USING THE REFINEMENT EQUATION FOR THE CONSTRUCTION OF PRE-WAVELETS III: ELLIPTIC SPLINES

Charles A. MICCHELLI *

IBM Research Division, T.J. Watson Research Center, Mathematical Sciences Department, Yorktown Heights, New York 10598, U.S.A.

Christophe RABUT

INSA-Centre de Mathématiques, Complexe Scientifique de Rangueil, 31077 Toulouse Cedex, France

Florencio I. UTRERAS **

Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Casilla 170 / 3 Correo 3, Santiago, Chile

Received 29 April 1991

The purpose of this paper is to provide multiresolution analysis, stationary subdivision and pre-wavelet decomposition on $L^2(\mathbb{R}^d)$ based on a general class of functions which includes polyharmonic B-splines.

Subject Classification: AMS (NOS): 41A15, 41A63, 42B99

Keywords: Cubesplines; elliptic splines; wavelets; subdivision

1. Introduction

The purpose of this paper is to provide multiresolution analysis, stationary subdivision, and pre-wavelet decompositions of $L^2(\mathbb{R}^d)$ based on a general class of functions which includes *polyharmonic* B-splines (a definition of polyharmonic B-spline will be given later). For a detailed study of these interesting and useful functions, see [7], and also [3] for related matters.

We begin by recalling the multiresolution setup. Given a function $\varphi \in L^2 = L^2(\mathbb{R}^d)$ which satisfies the stability inequality

$$m_2 \| c \|_2 \leq \| [c, \varphi] \|_2 \leq M_2 \| c \|_2$$
(1.1)

valid for all $c = (c_{\alpha} : \alpha \in \mathbb{Z}^d) \in l^2 = l^2(\mathbb{Z}^d)$. In this case we say that φ has

* The work of this author has been partially supported by a DARPA grant.

^{**} The work of this author has been partially supported by Fondo Nacional de Ciencia y Technologia under Grant 880/89.

 l^2 -stable integer translates. Here m_2 , M_2 are constants such that $0 < m_2 < M_2$, $[c, \varphi]$ is the function

$$[c, \varphi](x) \coloneqq \sum_{\alpha \in \mathbb{Z}^d} c_{\alpha} \varphi(x - \alpha), \quad x \in \mathbb{R}^d$$
(1.2)

and $\|\cdot\|_2$ denotes the standard norm(s) on l^2 , L^2 (Generally, we use $\|\cdot\|_p$ for the usual norm(s) on l^p , L^p , $1 \le p \le \infty$). With φ we associate an infinite scale of closed subspaces of L^2 defined by

$$V^{k}(\varphi) \coloneqq \left\{ sc^{k}[c, \varphi] \colon c \in l^{2} \right\} = sc^{k} \left(V^{0}(\varphi) \right), \quad k \in \mathbb{Z}$$

$$(1.3)$$

where $sc^k: L^2 \to L^2$ is the scaling operator

$$(sc^k f)(x) \coloneqq f(2^k x), \quad x \in \mathbb{R}^d.$$

$$(1.4)$$

We say that φ admits multiresolution provided that, in addition to (1.1), we have

$$\overline{\bigcup_{k\in\mathbb{Z}}V^k} = L^2,\tag{1.5}$$

$$\bigcap_{k \in \mathbb{Z}} V^k = \{0\} \tag{1.6}$$

and

$$V^{k} \subseteq V^{k+1}, \quad k \in \mathbb{Z}.$$

$$(1.7)$$

Following [1], [6], we say that $\psi \in L^2$ is a *pre-wavelet*, if the functions

$$sc^k sh^{\alpha} \psi, \ k \in \mathbb{Z}, \ \alpha \in \mathbb{Z}^d$$
 (1.8)

where sh^{α} : $L^2 \rightarrow L^2$ is the *shift* operator

$$(sh^{y} f)(x) \coloneqq f(x-y), \quad x, y \in \mathbb{R}^{d}$$

$$(1.9)$$

are orthogonal on different scales, that is,

$$\left(sc^{k} sh^{\alpha} \psi, sc^{k'} sh^{\beta} \psi\right) = 0 \tag{1.10}$$

for all k, $k' \in \mathbb{Z}$, $k \neq k'$ and α , $\beta \in \mathbb{Z}^d$. Here we also use standard notation for the inner product on L^2 , viz.

$$(f, g) \coloneqq \int_{\mathbb{R}^d} f(x) \overline{g(x)} \, \mathrm{d}x. \tag{1.11}$$

The class of functions $\mathscr{R}_{m,n} = \mathscr{R} \subset L^2$ for which we build multiresolution and pre-wavelets are best described in terms of their Fourier transform

$$(\hat{f})(\omega) \coloneqq \int_{\mathbb{R}^d} f(x) e^{-i\omega \cdot x} dx, \quad \omega \in \mathbb{R}^d.$$

A function φ is in $\mathscr{R}_{m,n}$ provided that
 $\hat{\varphi} = T/q$ (1.12)

where T is a trigonometric polynomial

$$T(\omega) := \sum_{\beta \in \mathbb{Z}^d} t_{\beta} e^{-i\beta \cdot \omega}, \quad \omega \in \mathbb{R}^d$$
(1.13)

and q is a homogeneous polynomial

$$q(\omega) \coloneqq \sum_{|\beta|=m} q_{\beta} \omega \beta, \quad \omega \in \mathbb{R}^d$$
(1.14)

 $\beta = (\beta_1, \dots, \beta_d) \in \mathbb{Z}^d$, $|\beta| := \beta_1 + \dots + \beta_d$, of degree *m* with m > d. For later use, we establish the notational convention of associating with every element $\rho = (\rho_{\alpha}: \alpha \in \mathbb{Z}^d) \in l^1$ the absolutely convergent trigonometric series

$$(trig \ \rho)(\omega) \coloneqq \sum_{\alpha \in \mathbb{Z}^d} \rho_{\alpha} e^{i\alpha \cdot \omega}, \quad \omega \in \mathbb{R}^d$$
 (1.15)

Obviously trig is a bounded linear map (of norm one) from l^1 into $C(Q^d)$ (continuous functions on Q^d), where $Q^d = [-\pi, \pi]^d$, the *d*-dimensional torus. For $\rho \in l^2(\mathbb{Z}^d)$, we also use (1.15) to define trig ρ , a.e., $\omega \in \mathbb{R}^d$. In this case, trig is an isometry from $l^2(\mathbb{Z}^d)$ onto $L^2(Q^d)$ with (normalized) Lebesgue measure.

