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1. I n t r o d u c t i o n  

The purpose  of this paper  is to provide multiresolution analysis, stationary 
subdivision, and pre-wavelet  decomposit ions of  L2(R d) based on a general  class 
of functions which includes po lyharmonic  B-splines (a definition of polyhar- 
monic  B-spline will be given later). For  a detai led study of  these interesting and 
useful functions, see [7], and also [3] for re la ted  matters.  

We begin by recalling the mult i resolut ion setup. Given a function ~o ~ L 2 = 
L2(R d) which satisfies the  stability inequali ty 

m2 Iic112 < II[c, 112<<M2 Iic112 (1.1) 
valid for all c = ( ca  : a ~ Z a) ~ l 2 = 12(Zd). In this case we say that q~ has 
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12-stable integer translates. Here  m 2, M 2 are constants such that 0 < m 2 < M 2, 
[c, ~] is the function 

[c, ~o](x) := Y'~ c , , q ~ ( x - a ) ,  x ~ R  a (1.2) 
a ~ Z  d 

and I1" II 2 denotes the standard norm(s) on l z, L 2 (Generally, we use I1" II p for 
the usual norm(s) on l p, L p, 1 ~<p -<< oo). With q~ we associate an infinite scale of 
closed subspaces of L z defined by 

v k ( + ) ' = { s c k [  c , ~ I ' c ~ 1 2 } = s c k ( V ~  k ~ Z  (1.3) 

where  sck: LZ--+ L z is the scaling operator  

(sc k f ) ( x ) ' = f ( 2 k x ) ,  x E R  d. (1.4) 

We  say that q~ admits multiresolution provided that, in addit ion to (1.1), we have 

[.J V k= L 2, (1.5) 
k ~ Z  

["1 V k =  {0} (1.6) 
k E Z  

and 

V k c_ V TM, k ~ 77. (1.7) 

Following [1], [6], we say that ~O ~ L 2 is a pre-wavelet, if the functions 

sc k sh ~ ~b, k ~ 77, a ~ 77d (1.8) 

where  sh~: L2 ~ L 2 is the shift operator  

(sh~ f ) ( x ) . = f ( x - y ) ,  x, y ~ R  a (1.9) 
are orthogonal  on different scales, that is, 

(sc k sh ~ ~,, sck'sh ~ q,)=0 (1.10) 
for all k, k '  ~ Z, k 4= k '  and a , /3  ~ Z a. Here  we also use standard notat ion for 
the inner  product  on L 2, viz. 

(f, g ) '=  f J ( x ) g ( x )  dx. (1.11) 

The class of functions ,.~,,,,,, = ~q~cL z for which we build multiresolution and 
pre-wavelets are best described in terms of their Four ier  transform 

(f)(~o).= f j ( x ) e - ' ~  dx, o~eR a. 

A function q~ is in ..~,,,., provided that 

= r / q  (1.12) 
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where  T is a t r igonometr ic  polynomial  

T(to)  == • t o e -i~' '~ to ~ R a (1.13) 
flEZ a 

and q is a homogeneous  polynomial  

q(to) '= E qt3w/3, to E R a (1.14) 
I~l =m 

= ( ~ 1 ' ' ' ' '  ~d  ) E Z d, I ~ I == ~1 -[- "'" -I-~d, Of degree  m wi th  m > d. F o r  l a t e r  
use, we establish the  notat ional  convent ion of associating with every e lement  
p = (p,~: a ~ 7/a) ~ l 1 the  absolutely convergent  t r igonometr ic  series 

(trig p)(to) := E P~, eia'c~ to E •d (1.15) 
~ E Z  d 

Obviously trig is a b o u n d e d  linear m a p  (of no rm one) f rom l I into C(Q a) 
(cont inuous  funct ions on Qa), where  Qd= [ - z r ,  I7"] d, the d-dimensional  torus. 
For  p ~ 12(7/a), we also use  (1.15) to def ine  trig p, a.e., to ~ R d. In this case, trig 
is an isometry f rom 12(7/d) onto  L2(Q d) with (normalized) Lebesgue  measure .  

The  h o m o g e n e o u s  polynomial  q is requi red  to be elliptic, in o ther  words, 

q(oJ) = 0, to ~ •a implies that  to = 0. (1.16) 

We couple toge ther  the  t r igonometr ic  polynomial  T and the homogeneous  
polynomial  q by requir ing that  there exists a nonnegat ive  integer  n such tha t  

Z ( t o ) -  q ( t o ) =  0( II to II~+l+n),  o J ~ 0  (1.17) 

where  I1" I1~ is the  maximum norm on R d. Finally, we suppose,  analogous to 
(1.16), that  

Z(to) =0 ,  I1~o11=<< ~r implies that to=0.  (1.18) 

For  our main  result, we set 

E = ext reme points  of [0, 1] d (1.19) 
v 

We use *: L2--* L 2 for convolution, : L 2 --+ L 2 for scaling by minus one 
(q~(x) := q~(-x)) ,  and  

{f}(x) ;= E f(x + (1.2o) 
a ~ Z  d 

whenever  the  sum is convergent  a.e., to ~ R a. Also, for every funct ion  ~b E L2(R d) 
we define the  closed subspace of L2(g~ a) 

R(~b ) = span{sh ~ g/ : ot ~ Za}. 

