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1. Introduction

The purpose of this paper is to provide multiresolution analysis, stationary
subdivision, and pre-wavelet decompositions of L*(R¢) based on a general class
of functions which includes polyharmonic B-splines (a definition of polyhar-
monic B-spline will be given later). For a detailed study of these interesting and
useful functions, see [7], and also [3] for related matters.

We begin by recalling the multiresolution setup. Given a function ¢ € L% =
L*(R?) which satisfies the stability inequality

myllcll, < e, el o< M, llcll, (1.1)
valid for all c=(c,:a €Z% €l?=1%Z%. In this case we say that ¢ has
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[’-stable integer translates. Here m,, M, are constants such that 0 <m, <M,,
[c, ¢] is the function

[c, ](x)= ). co(x—a), xR’ (1.2)
acZd
and || - |l denotes the standard norm(s) on /%, L? (Generally, we use || - || , for

the usual norm(s) on [?, L?, 1 < p < »). With ¢ we associate an infinite scale of
closed subspaces of L? defined by

VE(@) = {sc*[c, ¢]: c€I?} =sc*(V(¢)), keZ (1.3)
where sc¥: L? - L? is the scaling operator

(sc* £)(x) =f(2*x), xeR%L (1.4)
We say that ¢ admits multiresolution provided that, in addition to (1.1), we have

U vE=12, (1.5)

kez

N v =) (16)

kez
and

VECVEH, kel (1.7)
Following [1], [6], we say that € L? is a pre-wauvelet, if the functions

scksh* y, keZ, aez? (1.8)
where sh®: L? — L? is the shift operator

(sh? f)(x)=f(x-y), x,yeR? 1.9)
are orthogonal on different scales, that is,

(sc* sh® , sc*' shP ) =0 (1.10)

forall k, k' €7, k # k' and a, B € Z°. Here we also use standard notation for
the inner product on L?, viz.

(f, 8)= [ f(x)8(x) dx. (1.11)

The class of functions £,, ,, = %c L? for which we build multiresolution and
pre-wavelets are best described in terms of their Fourier transform

o) = x)e @ rdx, weR?
(@)= [ f(x)
A function ¢ is in &%, , provided that
$=T/q (112)
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where T is a trigonometric polynomial
T(w)= ) tye ' weR? (1.13)
pez?
and g is a homogeneous polynomial
g(w)= ) gqB, weR’ (1.14)
18l=m

B=(By---,BHEZ% |B|l =B, +... +B,, of degree m with m > d. For later
use, we establish the notational convention of associating with every element
p=(p,: a € Z% €' the absolutely convergent trigonometric series

(trig p)(@) = zdpa e*e, welR? (1.15)
a€’Z

Obviously trig is a bounded linear map (of norm one) from ! into C(Q*%)
(continuous functions on Q9), where Q¢ =[—, w]%, the d-dimensional torus.
For p €1%(Z?), we also use (1.15) to define trig p, a.e., w € R In this case, trig
is an isometry from [%(Z%) onto L*(Q%) with (normalized) Lebesgue measure.
The homogeneous polynomial g is required to be elliptic, in other words,

g(») =0, » € R? implies that w = 0. (1.16)

We couple together the trigonometric polynomial 7 and the homogeneous
polynomial g by requiring that there exists a nonnegative integer n such that

T(w) —gq(w)=0( ||a)||°§"+1+"), w—0 (1.17)
where |* |l is the maximum norm on R? Finally, we suppose, analogous to
(1.16), that

T(0) =0, |lwlle < implies that = 0. (1.18)

For our main result, we set
E = extreme points of [0, 1]* (1.19)

We use *: L2—I? for convolution, : L2—L? for scaling by minus one
(qo(x) —go( —x)), and

Hx)= )Y f(x+2mra) (1.20)

acz

whenever the sum is convergent a.e., @ € R?. Also, for every function ¢ € L%(R?)
we define the closed subspace of L*(R?)