The homogeneous polynomial q is required to be *elliptic*, in other words,

$$q(\omega) = 0, \ \omega \in \mathbb{R}^d$$
 implies that $\omega = 0.$ (1.16)

We couple together the trigonometric polynomial T and the homogeneous polynomial q by requiring that there exists a nonnegative integer n such that

$$T(\omega) - q(\omega) = 0(\|\omega\|_{\infty}^{m+1+n}), \quad \omega \to 0$$
(1.17)

where $\|\cdot\|_{\infty}$ is the maximum norm on \mathbb{R}^d . Finally, we suppose, analogous to (1.16), that

$$T(\omega) = 0, \|\omega\|_{\infty} \leq \pi \text{ implies that } \omega = 0.$$
(1.18)

For our main result, we set

$$E = \text{extreme points of } [0, 1]^d \tag{1.19}$$

We use $\stackrel{*}{:} L^2 \to L^2$ for convolution, $\stackrel{\cdot}{:} L^2 \to L^2$ for scaling by minus one $(\check{\varphi}(x) := \overline{\varphi(-x)})$, and

$$\{f\}(x) \coloneqq \sum_{\alpha \in \mathbb{Z}^d} f(x + 2\pi\alpha)$$
(1.20)

whenever the sum is convergent a.e., $\omega \in \mathbb{R}^d$. Also, for *every* function $\psi \in L^2(\mathbb{R}^d)$ we define the closed subspace of $L^2(\mathbb{R}^d)$

 $R(\psi) = \overline{span}\{sh^{\alpha} \ \psi \colon \alpha \in \mathbb{Z}^{d}\}.$

Also, for all $k \in \mathbb{Z}$, we set

$$R^k(\psi) = sc^k R(\psi).$$

Thus for any $\varphi \in L^2(\mathbb{R}^d)$ with l^2 -stable integer translates we have $R^k(\varphi) = V^k(\varphi)$.

With this notation in hand, we introduce the family of 2^d functions

$$\psi_e = sh^{e/2} \psi_0, \quad e \in E, \tag{1.21}$$

where

$$\hat{\psi}_0 = 2^{-d} \ \bar{q} \ sc^{-1} \Big(|\check{\varphi}|^2 / \{ |\check{\varphi}|^2 \} \Big), \tag{1.22}$$

and the scale of subspaces of V^k ,

$$W^{k} := \sum_{e \in E \setminus \{0\}} R^{k}(\psi_{e}), \quad k \in \mathbb{Z}.$$
(1.23)

Let
$$\varphi \in \mathscr{R}_{m,n}$$
, with $m > d$ then
 $W^k \perp W^{k'}, \quad k \neq k'$
(1.24)

and

$$\overline{\bigoplus_{k \in \mathbb{Z}} W^k} = L^2.$$
(1.25)

Along with this theorem, which provides an orthogonal decomposition of L^2 (using translates and scales of *one* function in V^1 , albeit the translates are taken over the fine lattice $2^{-1}\mathbb{Z}^d$, we will show that there is a subdivision scheme for computing elements of $f \in V^0$.

The example which motivated us to consider the class \mathscr{R} is the polyharmonic B-spline, [7], which is defined as follows. For every $r \in \mathbb{Z}_+$, set

$$K_{r,d}(x) = c_{r,d} \begin{cases} \|x\|_2^{2r-d} \log \|x\|_2, & d \text{ even} \\ \|x\|_2^{2r-d}, & d \text{ odd} \end{cases}$$
(1.26)

where

$$c_{r,d} = \begin{cases} \frac{1}{2^{2r} \pi^{d/2}} \frac{(-1)^{r-d/2+1}}{(r-d/2)!\Gamma(r)}, & d \text{ even} \\ \frac{1}{2^{2r} \pi^{d/2}} \frac{\Gamma(d/2-r)}{\Gamma(r)}, & d \text{ odd} \end{cases}$$
(1.27)

and $\|\cdot\|_2$ is the euclidean norm on \mathbb{R}^d . This function is the Green's function for the iterated Laplacian $(-1)'\Delta'$,

$$\Delta := \sum_{j=1}^{d} \frac{\partial^2}{\partial x_j^2}.$$
(1.28)

The polyharmonic B-spline is given by

$$B_{r,d} = (-1)^r \delta' K_{r,d}$$
(1.29)

where δ is a discrete version of Δ defined by

$$(\delta f)(x) := \sum_{j=1}^{d} \left(f(x - e_j) - 2f(x) + f(x + e_j) \right)$$
(1.30)

and $e_1, \ldots, e_d \in \mathbb{R}^d$ are the coordinate vectors $(e_j)_k := \delta_{jk}$, $1 \leq j, k \leq d$. A somewhat involved calculation shows that for

$$q(\omega) = \|\omega/2\|_{2}^{2r}, \quad T(\omega) = \left(\sum_{j=1}^{d} \sin^{2} \omega_{j}/2\right)^{r}$$
(1.31)

we have $\hat{B}_{r,d} = T/q$. Thus, $B_{r,d} \in \mathscr{R}_{2r,1}$ for each r > d/2. Because of this example, we call any element in \mathscr{R} an *elliptic spline*.

We remark that a more sophisticated choice of T in (1.31) leads to what are called level k Polyharmonic B-splines (see [7]). These functions are in our class for an appropriate choice of n.

It is interesting to note that the *cube spline* also has a Fourier transform of the form (1.12). Specifically, for any set of vectors $x^1, \ldots, x^n \in \mathbb{Z}^d \setminus \{0\}$ which span \mathbb{R}^d we set

$$q(\omega \mid X) := \prod_{j=1}^{n} i\omega \cdot x^{j}, T(\omega \mid X) := \prod_{j=1}^{n} (1 - e^{-i\omega \cdot x^{j}})$$
(1.32)

then $\hat{c}(\cdot | X) = T(\cdot | X)/q(\cdot | X)$. Equivalently, $c(\cdot | X)$ can be defined by the equation

$$\int_{[0,1]^d} f(Xt) \, \mathrm{d}t = \int_{\mathbb{R}^d} c(x \mid X) f(x) \, \mathrm{d}x \tag{1.33}$$

valid for all $f \in C(\mathbb{R}^d)$. It was shown in [6] that Theorem 1.1 holds for $\varphi = c(\cdot | X)$ if the matrix X is unimodular, i.e., every $s \times s$ nonsingular submatrix of X has determinant ± 1 . However, the cube spline is not in \mathscr{R} for d > 1 since the homogeneous polynomial, $q(\cdot | X)$ is characteristically hyperbolic.

Much of what we say below holds if T is an absolutely convergent trigonometric series. However, we do not pursue this issue here.

2. Multiresolution and subdivision for elliptic splines

In this section, we demonstrate that every $\varphi \in \mathscr{R}$ admits multiresolution, and that there is an associated stationary subdivision scheme in the sense of [2] which can be used to compute elements $f \in V^0$ iteratively. We begin with

PROPOSITION 2.1 Suppose $\varphi \in \mathscr{R}_{m,n}$ with $m > d, n \ge 0$ and $\hat{\varphi} = T/q.$ (2.1) Define

$$a_{\alpha} = \frac{2^{d-m}}{(2\pi)^2} \int_{\mathcal{Q}^d} \frac{T(2\omega)}{T(\omega)} e^{i\alpha \cdot \omega} d\omega, \quad \alpha \in \mathbb{Z}^d.$$
(2.2)

Then

$$\varphi(x) = o(\|x\|_{\infty}^{-(d+n)}), \quad x \to \infty,$$
(2.3)

and

$$a_{\alpha} = o(\|\alpha\|_{\infty}^{-(d+n)}), \quad \alpha \to \infty.$$
(2.4)

Proof

First, let us observe that for every $\varphi \in \mathscr{R}$ and for ω near zero

$$\hat{\varphi}(\omega) = 1 + \frac{T(\omega) - q(\omega)}{q(\omega)} = 1 + O\left(\|\omega\|_{\infty}^{n+1}\right)$$
(2.5)

while at infinity

$$\hat{\varphi}(\omega) = O(\|\omega\|_{\infty}^{-m}).$$
(2.6)

Thus we conclude that

$$\lim_{\omega \to 0} \hat{\varphi}(\omega) = 1 \tag{2.7}$$

and

$$\hat{\varphi} \in L^1(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d) \subseteq L^2(\mathbb{R}^d) \cap L^{\infty}(\mathbb{R}^d).$$
(2.8)

To prove (2.3) we will next estimate the derivatives of φ at the origin. For this purpose, we use the next lemma.