Also, for all k ~ Z, we set  

Rk(~b)=sc k R(~b). 

Thus  for  any ~o ~ L2(R d) with 12-stable in teger  translates we have RkQo) = Vk(~o). 
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With this notation in hand, we introduce the family of 2 d functions 

~0 e =sh e/z ~bo, e ~ E ,  (1.21) 

where 

~ 0 = 2  -d qsc- l ( l (o l2 / {[ (~[2}) ,  (1.22) 

and the scale of subspaces of V k, 

W k:= Y] Rk(~b,), k ~ 7 / .  (1.23) 
e ~ E\{O} 

T H E O R E M  1.1 

Let ~o ~ ~2m,n, with m > d then 

W k_LW k', k # : k '  

and 

(1.24) 

W k = L  2. (1.25) 
k ~ Z  

Along with this theorem, which provides an orthogonal decomposition of L z 
(using translates and scales of one function in V 1, albeit the translates are taken 
over the fine lattice 2-17/a, we will show that there is a subdivision scheme for 
computing elements of f ~ V ~ 

The example which motivated us to consider the class ~ is the polyharmonic 
B-spline, [7], which is defined as follows. For every r E 7/+, set 

II x 1122 ~ -~  log II x II 2, d even 
(1.26) K~,d(X) =G,d I Ix  z , II 2~-a d odd 

where 

1 (--1) r-d/2+l 

22r~ d/2 ( r - d / 2 ) ! r ( r ) '  

Cr'd = 1 F ( d / 2  - r) 

22rTr d/2 r ( r )  ' 

and II" [12 is 
the iterated Laplacian ( -  1)rA r, 

d 32 

:= E a#" 
j = l  

The polyharmonic B-spline is given by 
r r 

Br,d = ( - 1 )  ~ Kr,d 

d even 

d odd 

(1.27) 

the euclidean norm on I~ a. This function is the Green's function for 

(1.28) 

(1.29) 



C.A. MiccheUi et al. / The refinement equation and pre-wavelets III 335 

where 6 is a discrete version of A defined by 
d 

( 6 f ) ( x ) : =  E ( f ( x - e i ) - 2 f ( x ) + f ( x  +e i ) )  (1.30) 
j = l  

and e l , . . . ,  e a ~ R a are the coordinate vectors (ei) k := 3jk, 1 <j, k <~ d. A some- 
what involved calculation shows that for 

q(oJ)= 11o~/211~ r, Z(o~)= sin2o~J2 (1.31) 

^ 

we have B,. a = T/q .  Thus, Br, a ~ G22r,1 for each r > d/2 .  Because of this 
example, we call any element in 0~ an elliptic spline. 

We remark that a more sophisticated choice of T in (1.31) leads to what are 
called level, k Polyharmonic B-splines (see [7]). These functions are in our class 
for an appropriate choice of n. 

It is interesting to note that the cube spline also has a Fourier transform of 
the form (1.12). Specifically, for any set of vectors xa , . . . ,  x" ~ Za\{0} which 
span •a we set 

n /1 

q(o~ I X)  .'-- I--[ ioJ 'x  j, T(w [ X)  := I-I  ( 1 - e-io 'x ')  (1.32) 
j = l  j = l  

then ~(- ]X)  = T(.  [ X ) / q ( -  IX).  Equivalently, c(. [ X)  can be defined by the 
equation 

f[0,1]/(Xt) d t =  fj(xlX)f(x) dx  (1.33) 

valid for all f ~  C(Rd). It was shown in [6] that Theorem 1.1 holds for 
q~ = c(. [ X)  if the matrix X is unimodular, i.e., every s • s nonsingular subma- 
trix of X has determinant __+_ 1. However, the cube spline is not in ~ for d > 1 
since the homogeneous polynomial, q(.  IX)  is characteristically hyperbolic. 

Much of what we say below holds if T is an absolutely convergent trigonomet- 
ric series. However, we do not pursue this issue here. 

2. Multiresolution and subdivision for elliptic splines 

In this section, we demonstrate that every q~ ~ ~ admits multiresolution, and 
that there is an associated stationary subdivision scheme in the sense of [2] 
which can be used to compute elements f ~ V ~ iteratively. We begin with 

PROPOSITION 2.1 

Suppose q~ ~ ~a2m, . 

r = T/q .  

with m > d, n >1 0 and 

(2.1) 
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Define 

a o t  ~ - -  

Then 

and 
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2 d-m fQ T ( 2 o ~ )  e ia''~ Z d. 
(2rr)  2 ~ T(~o) do), a 

~o(x)=o(llxll2~a+")), x+oo, 

a .  = o( II oe I12 ca +")) ,  ,~ --+ ~. 

