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This paper presents a model reduction method for large-scale linear systems that is based on 
a Lanczos-type approach. A variant of the nonsymmetric Lanczos method, rational Lanczos, is 
shown to yield a rational interpolant (multi-point Pad6 approximant) for the large-scale system. 
An exact expression for the error in the interpolant is derived. Examples are utifized to demon- 
strate that the rational Lanczos method provides opportunities for significant improvements in 
the rate of convergence over single-point Lanczos approaches. 
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1. Introduction 

This paper explores the use of  Lanczos techniques for the reduced-order model- 
ing of  large-scale dynamical  systems. A need for such reduced-order models arises 
in various areas of  engineering such as the control of  large flexible space structures 
[5] and the simulation of  high speed circuits [6]. The system to be modeled is typi- 
cally defined via a set of  state space equations 

E k ( t ) = A x ( t ) + b u ( t )  and y ( t ) = c r x ( t ) + d u ( t ) ,  (1) 

where, for simplicity, the direct-coupling term, d, will be assumed to be zero. As this 
paper will restrict itself to single-input single-output (SISO) systems, the input u(t) 
and output  y(t) are scalar functions of  time with b and c column vectors of  length n. 
The system matrix, A E R "• and descriptor matrix, E E ]R n• are assumed to be 
sparse or structured (e.g., Toeplitz). We stress that such assumptions are met by 
large-scale problems arising from most applications. However,  most  existing 
model reduction techniques (e.g., balanced truncations and Hankel  norm optimal 
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approximations) [8] fail to take advantage of any sparsity or structure in the system 
matrix and are thus typically impractical for large-scale problems. 

For the case where E is an identity matrix, the zero-state (x(0) = 0) solution to 
the first expression in (1) is x ( t ) =  foeA(t-T)bu('r)d'r. Thus, determining a good 
k << n order approximation, 

E)c(t) = JUt(t) + fro(t) and ~(t) = Oryc(t), (2) 

is intimately connected with finding a good approximation to a matrix exponential. 
A method based on orthogonal Krylov projectors (the Arnoldi algorithm) is util- 
ized in [12,26] for approximating eAtb. But in fact, these concepts can be taken 
one step further by noting that one is really only interested in that information 
in eAtb which lies in the direction of c (one ultimately desires [ [ y -  )3 I[ small for 
some desired range of inputs u). Numerous papers [4,17,27,28] are beginning to 
explore this last fact. In particular, these papers begin to investigate the use of 
an oblique Krylov projector (i.e., the Lanczos algorithm) for generating the 
reduced-order model. 

The Lanczos-based approaches to model reduction are in fact connected to well- 
known approximations of (1) including partial realizations and/or Pad6 approxi- 
mants [14,29]. These approximations are centered on the transfer functions 
g(s) = y(s)/u(s) = cT(sE -- A)- lb  and ~(s) = f~(s)/fi(s) = ~r(sE - / ] ) - l /~  which 
arise out of Laplace transforms of (1) and (2) respectively. The reduced-order 
model is computed so that its transfer function ~(s) shares (matches) certain attri- 
butes of the original transfer function g(s). The Lanczos method is known to be a 
preferred numerical approach for computing such a model [7,10]. Additionally, 
Lanczos-type methods only involve multiplication by A and E and/or solving 
linear equations involving A and E. Thus one can take advantage of the structure 
of these matrices. Avenues also exist in the Lanczos method for removing the spuri- 
ous, unstable poles which may appear in the approximation [15]. 

Unfortunately, model reduction methods such as partial realization and Pad6 
approximation are not acceptable in all applications. Such approximations tend 
to converge in a local fashion about a single frequency s = a E C. The reduced- 
order model can grow large before becoming an acceptable global approximation 
of the original system. To overcome this difficulty, several papers in the areas of 
control and circuits explore the use of a multi-point Pad+ approximant (denoted 
a rational interpolant in the systems literature) for approximating (1) (see for 
example [6,16,18,32]). In rational interpolation [1] (multi-point Pad~ [2]), a 
reduced-order model is constructed whose transfer function ~(s) interpolates the 
value and subsequent derivatives of g(s) at multiple frequencies {or1, cr2,..., or;}. 
Each interpolation point is selected to identify the dynamics of (1) in a specific fre- 
quency range. One avoids trying to acquire information from a single, distant point. 

This paper lays the foundation for a practical computational approach to 
rational interpolation through the development of the novel rational Lanczos 
method. Being a Lanczos type method, rational Lanczos still possesses the desir- 
able numerical qualities lacking in explicit moment matching approaches. But in 
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a significant break from the standard Lanczos algorithms, rational Lanczos is no 
longer tied to a specific interpolation point. By intelligently selecting from multiple 
interpolation points, rational Lanczos provides an opportunity for efficiently and 
accurately determining models across a wide frequency range. An error expression 
between the transfer functions of the original and reduced-order systems is derived 
which may enhance the placement of the interpolation points. Given this set of 
interpolations points, a strategy for selecting among them arises quite cheaply 
out of rational Lanczos and is grounded in system theory. One does not simply 
match a fixed number of moments about each interpolation point. Such an 
approach may be unnecessary at certain interpolation frequencies and insufficient 
at others. Instead, selections are made from among the interpolation points as the 
model size grows with the goal of maximizing the amount of new information being 
placed into the model. A surprising benefit of this last fact is that the rational Lanc- 
zos method is driven to avoid the numerical instabilities present in the standard 
Lanczos method. Meaningful system theory in rational Lanczos can replace the 
nonintuitive, complex fixes of the standard Lanczos method (e.g., look-ahead [9,21]). 

This paper begins in section 2 by describing moment matching, the Lanczos 
method and the connections between the two. An emphasis is placed on defining 
the terminology associated with both moment matching and the Lanczos method 
in a unified and unambiguous way. The techniques of section 2 correspond to inter- 
polation about a single point. Section 3 discusses the limitations of interpolating 
about a single frequency point and thus motivates the development of the rational 
Lanczos method in section 4. The rational Lanczos method of section 4 is con- 
structed in a simplified manner so as to promote an understanding of the algo- 
rithm. The relation between rational Lanczos and rational interpolation is 
proven. Section 5 converts the rational Lanczos method into a model reduction 
tool. Examples are provided to suggest the power of the approach. An error expres- 
sion for the reduced-order model is derived in section 6. 

