j,ms=l, B(~,) = [ b j s ( ~ i ) ] j , m s = l  . 

For  h; = h = const  and  0 = 1 the formulas  (1.2) reduce to T S R K  methods  investi- 
gated recently by Jackiewicz and Tracogna  [8]. Put t ing  A = 0 they reduce to the 
methods  investigated in [7,9]. This paper  generalizes the work  of  [8] to the contin-  
uous  methods  (1.2) const ructed directly on n o n u n i f o r m  meshes. 

Let 

re = [ r ] , . . ,  rT] T, 

f(Yi) = L f ( Y i ' ) , . . . , f ( y 7 ) l  r, 
e=[1 , . . . , l lER m. 
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Then the method (1.2) can be written in more compact form as 

(1.3) 

i = 1 ,2 , . . . ,  N - 1, O E [0, 1]. We will always assume that the approximation yh(x)  
is given on the initial interval [x0, x~]. This starting function should be computed by 
some other self-starting method, for example, a continuous one-step method of 
appropriate order. 

Similarly as in [4,8], the methods (1.2) can be divided into four types depending 
on the structure of the coefficient matrix B. For type 1 or type 2 methods, the matrix 
B has the form 

Yh(Xi + O~ihi-l) = rl(~,, O)yh(xi_,) -t- (1 - rl(~i, O) )yh(x,)  

+ h,_, (vr({,, O)f(Y ,_ , )  + ~iwT(~i, O)f(Y, ) ) ,  

Y, = u(~i)Yh(Xi_l) + (e - u({i))yh(xi)  

-q.- hi_ ' (A ( { , ) f (  Y,_, ) + { ,B ( { , ) f (Y , ) ) ,  

A 0 .. .  0 ]  

B =  b2~ A .. .  0AI, 

bin, bin2 " "  

with A = 0 or A ~ 0, respectively. These methods are appropriate for nonstiff or 
stiff differential systems in a sequential computing environment. For type 3 or 
type 4 methods, the matrix B has the form 

B = diag(A,A,. . . ,A),  

with A = 0 or A ~ 0, respectively. These methods are appropriate for nonstiff or 
stiff systems in a parallel computing environment. 

In the recent paper [10] the potential for efficient implementation of TSRK 
methods is investigated. The implementation issues addressed are the local error 
estimation and changing stepsize using Nordsieck and interpolation techniques. 
It is demonstrated that the constructed error estimates are very reliable in a fixed 
and variable stepsize environment. 

2. Stabil i ty,  convergence  and  order criteria 

As in [8] we will use the recent approach by Albrecht [1-3] to investigate the con- 
vergence and order conditions for the method (1.3). Define the (2m + 2) x (2m + 2) 
matrices .A(~i, 0) and B(~i, O) by 

Ii ' ~  
o e -  

o) := o o 
o o) 1 - o)_1 
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and let 

o) :=  
0 0 0il A(r o 
0 0 0 ' 

0 

Zh(Xi, O) : = [Y iT--l, Yir,yh(xi),Yh(Xi + O~ihi_,)] r, 

f (zh (xi, 0)):  = [f( Yi-1 ) r , f (Y i )  r , f (yh (Xi)),f(Yh (Xi + O~ihi-a ))] r. 

Then (1.3) can be written in the form of A-method as defined by Albrecht [1] 

z,,(xi, O ) = -4((i,O)zh(xi_l, 1) q- hi_,B(~i,O)f(zh(xi,  O)), (2.1) 

i =  1 ,2 , . . .  , N -  1, 0 E [0, 1], Zh(XO, 1) = [O r, yor,yh(Xo),Yh(Xl)] r. 
The product of matrices -4(~/, 1) determines stability properties of  (2.1). The 

s A method (2.1) is said to be zero-stable if the product I-I,=0 ((i-,,  1) is uniformly 
bounded with respect to i and s. For  constant stepsize (~i = 1) this is satisfied if 
and only if - 1 < 7/(1, 1) < 1 since the matrix .4(1, 1) has eigenvalues 1, -77(1, 1), 
and eigenvalue 0 of  multiplicity 2m (compare [8]). A similar criterion is also true 
for variable stepsize methods. We have the following sufficient condition for 
zero-stability of the methods (2.1). 

Theorem 1 
Assume that  m < r/(~;, 1) < 1, i = 1 , 2 , . . . ,  N, where - 1 < m < 0. Then the T S R K  
method (2.1) is zero-stable. 

Proof 
We will investigate the uniform boundedness of the product of matrices 

l 

I-[  A((. ,  1), 
V = $  

where (~ stands for the ratio of  stepsizes h~./h._l. Consider the 2 x 2 matrix Ni con- 
sisting of the last two rows and columns of A(~i, 1). Applying to this matrix the 
t ransformation 

where 

= S - '  N S, 

1 - m  1 + m  1 
S =  1 - m  - 1 - m  ' 

it is easy to show that  llYV;lll ~ 1. Put  

S =  I 
0 
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and define 

A(~,,, 1) = ,~-~A(~,,, 1)S. 

It can be verified by using induction that for s >__ 3 

where 

and 

Since 

[i 0 ~ 2 ( ( ~ ,  1) = o 

= 0 

u(r 
u(~_~)~,_~,~_~,...,~ 

Ns,s-l,...,l 

U((~)=[u((~) ,e-u(( , )]  

IlNr,r-l,...,~lll ~ I I N r l l ~ l l ~ - ~ l l ~ . . .  I1~,11, ~ 1 

the theorem follows. [] 

We define the local discretization vector hi_ld(xi, O) as a residuum obtained by 
replacing Zh(Xi, O) in (2.1) by the exact value function z(xi, O) defined by 

z(xi, O) := [y(xi-i + chi-1)r,y(xi + ~ichi-1)r,y(xi),y(xi + O~ihi-l)] r, 

where 

y(xi-1 + chi-l) = [Y(Xi-I + Clhi-l),... ,y(xi_, + cmhi-,)] r. 