R(¢) =span{sh* ¢: a € Z°}.
Also, for all k€ Z, we set

R*() =sc* R(¢¥).
Thus for any ¢ € L%(R¥) with [2%stable integer translates we have R*(¢) =V*(¢).
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With this notation in hand, we introduce the family of 2¢ functions

Y. =sh*/? §,, e€E, (1.21)
where

do=2"1gsc(1¢1%/{141%)), (122)
and the scale of subspaces of V%,

Wk== Y Rk4y,), keZ (1.23)

e E\{0} .
THEOREM 1.1
Let o €%, ,,, with m > d then

WELWY, k+k' (1.24)

and
P Wk=12. (1.25)
keZz

Along with this theorem, which provides an orthogonal decomposition of L?
(using translates and scales of one function in V!, albeit the translates are taken
over the fine lattice 2717, we will show that there is a subdivision scheme for
computing elements of fe V%

The example which motivated us to consider the class & is the polyharmonic
B-spline, [7], which is defined as follows. For every re Z _, set

lx37¢ logllxll2, deven

K (x)=c 1.26
r,d( ) r.d " x ”%r—d’ d odd ( )
where
1 (_1)r—d/2+1 d
22782 (r=d/)I(r)’ "
Cry= (1.27)
’ 1 I(d/2-r)
TRV , d odd
22rqrd/ r(r)
and ||- ||, is the euclidean norm on R This function is the Green’s function for
the iterated Laplacian (—1)"A",
d 32
A=) —. (1.28)
j=1 8%

The polyharmonic B-spline is given by
Br,d = (_l)rarKr,d (129)
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where & is a discrete version of A defined by

d
(8f)(x)= XL (f(x—e;) —2f(x) +f(x +¢;)) (1.30)
j=1 .
and e,,...,e, € R are the coordinate vectors (e))y =8;, 1<, k<d. A some-

what involved calculation shows that for

r

(1.31)

d
g(0)=llo/213, T(o)= ( Y. sin’w;/2
j=1

we have l?,,d =T/q. Thus, B, ,€%,,, for each r>d/2. Because of this
example, we call any element in &% an elliptic spline.

We remark that a more sophisticated choice of T in (1.31) leads to what are
called level k Polyharmonic B-splines (see [7]). These functions are in our class
for an appropriate choice of n.

It is interesting to note that the cube spline also has a Fourier transform of
the form (1.12). Specifically, for any set of vectors x!,...,x" € Z9\ {0} which
span R? we set

n

g(w| X) = ljliw'xj, T(wlX):= n(l—e_i“"“j) (1.32)

j=1

then é(+ | X)=T(- | X)/q(- | X). Equivalently, c(- | X) can be defined by the
equation

[[O’de(Xz) at =]Rdc(x|X)f(x) dx (1.33)

valid for all fe C(R9). It was shown in [6] that Theorem 1.1 holds for
¢ =c(- | X) if the matrix X is unimodular, i.e., every s X s nonsingular subma-
trix of X has determinant + 1. However, the cube spline is not in &% for d > 1
since the homogeneous polynomial, g(- | X) is characteristically Ayperbolic.

Much of what we say below holds if T is an absolutely convergent trigonomet-
ric series. However, we do not pursue this issue here.

2. Multiresolution and subdivision for elliptic splines

In this section, we demonstrate that every ¢ € %# admits multiresolution, and
that there is an associated stationary subdivision scheme in the sense of [2]
which can be used to compute elements f € V0 iteratively. We begin with

PROPOSITION 2.1
Suppose ¢ € %, , withm >d, n>0 and

¢=T/q. (2.1)
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Define
2d~m T(2w) .
a,=—/ (20) oo do, acZ¢ (2.2)
(27)* /ot T(w)
Then
o(x) =o(Ix IS4, x -, (2.3)
and
a,=o(llalla ™), a-w. (2.4)
Proof

First, let us observe that for every ¢ € &# and for «w near zero

é(w)=l+%;;](w> =1+0(lwll™") (2.5)
while at infinity

P(@)=0(lwls"). (2.6)
Thus we conclude that

‘}i_rz})gﬁ(w) =1 (2.7)
and

¢ € L{(RY) N L*(R?Y) c L*(R?) N L*(RY). (2.8)

To prove (2.3) we will next estimate the derivatives of ¢ at the origin. For this
purpose, we use the next lemma.