LEMMA 2.1

Let q be a homogeneous elliptic polynomial of degree m on \mathbb{R}^d . Suppose U is some neighborhood of the origin and $f \in C^N(U \setminus \{0\})$, for some $N \ge 0$. If there exists a constant c > 0 and a $\rho \in \mathbb{Z}$ such that

$$|(D^{\beta}f)(x)| \leq C ||x||_{\infty}^{\rho-|\beta|}$$

for all $|\beta| \leq N$ and $x \in U \setminus \{0\}$. Then for some constant D > 0 we have for $x \in U \setminus \{0\}$

$$\left|D^{\beta}\left(\frac{f}{q}\right)(x)\right| \leq D \|x\|_{\infty}^{\rho-m-|\beta|}.$$

Set R = f/q. Since q is homogeneous and elliptic, there exist positive constants A, B such that

$$A \, \| \, x \, \|_{\infty}^{m} \leq | \, q(x) \, | \, , \, \, |(D^{\alpha}q)(x)| \leq B \, \| \, x \, \|_{\infty}^{m-|\alpha|} \, , \quad x \neq 0.$$

We will prove the claim by induction on β . First, for $\beta = 0$, we clearly have

$$|R(x)| \leq \frac{C}{A} ||x||_{\infty}^{\rho-m}, x \in U \setminus \{0\}.$$

Assume that the claim is true for all $\beta \leq \gamma$, but $\beta \neq \gamma$ where $|\gamma| \leq N$. By Leibnitz's rule

 $(D^{\gamma}f)(x) = \sum_{\alpha} {\gamma \choose \alpha} (D^{\alpha}R)(x) (D^{\gamma-\alpha}q)(x).$

$$(D'f)(x) = \sum_{0 \le \alpha \le \gamma} {i \choose \alpha} (D^{\alpha} R)(x) (D^{\gamma \alpha} q)(x)$$

Hence

$$|(D^{\gamma}R)(x)q(x)| \leq C ||x||_{\infty}^{\rho-|\gamma|} + \sum_{0 \leq \alpha < \gamma} {\gamma \choose \alpha} D ||x||_{\infty}^{\rho-m-|\alpha|} B ||x||_{\infty}^{m-|\gamma|+|\alpha|} = (C + BD2^{|\gamma|}) ||x||_{\infty}^{\rho-|\gamma|}$$

and so

$$|(D^{\gamma}R)(x)| \leq \left(\frac{C+BD2^{|\gamma|}}{A}\right) ||x||_{\infty}^{\rho-m-|\gamma|}$$

which advances the induction and proves the theorem.

Using this lemma with f = T - q, $\rho = m + n + 1$ and N = m + 1 + n we get for $0 < |\alpha| \le N$

$$|(D^{\alpha}\hat{\varphi})(x)| \leq D ||x||_{\infty}^{n+1-|\alpha|}$$

and so $D^{\alpha}\hat{\varphi} \in L^{1}(\mathbb{R}^{d})$ for $|\alpha| \leq n + d$. Consequently (2.3) follows by the Riemann Lebesgue lemma and a standard integration by parts argument applied to the integral formula

$$\varphi(x) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} e^{ix \cdot \omega} \hat{\varphi}(\omega) \, \mathrm{d}\omega$$

which defines φ .

The equation (2.4) follows similarly by noting that for ω near zero

$$\frac{T(2\omega)}{T(\omega)} = \frac{2^m + \frac{T(2\omega) - q(2\omega)}{q(\omega)}}{1 + \frac{T(\omega) - q(\omega)}{q(\omega)}}$$
$$= \frac{2^m + O(\|\omega\|_{\infty}^{n+1})}{1 + O(\|\omega\|_{\infty}^{n+1})}$$
$$= 2^m + O(\|\omega\|_{\infty}^{n+1}).$$

Thus, as before, $D^{\alpha}(T(2 \cdot)/T(\cdot)) \in L^{1}(Q^{d})$ for $|\alpha| \leq d + n$ which easily proves (2.4).

REMARK 2.1

For the polyharmonic B-spline (2.3) gives $B_{r,d}(\omega) = O(\|\omega\|_{\infty}^{-d-1})$ as $\omega \to \infty$. However, it is known that

 $B_{r,d}(\omega) = O(\|\omega\|_{\infty}^{-d-2}), \quad \omega \to \infty,$

cf., [3], [7]. A similar remark holds for the estimate (2.4) in this case. This proposition leads us to

THEOREM 2.1

Every $\varphi \in \mathcal{R}_{m,n}$, m > d, $n \ge 0$ admits multiresolution.

Proof

First, let us prove the stability estimate (1.1). For this purpose, we observe that the function $\{|\hat{\varphi}|^2\}$ is continuous on Q^d since the series that defines it is absolutely and uniformly continuous. This function plays a central role in the proof of the stability estimate. To review these facts, we first point out that for every $c \in l^2$, the function $[c, \varphi]$ is continuous on \mathbb{R}^d . This follows from the fact that φ is continuous on \mathbb{R}^d and by (2.3), the series

$$\sum_{x \in \mathbb{Z}^d} |\varphi(x-\alpha)|^2$$

is absolutely and uniformly continuous on any compact subset of \mathbb{R}^d (see the proof of Theorem 2.2 for an upper bound on this sum). Moreover, $[c, \varphi]$ is in $L^2(\mathbb{R}^d)$ because for any $d = (d_{\alpha}: \alpha \in \mathbb{Z}^d)$ of finite support

$$\|[d, \varphi]\|_{2}^{2} = \frac{1}{(2\pi)^{d}} \|(trig \ d)\hat{\varphi}\|_{2}^{2}$$
$$= \frac{1}{(2\pi)^{d}} \|(trig \ d)^{2} \{|\hat{\varphi}|^{2} \}\|_{L^{1}(Q^{d})}$$

Thus it follows for all $c \in l^2$ that

$$\min_{\omega \in Q^d} |\{|\hat{\varphi}|^2\}(\omega)| \|c\|_2 \leq \|[c, \varphi]\|_2 \leq \max_{\omega \in Q^d} |\{|\hat{\varphi}|^2\}(\omega)| \|c\|_2.$$

Hence $[c, \varphi]$ is in $L^2(\mathbb{R}^d)$ and to show (1.1) requires showing that there is no $\omega \in \mathbb{R}^d$ such that

$$\hat{\varphi}(\omega + 2\pi\alpha) = 0$$
, for all $\alpha \in \mathbb{Z}^d$, (2.9)

see [4], [5] for related results. Suppose, to the contrary, $\omega \in \mathbb{R}^d$ satisfies (2.9). Choose a $\beta \in \mathbb{Z}^d$ so that $\|\omega + 2\pi\beta\|_{\infty} \leq \pi$. If $\omega + 2\pi\beta \neq 0$ then (2.9) implies that

$$\frac{T(\omega+2\pi\beta)}{q(\omega+2\pi\beta)}=0$$

and so by (1.18) we get $\omega + 2\pi\beta = 0$, nonetheless. Thus, indeed, $\omega = -2\pi\beta$. Now choose $\alpha = \beta$ in (2.9) to conclude $\hat{\varphi}(0) = 0$. However (2.7) implies that $\hat{\varphi}(0) = 1$. This contradiction proves the claim.