(2.2) 

(2.3) 

(2.4) 

Proof 

First,  let us observe that  for every ~o ~ ,9~ and for o~ near  zero 

T(~o)-q(o~) = 1 +o(11,o112 +1) q3(co) = 1 + q(oJ) 

while at  infinity 

4(~~ ) = O( II ~ 112m). 
Thus  we conclude  that  

l im ~ (~o )=  1 
~a "--~ 0 

and 

(2.5) 

(2.6) 

(2.7) 

~ LI(R a) n L~176 a) ~ L2(R a) f3 L'(Ra).  (2.8) 

To  prove (2.3) we will next es t imate  the derivatives of ~o at the  origin. For  this 
purpose ,  we use the next lemma.  

LEMMA 2.1 
Let q be a homogeneous elliptic polynomial of  degree m on R a. Suppose U is 

some neighborhood o f  the origin and f ~ CN(U\{0}) ,  for some N >  O. I f  there 
exists a constant c > 0 and a p ~ 77 such that 

I(O#f)(x)l ~ C I I x l l ~  -I#l  

for all ] ~ I <~ N and x ~ U \  {0}. Then for some constant D > 0 we have for 
x ~ U \  {0} 
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Proof 

Set R =f/q.  Since q is homogeneous and elliptic, there exist positive con- 
stants A, B such that 

Zllxllm~<lq(x) l, I(O~q)(x)l~nllxll m-'"a, x~0 .  

We will prove the claim by induction on/3.  First, for/3 = 0, we clearly have 

C 
I R(x) l  < ~- II x [[p-m X E Ukk {0}. 

Assume that the claim is true for all/3 ~< 3', but 13 ~ 3' where 13' [ ~< N. 
By Leibnitz's rule 

O~a~7  

Hence 

[(DrR)(x)q(x)] <~ C II x 11~-I~1 

+ 

0~<~ <3~ 

= (C + g o 2 1 ~ l ) I t  x I1~ - I ' l  

and so 

( C + BD2 I~1 ) 
l(O~R)(x)l <~ Z II x II~-m-I~l 

which advances the induction and proves the theorem. 

Using this l emmawi th  f = T - q ,  p = m + n + l  and N = m + l + n  we get 
for0< I~1 ~<N 

](O"•)(x)[ ~< O II x I1~ § 1-[al 

and so D"~ ~ LI(R a) for I a I ~< n + d. Consequently (2.3) follows by the Rie- 
mann Lebesgue lemma and a standard integration by parts argument applied to 
the integral formula 

1 
~(x)  = (2rr)a / eiX"~ do) 

JR 

which defines ~0. 
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The equation (2.4) follows similarly by noting that for to near zero 

T(2to) - q(2to) 
2"  + 

T(Zto) q(to) 

T(ca) 1 + T(ca) - q ( t o )  

q(to) 

2" + O( II to II2 +1) 
1 + O(11 o~ II 2+x) 

= 2" + O( II to I1:+1). 
Thus, as before, D"(T(2 .  ) / T ( . ) )  ~ LI(Q d) for I~1 < d + n which easily proves 
(2.4). 

REMARK 2.1 
For the polyharmonic B-spline (2.3) gives Br.a(to) = O( II oJ IL -a-x)  as to ~ oo. 

However, it is known that 

= o (  ii i f :"-2) ,  to-  =.  

cf., [3], [7]. A similar remark holds for the estimate (2.4) in this case. This 
proposition leads us to 

THEOREM 2.1 
Every ~o ~ ~,.,,,, 

Proof 

m > d, n >1 0 admits multiresolution. 

First, let us prove the stability estimate (1.1). For this purpose, we observe 
that the function {[q312} is continuous on Qd since the series that defines it is 
absolutely and uniformly continuous. This function plays a central role in the 
proof of the stability estimate. To review these facts, we first point out that for 
every c ~ 12, the function [c, q~] is continuous on •d. This follows from the fact 
that q~ is continuous on R a and by (2.3), the series 

E I ' p ( x - a )  12 

is absolutely and uniformly continuous on any compact subset of R a (see the 
proof of Theorem 2.2 for an upper bound on this sum). Moreover, [c, ~o] is in 
L2(R a) because for any d = (d,~: ot ~ Z a) of finite support 

1 
II[d, q~] 1122 = (2rr)------711(trig d),~ I1~ 

1 
- (2"rr) d II(trig d)2{Iq312}ll L,(e% 
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Thus it follows for all c ~ l 2 that 

mi~,,l{l~12}(to)l IIc112~< II[c, ~0] 112~< max 1{lffl2)(to)l Iic112. 
t o e  t o E Q  d 

Hence  [c, ~o] is in L2(R d) and to show (1.1) requires showing that there  is no 
co ~ R d such that 

~(co + 2"rra) = 0 ,  for all a ~ Z d, (2.9) 

see [4], [5] for related results. Suppose, to the contrary, to ~ R e satisfies (2.9). 
Choose a /3 ~ Z d so that II to + 2-rr/3 II o0 ~< ~.  If co + 2"n-/3 4:0 then (2.9) implies 
that 

T(to + 
= 0  

and so by (1.18) we get co + 2"rrfl = 0, nonetheless.  Thus, indeed, to = -2-a-ft. 
Now choose a = fl in (2.9) to conclude ~3(0)= 0. However  (2.7) implies that 
4(0) = 1. This contradiction proves the claim. 