LEMMA 2.1
Let g be a homogeneous elliptic polynomial of degree m on R®. Suppose U is

some neighborhood of the origin and f € CN(U\{0}), for some N > 0. If there
exists a constant ¢ > 0 and a p € Z such that
|(DPF)(x)| <Cllx[157"P!

for all 18| <N and x € U\{0}. Then for some constant D >0 we have for
x € U\{0}

ot

<D| x| 1A,
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Proof

Set R=f/q. Since g is homogeneous and elliptic, there exist positive con-
stants. 4, B such that

Allx " < la(x)l, [(D%q)(x)] <Blxllz™'*!, x=#0.

We will prove the claim by induction on B. First, for 8 =0, we clearly have
C —-m
IR(x)Iszllxlluf , x€U\{0}.

Assume that the claim is true for all 8 <y, but B8 v where |y| <N.
By Leibnitz’s rule

(D@ = T (Z)ORED )

Hence
|(DR)(x)a(x)| <Cllx 15"

+ T (2)plxlE ) x

O<a<y
=(C +BD2|7|) x5t
and so

C +BD21"!

R <

) | x ||

which advances the induction and proves the theorem.

Using this lemma with f=T—q, p=m+n+1and N=m+1+n we get
for0<|a| <N

[(D*@)(x)| <Dl 157171

and so D%¢ € L'(R?) for |a| <n +d. Consequently (2.3) follows by the Rie-
mann Lebesgue lemma and a standard integration by parts argument applied to
the integral formula

1
(2m)*
which defines ¢.

p(x) = ——3 [ ¢**(w) du
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The equation (2.4) follows similarly by noting that for w near zero
TRw) — g2
o, T20) —a(20)
T(Zw) _ q(w)
T T(w)—
@ T~
9(w)
2"+ 0(llw IL?H)
1+ 0(lelleth
=2"+O( Ilwllcfﬂ).

Thus, as before, D*(T(2+)/T(+)) € LY Q%) for |a| <d + n which easily proves
(2.4).

REMARK 2.1
For the polyharmonic B-spline (2.3) gives B, [w)=O(llw |lo 1y as @ - o,
However, it is known that

B, (0)=0(llwl?), o>,

cf., {3], [7]. A similar remark holds for the estimate (2.4) in this case. This
proposition leads us to

THEOREM 2.1
Every ¢ € &%,

m,n?

m>d, n > 0 admits multiresolution.

Proof

First, let us prove the stability estimate (1.1). For this purpose, we observe
that the function {| ] 2} is continuous on Q4 since the series that defines it is
absolutely and uniformly continuous. This function plays a central role in the
proof of the stability estimate. To review these facts, we first point out that for
every ¢ € [2, the function [c, ¢] is continuous on R?. This follows from the fact
that ¢ is continuous on R? and by (2.3), the series

Y lo(x-a)l?
aczd?
is absolutely and uniformly continuous on any compact subset of R¢ (see the

proof of Theorem 2.2 for an upper bound on this sum). Moreover, [c, ¢] is in
L*(R?) because for any d = (d,: « € Z%) of finite support

I, e]ll7 = - I (erig d)$ 17
’ 2 (27T)d 2

| (trig d)2{| ol 2} | Lico9.-

1
@2m)*
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Thus it follows for all ¢ € I? that

min [{1¢1*}(w)] lcll2< e, @] ll2< max |{I81*}()] tc]l.
weQd weQ?