To establish the nesting of the spaces V^k , $k \in \mathbb{Z}$ we observe that φ satisfies the refinement equation

$$\varphi = sc[a, \varphi]. \tag{2.10}$$

Both sides of equation (2.10) are continuous functions in $L^2(\mathbb{R}^d)$ since by (2.4), $a \in l^2$. Taking the Fourier transform of both sides shows that (2.10) is equivalent to the equation

$$2^{d}(sc \ \hat{\varphi})/\hat{\varphi} = trig \ a$$

which follows immediately from (2.2). From these observations, we conclude that each V^k is a closed subspace of L^2 and the refinement equation (2.10) implies the spaces are nested in the sense of (1.7). Here we used the fact that trig $a = 2^{d-m}sc T/T \in L^{\infty}(Q^d)$ which guarantees that convolution with a acts as a bounded linear operator on l^2 .

The remaining claims (1.5) and (1.6) will follow from the following lemma.

LEMMA 2.2

Let $\varphi \in C(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$. Define the linear operator

$$(T_k f)(x) \coloneqq \sum_{\alpha \in \mathbb{Z}^d} f\left(\frac{\alpha}{2^k}\right) \varphi(2^k x - \alpha).$$
(2.11)

If $f \in C_0(\mathbb{R}^d)$ (continuous functions of compact support on \mathbb{R}^d), $\hat{\varphi} \in L^{\infty}(\mathbb{R}^d)$, and $\hat{\varphi}(0) = 1$ then $\lim_{k \to \infty} T_k f = f$ weakly in $L^2(\mathbb{R}^d)$, that is $\lim_{k \to \infty} (T_k f, g) = (f, g)$ for all $g \in L^2(\mathbb{R}^d)$.

First we show that $||T_k f||_2$ is bounded independent of $k \in \mathbb{Z}_+$. To this end, we suppose that M is a positive integer such that f(x) = 0 whenever $||x||_{\infty} \ge M$. Therefore, using (1.1) we have

$$\|T_k f\|_2^2 = \int_{\mathbb{R}^d} \left| \sum_{\|\alpha\|_{\infty} \leqslant 2^k M} f\left(\frac{\alpha}{2^k}\right) \varphi(2^k x - \alpha) \right|^2 dx$$
$$= 2^{-dk} \int_{\mathbb{R}^d} \left| \sum_{\|\alpha\|_{\infty} \leqslant 2^k M} f\left(\frac{\alpha}{2^k}\right) \varphi(x - \alpha) \right|^2 dx$$
$$\leqslant \left((2^{k+1}M + 1)/2^k \right)^d M_2^2 \|f\|_{\infty}^2$$

and so

 $||T_k f||_2^2 \leq J^2 := (2M+1)^d ||f||_{\infty}^2 M_2^2.$

Given $g \in L^2(\mathbb{R}^d)$, and $\epsilon > 0$, choose a $h \in L^2(\mathbb{R}^d)$ of compact support such that

$$\|\hat{g} - h\|_{2}^{2} \leq (2\pi)^{d} \epsilon^{2} / (J + \|f\|_{2})^{2}.$$

Let $\hat{g}_0 := k$ and note that

$$|(T_k f, g) - (f, g)| \leq |(T_k f - f, g - g_0)| + |(T_k f, g_0) - (f, g_0)|$$
$$\leq \epsilon + |(T_k f, g_0) - (f, g_0)|$$

and also

$$(T_k f, g_0) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \bar{\hat{g}}_0(\omega) 2^{-kd} \sum_{\|\alpha\|_{\infty} \leq 2^k M} f\left(\frac{\alpha}{2^k}\right) e^{-i\alpha \cdot \omega/2^k} \hat{\varphi}(\omega/2^k) d\omega.$$

Call the integrand $f_k(\omega)$; Then

 $|f_k(\omega)| \leq |h(\omega)|(2M+1)^d ||f||_{\infty} ||\hat{\varphi}||_{\infty}.$

Since $h \in L^2(\mathbb{R}^d)$ and was chosen to be of compact support, the upper bound is in $L^1(\mathbb{R}^d)$. Moreover, since $f \in C_0(\mathbb{R}^d)$ and

$$\int_{\mathbb{R}^d} \varphi(\omega) \, \mathrm{d}\omega = 1$$

it follows that $\lim_{k\to\infty} f_k(\omega) = \bar{h}(\omega)\hat{f}(\omega)$, for $\omega \in \mathbb{R}^d$. Hence, by the Lebesgue dominated convergence theorem

$$\lim_{k\to\infty} (T_k f, g_0) = \frac{1}{(2\pi)^d} \int_{\mathbb{R}^d} \bar{h}(\omega) \hat{f}(\omega) \, \mathrm{d}\omega = (f, g_0).$$

This proves the result.

Returning to the proof of Theorem 2.1, we note that any $\varphi \in \mathscr{R}$ satisfies the hypothesis of Lemma 2.2. Thus, we conclude that every $f \in C_0(\mathbb{R}^d)$ is in the weak closure of the subspace $V^{\infty} := \bigcup_{k \in \mathbb{Z}} V^k$. This implies that V^{∞} has a (strong) closure which is equal to $L^2(\mathbb{R}^d)$. This proves (1.5).

For the remaining claim (1.6) we use the fact that $\varphi \in L^{\infty}(\mathbb{R}^d)$ and the asymptotic estimate (2.3) to conclude that for some positive constant Q

$$|\varphi(x)|^2 \leq \frac{Q}{(1+||x||_{\infty})^{d+1}}, \quad x \in \mathbb{R}^d.$$

Hence

$$\begin{split} \sum_{\alpha \in \mathbb{Z}^d} |\varphi(x-\alpha)|^2 &\leq Q \left(1 + \sum_{l=0}^{\infty} (1+l)^{-d-1} \left(\sum_{\|\alpha\|_{\infty} = l+1} 1 \right) \right) \\ &\leq Q \left(1 + \sum_{l=0}^{\infty} \frac{4^d (l+1)^{d-1}}{(1+l)^{d+1}} \right) \\ &\leq 2 \cdot 4^d Q \sum_{l=1}^{\infty} l^{-2} := R, \quad x \in \mathbb{R}^d. \end{split}$$

Now let $g \in \bigcap_{k \in \mathbb{Z}} V^k$ then for each $k \in \mathbb{Z}$ there is a $c \in l^2$ such that $g = sc^k[c, \varphi]$. Using the stability estimate (1.1) and the above inequality, gives

 $|g(x)|^{2} \leq R ||c||_{2}^{2} \leq m_{2}^{-2}R2^{kd} ||g||_{2}^{2}, x \in \mathbb{R}^{d},$

which goes to zero as $k \to -\infty$. This completes the proof of Theorem 2.1.

Our final comments in this section pertain to the stationary subdivision scheme defined by

$$(S\lambda)_{\alpha} \coloneqq \sum_{\beta \in \mathbb{Z}^d} a_{\alpha - 2\beta} \lambda_{\beta}, \quad \alpha \in \mathbb{Z}^d,$$
(2.12)

 $\lambda = (\lambda_{\alpha}: \alpha \in \mathbb{Z}^d)$. We now assume that n > 0. In this case, $a \in l^1$ (see (2.4)), and S is a bounded linear operator from l^{∞} into itself. We are interested in the convergence of the iterates of S. It is convenient for this purpose to note the following fact.