2. B a c k g r o u n d  

This section contains the background material necessary to proceed with the 
later development of the rational Lanczos algorithm as a model reduction 
method. We emphasize the need for a thorough coverage of moment matching 
methods, versions of the Lanczos method, and the interconnections between the 
two. The terminology and credit for these topics lies strewn over several appli- 
cation areas. It is our goal to at least begin to piece together these items in the 
following review. 

2.1. Moment matching methods 

The model-reduction methods of interest in this paper are those which reproduce 
in the reduced-order model a set of invariant attributes belonging to the transfer 
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function g(s) of(l) .  To be more specific, we are interested in determining a reduced- 
order model which matches the first 2k coefficients, mj, arising in a power series 
expansion of g(s). If g(s) is expanded about zero for example, 

S 2 S 3 

g(s) = mo + mls + -~.m2 + -~.m3 + . . . ,  (3) 

the coefficients (referred to as moments in this case) satisfy mj = - c  r (A-1E)JA- lb .  
The reduced-order model, a Pad6 approximant, is constructed so that mj = rhj = 
_~ r (A-1/~) j-l/~ for j = 0, 1 ,2 , . . . ,  2 k - 1. These moments are the value and subse- 
quent derivatives of the transfer function g(s) evaluated at s = 0. Ifg(s) is expanded 
in a power series about infinity, 

g(s) = d + m_l s -1 + m_2s -2 + m_3 S-3 -b . . . ,  (4) 

the coefficients (referred to as Markov parameters in this case) satisfy m_j = 
c r(E-XA)CJ-l)E-lb. The resulting model, denoted a partial realization, possesses 
moments which satisfy m_j = rh_j for j = 1 ,2 , . . . ,  2k. These Markov parameters 
are the value of the zero-state impulse response g(t) (the inverse Laplace transform 
of g(s)) and subsequent derivatives of g(t) evaluated at t = 0. Power series expan- 
sions about 0 are generally of greater interest because one typically desires to repro- 
duce the steady-state (versus the transient) response of the original system over 
some frequency range. The steady-state behavior of the output can be defined in 
terms of the frequency response of the system, g(iw), where the variable w E ]R 
corresponds to real frequency and i = x/-L-- 1. If the input u(t) includes a sinusoid of 
frequency w0, the output y(t) contains this sinusoid at steady-state scaled in mag- 
nitude and shifted in phase by the value ofg(iw0). By replacing s in (3) with the shifted 
variable s - or, i.e., g(s) = ~ o ( S  - cr)Jm~(cr)/j !, one can generate shifted moments, 

T 1 ./ 1 mj(cr) = - c  {(A - erE)- E} (A - erE)- b, which match g(s) and its subsequent 
derivatives at a user-specified frequency or. On the other hand, we will show shortly 
that the use of a shifted variable s - cr in an expansion of the form (4) does not 
affect the resulting partial realization. For these reasons, this paper will con- 
centrate on matching moments which are the coefficients of positive powers of s 
(possibly shifted). Models of this type fall under the title of Pad6 approximants. 

For quick reference, various sources for the moments to be matched are sum- 
marized in table 1. The only listed type of approximation yet to be covered is the 
rational interpolant or so-called multi-point Pad+ approximant. The rational inter- 
polant (which includes Pad6 approximation as a special case) matches moments 
arising out of multiple (say i-) power series expansions. These expansions are 
about 0 but each is shifted by a different amount,^oi~ i = 1 , . . . ,  i. The resulting 
reduced-order model is defined by the matrices (A, E, b, ~} which satisfy 

mj,(cr,)=rhj,(cr;), j , = O ,  1 , . . . , 2 f - 1 ,  i = 1 , 2 , . . . , { ,  
where 

mji(oi) - c  T I (A -- a iE) -I  E } J~(A - a iE) - '  b, 

= - } s , ( A  - 

(5) 

(6) 

(7) 
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Table 1 
Possible choices for the moments to be matched. 

37 

Approximation name(s) Power series expansion j t h  moment 

Partial realization, 
Pad+ at co 

Pad~ 

Pad6 (shifted) 

Rational interpolant, 
multi-point Pad6 

g(s) = E ; '  m-y s-i  

g(s) = Y']~o mjs~ /J ! 

g(s) = E~=o mj(s - cr) J / j  [ 

m g(s) = Ej,=0 j, (tzi)(s - tTi)J'/J ! 
f o r / =  1 , 2 , . . . , i  

m_j = c r (E- t  A)J-'  E - l b  = gf:)(t) 1,=0 

mj = -c T(A-le)J~-'b = gIJl(s)I~-0 

mj = - c r  { (trE - A) - I }  j 
x ( a E  - A)-] b = gU)(s) I~-~ 

mj,(ai) = - c r  { (aiE - A)-'E}J, 
•  - A)-~b for i = 1,2, . . .  7 

and ~ i=l f = k. The value and subsequent derivatives of ~(s) are thus equivalent 
to those of g(s) at multiple interpolation frequencies. The number of data pieces 
matched about a given interpolation point a; is twice the user-selected value o f f )  

2.2. Moment matching through Lanczos methods 

From a systems point of view, our interest in the nonsymmetric Lanczos method 
[19] (presented as algorithm 1) centers on its ability to compute rectangular 
matrices W,, Vk E R "• which satisfy (i) the biorthogonality condition W r Vk = I 
and (ii) the Krylov subspace conditions colsp(Vk) = ~,Uk(~, r0) and colsp(Wk) = 
~f'k( ~ r ,  qo) where the Krylov subspaces are 

o'~k(T, r0) = span{r0 ,  T r o , . . . ,  T k-I  r0} 

and 

Jgk(~ r, q0) = span{q0, Trq0 , . . . ,  (Tk-1)rq0}. 