Hence [c, ¢] is in L*(R?) and to show (1.1) requires showing that there is no
» € R? such that

(o +2mwa) =0, for all « € 79, (2.9)

see [4], [5] for related results. Suppose, to the contrary, w € R? satisfies (2.9).
Choose a B €79 so that |lw + 27Bll« <7. If @ +27B #0 then (2.9) implies
that

T(w+2mB)
q(w +2mwp) B

and so by (1.18) we get w + 27 B =0, nonetheless. Thus, indeed, w = —27B.
Now choose a =8 in (2.9) to conclude ¢(0) =0. However (2.7) implies that
#(0) = 1. This contradiction proves the claim.

To establish the nesting of the spaces V%, k € Z we observe that ¢ satisfies
the refinement equation

¢ =scla, ¢]. (2.10)

Both sides of equation (2.10) are continuous functions in L*(R?) since by
(2.4), a €1?. Taking the Fourier transform of both sides shows that (2.10) is
equivalent to the equation

29(sc )/ =triga
which follows immediately from (2.2). From these observations, we conclude
that each V* is a closed subspace of L? and the refinement equation (2.10)
implies the spaces are nested in the sense of (1.7). Here we used the fact that
trig a = 2%""sc T/T € L(Q%) which guarantees that convolution with a acts as
a bounded linear operator on /2.
The remaining claims (1.5) and (1.6) will follow from the following lemma.

LEMMA 2.2
Let ¢ € C(RY) N LAR?). Define the linear operator
a
G = T f3z)e@x-a). 2.11)

acZ?
If f € Cy(R?) (continuous functions of compact support on R?), ¢ € L(R?), and
#0) =1 then lim, T, f=f weakly in LX(R?), that is lim, T, f, g)=(f, 8)
for all g € LA(R?).
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Proof

First we show that || T, f Il ; is bounded independent of k € Z . To this end,
we suppose that M is a positive integer such that f(x) =0 whenever || x |- > M.
Therefore, using (1.1) we have

2

1T =[ | T f5e)e@x-a)| ax
llello<2¥M
2
= —dk ) Z f( )‘P(x a)
RY o llw 2%

< (M +1)/2%) M2 £ 12

and so

NT,.f 7 <J?= (M + 1) I f |l°cM2
Given g € LXR), and € > 0, choose a k& € L(R?) of compact support such that

I8 =RIZ<@m) /(T + 1 flI2)
Let g,:=k and note that

W(Tef, &)= (f, &)l <W(Tuf—f, g —8) | + (TS, 80) — (f; 86)I

<e+ |(T,f, g0) — (f> 8o)]

and also

1 .
(T.f, &) = f go( )2~ kd Z f( ) Tlae/2 ¢’(“’/2k) do
(@) llallws 24M
Call the integrand f,(w); Then
| (@) < [R(@) M+ D) fllall$ e

Since h € L*(R9) and was chosen to be of compact support, the upper bound is
in L'(R?). Moreover, since f < Cy(R“) and

fw<p(w) deo =1

it follows that lim, _,.f,(w) =h(w)flw), for @ €R% Hence, by the Lebesgue
dominated convergence theorem

lim (T ! h d
fim (Tof, 80) = (7 [ @) f(@) do = (f; &0).

This proves the result.
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Returning to the proof of Theorem 2.1, we note that any ¢ € & satisfies the
hypothesis of Lemma 2.2. Thus, we conclude that every fe& C,(R9) is in the
weak closure of the subspace V®:= U, V* This implies that V™ has a
(strong) closure which is equal to L(R?). This proves (1.5).

For the remaining claim (1.6) we use the fact that ¢ € L%(RY) and the
asymptotic estimate (2.3) to conclude that for some positive constant Q

2 Q y
lo(x)]” < A2l x € R4,

Hence

Y le(x—a)l*<Q

acz4

1+I§(1+1)“"1( y 1))

laelle=1+1

+ )2

=0 (1+l)d+1

<2-49Y I"2:=R, xeR
1=1

Now let g€ N, zV* then for each k€Z there is a c<I*® such that
g =sc*[c, ¢]. Using the stability estimate (1.1) and the above inequality, gives

lg(x)12<Rllcllf <m;?R2%| gll7, xeRY,
which goes to zero as k — — o, This completes the proof of Theorem 2.1.

w 4d(] d—1
<Q(1 (I+1)

Our final comments in this section pertain to the stationary subdivision
scheme defined by

(SA)y= X a, ,p,, a€Zf (2.12)
pez?