LEMMA 2.3
Let
$$\varphi \in \mathscr{R}_{m,n}$$
 for $m > d$ and $n > 0$. Then

$$\sum_{\alpha \in \mathbb{Z}^d} \varphi(x - \alpha) = 1, \quad x \in \mathbb{R}^d$$
(2.13)

and

$$\lim_{k \to \infty} \|T_k f - f\|_{\infty} = 0$$
(2.14)

if f is uniformly continuous on \mathbb{R} .

The proof is based on noting that for some K > 0

$$|\varphi(x)| \leq \frac{K}{\left(1+\|x\|_{\infty}\right)^{d+1}}, \quad x \in \mathbb{R}^d,$$

and so, as before in the proof of Lemma 2.2, we have

$$\sum_{\alpha \in \mathbb{Z}^d} |\varphi(x-\alpha)| \leq 2 \cdot 4^d K \sum_{l=1}^{\infty} l^{-2} := L, \quad x \in \mathbb{R}^d.$$

In a similar way, we have for any $x \in \mathbb{R}^d$ and integer $\rho \in \mathbb{R}_+$

$$\sum_{\|x-\alpha\|_{\infty} \ge \rho} |\varphi(x-\alpha)| \le (1+\rho)^{-1/2} \sum_{\|x-\alpha\|_{\infty} \ge \rho} \frac{K}{(1+\|x-\alpha\|_{\infty})^{d+1/2}} \le 2 \cdot 4^d K (1+\rho)^{-1/2} \sum_{l=1}^{\infty} l^{-3/2} := W (1+\rho)^{-1/2}$$

Also, since for any $\alpha \in \mathbb{Z}^d \setminus \{0\}$

$$\hat{\varphi}(2\pi\alpha) = \frac{T(2\pi\alpha)}{q(2\pi\alpha)} = \frac{T(0)}{q(2\pi\alpha)} = 0$$

we get by the Poisson summation formula

$$\sum_{\alpha \in \mathbb{Z}^d} \varphi(x-\alpha) = 1, \quad x \in \mathbb{R}^d.$$

Hence, if $\omega(f; \delta) := \sup\{|f(x) - f(y)| : ||x - y||_{\infty} \le \delta\}$ is the modulus of continuity of f we have for any $x \in \mathbb{R}^d$

$$|(T_k f)(x) - f(x)| \leq \sum_{\|x - 2^{-k}\alpha\|_{\infty} \leq \delta} \left| f\left(\frac{\alpha}{2^k}\right) - f(x) \right| |\varphi(2^k x - \alpha)|$$

+
$$\sum_{\|x - 2^{-k}\alpha\|_{\infty} \geq \delta} \left| f\left(\frac{\alpha}{2^k}\right) - f(x) \right| |\varphi(2^k x - \alpha)|$$

$$\leq L\omega(f; \delta) + 2W \|f\|_{\infty} (1 + \delta 2^k)^{-1/2}$$

which goes to zero as $k \to \infty$ and then $\delta \to 0^+$. This proves the lemma.

THEOREM 2.2

Suppose $\varphi \in \mathscr{R}_{m,n}$ with n > 0, m > d. Then for every $\lambda \in l^1$, $f_{\lambda} := [\lambda, \varphi]$ is uniformly continuous on \mathbb{R}^d and

$$\lim_{k \to \infty} \|S^k \lambda - ssc^{-k} f_\lambda\|_{\infty} = 0$$
(2.15)

(here $ssc^{-k} f_{\lambda}$ is the sequence $(f_{\lambda}(\alpha/2^k): \alpha \in \mathbb{Z}^d)$).

We begin by noting that any $\varphi \in \mathscr{R}_{m,n}$ with n > 0 admits an L^{∞} stability estimate

$$m_{\infty} \|\lambda\|_{\infty} \leq \|[\lambda, \varphi]\|_{\infty} \leq M_{\infty} \|\lambda\|_{\infty}$$

$$(2.16)$$

for some constants $0 < m_{\infty} < M_{\infty} < \infty$. For the proof, we observe that we can choose $M_{\infty} = L$ for the upper bound. To obtain a lower bound, we use the function $\theta \in V^0$ defined by

$$\hat{\theta} = \left\{ \left| \hat{\varphi} \right|^2 \right\}^{-1} \hat{\varphi}.$$

It is apparent that the sequence

$$g_{\alpha} := (\varphi * \check{\varphi})(\alpha) = \int_{\mathbb{R}^d} \varphi(x) \bar{\varphi}(x-\alpha) \, \mathrm{d}x, \quad \alpha \in \mathbb{Z}^d$$

is in l^1 , in fact, $||g||_1 \le L ||\varphi||_1$, and moreover, by the Poisson summation formula $trig g = \{|\hat{\varphi}|^2\}$. Thus, by Wiener's lemma, cf. [8, p. 266] there is a $\mu = (\mu_{\alpha}: \alpha \in \mathbb{Z}^d) \in l^1$ such that $trig \mu = (trig g)^{-1}$. Hence, we get

$$\theta = [\mu, \varphi]$$

and, in particular, $\theta \in L^1(\mathbb{R}^d)$, since $\|\theta\|_1 \leq \|\mu\|_1 \|\varphi\|_1 < \infty$, because $\varphi \in L^1(\mathbb{R}^d)$. Moreover, for any $\alpha \in \mathbb{Z}^d$

$$(sh^{\alpha}\varphi, \theta) = \frac{1}{(2\pi)^{d}} \int_{\mathbb{R}^{d}} \frac{|\hat{\varphi}(\omega)|^{2}}{\{|\hat{\varphi}|^{2}\}(\omega)} e^{-i\omega\cdot\alpha} d\omega = \frac{1}{(2\pi)^{d}} \int_{\mathcal{Q}^{d}} e^{-i\omega\cdot\alpha} d\omega = \delta_{0\alpha}$$

Therefore, we get for any $c \in l^{\infty}$ and $\alpha \in \mathbb{Z}^d$

 $|c_{\alpha}| = |([c, \varphi], sh^{\alpha}\theta)| \leq ||[c, \varphi]||_{\infty} ||\theta||_{1}.$

This proves that we can choose $m_{\infty}^{-1} := \|\theta\|_1$ in the L^{∞} stability estimate (2.16). As for the uniform continuity of f_{λ} we note first that since φ is continuous and goes to zero at infinity, it is uniformly continuous. Moreover, we have

 $\omega(f_{\lambda}; \delta) \leq \|\lambda\|_{1} \omega(\varphi; \delta)$ and, therefore, f_{λ} is uniformly continuous too.

Now, the result (2.15) follows from arguments used in [2], namely, for the operator T_k defined in (2.11) we have

$$f_{\lambda} - T_{k}f = sc^{k} \left(\left[S^{k}\lambda - ssc^{-k}f_{\lambda}, \varphi \right] \right)$$

$$(2.17)$$

and so (2.16) implies that

$$\|S^k\lambda - ssc^{-k}f_{\lambda}\|_{\infty} \leq m_{\infty}^{-1} \|T_kf_{\lambda} - f_{\lambda}\|_{\infty}.$$

Using Lemma 2.3, this inequality proves the result.