To establish the nesting of the spaces V k, k ~ 7 /we  observe that ~o satisfies 
the ref inement  equation 

~o=sc[a, ~0]. (2.10) 

Both sides of equation (2.10) are continuous functions in L2(R a) since by 
(2.4), a ~ l 2. Taking the Fourier  transform of both sides shows that (2.10) is 
equivalent to the equation 

2d(SC r = trig a 

which follows immediately from (2.2). From these observations, we conclude 
that each V k is a closed subspace of L 2 and the ref inement  equation (2.10) 
implies the spaces are nested in the sense of (1.7). Here  we used the fact that 
trig a = 2d-msc T / T  ~ L~( Q d) which guarantees that convolution with a acts as 
a bounded  linear operator  on 12. 

The remaining claims (1.5) and (1.6) will follow from the following lemma. 

L E M M A  2.2 
Let ~o ~ C(R d) f~ L2(Rd). Define the linear operator 

]~] f -g~-]~o(2 x a ) .  (2.11) (rkf)(x)'= ( 2 ,  k 

If f ~ Co(R e) (continuous functions of compact support on Rd), t~ ~ L| and 
$(0) = 1 then limk_.~Tkf= f weakly in L2(Rd), that is limk_.| g )=  ( f ,  g) 
for all g ~ L2(Rd). 
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Proof 

First we show that [[ Tkf [[ z is bounded independent of k ~ Z+. To this end, 
we suppose that M is a positive integer such that f(x) = 0 whenever [[ x ]10~ >/M. 
Therefore, using (1.1) we have 

Ilall |  M 

=2-dkL E f ~ p(X--O~) dx 
~,,a ilall| M 

-<< ((2k+aM + 1)/2k)aM2 II f l l g  

and so 

: =  2 2 IlZkfllzZ <~Y z (2M+ l)allfllooMz. 
Given g ~ LE(Rd), and e > 0, choose a h ~ LE(R d) of compact support such that 

II ff - h II 2 < (2zr)%2/(J + II f II z) z. 

Let go "= k and note that 

I(Tkf, g ) - ( f ,  g) l  < I(Zkf--f, g-go)l  + l(Zkf, go)--(f ,  go)[ 

<~" + I(Zkf, go ) - ( f ,  g0)l 
and also 

1 _ ot 

(Tkf, g o ) =  (2rr)d ".--f-fi~ 2-ka ~-~ f(~-E} e-i~'~'/z'~3(o)/2k) dw. 
I l a l l |  ~ , 

Call the integrand fk(w); Then 

I fk(o~) I -<< I h ( o ) ) l ( 2 M +  1)a II f II~ II,~ II| 

Since h ~ Lz(R a) and was chosen to be of compact support, the upper bound is 
in LI(Rd). Moreover, since f ~ Co(R a) and 

d o ,  = a 

it follows that limk_,| for o)~ R a. Hence, by the Lebesgue 
dominated convergence theorem 

1 
klim--,oo (Tkf' go)= - -  d o ) = ( f ,  go) 

This proves the result. 
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Re turn ing  to the p roof  of T h e o r e m  2.1, we note  that  any ~o ~ ,.@ satisfies the 
hypothesis  of L e m m a  2.2. Thus,  we conc lude  that  every f ~  Co(R d) is in' the 
weak closure o f  the subspace V ~* -= 13 k ~ z V  k. This implies that  V ~ has a 
(strong) closure which is equal  to L2(Rd). This  proves (1.5). 

For  the remain ing  claim (1.6) we use  the fact that  ~0 ~L=(R d) and the 
asymptotic es t imate  (2.3) to conclude  that  for some positive constant  Q 

a 
<~ x ~ R d. 

(1 + II x II oo) d + l '  
I (x)l 2 

Hence  

E 
c ~ Z  d 

[ q ~ ( x - a ) 1 2 ~ Q  1 +  E ( l o r l )  - d - 1  E 1 
1=0 Ila II**=/+ 1 

( ~ 4 d ( l + l )  d - l )  

~<Q l + t = 0  y]  ( 1 + l )  a+l 
OO 

<~2.4dQ~-"l-2:=R, X E •  d. 
1=1 

Now let g ~  fq k~z Vk then  for each k ~ 7/ there  is a c ~ l  2 such that  
g = sck[c, ~o]. Using the stability es t imate  (1.1) and  the above inequality, gives 

[ g ( x )  [ 2 ~< R II c 112 2 ~< m22R2 kd 11 g 1[22, x ~ R d, 

which goes to zero  as k --+ -oo.  This  comple tes  the p roof  of  T h e o r e m  2.1. 