A =(A,: @ €Z%. We now assume that n > 0. In this case, a I! (see (2.4)), and

S is a bounded linear operator from [/® into itself. We are interested in the

convergence of the iterates of S. It is convenient for this purpose to note the
following fact.

LEMMA 2.3
Let o €2, , form>dandn>0.Then
Y o(x—a)=1, xeR? (2.13)
acz?
and
kll_rg N T f=flle=0 (2.14)

if f is uniformly continuous on R.
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Proof

The proof is based on noting that for some K >0

lp(x)] < €RY,

1+ Ixlle)’

and so, as before in the proof of Lemma 2.2, we have

Y le(x—a)l <2-4K ). I"2:=L, xeR.
ac?? I=1
In a similar way, we have for any x € R? and integer p € R +

K
Y le(x—a)l <(1'*'9)_1/2 ) . d71/2
lx—allezp li—alusp (1+ 1x —alla)®™
<2 4dK(1 +p)—1/2 Z 173/2 = W(l +p)—1/2.
I=1

Also, since for any a € 79\ {0}
T(2ma) 7(0)
q(2ma) N q(2ma) -
we get by the Poisson summation formula
Y, o(x—a)=1, xeR<
acZ?

Hence, if w(f; 8):=sup{] f(x)~f(y)|: ]l x —yll- <8} is the modulus of conti-
nuity of f we have for any x € R?

¢(2ma)=

EHW -1 T 5] -s0)le@x -l
Hx—2 % llo<b
T =] - flie@kx - a)l
x—2"%a o> (2) ¥
-1/2

SLo(f;8)+2W || f Il (1 +82%)
which goes to zero as k — « and then § — 0*. This proves the lemma.

THEOREM 2.2
Suppose ¢ € #,,,, with n>0, m>d. Then for every A€l', f,:=[A, 9] is
uniformly continuous on R? and

lim || $¥A — ssc~*f,|l.. =0 (2.15)

(here ssc™* f, is the sequence (f{a/2%): a € Z9)).
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Proof

We begin by noting that any ¢ €%, , with n>0 admits an L” stability
estimate

Ml Ale < I[A, @] lle <M Al (2.16)

for some constants 0 <m_<M_<», For the proof, we observe that we can
choose M_=L for the upper bound. To obtain a lower bound, we use the
function 8 € VV° defined by

~ A —1 A
0={1¢1") ¢.
It is apparent that the sequence

8= (¢ * ¢)(a) ='[quo(x)$(x —a)dx, acz?

is in /},"in fact, lglli <L |l¢ll;, and moreover, by the Poisson summation
formula trig g ={| $|?%}. Thus, by Wiener’s lemma, cf. [8, p. 266] there is a
pu=(u,: a€Z? el such that trig un = (trig g) . Hence, we get

0=1[u, ¢]
and, in particular, 8 € L'(R?), since [|0[l;<llullillelly <», because ¢ €
LY(R%). Moreover, for any « € Z¢

1 |g(w)|? . 1 Cinea
(277_):1 '[‘;d{lqﬂz}(w)e iw dw=———(27r)dede dw =48,,.
Therefore, we get for any ¢ €[° and « € Z¢
le, | =1([c, ], sh®0)| < e, @] = llO 1.

This proves that we can choose m_!:= | 8||; in the L~ stability estimate (2.16).
As for the uniform continuity of f, we note first that since ¢ is continuous
and goes to zero at infinity, it is uniformly continuous. Moreover, we have
w(f,; 8) < lIAll10(g; 8) and, therefore, f, is uniformly continuous too.
Now, the result (2.15) follows from arguments used in [2], namely, for the
operator T, defined in (2.11) we have

fr = Tof = sc*([S*A —ssc™*f,, o]) (2.17)
and so (2.16) implies that

I S*A —ssc ™ fy lo <mS N T, fr = fy -
Using Lemma 2.3, this inequality proves the result.