In the terminology of [2] the subdivision operator converges to f_{λ} and φ is the refinable function for the subdivision scheme (2.12).

3. Orthogonal pre-wavelet decomposition in L^2

This section is devoted to the proof of Theorem 1.1. Some of the steps in the argument parallel the case of cube spline analyzed in [6]. However, there are important differences. We start with an observation which generalizes a special case considered in [6].

THEOREM 3.1
Let
$$\varphi \in L^2$$
 such that
 $\|[c, \varphi]\|_2 \leq M \|c\|_2, M < \infty$ (3.1)
so that $V^k(\varphi) \subset L^2, k \in \mathbb{Z}$. If,

$$\overline{\bigcup_{k \in \mathbb{Z}} V^k(\varphi)} = L^2 \tag{3.2}$$

then for any $\psi = [d, \varphi], d \in l^2$, with trig $d \neq 0$ (a.e). Then

$$\overline{\bigcup_{k \in \mathbb{Z}} \overline{R^k(\psi)}} = L^2 \tag{3.3}$$

Proof

We need the following fact which also appears in [5].

LEMMA 3.1 If f, $g \in L^2$ then $f * sh^{\alpha}g = 0$ for all $\alpha \in \mathbb{Z}^d$ if and only if $\{\tilde{fg}\} = 0$.

Proof

By Plancherel's formula, our hypothesis implies that for all $\beta \in \mathbb{Z}^d$

$$0 = \lim_{N \to \infty} \int_{\mathcal{Q}^d} \sum_{\|\alpha\|_{\infty} \leq N} \hat{f}(\omega + 2\pi\alpha) \overline{\hat{g}(\omega + 2\pi\alpha)} e^{-i\beta \cdot \omega} d\omega.$$
(3.4)

Call the integrand $H_N(\omega)$. When we have the pointwise inequality

$$|H_{N}| \leq \left\{ |\hat{f}| \cdot |\hat{g}| \right\} \leq H \coloneqq \left\{ |\hat{f}|^{2} \right\}^{1/2} \left\{ |\hat{g}|^{2} \right\}^{1/2}.$$
(3.5)

However, by the Cauchy Schwarz inequality

$$\|H\|_{L^{1}(Q^{d})} \leq \|\{|\hat{f}|^{2}\}\|_{L^{2}(Q^{d})} \|\{|\hat{g}|^{2}\}\|_{L^{2}(Q^{d})}.$$
(3.6)

Moreover, using Fatou's lemma, we see that each term on the right of this inequality is finite since

$$\|\{\|\hat{f}\|^2\}\|_{L^2(Q^d)}^2 \leq \lim_{N \to \infty} \int_{Q^d} \sum_{\|\alpha\|_{\infty} \leq N} |\hat{f}(\omega + 2\pi\alpha)|^2 \, \mathrm{d}\omega = (2\pi)^d \|f\|_2^2 < \infty.$$

For the equality above, we used Plancherel's formula once again. Thus we conclude by (3.6) that $H \in L^1(Q^d)$ and so (3.5) implies by the Lebesgue dominated convergence theorem that

$$0 = \int_{\mathcal{Q}^d} \mathrm{e}^{\mathrm{i}\beta \cdot \omega} \left\{ f \widetilde{g} \right\} (\omega) \, \mathrm{d}\omega, \quad \beta \in \mathbb{Z}^d,$$

whence $\{f\hat{g}\} = 0$. The converse follows by merely reversing the steps.

Returning to the proof of the Theorem, we suppose $f \in L^2$ satisfies $0 = (f, sc^k sh^{\alpha} \psi) = 2^{-dk}(sc^{-k} f, sh^{\alpha} \psi)$ for all $k \in \mathbb{Z}$, $\alpha \in \mathbb{Z}^d$. Then by Lemma 3.1 $0 = \left\{ (sc^{-k} f)^{\widehat{\psi}} \right\} = \overline{trig d} \left\{ (sc^{-k} f)^{\widehat{\phi}} \right\}$

from which we conclude that $\{(sc^{-k}f)^{\hat{\phi}}\} = 0$. Using the lemma in the reverse direction implies $0 = (f, sc^{k}sh^{\alpha}\varphi), k \in \mathbb{Z}, \alpha \in \mathbb{Z}^{d}$. But now, invoking the hypothesis (3.2), we conclude f = 0. This proves the result.

Let us now turn to the proof of Theorem 1.1. First we make some preliminary observations about the function ψ_0 defined by (1.22). We introduce the sequence $f = (f_{\alpha}: \alpha \in \mathbb{Z}^d)$ defined by

trig
$$f = 2^m \frac{\overline{T}}{\{|\hat{\varphi}|^2\}} = 2^m \overline{T}$$
 trig μ

so that

 $\psi_0 = sc[f, \varphi] \in V^1$

and trig $f \in L^{\infty}(Q^d)$. Therefore it follows that for all $e \in E$

 $\|[c, \psi_e]\|_2 \leq \|trig f\|_{L^{\infty}(Q^d)} \|c\|_2$ (3.7)

Next, we prove the following.

PROPOSITION 3.1
Let
$$\varphi \in \mathscr{R}$$
. Then
 $sc^{-1}\psi_0 - 2^m\psi_0 \in W^0$. (3.8)

where W^0 is defined in (1.23).

Proof

The idea of the proof is to introduce the function L defined by

 $\hat{L} = |\hat{\varphi}|^2 / \{|\hat{\varphi}|^2\}.$

First, recall that we show in Section 2 that the 2π -continuous function $\{|\hat{\varphi}|^2\}$ strictly positive. We draw two conclusions from this fact. First, by (2.5), (2.6),

$$\left(\left|\hat{\varphi}\right|^{2}/\left\{\left|\hat{\varphi}\right|^{2}\right\}\right)(\omega) = 1 + O\left(\left\|\omega\right\|_{\infty}^{n+1}\right), \quad \omega \to 0$$
(3.9)

and

$$\left(\left|\hat{\varphi}\right|^{2}/\left\{\left|\hat{\varphi}\right|^{2}\right\}\right)(\omega) = O\left(\left\|\omega\right\|_{\infty}^{-m}\right), \quad \omega \to \infty.$$

$$(3.10)$$

Thus

$$L(x) = o(||x||_{\infty}^{-(d+n)}), \quad x \to \infty.$$
(3.11)

We introduce again the sequence $\mu \in L^2$ such that

$$\left\{\left|\hat{\varphi}\right|^{2}\right\}^{-1} = trig \ \mu \tag{3.12}$$

and so

$$L = [\mu, \varphi * \check{\varphi}]. \tag{3.13}$$

Obviously, L is continuous since $\hat{L} \in L^1(\mathbb{R}^d)$. Moreover, by the Fourier inversion formula, one can show that

$$L(\alpha) = \delta_{0\alpha}, \, \alpha \in \mathbb{Z}^d. \tag{3.14}$$

For this reason, we call L a Lagrange function for the space $V^0(\varphi * \check{\varphi})$. Moreover, the sum on the right hand side of (3.13) converges to a continuous function. To see this, we observe that $\varphi * \check{\varphi} \in \mathscr{R}_{2m,n}$ and so applying the inequality we used to prove (1.6) in Theorem 2.1 to $\varphi * \check{\varphi}$ we get that the function

$$\sum_{\alpha \in \mathbb{Z}^d} |(\varphi * \check{\varphi})(x-\alpha)|^2$$

is bounded for all $x \in \mathbb{R}^d$.