Our  final c o m m e n t s  in this sect ion per ta in  to the stat ionary subdivision 
scheme def ined by 

(SA),, := E a,,-2~at3, a ~ 7/a, (2.12) 
f3 E Z  a 

h = (A~: oe ~ 7/d). We now assume that  n > 0. In this case, a ~ l 1 (see (2.4)), and 
S is a b o u n d e d  l inear opera to r  f rom l | in to  itself. We are in teres ted in the 
convergence  of the i terates of  S. It is convenient  for this purpose  to no te  the 
following fact. 

LEMMA 2.3 

Let ~o ~ ~q~m.n for m > d and n > O. Then 
l ,  d 

a ~ Z  a 

and 

lim II T k f - - f  II ~ = 0 
k---, w 

if f is uniformly continuous on R. 

(2.13) 

(2.14) 
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Proof 

T h e  p roof  is based on  not ing that  for some K > 0 

K 
I go(x)l R d , ~< x 

(1 + II x II 

and so, as before  in the p roof  of L e m m a  2.2, we have 
oo 

I g o ( x - a ) l  x ~ R  d. 
a~Z a 1 = 1  

In a similar way, we have for any x ~ R a and integer  p ~ R+ 

K 
E I g o ( x - a ) l  ~< (1 + p )  -1/2 E =)a+1/2 

tl x - ~  I l o~p  II x - ~  I , ~ p  ( 1  + 11 x - a 1[ 
oo 

~< 2 . 4 a K ( 1  +p)-1 /2  E / _ 3 / 2  : = W(1 +p)  -1/2. 
l = 1  

Also, since for any a ~ 7/d\{o} 

T(2"n-~) T(0) 
~3(2"rra) --- q(2-rra) q ( 2 r r a )  = 0  

we get  by the Poisson summat ion  formula  

Y'. g o ( x - a ) = 1 ,  x ~ R  a. 
a ~ Z  d 

Hence ,  if w ( f ;  6) "= sup{] f (x )  - f ( y )  
nuity of  f we have for any x e ~d 

I ( r k f ) ( x ) - f ( x ) l  << E 
IIx--2-ka II~<~ 

+ E 

: H x - y [[ o0 ~< 6} is the  modulus  of conti- 

f (  ~ ) -- f (x)[ l  go(2kx --a) I 

I 
<~Lw(f; 6) + 2W ]1 f [1=(1+62k)  -1/2 

which goes to zero as k ~ oo and then  6 ~ 0 +. This  proves the  lemma.  

THEOREM 2.2 
Suppose go ~ ~2,,,., with n > O, m > d. Then for every h ~ l x, fa := [h, go] is 

uniformly continuous on •a and 

lira liSk)t -- Ssc-kfa]]= = 0 (2.15) 
k .--~ aa 

(here ssc -k fx is the sequence ( fa(a/2k): ot ~ zd)) .  
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Proof 

We begin by noting that any t o ~ ~m,n with n > 0 admits an L | stability 
est imate 

m ~ l l x l l ~ <  II[a, to] II| < M ~  IIAll~ (2.16) 

for some constants 0 < m| < M= < ~. For the proof, we observe that we can 
choose M= = L for the upper  bound. To obtain a lower bound,  we use the 
function 0 ~ V ~ defined by 

It is apparent  that the sequence 

g , : = ( t o .  5 ) ( a ) = f ~ F ( x ) ~ ( x - a ) d x ,  a ~ Z  a 

is in 11, in  fact, [I g I[x ~< L ][ to [I 1, and moreover,  by the Poisson summation 
formula trig g = {[ q312}. Thus, by Wiener 's  lemma, of. [8, p. 266] there is a 

= ( ~ , :  ~ ~ Z a) ~ l I such that trig ~ = (trig g)- l .  Hence,  we get 

to] 
and, in particular,  0 ~ LI(Ra), since II 0 [[ 1 ~< [[/* II 1 II to [11 < % because to 
La(Rd). Moreover,  for any a ~ Z d 

[~(~__)]2 1 f e_ito, ad~ m-~0ot- 1 
(sh'~to, O ) =  (2~-)d fn a { i~i~-( -~)e- i '~  dw = (2~r)------2 JQ. 

Therefore ,  we get for any c ~ l | and a ~ Z a 

Ic.I  = I([c, to], sh"O)l << II[c, to] I1~110 II1. 

This proves that we can choose m ~  a "= II 0 II a in the L ~ stability estimate (2.16). 
As for the uniform continuity of f~ we note first that since to is continuous 

and goes to zero at infinity, it is uniformly continuous. Moreover,  we have 
~o(fx; ~) ~ II A II ~o~(to; ~) and, therefore,  fa is uniformly continuous too. 