This gives 

h,_~d(xi, O) = z(xi, O) - A(r O)z(x,_l , 1) - hi_ff3(~i, O)f (z(x,, 0)), 

and similarly as in [8], using the Taylor series technique, we obtain 

hi_ld(Xi, O) = hi_l[O T, d(xi) T, O, d(xi, 0)1 T, 

O0 

hi_ld(Xi) = ~ Cl~(~i)Y(#)(xi)htr 
/~=1 

hi_lcl(xi, O) = ~ du(~i, O)Y(u)(xi)h~-l, 
#=1 

where 

and where Cu(~i ) and du((i, O) are defined by 

(~c u (-1)Uu((i) A ( ( i ) ( c - e )  u-1 (~'B((i)c u-1 
Cu(~') = /z! r - (/~ - 1)! (~ - 1)! ' 

(2.2) 

(2.3) 

(2.4) 

(2.5) 
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t)u(~i,O ) _ ~fO u (-1)"r/(~i,O) vr (~ i ,O) (c -  e)"-'  ~wT(~i,O)c #-1 
#! #! ( # -  1)! ( # -  1)! 

(2.6) 

Definition 1 
The method is said to have order of consistency p if 

sup [hi_ld(xi, O)[ = 0( Ir  +l) 

and stage order of consistency q if 

sup [[hi_ld(Xi)[I = O ( h q ) ,  
i 

where h = i ~ max{hi}. 

Definition 2 
The method has order of convergence p if 

sup [yh(xi + O~ihi_,) - y ( x i  -t- O~h~_,)[ = O(h  p) 
i 

and stage order of convergence q if 

sup Ily(x; + ~ichi_,) - rill = O(hq) �9 
i 

Remark  
It follows from the form of the local discretization error hi_ld(xi, O) that the method 
has order of consistency p if and only if t) I (~i, O) = 02(~i, O) . . . . .  Cp(~i, O) = 0 
and it has stage order of consistency q if and only if Cl(~i)= C2(~i)= 
. . . .  Cq_l(~i ) = O. 

Subtracting (2.1) and (2.2), we obtain 

q(xi, O ) = .A(~i, O)q(xi_l, 1) + hi_ll3(~i, O)t(xi, O) --}- hi_ld(xi, O), 

i =  1 ,2 , . . . ,N ,  0 E [0, 1], where 

(2.7) 

q(xi, O) : = z(xi, O) - Zh(Xi, O), 
t(xi, O): = f ( z ( x i ,  O)) - - f ( zh(x i ,  O)). 

It is convenient to partition q(xi, O) and t(xl, O) into four parts as follows 

q(xi, O) = 

q(xi-I) ] 
q(xi) 

O(xi-1, 1) 
O(x,, o) 

y(x i -1  + chi_l) - Yi-1 
y(xi  + ~ichi-l) - Yi 

y(x,)-yh(xi) 
y(xi  + O(ihi_l) - Yh(Xi + O~ihi_l) 
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and 

t(xi-,) [ f(y(xi-1 + chi_l)) - f (Y i - x )  ] 
t(xi) [ f(Y(Xi + ~ichi-1)) - f ( Y i )  

t(xi'O)= ~(Xi_l,1 ) = [ f(Y(Xi))--f(Yh(Xi)) " 
t(xi, O) [f(y(xi  -]- O~ihi_l) ) -- f(yh(xi + O~ihi_l) ) 

We can assume without loss of  generality that 

q(xo, O) = [OT, q(xo)T,O(Xo),O(Xo, O)] T. 

Observe that O(x~, O) is the discretization error on the interval [xi, Xi+l] while the 
vector q(xi) represents the error of  the stage values Yg computed at the current 
step from x; to xg+1. In what follows we will write 0(Xi+l) instead of O(xi, 1) 
and d(Xi+l) instead of cl(xi, 1), and we define h = max;{hi}. 

After these preparations, we can now formulate the convergence and order 
criteria. 

Theorem 2 
Assume that the TSRK method (2.1) is zero-stable, O(Xo) = 0(!r O(xl) = O(hP), 
d(xl) = O(hP), ~l(xl,0) = O(hp-1), l = 1 ,2 , . . .  ,N  - 1, 0 �9 [0, 1], h ~ 0, and that 

'oT (~I, 1)t(Xl-1) + ~IwT (~I, 1)t(xt) = O ( ] ' f l ) ,  ( 2 . 8 )  

vr ((t, O)t(xt_,) + (twr (~t,O)t(xt) = O(hP-X), (2.9) 

l = 1 ,2 , . . .  , N -  1, 0 �9 [0, 1], as h ~ 0. Then the method (2.1) is convergent with 
uniform order p, i.e., 

O(x,O) = O(h~), h --. O, 

i =  1 , 2 , . . . , N - 1 ,  0 � 9  [0, 1], and the errors q(xg)=y(x~+(~ch~_l)- Y~ of the 
stages Yi are given by 

q(x~) = hi_,(a((~)t(xi_,) + (~S((g)t(xi)) + hi_ld(X,) + O(/r (2.10) 

where hi_ld(xi) is defined by (2.3) with Cu((i ) given by (2.5). 