Next, we claim that L satisfies the refinement equation

$$L = sc[l_{1/2}, L]$$
(3.15)

where $l_{1/2} := (L(\alpha/2): \alpha \in \mathbb{Z}^d) \in l^2(\mathbb{Z}^d)$. By what we have already proved, both sides of (3.15) are in $C(\mathbb{R}^d) \cap L^2(\mathbb{R}^d)$ and so we can replace it by the equivalent identity

$$2^{d}sc \ \hat{L} = trig \ l_{1/2} \cdot \hat{L}. \tag{3.16}$$

By the Poisson summation formula we have

$$trig \ l_{1/2} = 2^{d} \{ sc \ \hat{L} \}$$
(3.17)

which, by the refinement equation (2.10) and the definition (3.5), becomes

$$trig \ l_{1/2} = 2^{d} \{ |sc \ \hat{\varphi}|^{2} \} / sc \{ | \ \hat{\varphi} |^{2} \}$$
$$= 2^{-d} |trig \ a |^{2} \{ | \ \hat{\varphi} |^{2} \} / sc \{ | \ \hat{\varphi} |^{2} \}.$$
(3.18)

Similarly, we have

$$2^{d}sc \ \hat{L}/\hat{L} = 2^{d} \frac{|sc \ \hat{\varphi}|^{2}}{|\hat{\varphi}|^{2}} \frac{\{|\hat{\varphi}|^{2}\}}{sc\{|\hat{\varphi}|^{2}\}}$$
$$= 2^{-d} |trig \ a|^{2} \{|\hat{\varphi}|^{2}\} / sc\{|\hat{\varphi}|^{2}\}.$$
(3.19)

Combining (3.18) and (3.19) proves the claim.

The reason we introduced L is that it directly relates to ψ_0 as defined in (1.22). Specifically we recall that

$$\hat{\psi}_0 = 2^{-d} \bar{q} s c^{-1} \hat{L}. \tag{3.20}$$

Hence,

$$\psi_0 = (-2i)^m \ sc \ \bar{q}(D)L.$$
(3.21)

We now apply the differential operator $\bar{q}(D)$ to both sides of (3.15) to obtain from (3.7) and (3.14) that

$$\bar{q}(D)L = 2^m \ sc \ \bar{q}(D)L + \Omega \tag{3.22}$$

where $\Omega \in W^0$ (see (1.23) for the definition of the space W^0). This proves the proposition.

We are now ready to prove that the space

$$\mathscr{I} = \bigoplus_{k \in \mathbb{Z}} W^k \tag{3.23}$$

is dense in L^2 when $\varphi \in \mathscr{R}$. This is the second claim of Theorem 1.1.

We introduce a subset \mathcal{L} of \mathbb{Z}^d by setting

$$\mathscr{L} = \{ \beta \in \mathbb{Z}^d \colon sc^k \ sh^\beta \ \bar{q}(D)L \in \mathscr{S}, \text{ for all } k \in \mathbb{Z} \}.$$
(3.24)

From (3.22) we get

$$sc^{k} sh^{\beta} \bar{q}(D)L = 2^{m} sc^{k} sh^{\beta} sc \bar{q}(D)L + sc^{k} sh^{\beta} \Omega$$
$$= 2^{m} sc^{k+1} sc^{2\beta} q(D)L + sc^{k} sh^{\beta} \Omega.$$
(3.25)

Since by definition $sc^k sh^{\beta} \Omega \in \mathscr{S}$, we get from (3.25)

$$2\mathscr{L}\subseteq\mathscr{L}.\tag{3.26}$$

One final comment is needed about the set \mathscr{L} . By definition, for $k \in \mathbb{Z}$, $\beta \in \mathbb{Z}^d$, and $e \in E \setminus \{0\}$

$$\mathscr{I} \ni sc^{k} sh^{\beta} \psi_{e} = sc^{k} sh^{\beta + e/2} \psi_{0}$$
$$= (-2i)^{m} sc^{k} sh^{\beta + e/2} sc \bar{q}(D)L$$
$$= (-2i)^{m} sc^{k+1} sh^{2\beta + e} \bar{q}(D)L.$$

In this computation, we used (3.21) and the fact that $\psi_e = sh^{e/2} \psi_0$. Thus we and shown that $2\beta + e \in \mathscr{L}$ for all $e \in E \setminus \{0\}$ and $\beta \in \mathbb{Z}^d$. Since every $\alpha \in \mathbb{Z}^d \setminus \{0\}$ can be written as

$$\alpha = 2^r (2\beta + e), \ e \in E \setminus \{0\}, \quad \beta \in \mathbb{Z}^d$$

we conclude that $\mathscr{L} = \mathbb{Z}^d \setminus \{0\}$.

To complete the argument, we recall that

$$\psi_0 = sc[f, \varphi] \tag{3.27}$$

where $trig f := 2^m \overline{T} trig \mu$. Obviously $f \in l^2$ and $trig f \neq 0$ (a.e.). Moreover, by (3.21) we obtain

$$\bar{q}(D)L = (-2i)^{-m} [f, \varphi].$$
(3.28)

We can now rephrase the fact that $\mathscr{L} = \mathbb{Z}^d \setminus \{0\}$ by saying that

$$[f, \varphi](2^k \cdot -\alpha) \in \mathscr{I}, \quad \alpha \in \mathbb{Z}^d \setminus \{0\}, \, k \in \mathbb{Z}.$$
(3.29)

But, according to Lemma 3.1, since $\varphi \in \mathscr{R}$ admits multiresolution it suffices to prove $[f, \varphi] = sc^{-1} \psi_0 \in \mathscr{I}$. For this purpose, we use (3.8) iteratively to conclude that

$$sc^{-1}\psi_0 - (2^{-m})^k sc^{-k-1}\psi_0 \in W^{-1} + \ldots + W^{-k} \subseteq \mathscr{I}$$

for any $k \in \mathbb{Z}_+ \setminus \{0\}$. Since

$$\|(2^{-m})^k sc^{-k-1} \psi_0\|_2^2 = 2^{d+k(d-2m)} \|\psi_0\|_2^2$$

goes to zero as $k \to \infty$ we conclude that $sc^{-1} \psi_0 \in \mathcal{F}$. This proves the second claim of Theorem 1.1.

The proof of the first claim depends on showing that

$$V^{k}(\varphi) \perp R^{k}(\psi_{e}) \tag{3.30}$$

for all $k \in \mathbb{Z}$ and $e \in E \setminus \{0\}$. In fact, suppose for the moment that (3.30) is true. We wish now to demonstrate that

$$R^{k}(\psi_{e}) \perp R^{k'}(\psi_{e'}) \tag{3.31}$$

for all $k \neq k'$ and $e, e' \in E \setminus \{0\}$. We assume without loss of generality that k' > k. From (3.27), we have $\psi_e \in V^1(\varphi)$ and so

 $R^k(\psi_e) \subseteq V^{k'}(\varphi)$

and so (3.31) follows from (3.30).