Now, the result (2.15) follows from arguments  used in [2], namely, for the 
operator  Tk def ined in (2.11) we have 

f a -  Tk f=sck([  Skh --SSC-kfx, to]) (2.17) 

and so (2.16) implies that 

II SkX - ssc-kf. II | < m2 a II Zkfx --fx II =. 

Using Lemma 2.3, this inequality proves the result. 

In the terminology of  [2] the subdivision operator  converges to fa and to is the 
refinable function for the subdivision scheme (2.12). 
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3. Orthogonal pre-wavelet decomposition in L 2 

This section is devoted to the proof of Theorem 1.1. Some of the steps in the 
argument parallel the case of cube spline analyzed in [6]. However, there are 
important differences. We start with an observation which generalizes a special 
case considered in [6]. 

THEOREM 3.1 
Let ~o ~ L 2 such that 

II[c, 9] 112 ~MIIclI2, M<oo 

so that vk(~o) c L  2, k E 7/. If, 

U v~(~)= L~ 
k ~ Z  

then for any ~ = [d, q~], d ~ 12, with trig d 4:0 (a.e). Then 

U R" (~') =L~ 
k ~ Z  

(3.1) 

(3.2) 

(3.3) 

Proof 

We need the following fact which also appears in [5]. 

L E M M A  3.1 

1f f ,  g ~ L 2 then f * shag = 0 for all a ~ ~_d if and only if {f~} = 0. 

Proof 

By Plancherel's formula, our hypothesis implies that for all/3 ~ Z d 

0 = lim [ ~ f"(w + 2"n-a),~(to + 2"n-a) e -i/3''' doJ. (3.4) 
N-'* ~ a Qa Ilot II| 

Call the integrand HN(tO). When we have the pointwise inequality 

IHNI-< {I [1" l el} <-H={l[12}a/2{le12} 1/2. (3.5) 
However, by the Cauchy Schwarz inequality 

11H l] L'(Q') ~ II{I f l z} II t'(O ~) [[{I ~ 12} l[ L~(a~). (3.6) 

Moreover, using Fatou's lemma, we see that each term on the right of this 
inequality is finite since 

II{Ifl2}llb(o,)~< lim fo E I f (w+2 " r r a ) l  2 d to=(2*r )d l l f l [  2<~176 
N--. oo a Ila II**<N 
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For the equality above, we used Plancherel 's formula once again. Thus we 
conclude by (3.6) that  H ~ LI(Q a) and so (3.5) implies by the Lebesgue domi- 
nated convergence theorem that 

f Q a e i a ' ( ~ } (  O= to ) d to , fl ~ Z d, 

whence {f~} = 0. The  converse follows by merely reversing the steps. 
Returning to the  proof  of the Theorem, we suppose f ~ L 2 satisfies 0 = 

( f ,  sc k sh a ~b) = 2-dk(sc -k  f ,  sh a I~) for all k ~ 7/, a ~ Z d. Then by Lemma 3.1 

from which we conclude that { ( sc -k f )  ^ 3} = 0. Using the lemma in the reverse 
direction implies 0 = ( f ,  scksh'~ ), k ~ 7/, a ~ 7/d. But now, invoking the hypoth- 
esis (3.2), we conclude f = 0. This proves the result. 

Let us now turn to the proof  of Theorem 1.1. First we make some preliminary 
observations about the function r defined by (1.22). We introduce the se- 
quence f = (f,~: a ~ 7/a) defined by 

T 
trig f = 2 m 2--------} = 2m ~ trig I~ 

SO that 

r  q~] ~ V  t 

and t r i g f ~  L=(Qa). Therefore  it folows that for all e ~ E  

II [c,  r  II 2 < II trigf II L~ ~) II c II 2 (3.7) 

Next, we prove the following. 

PROPOSITION 3.1 
Let ~ ~ ,~.  Then 

sc-1 r - 2mgr ~ W~ 

where W ~ is defined in (1.23). 

Proof 

The idea of  the proof  is to introduce the function L defined by 

(3.8) 
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First, recall that we show in Section 2 that the 2-it-continuous function { I r 
strictly positive. We draw two conclusions from this fact. First, by (2.5), (2.6), 

( [r [ 2//{[ r [ 2})(02) = 1 + O( [[ O) [[n+l), O) --')0 (3.9) 

and 

( [r162  o9---,~. (3.10) 

Thus 

L(x)=o( l lx l l2 (a+")) ,  x-~oo. (3.11) 

We  introduce again the sequence /z  ~ L 2 such that 

{I r -1 = trig tz (3.12) 

and so 

L = [/~, ~0 * r  (3.13) 

Obviously, L is continuous since /~ ~ LI(Rd). Moreover,  by the Fourier  inver- 
sion formula, one can show that  

L(a)  =60,  ,, c~ ~ 7/d. (3.14) 

For  this reason, we call L a Lagrange function for the space V~ * q3). 
Moreover,  the sum on the right hand  side of (3.13) converges to a continuous 
function. To see this, we observe that q~ * ~ ~ "~2m,,, and so applying the 
inequality we used to prove (1.6) in Theorem 2.1 to q~ * q3 we get that the 
function 

E �9 2 
aEZ d 

is bounded for all x ~ R a. 
Next, we claim that L satisfies the ref inement  equation 

Z =sC[ll/2, L] (3.15) 
where la/2 .'= (L(ce/2):  a ~ 7/d) ~ 12(Zd). By what  we have already proved, both 
sides of (3.15) are in C(R d) n L2(R d) and so we can replace it by the equivalent 
identity 

2dsc L = trig 11/2 �9 L.  