(sh%p, 0) =

In the terminology of [2] the subdivision operator converges to f, and ¢ is the
refinable function for the subdivision scheme (2.12).
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3. Orthogonal pre-wavelet decomposition in L®

This section is devoted to the proof of Theorem 1.1. Some of the steps in the
argument parallel the case of cube spline analyzed in [6]. However, there are
important differences. We start with an observation which generalizes a special

case considered in [6].

THEOREM 3.1
Let ¢ € L? such that

“[C, <P]||2<M”C||2, M< oo
so that V¥(p)CL? ke Z. If,

U V¥(e)=L?
keZ
then for any  =1d, ¢, d € 1%, with trig d + 0 (a.e). Then
U R*(y)=L?
keZ
Proof

We need the following fact which also appears in [5].

LEMMA 3.1 N
Iff, g€ L? then f * sh®g =0 for all « € 7% if and only if {fg) =

Proof

By Plancherel’s formula, our hypothesis implies that for all g € 7¢

0=1lim [ ¥ flo+27a)f(0+27ra) e do.
N== 0 laflagN

Call the integrand H,(w). When we have the pointwise inequality

/2, .. 2y1/2
|Hyl<{If1-121} <H={1f17} {1817}
However, by the Cauchy Schwarz inequality
| H | LM S "{|f12} I LXQ% ||{|g| }" LYQ%)-

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

Moreover, using Fatou’s lemma, we see that each term on the right of this

inequality is finite since

{1 £12} 11 ey < hm[ Y | flo+27e)l® do=2m) I flI} <.

ok lxllo<N
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For the equality above, we used Plancherel’s formula once again. Thus we
conclude by (3.6) that H € LY(Q?) and so (3.5) implies by the Lebesgue domi-
nated convergence theorem that

0= dee“’""{ fE‘}(w) do, Bezd,

whence { f?} = (). The converse follows by merely reversing the steps.
Returning to the proof of the Theorem, we suppose fe& L? satisfies 0=
(f, sc* sh® ¢) =2"%%(sc™* f, sh* ) for all k € Z, @ € Z*. Then by Lemma 3.1

0={(sc™ f)" ¥} =Trig d{(sc™ £)" )

from which we conclude that {(sc™*f)" ¢} = 0. Using the lemma in the reverse
direction implies 0 = (£, sc*sh®p), k € Z, a € Z*. But now, invoking the hypoth-
esis (3.2), we conclude f=0. This proves the resuit.

Let us now turn to the proof of Theorem 1.1. First we make some preliminary
observations about the function y, defined by (1.22). We introduce the se-
quence f=(f,: a €Z“) defined by

~

trig f=2" =2"T trig p

{1$1%)

>

so that
lpO =SC[f, ‘P] = Vl
and trig f € L*(Q%). Therefore it folows that for all e €E
I{e, ¥l ll2< Ntrig fll Loy ll el 2 (3.7

Next, we prove the following.

PROPOSITION 3.1
Let ¢ € %. Then

sc™l o — 2P, WO (3.8)
where W is defined in (1.23).
Proof

The idea of the proof is to introduce the function L defined by

L=1¢1%/{1¢1%}.
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First, recall that we show in Section 2 that the 21r-continuous function {|¢ | 2
strictly positive. We draw two conclusions from this fact. First, by (2.5), (2.6),

(181%/{181*))(0) =1+ O(llw "), ©—0 (3.9)
and

(1817/{1612})(0) = O(ll@lla™), © — . (3.10)
Thus

L(x)=o(llx[l=“*™), x-o. (3.11)
We introduce again the sequence w € L? such that

(1812 =trig (3.12)
and so

L=[w,o*g¢]. (3.13)