Proof 
The equation (2.7) for 0 = 1 takes the form 

q(x,, 1) = .A(~;, 1)q(xi_l, 1) + hi_lB(~i, 1)t(x;, 1) + h~_,d(x~, 1) 

and its solution is 

i-1 

q(xi, 1) = I I 'A(~i-v '  1)q(xo, 1) 
v=O 

i--I i--p--2 
+ Z hu H .A(~i_~, 1)(B(~u+I, 1)t(xu+l, 1) + d(Xu+l, 1)), 

#= 1 u=O 
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i = 1 ,2 , . . . ,  N -  1. Substituting the above formula into (2.7), we get 

i -2 

q(xi, O ) = ~4(~i, O) II 'A(sci-l-v'  1)q(x0, 1) 
v=O 

+ h,_ld(Xi, O) + hi_2.A({i, O)d(xi_,, 1) 
i-3 i-#-3 

+ .A(~,, O) ~ h u H .A(~i_l_~,, 1)d(xu+l, 1) 
#=0 v=O 

+ h,_,B({,, O)t(x,, O) + h,_2A({,, O)B({,_,, 1)t(x,_l, 1) 
i-3 i-#-3 

+ .A({,,O) Z hu H .A(~,_l_., 1)B(~u+,, 1)t(xu+,, 1), 
#=0 v=O 

(2.11) 

i = 1 ,2 , . . . ,  N - 1, 0 E [0, 1]. It can be verified that for i _> 2 and s _< i - 1 the pro- 
ducts .A(~i, 0)trri-l-'t~=0 A(( i - l - . ,  1) have the following structure 

i _ (i,s) _ (i,s) o o 
i--1 -s 

.4(~i,O) H A(~i_,_~, 1) = 0 ~ils ) ~2s ) 
v=O 0 tal  I b"12 

o 

(i s) (i,s) (i s) where atd , k, l = 1,2,/311 , and/31~ depend on the ratios ofstepsizes ~i, ~i-1, . . . ,  ~s, 
and/3~iis)(0) and/3~')(0) depend on ~i,~;-1,... ,~ ,  and 0. Since by assumption the 
TSRK method (2.1) is zero-stable, these elements are uniformly bounded with 
respect to i and s. We have also 

,A(~i ,  O ) ~ ( ~ i _ l ,  1) = 

A(~;_,) 
(e - u(~i))vr(~i_l, 1) 

vr ( ~i_l , 1) 
(1 - r/(~,., 0 ) )vr (~;_ , ,  1) 

,5-tB(5._~) 0 0] 
~i_l(e -- U(~i))wT(~i_l ,  1) 0 0 

~i_lwr(~i_l, 1) 0 0 ' 
~r -rj(~,,O))wr(~,_,, 1) 0 0 

and it follows from equation (2.11) that 

(i.1) ^.  . q(x,) = % qtxo) + 4i~'lO(x,) 
i-3 

(i,/~+2) ^ 
+ h i - ld (X i )  + hi-2(e - u (~ i ) )d (x i )  ~- Z h• ct22 d ( x u + 2 )  

/~=0 

+ hi-1 (A(~i)t(xi_l) + ~iB(~i)t(xi)) 
W T + h,_~(e - u(~,))(~T(~,_,, 1)t(x,_~) + ~,_, (~,_,, 1)t(x,_,))  

i-3 
~ " ~ .  (i,#+2) ,, Tt,~ + 2..a nuoz22 k v kgu+l, 1)t(x u) +~u+lWr(~u+l,1)t(Xu+l)) 
/z=0 

(2.12) 
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and 

O(xi, O) = [~ill) ( o)O(Xo) At- ~ I ) ( 0 ) 0 ( X I )  
i-3 

+ hi-l(l(xi'O) -[- hi-2(1 - 7~(~i'O))(l(xi) -[- E h#~i21~+2)(O)(l(xt~+2) 
/~=0 

+ hi_ I (vT(~i, O)t(Xi_ 1 ) -t- ~iwT(~i, O)t(xi)) 

+ hi_:(1 - rl((i, O))(vT(~i_I, 1)t(xi_2) q- ~i_lWT(~i_l, 1)t(xi_l)) 
i-3 
K-" ~, n(i,. +2) + Z_.,..,e22 (0)(vr(~,+l, 1)t(x,) + ~#+,wT((#+I, 1)t(x~,+,)), 
/~=0 

(2.13) 

i = 1 , 2 , . . . ,  N - 1, 0 E [0, 1]. These equations and relations (2.8) and (2.9) imply 
O(Xi, 0) ~--- O(h p) and formula (2.I0) for q(xi). This completes the proof. [] 

We will not attempt to use this theorem to derive the more convenient form of 
order conditions for (2.1) as was done in [8] for constant stepsize methods but con- 
centrate instead on derivation of methods with stage order q equal to p or p - 1, 
where p stands for the order. We believe that such methods are the most useful 
in practical computations. Methods of high stage order are characterized by the fol- 
lowing result. 

T h e o r e m  3 
Assume that (2.1) is zero-stable, O(Xo) = O(hP), gl(xl) = O(hP), and that it has order 
of consistency p - 1 and stage order of consistency p, i.e., 

0)=0, =0, 

for # = 1,2, . . .  ,p - 1, 0 E [0, 1] and that 0p((;, 1) = 0. Then the method has order 
of convergence p and stage order of convergence p, i.e., 

O(xi, 0) = O(h p) and q(xi) = O(h p) 

as h---, 0 for i =  1 , 2 , . . . , N -  1, 0 E [0, 1]. 