To prove (3.30), it suffices to prove it for k = 0 which we do by a computation:

$$(2\pi)^{d} \int_{\mathbb{R}^{d}} \psi_{e}(x) \overline{\varphi(x-\alpha)} \, \mathrm{d}x$$

$$= \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i}\alpha \cdot \omega} \hat{\psi}_{e}(\omega) \overline{\hat{\varphi}(\omega)} \, \mathrm{d}\omega$$

$$= 2^{m-2d} \int_{\mathbb{R}^{d}} \mathrm{e}^{\mathrm{i}(\alpha-e/2) \cdot \omega} \frac{\overline{T}(\omega/2) \hat{\varphi}(\omega/2) \overline{\mathrm{trig} \ a}(\omega/2) \overline{\hat{\varphi}(\omega/2)}}{\sum_{\beta \in \mathbb{Z}^{d}} |\hat{\varphi}(\omega/2 + 2\pi\beta)|^{2}} \mathrm{d}\omega$$

which is zero, since $e \neq 0$. This proves Theorem 1.1.

We conclude with the following remark. Let $U^k(\varphi)$ be the orthogonal complement of $V^k(\varphi)$ in $V^{k+1}(\varphi)$. As shown above W^k is a closed subspace of U^k . Since φ admits multiresolution we have that $\bigoplus_{k \in \mathbb{Z}} U^k = L^2$. Hence $W^k = U^k$ for all $k \in \mathbb{Z}$, that is,

 $V^{k+1} = V^k \oplus W^k, V^k \perp W^k, k \in \mathbb{Z}.$

This statement also applies to the analogous construction for the cube spline given in [6] and therefore the above remark corrects an oversight made in Remark 4.3 of [6].

We end this paper by demonstrating that the functions $\{\psi_e\}_{e \in E \setminus \{0\}}$ have l^2 -stable integer translates, a fact which does not hold for the cube spline case studied in [6]. According to Theorem 4.1 of [5] we must show that there is no $\theta \in \mathbb{R}^d$ and $y = (y_e)_{e \in E \setminus \{0\}} \neq 0$ such that

$$\sum_{e \in E \setminus \{0\}} y_e \hat{\psi}_e(\theta + 2\pi\alpha) = 0, \qquad \alpha \in \mathbb{Z}^d.$$
(3.32)

Every $\alpha \in \mathbb{Z}^d$ can be expressed in the form $\alpha = 2\gamma + e'$ where $\gamma \in \mathbb{Z}^d$ and $e' \in E$. Thus (3.32) is equivalent to

$$\left(\sum_{e \in E \setminus \{0\}} \left(y_e \ e^{-i(e \cdot \theta)/2}\right) \left(-1\right)^{e \cdot e'}\right) \hat{\psi}_0(\theta + 4\pi\gamma + 2\pi e') = 0 \tag{3.33}$$

for all $\gamma \in \mathbb{Z}^d$ and $e' \in E$. To make use of this equation we first observe that $\hat{\phi}(\omega) = 0$ for some $\omega \in \mathbb{R}^d$ if and only if $\omega = 2\pi\alpha$, $\alpha \in \mathbb{Z}^d \setminus \{0\}$. This of course follows from our definition of $\hat{\phi}$ and our requirements (1.18), (1.16) on the trigonometric polynomial T and homogenous polynomial q. Consequently, by our definition of $\hat{\psi}_0$, see (1.22), we have $\hat{\psi}_0(\omega) = 0$ if and only if $\omega = 4\pi\alpha$, $\alpha \in \mathbb{Z}^d$. Returning to (3.33) we choose $\gamma = 0$. Observe that there is at most one $e' \in E$ such that $\hat{\psi}_0(\theta + 2\pi e') = 0$. In fact, if to the contrary there were two distinct values in E, say e'_0 , e'_1 we would have $e'_0 - e'_1 = 2\mu$, for some $\mu \in \mathbb{Z}^d$

which is impossible unless $e'_0 = e'_1$. Hence we conclude there is a $e_0 \in E$ such that

$$\sum_{e \in E \setminus \{0\}} (y_e \ e^{-i(e \cdot \theta)/2}) (-1)^{e \cdot e'} = 0, \qquad e' \in E/\{e_0\}.$$
(3.34)

We will finish the proof by showing that the matrix

$$\left(\left(-1\right)^{e \cdot e'}\right)_{e \in E \setminus \{0\}, \ e' \in E \setminus \{e_0\}} \tag{3.35}$$

is nonsingular. To this end, we consider the $2^d \times 2^d$ real symmetric matrix

$$\mathscr{A} = \left(\left(-1 \right)^{e \cdot e'} \right)_{e \in E, e' \in E}.$$

It is known (and easily verified) that $A^2 = 2^d I$ and so $A^{-1} = 2^d A$. Hence, since every element of A is nonzero we conclude every $2^d - 1$ minor of A is nonzero as well. In particular, the matrix in (3.35) is nonsingular for any $e_0 \in E$.

Thus we have established that the functions $\{\psi_e\}_{e \in E \setminus \{0\}}$ are stable. In particular it follows that ψ_0 has l^2 -stable integer translates. However, $\{\psi_e\}_{e \in E}$ are unstable. To prove this latter fact we choose $y = (y_e)_{e \in E} \neq 0$ such that

$$\sum_{e\in E} y_e(-1)^{e\cdot e'} = 0, \qquad e'\in E\setminus\{0\}$$

and observe that

$$\sum_{e\in E} y_e \hat{\psi}_e(2\pi\alpha) = 0, \qquad \alpha \in \mathbb{Z}^d.$$

The above consideration can be used to identify a $2^d \times 2^d$ nonsingular matrix of trigonometric series which maps the functionals $\{\hat{\phi}\} \cup \{\hat{\psi}_e\}_{e \in E \setminus \{0\}}$ into $\{\hat{\phi}_e\}_{e \in E}$, $\phi_e := sc sh^{e/2}\phi$. The coefficients of the trigonometric series appearing in this matrix allow one to write any element in V^1 as a sum of elements in V^0 and W^0 . The explicit form of this matrix will be provided at another occasion. In special cases this decomposition may be useful for data compression based on polyharmonic B-splines.

References

- G. Battle, A block spin construction of ondelettes. Part I: Lemarie' functions, Commun. Math. Phys. 110 (1987), 601-615.
- [2] A.S. Cavaretta, W. Dahmen and C.A. Micchelli, Stationary subdivision, to appear in Memoirs AMS.
- [3] I.J. Jackson, Radial function methods for multivariate approximation. Ph.D. Thesis, University of Cambridge, England, 1988.
- [4] R.Q. Jia and C.A. Micchelli, On linear independence for integer translates of a finite number of functions, University of Waterloo Research Report, CS-90-10, 1990, to appear in the Proceedings of the Royal Society of Edinburg.

- [5] R.Q. Jia and C.A. Micchelli, Using the refinement equation for the construction of prewavelets: Powers of two. To appear in: *Curves and Surfaces*, eds. P.J. Laurent, A. Le Méhauté and L.L. Schumaker (Academic Press, New York, 1991).
- [6] C.A. Micchelli, Using the refinement equation for the construction of pre-wavelets, Numerical Algorithms 1 (1991) 75-116.
- [7] Ch. Rabut, B-splines polyharmoniques Cardinales: interpolation, quasi-interpolation, filtrages. These d'Etat, Université de Toulouse, 1990.
- [8] W. Rudin, Functional Analysis (McGraw Hill Book Company, New York, 1973).