Obviously, L is continuous since [ € L(R?). Moreover, by the Fourier inver-
sion formula, one can show that

L(a)=8,,, a € 7" (3.14)

For this reason, we call L a Lagrange function for the space V%o * ¢).
Moreover, the sum on the right hand side of (3.13) converges to a continuous
function. To see this, we observe that ¢ * ¢ €%, , and so applying the
inequality we used to prove (1.6) in Theorem 2.1 to ¢ * ¢ we get that the
function

L (e * @) (x—a)l’
acz4
is bounded for all x € R4.
Next, we claim that L satisfies the refinement equation
L=sc[l,, L] (3.15)

where [, , = (L(a/2): a € Z%) €1*(Z*). By what we have already proved, both
sides of (3.15) are in C(R¢) N L?*(R“) and so we can replace it by the equivalent
identity

2%c L=trigl, ,,- L. (3.16)
By the Poisson summation formula we have
trig I, ,, = 2%sc L} (3.17)

which, by the refinement equation (2.10) and the definition (3.5), becomes
trig I, ,, =241 sc 12} /sc{1¢1%)
=27 triga|*{1$1%}/sc{151?}. (3.18)
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Similarly, we have
Isc $1% {l1¢1?)
1617 sc(1417)
=2‘d|trigalz{lélz}/sc{lgﬁlz}. (3.19)
Combining (3.18) and (3.19) proves the claim.

24sc ﬁ/i =24

The reason we introduced L is that it directly relates to ¢, as defined in
(1.22). Specifically we recall that

bo=2"%sc™ ' L. (3.20)
Hence,
o= (—2i)" sc g(D)L. (3.21)

We now apply the differential operator (D) to both sides of (3.15) to obtain
from (3.7) and (3.14) that

g(D)L =2 sc (D)L + (3.22)
where 2 € W0 (see (1.23) for the definition of the space W?). This proves the
proposition.

We are now ready to prove that the space

S= O Wk (3.23)

keZ

is dense in L? when ¢ € %. This is the second claim of Theorem 1.1.
We introduce a subset -2 of Z¢ by setting

L={B €7 sc* sh? G(D)L € .7, for all k 7). (3:24)
From (3.22) we get
sc* sh? g(D)L =2™ sc* shP sc g(D)L +sc* sh? 2
=2" sck*1 5c?f g(D)L +sc* sh? Q. (3.25)
Since by definition sc* shf 2 € ., we get from (3.25)
2L (3.26)

One final comment is needed about the set .Z. By definition, for k € Z,
B €74 and e € E\ {0}

F D sck shP , =sck shB+e/? ¢,
= (—2i)" sc* shP*e/2 sc g(D)L
=(—2i)" sck*+! sh?+¢ g(D)L.
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In this computation, we used (3.21) and the fact that ¢, = sh®/? ¢,. Thus we
ahve shown that 28 +e¢ €. for all e € E\{0} and B € Z“. Since every a € Z¢
\ {0} can be written as

a=2"(28+e), e€cE\{0}, BeZ°

we conclude that = 79\ {0).
To complete the argument, we recall that

Yo=sc[f, o] (3.27)

where trig f==2"T trig p. Obviously f€!? and trig f #0 (a.e.). Moreover, by
(3.21) we obtain

g(D)L =(-2i) "[f, ¢]. (3.28)
We can now rephrase the fact that .= 7\ {0} by saying that
[f, e](2¥- —a) e/, acZ\{0},keZ. (3.29)

But, according to Lemma 3.1, since ¢ € # admits multiresolution it suffices to
prove [f, ¢]l=sc! ¢, € ~. For this purpose, we use (3.8) iteratively to con-
clude that

sc o= (27  scTk e W 4.+ Wk S
for any k € Z \{0}. Since
127m) sc™*1 gy l1F = 29742 |y |1

goes to zero as k — o we conclude that sc~! ¢, € . This proves the second
claim of Theorem 1.1.