Proof 
It follows from the definition of q(xi) and t(xi) that 

[[t(x,)[[ < LlJq(xi)JJ, 

where L is the Lipschitz constant for the functionf.  This inequality, the zero-sta- 
bility of the method (2.1), and equation (2.12) imply that there exists a constant M 
independent of h and ratios of stepsizes such that 

i 
[[q(xi)[[ < M E h~llq(x~)[I + O(hP)' 

,u=O 
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i =  1 , 2 , . . . , N .  Hence,  using s tandard  arguments  we obtain IIq(x,)[I = O(/r  
Using (2.13) we have also [O(xi, 0) 1 = O(h p) which completes the proof.  [] 

3. E x a m p l e s  o f  m e t h o d s  

Consider  first one-stage T S R K  methods  of  the form 

,7(~,0) 
a(r 

v(~,o) 
~(~) 

w(~,o) 

Solving Cl({,0) = 0  and ~72({,0) = 0 for v({,O) 
~({,0), C l ( ~ ) =  0 for a(~) and C2(~)=  0 for u({) 
family of  me thods  depending  on c and A. The  coefficients are 

u({) = {(2c - 2c 2 - 2A + 2cA + c2{ - 2cA{) 

2 c -  1 
a({) = {(c - A + c2~ - 2cA{) 

2 c -  1 
rl({, 0) {20(6c - 6c2 - 30 + 3c0 + 3c0~ - 202{) 

= 6c2~ - 3c{ + 3c - 1 

v({, 0) {20(1 + C0)(2c - 0 + 3c2{ - 2c~0) 
= (1 - c +  c~)(6c2~-  3c~ + 3 c -  1) '  

w(~,O) O(1 + ~0)(1 - 4 c + 3 c 2 + 0 ~ - 2 c ~ 0 )  
= (1 - c + c~)(1 - 3c + 3c~ - 6c2~) 

These methods  are zero-stable if 

m < r/(~i , 1) _< 1, 

where - 1  < m < 0 (compare  theorem 1). 
The  funct ion r/2(~, 1) - 1 can be expressed as 

(~2_ 1)(c-fl)(C-A)(c-f3)(c-f4) 
(c -f5)=(c - f 6 )  = 

where 

f~  = 

A = 

- 3  + 6~ + 3~ 2 - x/~vrA-7 

12~ 

- 3  + 6~ + 3~ 2 + x / 3 ~  

12~ 

3 - 3~ + 9~ 2 + 3~ 3 - v'~v/-~2 

and w(~,O), C73(~,0 ) = 0  for 
we obtain a two paramete r  

(2.14) 

- -  1 2 ~ ( ~  - 1) ' 
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3 - 3~ + 9~ 2 + 3~ 3 + V/3VI-~2 
f 4  = 12~(~-  1) 

A 1 = 3 - 4 ~ -  2~ 2 -  4~ 3 + 3~ 4, 

A 2 = 3 + 2~ + 13~ 2 + 12~ 3 + 13~ 4 + 2~ 5 + 3~ 6. 

It is easy to check that  the inequality (2.14) is satisfied for (~, c) belonging to the 
region shaded in figure 1. Choosing,  for example, c = 5/4, the condi t ion (2.14) is 
satisfied if 0 < ~ < 2.32015. In addit ion,  if 9 /14 < ~ < 6/5,  then 

II.a(~, 1)11~ = 1. 

In the next section we will demons t ra te  the effect of  these restrictions on the ratio 
on  the accuracy of  numerical  computa t ions  for type 1 methods  (i.e., A = 0). 

The  func t ions f l  and  f3, in figure 1, have both  the hor izontal  asympto te  c = 2 /3  
for ~ ~ +oo  and bo th  approach  this asympto te  f rom below. The  funct ion f2 has a 
slant asympto te  for ~ ---, + ~ .  Therefore,  there are no values of  c for which the 
inequali ty (2.14) is satisfied for every ~ > 0. 

In figure 2, Copt stands for the value of  c cor responding  to the largest interval of  
for which (2.14) is satisfied. This value is c = 0.655858 and the cor responding  ~max is 
11.7512. 

Putt ing,  for example,  A = 1/2 we obtain a one-parameter  family of  type 2 
me thods  of  order  3 and stage order  3 depending  on c. We will next choose 
c = (6 + v/-6)/6 so that  for constant  stepsize (~ = 1) and for 0 = 1 these methods  
reduce to the A0-stable me thods  const ructed in [6]. It can be verified that  if 

4 

3 . 5  

2.5 
zero-stability 

2 . /  

1.5 / / ~ f 2  

/ 

.~.---- r-l f, o 
0 . 5  i 1 . 5  2 ' 2 . 5  3 3 . 5 '  ' '4 

Figure 1. 



358 Z. Jackiewicz, S. Tracogna / Continuous two-step Runge-Kutta methods 

c = (6 - v/6)/6 this method  is zero-stable ifO < ~ < 2.29041 and i fc  = (6 + v/-6)/6 
this method is zero-stable ifO < ~ < 2.56508. In this last case, however, the method 
is not  defined for ~ = (v/-6 - 1)/5. 