It is the construction and use of these two Krylov subspaces which connects the 
Lanczos method to moment matching [29]. Note that the Krylov subspaces are 
shift-invariant; replacing ~ with T - aI does not change the resulting subspaces. 

Besides those features already mentioned, it can be easily shown that the 
Lanczos method leads to the recursive identities 

tPV k = VkT k +Tk+lVk+le r and 7trWk = WkT~ + ~k+lWk+le~. 

The standard unit vector ek is the kth column of an identity matrix of appropriate 
length. The matrix Tk = Wk r ~ Vk takes on the well-known tridiagonal form which 
is composed of the scalars 7j below the diagonal, aj on the diagonal and/3j above 
the diagonal. 

For the model reduction problem, it is important to point out that the matrix 
(or at least the action of ~ on a vector) has historically been assumed to be known a 

t The restriction that an even number of  moments be matched about each interpolation point is due to 
the form of rational Lanczos but need not hold in the most general definition of  rational interpolation. 
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Algor i thm 1 N o n s y m m e t r i c  L a n c z o s  [19] 

Inpu t :  s t a r t i ng  vectors  r0 and  q0 of l eng th  n; 

For k =  1 t o k ,  

(AI .1)  ~r = ~lr~'r...lqk--I I and /3  k = s ign(r~_ 1 qk--1 )'~k; 

(A1.2) Vk = (rk--1/"Yk) and  wk = (qk--1//3k); 

(Aa.3) ~k = w[~Vk; 
(A1.4) rk = fftVk - ~ k ' O k  - -  [ 3 k V k - - 1  and q k  = ~ T t T w k  - -  ~  - - ~ k W k - - 1 ;  

end. 

priori in step (A1.4) of algorithm 1. This condition was met by the first Lanczos- 
based model reduction papers in the control area [4,17,28]. The choices 7" = A, 
r0 = b and q0 = c were made while E was assumed to be an identity matrix. 
Given that 7" = A is sparse, the matrix-vector products in (A1.4) are obtained 
with only pn operations where p is the average number of  non-zero entries in a 
row of  A. The resulting model, .4 = Tk = Wk rA Vk, /; = Wfl'b and ~ = Vk re, is a 
partial realization of  the original system [14]. However, as noted in section 2.1, k 
must typically grow large before a sufficiently accurate partial realization is 
acquired. The use of shifts does not help here. For example, if one replaces s in 
(4) with the shifted variable g = s - a and assumes for simplicity that E - I, the 
resulting shifted Markov parameters are m_j = cT(A -- oI)J-~b due to the Neu- 
mann expansion of  (sI - A) -1 = ((s - o')I - (A - a I ) )  -1 = (gI - (A - a I ) )  -1. 
Thus the choice 7' = A in algorithm 1 need only be shifted by aI.  But since the 
underlying Krylov subspaces are shift invariant, shifting s has no effect on the 
final partial realization. Only when shifting s does more than shift 7' (e.g., Pad6 
approximation where ( A -  ~ i ) - 1  • A - l _  a I )  will ~r make an impact on the 
reduced-order model. 

For improved accuracy, other papers select 7" to be a rational function of  A and/ 
or E. For  example, the earliest known papers on Lanczos-based model reduction 
(arising in structural dynamics [20,27,30]) chose 7" = A-1E. This selection corre- 
sponds to Pad~ approximation with a = 0 [29]. Although this choice of  7" still 
fits the notat ion of algorithm 1, it differs in a significant computational  way from 
the commonly assumed choice of 7" = A. On the surface, selecting 7" to be a 
rational function of A and/or E still leads to a matrix-vector product  in (A1.4). 
However, such a 7" is not  known a priori; more to the point, an inverse involving 
A and/or  E should not  be explicitly computed.  Choosing 7" to be a rational function 
requires that each matrix-vector product  in (A1.4) involve the solution of a large- 
scale system of  linear equations. But solving systems of  linear equations can be 
much more computationally intensive than simply multiplying a known, sparse 
matrix times a vector. Using rational functions for 7" (to improve accuracy or to 
simply handle E ~ I )  does not come without a cost. We comment  on some pos- 
sible approaches to minimize this additional cost in section 7. 

As noted above, the Lanczos algorithm is typically treated as involving a known, 
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easily accessible ~. However, the use of rational functions of A and E in ~ is 
examined in [23]. The so-called rational Krylov space was defined as 
span{r0, ~lr0, ~2r0,. . . ,  ~k-lr0} where ~i could be a rational function and where 
the restriction that ~j = ~1~j-1 was dropped. Hence those model reduction 
approaches which select ~ to be a fixed rational function are special cases of a 
rational Krylov method since they enforce the relation ~Pj = ~ ~j_~. The resulting 
reduced-order model is a Pad~ approximant associated with a single shift tr. But the 
following section motivates interpolating g(s) at multiple frequency points. To 
achieve interpolation at multiple points, this paper drops the restriction that 
~'j = ~'1 ~j-i. The result is a rational Lanczos method. 

3. Limi ta t ions  of  single-point interpolation 

As discussed in section 2, Lanczos-type algorithms with ~' = (A - c rE ) - lE  are a 
desirable numerical approach to computing Pad6 approximants. The resulting 
reduced-order model interpolates the transfer function g(s) and subsequent deriva- 
tives of g(s) at a single point, or. However, even if one can accurately match attri- 
butes of g(s) at s = cr, the resulting reduced-order model may not be acceptable. 
Properties of Pad6 approximation and the Lanczos algorithm are combined in 
this section to indicate why the frequency response of a Lanczos-generated 
model tends to be only locally accurate about or for reasonably small values of k. 
Specifically, we are interested in two convergence properties of single-point Pad6 
approximations [2,6]: (P1) Pad~ approximants are exact at the point of interpola- 
tion while accuracy is lost away from cr and (P2) the accuracy of the Pad6 approxi- 
mant is lost away from cr more rapidly when pole(s) of the original system (the 
generalized eigenvalues of the pencil A -  AE) are near cr. This second property 
implies that even non-dominant eigenvalues in the neighborhood of cr (eigenvalues 
near cr whose presence has negligible impact on the system's frequency response 
g(iw)) can block the modeling of essential eigenvalues away from the interpolation 
frequency. Related to these properties are two important characteristics of the 
Lanczos method: (P3) those eigenvalues which are on the outer-edge of the spec- 
trum of the Krylov matrix ~ = (A - crE)-~E tend to be well approximated by 
the Lanczos method and (P4) the Lanczos method tends to converge to well- 
separated eigenvalues first. Corresponding to this last property, the Lanczos 
method typically does a poor job of identifying the multiplicity of identical (or 
nearly identical) eigenvalues. 