The proof of the first claim depends on showing that

V() LR (y,) (3.30)

for all k € Z and e € E\ {0}. In fact, suppose for the moment that (3.30) is true.
We wish now to demonstrate that

R*(y.) LR* (y..) (3.31)

for all k #k’ and e, e’ € E\{0}. We assume without loss of generality that
k' > k. From (3.27), we have ¢, € V() and so

R (9.) cV* (o)
and so (3.31) follows from (3.30).
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To prove (3.30), it suffices to prove it for k = 0 which we do by a computa-
tion:

@m)’ [ plxJplx=a) dx
= J o be(@)3(w) do

T(w/2)¢(w/2)trig a(w/2)é(w/2)
Y |<,6(w/2+21'rB)|2

pez¢

— 2m—2d/ ei(az—e/2)-m
Rd

which is zero, since e # 0. This proves Theorem 1.1.

We conclude with the following remark. Let U*(¢p) be the orthogonal comple-
ment of V*(p) in V**(p). As shown above W* is a closed subspace of U*.
Since ¢ admits multiresolution we have that &, ., U* = L2 Hence W* = U* for
all k € Z, that is,

Vkrli=ykeowk vk LWk keZ.
This statement also applies to the analogous construction for the cube spline

given in [6] and therefore the above remark corrects an oversight made in
Remark 4.3 of [6].

We end this paper by demonstrating that the functions {,},< g\ have
1%-stable integer translates, a fact which does not hold for the cube spline case
studied in [6]. According to Theorem 4.1 of [5] we must show that there is no
6 R4 and y =(y,),c g\ # 0 such that

Yy (04+2ma)=0, acZ? (3.32)
e€E\({0}
Every a €Z¢ can be expressed in the form a =2y +e’ where y € Z¢ and
e’ € E. Thus (3.32) is equivalent to

( Y (v e ) (1) [ig(8 +4my +2me’) =0 (3.33)
e E\(0}

for all y € Z? and e’ € E. To make use of this equation we first observe that
#(w) = 0 for some w €R? if and only if w =27a, a € Z4\ {0}. This of course
follows from our definition of ¢ and our requirements (1.18), (1.16) on the
trigonometric polynomial T and homogenous polynomial g. Consequently, by
our definition of #,, see (1.22), we have §(w) =0 if and only if w =4wa,
a € Z°. Returning to (3.33) we choose y =0. Observe that there is at most one
e’ € E such that (8 +2mwe’) =0. In fact, if to the contrary there were two
distinct values in E, say ej, e; we would have ey —e; =2p, for some p € z¢
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which is impossible unless e;=e;. Hence we conclude there is a e, € E such
that

Y (3. e 02 (~1)" =0, & €E/{e,). (3.34)
esE\{0}

We will finish the proof by showing that the matrix

((- I )eEE\{O), e'€E\ep) (3.35)
is nonsingular. To this end, we consider the 2¢ X 2¢ real symmetric matrix
o= (( - 1) . )eEE, e'SE*

It is known (and easily verified) that A% = 29I and so 4~! = 24. Hence, since
every element of A4 is nonzero we conclude every 2¢ — 1 minor of A4 is nonzero
as well. In particular, the matrix in (3.35) is nonsingular for any e, € E.

Thus we have established that the functions {,}, < g\ are stable. In particu-
lar it follows that ¢, has I*stable integer translates. However, {,}, are
unstable. To prove this latter fact we choose y =(y,),c g # 0 such that

T y(-1)7=0, e €E\(0)

eckE

and observe that

Y y,_.tﬁe(Z';ra) =0, aeZé
eeE
The above consideration can be used to identify a 2¢ X 2¢ nonsingular matrix

of trigonometric series which maps the functionals {o} L {l,be}ees\(o) into
{$.).c g» ®. =3¢ she/*p. The coefficients of the trigonometric series appearing
in this matrix allow one to write any element in V! as a sum of elements in V°
and W°. The explicit form of this matrix will be provided at another occasion. In
special cases this decomposition may be useful for data compression based on
polyharmonic B-splines.
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