Consider next the two-stage methods given by 

Ul(~) all (~) a12(~) 

u2(~) a21 (~) a22(~) 

0 Vl(~, O) 'U2(~, O) 

o 

w2( ,o) 
where we have chosen r/(~, 0) = 0 to guarantee that the resulting methods are zero- 
stable for any ratio of  stepsizes. Solving the system of equations C~,(~, 0) = 0, 
# = 1,2, 3,4, for vi(~, 0) and w;(~, 0), the system C,(~) = 0, # = 1,2, for a0.(~ ) 
and C3 (~) = 0 for u;(~) we obtain a family of  variable stepsize continuous methods 
of  order 4 and stage order 4 which depend on the parameters c~, c2, A, and b. The 
coefficients of  these methods are quite complicated and are not reproduced here. 
We could choose the free parameters Cl, c2, A, and b in such a way that when the 
stepsize is kept constant and 0 = 1 the resulting discrete method has good stability 
properties. Choosing, for example, A = 0 ,  c~ =2.15183,  c2 = - 3 . 0 0 7 0 6 ,  and 
b = 2.87785 we obtain a type 1 method of  the form 

u, (() = -~(1.73943 - 1.15774( - 0.581684~2), 

u2(~) = ~(4.75706 - 0.835826~ - 3.92123~c2), 

a~ (() = ~(0.48891 + 1.23582( + 0.395434(2), 

Copl 

C 
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a~2(~) = -~ (0 .076508  + 0.078078~ - O. 18625~2), 

a2, (~) = -~ (1 .33709  + 0.892194~ + 2.66569~2), 

a22(~) = ~(0.209237 + 0.0563681~ - 1.25554~2), 

v~ (~, O) = -~20(0.776729~ - 0.0513301~0 - 0.0400127~02 

+ 0.0969201~20 - 0.00853995~202 - 0.00748917~203)/ 

(0.205034 + O. 152237~ - ~2), 

v2(G O) = -~20(0.223271~ - 0.0147549~0 - 0.0115017~02 

- 0.0969201420 + 0.00853995~202 + 0 .00748917~03) /  

(2.48143 - 0.5296134 - 42), 

w~(4, O) = 0(0.581011 + 0.09660780 - 0.179714~0 

- 0.0398426402 - 0.04196134202 - 0.01046574103)/ 

(0.996778 - 1.326884 - 42), 

w2(G O) = 0(0.212903 - 0.04947020 - 0.065853540 

+ 0.0204023402 - 0.01537614~02 + 0.00535919~203)/ 

(0.510423 + 0.9495094 - 42). 

F o r  ~ = 1 and  0 = 1 these fo rmu la s  reduce  to the type  1 m e t h o d  

0 

0 

0 

2 . 1 2 0 1 6  0 . 0 3 1 6 6 4  

- 4 . 8 9 4 9 7  - 0 . 9 8 9 9 3 8  

1 .19223  - 0 . 1 2 2 0 0 1  

0 0 

2 .87785  0 

- 0 . 3 0 4 9 6 3  0 . 2 3 4 7 3 9  

o b t a i n e d  in [8] whose  in terval  o f  abso lu te  stabil i ty is a p p r o x i m a t e l y  ( - 2 . 2 7 ,  0). 
C h o o s i n g  A = 3 /4 ,  cl = 0.716383, c2 = 2.17828, b = 2.70983 we ob t a in  a type  2 

m e t h o d  o f  the f o r m  

u~ (~) = -~ (0 .0251613  + 0.562435~ - 0.587597~2), 

u2(() = - ( (0 . 959201  + 2 .40963(  - 3.36883(2),  

a~1(~) = - ( ( 0 . 0 5 5 9 8 0 7  + 0 . 4 5 3 6 8 3 ~ -  0.674571(2),  

a~2(~) = - ( ( 0 . 0 0 2 7 9 7 6 5  + 0 .108752(  + 0.0869733~2), 

a2, (~) = -~(2 .1341  + 1.94371( - 3.86747(2),  

a22 (() = -~ (0 .106652  + 0.465923 + 0.498639(2),  

vt(( ,  0) = sc30(0.805994 - 0.7475510 + 0.17216802 

- 0.342021~0 + 0.422962~02 - 0.109588~03)/  

(0.0515473 + 0 .526104(  + (2), 
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0 

0 

0 

obta ined in [8]. 

V2({, 0) = ~30(0.194006 -- 0.1799390 + 0.041441502 

+ 0.342021{0 -- 0.422962{02 + 0.109588{03)/ 

(0.889689 -- 2.18568~ + ~2), 

W a ({, 0) = 0(0.970258 -- 0.2227120 + 1.29878~0 

-- 0.397494{02 -- 0.967799~202 + 0.333221{203)/ 

(0.651164 + 1.24886~ -- ~2), 

W2({, 0) = --0(0.0345129 -- 0.02408830 + 0.0461988{0 

-- 0.0429926{02 -- 0.0344255~202 + 0.0360409{203)/ 

(0.0704293 + 0.41072~ -- ~2). 

Fo r  { = 1 and 0 = 1 these formulas  reduce to the A-stable type 2 me thod  

0 .164905 - 0 . 1 9 8 5 2 2  0.75 0 

- 0 . 2 1 0 3 3 7  - 1 . 0 7 1 2 1  2.70983 0.75 

0 .128015 - 0 . 2 8 4 3 1 6  1.12692 0 .0293846 

However,  the disadvantage of  these me thods  is that  they are not  well defined for 
all positive values of  {. Fo r  example,  the type 1 m e t h o d  listed above is not  defined 
for { = 0.535279 and { = 1.33255 and the type 2 m e t h o d  is not  defined for 

= 0.540925 and ~ = 1.64476 and in practical implementa t ions  we should restrict 
the ratio to stay away f rom these values by some safe margin.  