To examine the impact of these properties on single-point approximations, a 
simple 22nd order system is considered for the remainder of this section. The E 
matrix in this example is the identity matrix. As for A, 18 eigenvalues are in the 
neighborhood of 0 while the remaining four have an imaginary component of 
-t-500. Of these, only four eigenvalues close to the imaginary axis (-0.21 4- i and 
-0 .2  + 500i where i =  v/-L-1) play a significant role in the frequency response 
of the system (the two peaks on the system's frequency response in figure 1 
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Figure 1. Frequency response of example 1. 

correspond to these two eigenvalue pairs). Thus one expects to be able to model the 
original system of this example with k < 10. 

Unfortunately for k < 18, the single-point Lanczos generated model about 0 (a 
standard choice for or) fails to reflect the actual system's peak in magnitude at 
~o = 500, see figure 1. Even though most are unimportant to modeling the 
system, the eigenvalues around ~r = 0 are almost perfectly approximated before 
the high-frequency eigenvalues make an appearance. Such behavior is consistent 
with the two Pad6 properties P1 and P2. From a Lanczos point of  view, one 
must consider the Krylov subspaces o,T'k(A-I,A-lb) and oY[k(A -r, c). The eigen- 
values o f  A -~ are shown in figure 2. Note  that those eigenvalues o f  A which are 
near tr = 0 have reciprocals which are spread out in the spectrum of  A -1 . On the 
other hand, the high-frequency eigenvalues o f  A correspond to four eigenvalues 
of  A -~ which are all basically zero. More importantly, those eigenvalues o f  the 
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Figure 2. Eigenvalues of A -~ . 
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system near the imaginary (iw) axis appear on the outer edge of the spectrum of 
A -I . By property P3, the eigenvalues of A close to zero and the imaginary axis con- 
verge quickly in the reduced-order model. The desired high-frequency eigenvalues 
are also on the outer edge of A-~'s spectrum, but their convergence is hindered by 
property P4. Until k becomes large, the Lanczos method sees the four nearly iden- 
tical eigenvalues of A -~ at 0 (the high-frequency poles of the initial system) as a 
single, real pole. The Lanczos properties confirm that k must be large before the 
high-frequency behavior can be modeled. 

In general, we stress that a single-point Lanczos model will eventually model the 
frequency response of the system (e.g., when k > 18), but the size of the reduced- 
order model may become large in doing so. The convergence of the single-point 
method is dependent on eigenvalues which are unimportant to the model. More- 
over, these non-dominating eigenvalues appear in the reduced-order model. Yet 
if k is large and the model contains a large quantity of non-essential informa- 
tion, there is little value in obtaining the model. The above example is admittedly 
simple to clearly demonstrate these points. In section 5, we obtain similar results 
with a real-world problem. Finally, note that one may improve the single-point 
results by using a different interpolation frequency. For instance, a good model 
arises for the above example when k = 12 and o- = 20. However, it is not easy to 
locate such an interpolation point a priori. And in this example, even an optimal 
single-point interpolation falls short of the multi-point Pad6 approximation of 
section 5. 

4. Rat ional  Lanczos  algorithm 

To avoid the difficulties inherent to single-point interpolation, one can turn to 
model reduction via multipoint Pad~ approximation [16,32]. In multi-point 
approximation [2], the moments of the reduced-order model, the rhj,(ai) in (7), 
satisfy the moment matching condition (5). Every interpolation point, cri, is 
chosen to identify dynamics from a specific frequency range. One avoids trying 
to acquire information from a single, distant interpolation point. It is stressed 
once more that a Lanczos-type method is desired to avoid the numerical diffi- 
culties encountered in previous explicit moment matching methods [10]. 

To simplify the development of rational Lanczos, we assume in this section that a 
fixed number of moments (2])  are to be matched about each interpolation point. 
This restriction is not conducive to model reduction however and will be dropped in 
section 5. We will also assume in this section that no breakdowns (divisions by zero) 
occur in the rational Lanczos algorithm. This second assumption is related in some 
ways to the first and will also be addressed in section 5. 

The variant of the Lanczos method employed to generate a reduced-order 
model {E, A,/~, ~} satisfying (5) is denoted the rational Lanczos algorithm as it 
was inspired by the rational Arnoldi method of [24,25] for computing eigen- 
values. In a rational Krylov method, the Krylov subspace is replaced with 
span{r0, ~ l r0 , . . . ,  ~k-lr0} where the ~j are arbitrary rational functions in A and 
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Algorithm 2 Rational  Lanczos  [11] 

Input: ro = (..l - al  E ) - l b  a n d  q0 = c; 

F o r / : -  1 t o L  

For j = 1 to  

(A2,1)  k = ( i -  1 ) j + j ;  

(A'2.'2) ~k.k--1 = r  

(.-k2.3) vk = ( rk - - l / t ' k , k - -1 )  a n d  w k  = s ig n ( rT _ lqk - -1 )  " (qk--1/3 'k,k--1);  

(A2.4) if j < ] and i < i, 

(A2.4 .1)  ~t- = (.4 - ~ r , E ) - ~ E v k  a n d  qk = E T ( A  - t r i E ) - - T w k ;  

else i f j  = . T a n d i < L  

(A2.4.2) f:'k = (A - a,+l E ) - l b  and qk = ET( A -- ai+l E ) - T  c; 

else 

(A2.4 .3)  rk = ( A - a l  E ) - l  E v j  a n d  qk = E T  (A  - cq E ) - T w l ;  

end 

{A2.5) if j >_ 2 a n d  k :~ i],  

(A2.5.1) ['Yl,k .. �9 .y~,~] r = [0 ...0 ~or_,~ ,%r-~,l T and 

v T  - V k qk]  ; . .  [o . . . o  

else 

(A2.5 .2)  ['Yl,k - - -~r  T =  W T r k  a n d  [/31, k . . .  ~3k,k]T = V I ~ : ;  

end 

(A2.6)  rk = rk -- Vk ['/1,k - ' -  3"k,k] T a n d  qk = qk -- Wk [/~l,k ---  ]3k,k] T 

end 

end 

vk+ l = ( r k / ' / k + l , k )  where  "r~+l,k = ~ l  a n d  k = ~ff. 