By the Poisson summation formula we have 

trig ll/2 = 2a{sc L} 

(3.16) 

(3.17) 

which, by the ref inement  equation (2.10) and the definition (3.5), becomes 

trig ll/2 = 2d{ [ sc r [ 2}/SC{ [ ~ [ 21 

= 2-d l trig a12{1r162 (3.18) 



CA.  Micchelli et al. / The refinement equation and pre-wavelets 111 347 

Similarly, we have 

isr ~l 2 ( l~j  2} 
2dSC L/L = 2 a - -  

t~l 2 sc{t~t ~} 

= 2-" I , .g al 2{ I ~ 12}/sr ~ 12} 
Combining (3.18) and (3.19) proves the claim. 

(3.19) 

The reason we introduced L is that it directly relates to q'0 as defined in 
(1.22). Specifically we recall that 

d/o = 2-a~sc -1 L .  (3.20) 

Hence, 

q'0 = ( - 2 i ) "  sc ~ ( D ) L .  (3.21) 

We now apply the differential operator ~(D) to both sides of (3.15) to obtain 
from (3.7) and (3.14) that 

~ ( D ) L  = 2"  sc ~ ( D ) L  + g2 (3.22) 

where s ~ W ~ (see (1.23) for the definition of the space W~ This proves the 
proposition. 

We are now ready to prove that the space 

J : =  ~) W k (3.23) 
k E Z  

is dense in L 2 when q~ E ~q~. This is the seco.nd claim of Theorem 1.1. 
We introduce a subset . f  of Z a by setting 

J =  {/3 ~ Za: sc k sh e ~ ( D ) L  ~ _ o ,  for all k ~ Z}. (3.24) 

From (3.22) we get 

sc k sh e ~ ( D ) L  = 2 m sc k sh tj sc ~ ( D ) L  +sc  k sh e O 

= 2  m sc TM SC 2~ q ( D ) L  + s c  k sh t 3 0 .  (3.25) 

Since by definition sc k sh t3 ~ ~ o ~, we get from (3.25) 

2 . E ~ J .  (3.26) 

One final comment is needed about the set t .  By definition, for k ~ Z, 
/3 ~ Z a, and e ~ E \ { 0 }  

, . ~  sck shtJ ~O e = sck shl3+e/2 ~10 

= ( - -2 i )  m sc k sh o+e/2 sc ~ ( D ) L  

= ( - 2 i ) "  sc TM sh 2tJ+" ~ ( D ) L .  
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In this computation, we used (3.21) and the fact that ~e = she~2 ~o .  Thus we 
ahve shown that 2/3 + e  ~ d  for all e ~ E \ { 0 }  and 13 ~ 7/d. Since every a ~ Z a 
\{0} can be written as 

a=2r(2 f l+e) ,  e ~ E \ { 0 } ,  / 3 ~ Z  d 

we conclude that d =  zd\{0}.  
To complete the argument, we recall that 

~bo=SC[f, ~0] (3.27) 

where trigf'= 2mTtrig tz. Obviously f ~  l 2 and trigfq= 0 (a.e.). Moreover, by 
(3.21) we obtain 

~(D)L = ( - 2 i ) - " [ f ,  ~0]. (3.28) 

We can now rephrase the fact that . f =  Zd\{0} by saying that 

[f, ~0](2 k" --a) E,.7 a, a E Z d \ { O } , k E T ] .  (3.29) 

But, according to Lemma 3.1, since ~ ~ ~ admits multiresolution it suffices to 
prove [f,  ~o] = sc -1 ~b o ~ J .  For this purpose, we use (3.8) iteratively to con- 
clude that 

SC - 1  ~t 0 --  (2-m) k SC - k - 1  ~! 0 E W - 1  - [ - . . .  + W - k  c_.,.7 p 

for any k ~ Z +\{0}. Since 

II (2-m) ksc-k-1 1122 = 2d+k(d-2m)II 1122 

goes to zero as k ~ oo we conclude that sc-1 ~o ~ "f .  This proves the second 
claim of Theorem 1.1. 