We can avoid these complicat ions  choosing cl and  c2, cl ~ c2, f rom the interval 
[0, 1]. In this case it can be verified that  the me thods  are well defined for every { > 0. 
The  example of  such a me thod  of  type 1 is listed below. 

cl = 1/3, c2 = 2/3,  r / =  0, 

Ul(sC) = _ { ( 1 2 + 9 { + 2 {  2) 
9 

u2(~) = - ~(6 + 9~ + 7~ 2) 
9 

a,,(~) - ~(3 + ()2 

9 

a 1 2 ( ~ )  - -  9 ' 

a21 (~) = _ {(9 + 12{ + 7{ 2) 
18 

a22(~) - {2(6 + 7 { )  
18 ' 
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v1(r O) = 0r  + 180 - 1202 - I20r + 3602r - 2703r 

8(1 + r + r  

v2(r O) = 0r - 360 + 2402 + 120r - 3602r + 2703r 

wl(r  = 

w2(r  o)  = 

4(1 + r + 2r 
0(16 - 120 + 360r - 3602r + 2402r 2 - 2703r 2) 

4(1 + r + r 
0 ( - 8  + 120 - 180r + 3602r - 1202r 2 + 2703r 2) 

8(1 4- r -t- 2r 

Its interval of  stability for r = 1 and 0 = 1 is approximately  ( -1 .134,  0). 
Similarly we can obtain variable stepsize cont inuous  T S R K  methods  of  types 3 

and 4 which reduce to the methods  obta ined in [8] when r = 1 and 0 = 1. The 
details of  these methods  are omitted.  

We will conclude this section with the const ruct ion of  the 3-stage T S R K  me thod  
of  type 1 of  order  5 and stage order  5, where, again, we have chosen r/(G 0) = 0 to 
guarantee  that  the resulting methods  are zero-stable for any ratio of  stepsize. Sol- 
ving the system C u ( r  # =  1,2,3 for au(r C 3 ( r  for uj(r and 
C~(r = 0, # = 1 ,2 ,3 ,4 ,5  for vj(GO),j = 1,2,3 and wj(r = 1,2, we obtain 
a family of  variable stepsize cont inuous  methods  which depend on the parameters  
171, C2, C3, b21 , b3i , b32 and w3. 

Choos ing  Cl = 1/8, c2 = 1/4, c3 = 3/4, and b21, b31, b32 and w3 in order  to obtain 
satisfactory stability propert ies when the stepsize is kept  constant  and  0 = 1, we 
obtain a type 2 me thod  of  the form 

r + 136r + 20r 2 + r 

u l ( r  = - 128  ' 
- r  + r 

u2(r - 16 ' 

u3(r = - 3r - 34r + 13r 3) 

8 
r + r + 8r + r 

all (r = 480 ' 

a,2(r = _ r + r + ~)(14 + r 
768 

r + r + 196r + 17r 2) 
a13(r = 3840 

r (4 + r 

a21 (r - 60 ' 
r + r 

a22(r = -  96 ' 
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`53(83 + 17{) 
a23 (`5) --  480 ' 

a3i(`5 ) = `5(24-  2 2 , 5 +  13~ c3) 

10 

a32(`5) = `5(84 - 61`5 + 13`53) 
16 

`5(588 - 539`5 + 221`53) 
a33(`5) = - 80 

621 = 1/4, b31 = - 3 ,  b32 = 3, 

v 1 (`5, 0) = 8`53(--270 + 450 - 27002 + 48003 - 1020`5 + 12002`5 -- 96003`5 

+ 192004`5 - 810`52 + 8003`52 -- 72004`52 + 153605`52)/(75(7 + `5)(7 + 2`5)), 

v2(`5, 0) = `53(630 -- 1050 + 63002 -- 112003 + 2430`5 -- 27002`5 + 216003`5 

--432004`5 + 1620`52 - 16003`52 + 144004`52 -- 307205`52)/ 

(30(3 + `5)(6 + `5)), 

v3(`5, 0) = `53(-1890 + 3150 -- 189002 + 336003 -- 3150`5 + 39002`5 - 312003`5 

-k-624004`5 - 16205 c2 + 16003`52- 144004`52 + 307205`52)/ 

(150(1 -F `5)(2 -F `5)), 

w~ (s c, O) = 8(378 + 3 1 5 0 -  63002 + 1836~ + 102002`5- 272003`5 + 2430`52 

+ 120003`52 - 360004`52 + 972`53 + 48004~ 3 - 15360s`53)/ 

(15(2 + `5)(6 + `5)(7 + `5)), 

w2(`5, O) = ( - 9 4 5  - 3150 + 126002 - 4590`5 - 102002`5 + 544003`5 - 6075`52 

- 120003(  + 720004(  - 2430`53 - 48004`53 + 307205`53)/ 

(15(1 + `5)(3 + `5)(7 + 2`5)), 

w3(`5, 0) = 3/5. 

The stability interval of  this m e t h o d  with `5 = 0 = 1 is approximate ly  ( -0 .537 ,  0). 

4. N u m e r i c a l  e x a m p l e s  

In this section we repor t  the results o f  some numerical  exper iments  on the equa-  
t ion A1 in [6] 

y ' (x)  = - y 3 ( x ) / 2 ,  x E [0, 20], (4.1) 

y(O) = 1, 
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with the so lu t ion  y(x)  = l /x /1  + x and  on  the sys tem B2 in [6] /' Yl = --Yl +Y2, Yl(0) = 2, 
I 

Y2 = Yl - 2y2 + Y3, y2(0) = 0, (4.2) 
! 