E [23]. The rational Lanczos method developed below actually computes two 
rational Krylov subspaces, yielding biorthogonal Fk and Wk in place of rational 
Arnoldi's orthogonal Vk. There are, however, numerous subtle differences between 
the two rational methods which are needed to insure that the oblique projector, 
IIk = Vk Wk r, of rational Lanczos yields a rational interpolant. 

Strong similarities exist between the standard nonsymmetric Lanczos algorithm 
(algorithm 1) and rational Lanczos (algorithm 2). The key difference between the 
two lies in step 4 of algorithm 2. In rational Lanczos, the matrix, (A - a i E ) - ~ E ,  
multiplying a previous v vector varies with the interpolation point. Because this 
matrix is a function of cri, the union of several Krylov subspaces is computed 
(see theorem lbelow). In fact, we will see that each of these Krylov subspaces corre- 
sponds to 2] moments about an interpolation frequency, a;. 

We begin our analysis of algorithm 2 by examining the case where k is a multiple 
off. This case involves the execution of step (A2.4.2) and corresponds to a change 
in the interpolation point from ai to oi+ 1. Note that ~/k+ l ,k ' l )k+ l  • r k due to (A2.3). 
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Then placing Fk from (A2.4.2) into the expression for r k in (A2.6) yields 

'ffl,k 

Vk+1 " = (A - a~+lE)-lb = 71,0(A - a i + l E ) - l ( A  - or, E )  Vkel (8) 

LTk+l,k 

since ")'l,OVl = ( A  - chE)-Ib. Note in (8) that the vector ej is thejth standard unit 
vector of appropriate length. Multiplying (8) on the right by (A -a i+ iE)  and 
rearranging the expression results in 

L')'k+l,k J L')'k+Lkl 

which can be rewritten as 

where/~ = i-j_ When k is not a multiple off,  step (A2.4.1) is executed and the next v 
vector computed is still associated with the interpolation point ai. For  this case, 
placing the fk of  (A2.4.1) into the expression for r, in (A2.6) yields 

Vk+ 1 " = (A  -- o i E ) - l E V k e k  . (10) 

kO'k+l,k J 

Multiplying (10) on the left by (A - or; E )  produces 

EVkek = (A - eriE ) Vk+ 1 " , 

12%1,k.1 

which can be rewritten as 

( h - O - l E ) V ~ + l  L,),k;1,kj =EVfc+l  [,Yk;1,k ( O ' i - - c r l ) + e k  . (11) 
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Combining all/~ steps of algorithm 2 yields 

(A - O ' l E  ) V/~+1H/~+I,/~ = EV~+~K~+~,~, (12) 

where the columns, h k and kk, of n/~+l,/~ and K~+1,~ are defined via (9) and (11). 
Specifically, columns j, 2 j , . . .  ( f -  1) j  of H~+l,~ and K~+I,~ fit the form of (9) 
while the remaining columns satisfy (t 1). 

The matrices H~+I,~ and K~+1,~ are upper-Hessenberg. The elements, 7, of 
these matrices are computed in algorithm 2 so as to enforce a biorthogonality 
condition, i.e., W~V~ = I. However, as indicated by step (A2.5.1), a majority 
of the elements above the diagonals of H~+~,~ and K~+a,~ are typically zero and 
thus need not be computed in theory. To be precise, H~+~,~ is tridiagonal except 
for off-tridiagonal fill-in occurring in those columns where (using the notation of 
algorithm 2 ) j  = 1 or j = 2. The structure of H~+l, ~ and K~+,,~ follows from 
lemma 1 (see appendix) and is a generalization of the three term recurrences 
present in the standard nonsymmetric Lanczos algorithm. For example if 
k = j +  2, the element 7t, k = Wtr~k = Wtr( A -- o'2E)-lEv]+2 is zero for t < k - 1. 
This last fact is due to the biorthogonality of Vk and Wk and also by (37) 
of lemma 1, i.e., wtr (A-aEE)  -1E J~ffl(ET(A--a2E)-T, ET(A--aEE)-Tc)  U 
:,~y(Er(A - -a lE) -r ,c )  if t < k -  1. 

Special mention should also be given to the/~th columns of H~+I,~ and K~+l,~. 
Due to step (A2.4.3), the /~th column satisfies the general form of (11) with 
G = al. Thus k~ = [el 0] r so that V~+~K~+l ~ = V~K~,~. Making use of this last 

l fact when multiplying (12) on the left by W~ (A - a lE)-  yields 

n~,~ = W r ( A  - aIE)-~EV~K~,~, (13) 

where/~ =ji_ Expressions (12) and (13) serve as the initial relations between the 
projector V~ W~ r and E and A. 

Under the assumption that E is invertible, the relations (12) and (13) were util- 
ized in [11] to argue for 

.4 = K~,~ + alH~,~, E = H~,~, D = W T ( A  - fflE)-lb and O r = crV~K~,~ 

(14) 

in the reduced-order model, (2). In this paper, the assumption that E is invertible is 
dropped. Furthermore, the remainder of this section combined with several lemmas 
provided in the appendix actually proves that (14) corresponds to a multi-point 
Pad6 approximation of (1) (i.e., (5) is satisfied by the model selected by (14)). To 
arrive at this final result, we begin by obtaining a relationship between the rational 
Lanczos projector V k W T and Krylov subspaces. 