The proof of the first claim depends on showing that 

l/k ( ~o ) -l- Rk( ~be) (3.30) 

for all k ~ Z and e ~ E\{0}.  In fact, suppose for the moment that (3.30) is true. 
We wish now to demonstrate that 

Rk(~be) Z Rk'(~be,) (3.31) 

for all k--/=k' and e, e ' ~ E \ { 0 } .  We assume without loss of generality that 
k '  > k. From (3.27), we have ~, ~ Vl(~o) and so 

Rk(~/e) c_vk'(~o) 

and so (3.31) follows from (3.30). 
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To prove (3.30), it suffices to prove it for k = 0 which we do by a computa-  
tion: 

(2"rr)d fndqJ,(X)q~(X--a) dx  

- -  f e i a ' ~ ~  ( ~  ^ ( o ~  do)  
- j R  d , ,  ,~o, , 

= 2m_2df  e i("-'/2)' '~ :F( to /2)~(oJ /Z) tn-~-d(w/2)~( t0 /2)  

"R" E I r  2 
/3~Z d 

which is zero, since e 4: O. This  proves T h e o r e m  1.1. 

dto 

We conclude  with the  following remark.  Let  Uk(q~) be the or thogonal  comple-  
m e n t  of  Vk(q~) in vk+a(q~). As shown above W k is a d o s e d  subspace of  U k. 
Since q~ admits  mul t i resolu t ion  we have that  ~k ~ Z Uk = L2" Hence  W k = U k for 
all k ~ Z, that  is, 

V T M  = V k ~ W k, V k 3_ W k, k ~ 7/. 

This s t a t emen t  also applies to the  analogous const ruct ion for the  cube spline 
given in [6] and  therefore  the  above remark  corrects  an oversight m a d e  in 
R e m a r k  4.3 of  [6]. 

We end this pape r  by demons t ra t ing  that  the  functions {~Oe}e~E\t0 ~ have 
12-stable in teger  translates,  a fact which does not  hold  for the cube spline case 
s tudied in [6]. Accord ing  to T h e o r e m  4.1 of [5] we must  show that  there  is no 
0 ~ R d and y = (Ye)~E\to~ 4:0 such that  

E Ye~e( 0 q- 2"n'a) = O, a ~ Z a. (3.32) 
e ~ E\{O} 

Every c~ ~ 7/a can be expressed in the  fo rm a = 23, + e' where  y ~ 7/a and 
e'  ~ E.  Thus  (3.32) is equivalent  to 

( ~-~ (Ye e- i ("~  0 +4"try + 2 " n ' e ' ) = 0  (3.33) 
\ e ~ EM0} / 

for  all y ~ Z a and e '  ~ E. T o  make  use  of  this equa t ion  we first observe that  
~(to) = 0 for some to ~ R a if a n d o n l y  if oJ =2"rra ,  a ~ zd \{0} .  This  of  course 
follows f rom our  defini t ion of 4> and our  requi rements  (1.18), (1.16) on  the  
t r igonometr ic  polynomial  T and homogenous  polynomial  q. Consequent ly ,  by 
ou r  def ini t ion of  00, see (1.22), we have r  0 if and only if t o - -4~ ra ,  
a ~ Z a. R e t u m i n g t o  (3.33) we choose y = 0. Observe that  there  is at mos t  one  
e ' ~  E such tha t  r + 2 , r r e ' )=  0. In  fact, if to the  contrary there  were  two 

' ' ' - - 2 / ~ ,  f o r  s o m e  lZ ~ Z a distinct values in E,  say e 0, e I we would  have e ~ -  e 1 
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which is impossible unless e~ = e~. Hence  we conclude there  is a e 0 ~ E such 
that 

E (Ye e-i(e'e)/2)(--1) e'e'=O, e' ~E/{eo}. (3.34) 
e ~E\{0} 

We will finish the proof  by showing that the matrix 

( ( -  1)e '")e ~e\{o~, ,'~E\{eo~ (3.35) 

is nonsingular.  To this end, we consider the  2 d • 2 d real symmetric matrix 

d~= ( ( --1)e'e')e~E, e,~E. 

It is known (and easily verified) that  A 2 = 2dI and so A - a  = 2~A. Hence,  since 
every e lement  of A is nonzero  we conclude every 2 d - 1 minor of A is nonzero  
as well. In particular,  the  matrix in (3.35) is nonsingular for any e 0 ~ E. 

Thus we have established that  the  functions {l~e}e ~ E\{0} are stable. In particu- 
lar it follows that ~b 0 has 12-stable integer  translates. However,  {~}e~e are 
unstable. To prove this lat ter  fact we choose y = (y~)~ ~ e 4:0 such that  

]~ y , ( - 1 ) " e '  = 0, e '  ~ E \ { 0 }  
eEE 

and observe that 

E y,q~(27ra)  = 0, a e Z a. 
eEE 

The  above considerat ion can be used to identify a 2 a • 2 a nonsingular matrix 
of t r igonometric series which maps the  functionals {4~} tA{~e}~E\C0 } into 
{q~e},~e, ~b, "=sc she~ZoO. The coefficients of  the tr igonometric series appearing 
in this matrix allow one  to write any e lement  in V 1 as a sum of  e lements  in V ~ 
and W ~ The  explicit form of  this matrix will be  provided at another  occasion. In 
special cases this decomposi t ion may be  useful  for data compression based on 
polyharmonic B-splines. 
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