Y3 = Y2 -- Y3, y3(0) = 1, 

which  is a m o d e l  o f  a linear chemical  react ion.  W e  will invest igate first the influence 
o f  the zero-s tabi l i ty  cond i t ion  on the accuracy  o f  numer ica l  compu ta t ions .  Con-  
sider the one-s tage  T S R K  m e t h o d  o f  order  3 and  stage order  3 co r re spond ing  to 
c = 5/4.  The  coefficients o f  this m e t h o d  are 

u(~) - 5~(5~ - 2) 

24 ' 
a(~) - 5~(5~ + 4) 

24 ' 

rl(~, 0) = - ~20(15 - 60 - 30~0 + 16~02) 

45~ + 22 

v(G rl) = 2~20(40 + 75~ - 160 - 40~0)(1 + ~0) 

(45~ + 22)(5~ - 1) 

20(24~0 - 11)(1 + (0) 
= 

W e  have  in tegra ted  first the p r o b l e m  (4.1) and  (4.2) with cons tan t  stepsize 
h = 1/16,  1/32 and  1/64 and  the results  are p resen ted  in tables  la  and  lb .  

In these tables  p s tands  for  the average  o f  the values  

1 o g ( e h ( x i ) / e h / 2 ( x i ) ) / l o g  2, 

Table la 
Constant stepsize, problem (4.1). 

h p q err n 

1 / 16 3.0167 3.0219 5.46E-6 320 
1/32 3.0079 3.0166 7.29E-7 640 
1/64 3.0037 3.0061 9.43E-8 1280 

Table lb 
Constant stepsize, problem (4.2). 

h p q err n 

1/16 3.0385 3.0122 1.74E-12 320 
1/32 3.0155 3.0031 2.19E-13 640 
1/64 2.9427 2.9338 3.11 E- 14 1280 
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Table 2a 
Variable stepsize, r = 6/5, problem (4.1). 

h0 p q err n 

1/16 3.0157 3.0212 2.16E-6 1242.50 
1/32 3.0013 3.0096 7.45E-7 1184.50 
1/64 2.9946 3.0011 2.35E-7 1907.50 

Table 2b 
Variable stepsize, r = 6/5, problem (4.2). 

h0 p q err n 

1/16 3.0540 3.0316 1.24E- 11 391.85 
I/32 3.0299 3.0107 7.98E- 12 707.45 
1/64 3.0189 3.0109 6.79E-12 872.60 

where  eh(xi) is the a b s o l u t e  e r r o r  a t  the gr id  p o i n t  x;; q s t ands  fo r  the a v e r a g e  s tage  

o rde r  c o m p u t e d  by  

/seh/2 (xi///log 2, log(seh(xi) 

where  Seh(xi) is the  a v e r a g e  a b s o l u t e  e r r o r  o f  the  s tage  values;  err  s t ands  fo r  the  

a v e r a g e  e r r o r  a n d  n fo r  the n u m b e r  o f  s teps.  
Nex t ,  we i n t eg ra t ed  these  p r o b l e m s  wi th  va r i ab l e  s tepsize c h o s e n  a c c o r d i n g  to 

the rule 

hne w = hold r2rand-1 

Table 3a 
Variable stepsize, r = 2, problem (4.1). 

h0 p q err n 

1/16 2.8761 2.8921 9.81E-6 482. I0 
1/32 2.8950 2.9070 7.20E-6 501.95 
1/64 2.8556 2.8760 4.083E-6 590.35 

Table 3b 
Variable stepsize, r = 2, problem (4.2). 

h0 p q err n 

1/16 3.0024 2.9932 9.63E-12 451.10 
1/32 2.9934 2.9866 9.96E- 12 458.05 
1/64 2.9910 2.9875 1.06E- 11 463.70 
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Table 4a 
Variable stepsize, r = 3, problem (4.1). 
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h0 P q err n 

1/16 2.6804 2.6913 9.31E-6 501.50 
1/32 2.6682 2.6816 7.63E-6 492.15 
1/64 2.7034 2.7247 7.21E-6 537.80 

Table 4b 
Variable stepsize, r = 3, problem (4.2). 

h 0 p q err n 

1/16 2.8978 2.8874 9.01E-12 415.10 
1/32 2.8806 2.8719 8.92E-12 426.50 
1/64 2.8584 2.8545 9.33E- 12 447.25 

where rand stands for the random number  with uniform distribution. In order to 
avoid the use of  too small or too large steps, whenever hn~w was less than 0.001 

1 
or greater than 0.3, it was automatically set as 2hold or ~hold respectively. We 
have chosen the initial stepsize h 0 = 1/16, 1/32, and 1/64, and the ratio r equal 
to 6/5, 2, and 3. In the variable stepsize case we have solved the problem (4.1) 
and (4.2) 20 times, each time computing the average order and stage order over 
the interval [0, 20] according to the same rule followed for the constant stepsize 
case, as well as the error at the endpoint  x = 20 and the number  of  steps. This 
error was computed using the continuous T S R K  method for an appropriate 
value of  the parameter 0. In tables 2a-4b,  we present the averages of  these results 
over 20 runs. In all these tables h0 stands for initial stepsize, p for the order, q for the 
stage order, err for absolute error at x = 20, and n for the number  of  steps. 

We can see from tables la, lb, 2a and 2b that for constant stepsize and for 
r = 6/5 (which implies that IIA(~, 1)l{o~ = 1) the order and stage order are almost 
exactly 3 as predicted by theorem 3. We observe a slight reduction in order and 
stage order for example (4.1) and for r = 2 (compare table 3a) in spite of  the fact 
that for this ratio the variable stepsize TSRK method is always zero-stable. We 
do not  observe a similar reduction for the problem (4.2) (compare table 3b). For  
r = 3 the zero-stability condition is violated whenever 

1 (log 3 2.32015 + 1) rand > 

and this is reflected in a somewhat bigger reduction in order and stage order as 
given in table 4a and some reduction as given in table 4b. 