Theorem 1 
If Vk and Wk are the results of the first k steps of algorithm 2 with 1 < k </~ 
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then 

colsp(Vk) = { 3r -- a , E ) - ' E ,  (/1 - ~ E ) - ' b )  

i-1 1 x U,X~j((/1 - a t E ) - ' E ,  (A - a t E ) - ' b )  , 
I=l 

where i - 1 is the quot ient  o f  k / j .  Correspondingly ,  

colsp(Wk) = 3ffkiy(i_,)(E r ( / 1 -  a i E  ) -r ,  ci) U 3f-y(Er (A - cr tE)-r ,  ct) , 
I=1 

where the vector c t is c if l = 1 and (A - a t E ) - r c  otherwise. 

(15) 

(16) 

Proof  
We prove (15) via induction.  The result clearly holds for k = 1 since 71,0'/./i = 

(A - a l E ) - l b  by choice. Assume 

colsp(Vk_I) = 

-j(/-1)-I ((/1 -- ffiE) -I E, (/1 - o ' iN)- lb)  Uo,T)((/1 - crtE) - IN,  (/1 - eriE)- '  b) . 
/=1 

(17) 
For  k > 1, steps (A2.4) and (A2.6) in the k th  i teration of  a lgori thm 2 yield 

k - I  

7k, k-,Vk = ( A - - a i E ) - ' E V k - l  + ~_,Tt, k-lV,, (18) 
t= 1 

where vk-1 = b if (A2.4.2) is executed and Vk-l = Vk-i if (A2.4.1) is executed. Under  
~,(,) . #t) where the assumpt ion  (17), Vk-l = Vk-I --vk-1 

~)(i)_ 1E o,q{'k_](i_l)_l((A - o'i)-lE, ( / 1 -  o'iE)-Ib) (19a) 

and 

i - I  

~)(kl).l E U ~ j - ( ( A  - ol)-l g,  (A - o ' l ) - l b ) .  ( 1 9 b )  

I=1 

Thus  (18) can be rewrit ten as 

k - I  

7k, k_l'Ok = (A - GiE)E~)~i21 -q- (A - o'iE)-lE~)(kl21 --~ Z 7t, k-l'Ot" (20) 
t=l 

The vector (A - tr iE)- l  E~)(ki)__ 1 lies i n  ffCk_](i_l)( (/1 -- a i E ) - l  E, (A - criE)-lb) since 
one is simply mult iplying some power  of  (A - a i E ) - l E  again by (A - ~ i E ) - t E .  

l ( t)  Elsewhere, one must  use Iemma 1 of  the appendix to show that (A - eriE)- E ~ _  1 E 
{Jfl ((A - a , E ) - 1 E , ( A  - a i E ) - ' b )  U,_,=-i-la~ry((A~ - a t ) - l E , ( A  - t r / ) - I b )  }. Lastly, 
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�9 k - I  ~-],=l 7t, k-lVt E colsp(Vk_I) where colsp(Vk_1) is defined by (17). Combining these 
last three facts with (20) implies that Vk satisfies (15). The portion of the proof 
corresponding to (16) is the dual to that presented above. [] 

In [29], it is shown that an oblique Krylov projector leads to a Pad6 approxi- 
mation about a single interpolation point. Except for certain technicalities which 
are handled in lemmas 2 and 3 of the appendix, an argument in [29] can be general- 
ized to prove that an oblique projector corresponding to a union of multiple Krylov 
subspaces leads to a multi-point Pad6 approximation. This result is given in the 
following theorem. 

Theorem 2 
Let the j t h  moments of the original and reduced order systems about the inter- 
polation point ~r,. be mj(cri)= c r { ( A - c r i E ) - I E } J ( A - c r i E ) - l b  and ~ j ( t r / )=  
~r{(~ _ ~ri~.)-l~}j(A _ cri~)-l/~ respectively. If A = Kk, k + trlHk, k,E = Hk,k, 
b=  W k r ( A - o l E ) - l b  and O r =CrVkK_k,k where Hk+l,k,Kk+l,k, Vk+l and Wk+l 
are the results of algorithm 2 with k = k (i.e., algorithm 2 is run to completion), 
then mj(tr~) = rhj(cr;) for i =  1 ,2 , . . . , i - and j  = 0, 1 , 2 , . . . , 2 f -  1. 

Proof 
Corresponding to the two-sided nature of nonsymmetric Lanczos methods, it is 
helpful to split up the expression for mj (e;) as 

mj (~r,.) = [cT{(A -cr iE)- 'E}J t l [{ (A-cr iE)- lE}:2(A-cr ,  E)-'b], (21) 

where Jl = []/2] and h = Lf/2J �9 If I Ik=  VkW~ is a biorthogonal projector, 
v E colsp(Vk) and w E colsp(Wk), then IIkV = v and WrIIk = W r. Thus (21) can 
be rewritten as 

mj(ai) = [CTVk{ W~(A - cr, E)- 'EVk} j'] 

• [ { W { ( A - o ' i E ) - l E V k } J Z m k ( A - c r i E ) - l b ]  (22) 

by the properties of the biorthogonal projector and theorem 1. From (22), mj(cri) is 
also the j th  moment about ~r; of the restriction of (1) by Hk. We must now simply 
show that this moment of the restricted system takes on the form specified by 
rhj(sri). Two lemmas from the appendix will be needed to relate the matrix 
W~ (A - ~riE)-lEVk of (22) to the matrices Hk.k and Kk.k appearing in rhj(~ri). 

We proceed by concentrating on the right hand side of (22), i.e., 

{ W]'(A - eriE) -I EVk}J'WJ(A - cr, E)-lb (23) 

= { W ] ' ( A - c r i E ) - l E V k } h W k r ( A - ~ r i E ) - ' ( A - t r i E ) ( A - c r i E ) - ' b  

= { W ] ' ( A - c r i E ) - l E V k } h W k r ( A - c r i E ) - l ( A - t r i E ) V k W ] ' ( A - ~ r i E ) - ' b .  

By using (40) of lemma 2 and recalling that ( A -  criE)-lb = 71,oV1, (23) can be 



K. Gallivan et al. / Lanczos algorithm for model reduction 47 

rewritten as 

{ W T ( A  - a i E )  -1EVk} J2[Kk, k -- Wkr(A - a i E ) - I ( A -  o iE)rker(cr l  -- cri)]Jk, kel~[1,O, 

where Jk, k = [Kk, k + Hk, k(al -- ai)]-'. This most recent expression can be further 
simplified to 

{ W r ( A  - a iE)- lEVk}J2Kk,  kJk, kel'h,O (24) 

due to (45) in lemma 3. Applying (41) of lemma 2 once to (24) yields that (23) is 
equivalent to 

{ W~'( A -- ai E )-l  EVk } j2-1[Kk, k Sk, kHk, k + W]"( A - cri E )-l  ( A - al E ) rke{ 

x { I  + (al - ai)Sk,kHk, k}]Jk, kel"Yl,o, 

which can again be further simplified via (45) to 

{ W T ( A  - o i E ) - l E V k } h - l K k ,  kYk, kHk, kJk, kelT,,o . 

After the repeated use of (41) and (45) in a similar fashion, one finally obtains 

{ W (A -  ;E)-'EVk}J2 W{(A - a ; E ) - ' b  

= Kk,k{Jk, kHk, k}J2Jk, kW (A --  iE)-lb, 

so that 

mj( cri) = C r Vk { W ~  ( A - (Ti E )-l EVk } Jl Kk, k { Jk, kHk,k } J2Jk, k WkT ( A -- cr, E )-l  b. 

(25) 

We now concentrate on the left hand side of (22). Applying (41) of lemma 2 to 
(25) yields 

mj(ffi) = cT Vk{ W T  (A -- cr iE)- l  EVk )  J'-l[Kk, kJk, kHk, k + W~'(A - o ' / / )  -1 

x (A - a i E )  rke[{ I  + (ol -- ai)Jk, kHk, k}l{Jk, kHk, k}hSk, k W] ' (A  - cr iE)- lb ,  

which becomes 

c T Vk { W ~  ( A -- cri E )-l  e V k  } J'-' Kk, k { Jk, kHk, k } J2+' Jk, k W ~  ( A -- a, E )- '  b 

since the residual vector, rk, drops out due to (46). The repeated application of (41) 
and (46) in an analogous manner yields 

mj(ai) = C r VkKk, k { Jk, kHk, k } J Jk, k W ~  ( A -- ai E )-l  b. (26) 

The right hand side of (26) is in fact rhj(ai) given the definitions of A, E,/~, 6 and 
Jk, k : (a  - oi/~) -1. [] 

5. Model  reduction with the rational Lanczos algorithm 

Using the rational Lanczos method of section 4, one can model the 22nd order 
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Figure 3. Frequency response for example 1. 

problem of section 3 with much smaller values of k than required by the single- 
point interpolation about 0. For instance, consider interpolating this system 
about the points {.1, 1, 10, 100, 1000}. Matching four moments about 0"4 = 100 
and two moments about each of the other four points generates a 6th order 
rational interpolation. Figure 3 demonstrates that the frequency response of the 
6th order model is nearly identical to the frequency response of the original, 
22nd order system. Recall that the single point interpolation of section 3 did not 
yield a response with such accuracy until k grew to be 18. By utilizing multiple 
interpolation points, the size of k was reduced from approximately n to a value 
consistent with the amount of important dynamics in the original system. Of 
course, selecting a proper combination of interpolation frequencies, 0",., and the 
number of moments, 2/, to be matched about each cr i is by no means a trivial 
matter. In this section, a technique is developed for implementing the rational 
Lanczos as a model reduction tool. 

For ease of computation and for lack of better application-specific information, 
the [interpolation points are fixed in this paper with a log-linear spacings over a 
frequency range, 03rain to Wma~, specified by the user. We refer the reader to [18] 
for a discussion of point selection in the context of rational interpolation of the 
frequency response. The interpolation points are spread over the positive real 
axis with al = win;, and 0-~ = Wmax. The moments generated about each 0-i tend to 
yield information pertaining to the original system's response in the neighborhood 
of the frequency 0-;. One way of justifying this last statement is to examine the 
eigenvalues of the reduced-order model in an approach analogous to section 3. 
For a 0"i between wmi, and w,,~x, those eigenvalues of (1) with imaginary compo- 
nents >> or; appear in the spectrum of (A - 0- iE)-~E as a cluster at 0. Those eigen- 
values with an imaginary component << 0-i appear in the spectrum of (A - 0-i E )-1E 
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as a cluster at 1/a;. The remaining eigenvalues of the original system tend to be well 
spread in the spectrum of (A - t r /E)- tE with those eigenvalues near the imaginary 
axis on the edge of the spectrum. By generalizing the Lanczos properties discussed 
in section 3, one can expect that the inclusion of moments about tri leads to a 
reduced-order model that has some eigenvalues which approximate those of 
(A - AE) in the neighborhood of + i  t r/. Modeling the eigenvalues in the proximity 
of + i a ;  tends to in turn lead to a reduced-order model whose transfer function 
approximates g(s) for frequencies near try. 

Choosing real interpolation points leads to a rational Lanczos algorithm which 
avoids complex computations (assuming the original system (1) is real). However, 
complex (imaginary) points may be preferred since one is in fact interested in inter- 
polating g(s) along the imaginary axis. The rational Lanczos algorithm is not 
restricted to real ~r~. For example, one might combine algorithm 2 and the methods 
of [25] to arrive at a complex interpolation point, rational Lanczos method. The 
selection and implementation of complex interpolation points will be discussed 
in a forthcoming paper. 