We will demonstrate next that for the method  of  order p and stage order p the 
stage order is not  affected significantly by the additional requirement that 
Cp(~) = 0, i.e., that the stage order of  consistency is p + 1 (compare theorem 3). 
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To this end, consider the method I with m =  1, c = 3 / 4 ,  Cl(~,0)= 
(72(~, 0 ) =  C3(~, 0 ) =  0, Cl (~)=  C2(~)= 0 (and C3(~)~ 0), and the method 2 
with the additional requirement that C3(~) = 0. The coefficients of these methods 
are listed below. 

Method 1: 

Method 2: 

u(() - ((4 + 3() 
8 ' 

a(~) - ~(8 + 3~) A 1 
8 ' 4 '  

r/(~, 0) = ~20(9 - 60 + 18~0 - 16~02) 
10 +9~ 

2(20(24 + 27~-  160-24~0)(1 + ~0) 
= 

(1 + 3~)(10+9~) 
20(5 + 8~0)(1 + ~0) 

= 

(1 + 3~)(10+9~) " 

27~ 2 (1 + ~) 

- 8 ( 1 0  + 9 r  ' 

9~2(4 + 3~) 2 

a(~) = 8(1 + 3~)(10 +9~) '  
3(4 + 3~)(5 + 6~) 

A(~) = 8(1 + 3~)(10+9~)" 

For this method r/(~, 0), v(~, 0), and w(G 0) are defined as for method 1. 

Table 5a 
Method 1, C3(~) y~ 0, problem (4.1). 

ho p q err n 

1/16 2.8328 2.8194 1.51E-6 450.55 
1/32 2.8206 2.8111 1.23E-6 580.40 
1/64 2.7814 2.7709 5.61E-7 574.10 

Table 5b 
Method 1, C3(~) ~ 0, problem (4.2). 

ho p q err n 

1/16 2.8782 2.8590 5.60E-12 563.55 
1/32 2.8846 2.8644 6.55E-12 464.70 
1/64 2.8668 2.8402 5.79E- 12 556.20 
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Table 6a 
Method 2, C3(() = 0, problem (4.1). 
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h 0 p q err n 

1 / 16 2.8503 2.8562 5.26E-7 523.65 
1/32 2.7920 2.8008 3.59E-7 519.90 
1/64 2.8111 2.8239 3.83E-7 544.80 

Table 6b 
Method 2, C3(~) = 0, problem (4,2). 

h 0 p q err n 

1/16 2.7161 2.7156 5.51E-13 510.60 
1/32 2.7303 2.7458 9.86E-7 483.95 
1/64 2.7214 2.7372 4.37E-13 590.50 

We  have again  integrated p rob lem (4.1) and  (4.2) 20 t imes wi th  the rat io r = 2 
using bo th  me t hods  and  the averages o f  these results are presented in tables 5 a -  
6b, They  are again  in agreement  wi th  theorem 3. 

We will next  test how well the order  and  stage order  o f  the m e t h o d  are preserved 
in a variable stepsize env i ronmen t  for  the me tho d s  which are zero-stable for any  
rat io o f  stepsizes ~. This  is true if, for  instance,  r/(G 0) = 0, and  the examples  o f  
such me t hods  are given in section 3. We  present  in tables 7a and  7b the results o f  
numer ica l  experiments  on  the p rob lem (4.1) and  (4.2) using the type 1 two-s tage 
T S R K  m e t h o d  of  order  4 and  stage o rder  4 wi th  cl = t / 3 ,  c2 = 2/3 ,  bz~ -~ 1/2, 

Table 7a 
TSRK with m = 2, p = q = 4, problem (4.1). 

h0 p q err n 

1/16 3.8845 3.8823 2.71E-7 558.25 
1/32 3.8497 3.8451 1.04E-7 547.80 
1/64 3.8503 3.8439 9.17E-8 550.05 

Table 7b 
TSRK with m -- 2, p = q = 4, problem (4.2). 

ho P q err n 

1/16 3.8364 3.8443 5.19E-13 463.65 
l/32 3.8416 3.8474 5.77E- 13 508.40 
1/64 3.8475 3.8513 4.80E- 13 636.9i) 
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Table 8a 
TSRK with m = 3, p = q = 5, problem (4.1). 

h o p q err n 

1/16 4.8562 4.8619 7.09E-9 510.00 
1/32 4.8905 4.8953 8.01E-9 562.20 
1/64 4.8900 4.8972 3.27E-9 581.90 

Table 8b 
TSRK with m = 3, p = q = 5, problem (4.2). 

h 0 p q err n 

1/16 4.8361 4.8539 h48E-12 461.30 
1/32 4.8516 4.8737 1.59E-12 440.55 
1/64 4.8949 4.9126 1.51E-12 508.95 

and  wi th  u(~), A(( ) ,  v(~, 0), and  w(~, 0) listed in sect ion 3. In tables  8a an d  8b we 
presen t  the select ion o f  numer ica l  exper iments  using the three-s tage  m e t h o d  o f  
o rde r  5 a nd  stage o r de r  5 given in sect ion 3. 

As before ,  we have  solved the p r o b l e m  (4.1) and  (4.2) 20 t imes wi th  r = 2 an d  
wi th  the stepsize chosen  accord ing  to the rule discussed at  the beg inn ing  o f  this 
section.  T h e  results o b t a i n e d  are  aga in  in ve ry  g o o d  ag reemen t  wi th  t h e o r e m  3. 
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