Besides placing the interpolatio n points, one must also be concerned with how 
many moments are to be matched about each of these points. In section 4, the 
number of moments about each interpolation point was fixed a priori at (2]).  
The first f rational Lanczos iterations corresponded to the interpolation point try, 
the next j iterations were associated with tr2, etc. Although this approach allowed 
for a simpler development of theorems 1 and 2, it is not preferred for acquiring 
an acceptable reduced-order model. Rather, we would hope to choose an inter- 
polation point in the (k + 1)st rational Lanczos iteration which yields in some 
sense the greatest improvement between the kth and ( k +  1)st order models 2. 
One should no longer simply perform all of the rational Lanczos iterations corre- 
sponding a given interpolation point consecutively. To begin to formalize these 
statements, consider a somewhat more generalized pair of residuals 

r(i) = (A - a i E ) - l E v  (i) V k W f ' ( A  - a i E ) - l E v  (i), v (i) c:_ colsp(Vk), k 

(27) 

I') - ( i l ,  w colsp(W ), 
(28) 

where the superscripts (i) are added to explicitly denote the dependence m" ,(~) " "k and 
q~i) on the choice of tri. The (k + 1)st iteration (and also the vectors Vk+l and Wk+l) 
will be said to correspond to the specific inte.rpolation point cry. E {~rl,.. . ,  trr} if 
Vk+l and Wk+l lie parallel to r~ ik§ and q~ik.0 respectively, in performing the 

2 The kth order reduced-order model is defined in this paper to be the restriction of (1) by the pro- 
jector VkWk r. For the special case where k =/~, (13) holds and thus the reduced-order model can 
equivalently be defined via (14). It is stressed that one cannot in general define the reduced-order 
model in the form of (14) for k </~. 
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(k + 1)st iterations (computing Vk+ 1 and Wk+O, one can thus choose from among i- 
residual pairs. This ability to select from among i-residual pairs per iteration reflects 
the freedom provided by multiple interpolation points. The goal is to choose the 
residual pair in the ( k +  1)st iteration so that the ( k +  1)st order model is in 
some sense the best possible improvement over the kth order model. 

Motivated by the discussion of  the previous paragraph, algorithm 3 is proposed 
as a version of  the rational Lanczos algorithm suited for the model reduction prob- 
lem. Algorithm 3 is a twist on algorithm 2 which does not require that all of  the 
moments corresponding to a given interpolation point be computed consecu- 
tively. Nor does algorithm 3 demand that the same number of  moments be com- 
puted about each interpolation point. Rather, algorithm 3 attempts to select 
from among the [ interpolation points to acquire an acceptable reduced-order 

Algorithm 3 Rat iona l  L a n c z o s  for m o d e l  reduct ion 

For i - -  1 toi-, 

Input: r(o ') = f~') = (A - a , E ) - l b  and  q(0 ') = ~(0 ') = c a n d  r,  = 1; 

end 

For k =  1 to k, 

(A3.1) set  z k to be  the  value of  { 1 , 2 , . . . , ~ w h i c h m a x i m i z e s  2 r(i) T "* ~ 17i k - - I  qk--l(I) I., 

(A3.2) (q') /,  iq l  T (ql  
"Yk,k--1 -'~ V l r k - - 1  qk-- l [ ;  

�9 ( , ~ ) .  (,~) . . , (q,)r ( ,~) ,  , ( l ~ ) .  (q.) 
(A3.3) v k : t r k _ l / ' ~ k . k _ l }  a n d  Wk = s Jgn t rk_  1 q k _ l }  " l, q k _ l / " l k , k _ l ) ;  

-("k) (A  - a , . E ) - l E v k  a n d  ~ '~ ' )  = E T ( A  - a , ~ E ) - T w k ;  (A3.4)  r k = 

(A3.5) for t = 1 to k, 

if t _> r,~, 

"Yt,k ~ Wt ,k  ~ Vt qk  ; 

else 

"Yt,k = 0  and f l t , k  = 0 ;  

end 

end 
( 4 )  -(,~) ~ (q,) (,~) .(q,) k <~(,~) 

(A3.6)  r k = r k - ~ vt"h, k a n d  qk = qk -- ~ w t ' t , k  ; 
t ~ r t *  k 

(A3.7)  r,k- = k; 

(A3.8)  for i :~ i~., 

t ,I = ~,1 = E T ( A  _ a i E ) - r w l ;  end i f k = l ,  q0 

,.'/' 4'_ ), 4 ') _I,> w = -- k k k--1 = qk- -1  -- k k ttk--1 ) 

F(k '1 = ~(k'_ } , a n d  t~ ('> --= %-1-'('> " 

It,) r [..y(i) . .7(') . T--CO 1 
"~l,k'""k,kJ = [ 1,k-, "' k-l,k-~ ~k'k--l]; 

end 

end 

, ( ,T~, (,T~ , ( 'T) / , ( q ) r  ( q )  where ~'~+1 ,k v l r ~  qk " v~+ 1 = trk / ' ) 'k+l ,~ /  ---- 
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model. Its ability to do so is demonstrated with an example at the end of this 
section. However, we first consider several features of algorithm 3. The values of 
v u) and w (0 in (27) and (28) must be specified. The criterion used to select from 
among the { interpolation points in each iteration (A3.1) must be developed. 
And the structure of the /~th order model generated by algorithm 3 must be 
presented. 

Algorithm 3 specifies that the vectors v (0 and w (;) in (27) and (28) be the right- 
most columns of Vk and Wk respectively which also correspond to the interpolation 
point ~r i. This choice insures that the order-k model generated by algorithm 3 is still 
a multi-point Pad6 approximation of the original system. Specifically, 2~ moments 
are matched about ~r; where ~ is the total number of times i; = i in step 1 of algo- 
rithm 3 for k = 1,... ,/~. A proof of this statement will not be provided as it is 
simply a more tedious version of that which is already in section 4. All of the 
results developed in section 4 can be adapted for algorithm 3; only the quantity 
and ordering of the moments computed about each cr i vary from before. 

The prescribed choice of v (i) and w (i) also leads to one other interesting point. 
-(~) and q(0, are carried from one iteration to the Note that i-pairs of residuals, "k 

next. But only one pair of residuals is actually incorporated into the projector in 
each iteration (the pair which hopefully leads to the greatest improvement between 
the kth and (k + 1)st order models). Only two new residuals are computed in steps 
(A3.4) through (A3.6) to replace the pair selected in (A3.1). The other residual pairs 
can be carried over into subsequent iterations after cheap updates in step (A3.8). 
Hence only one pair of residuals (only the solutions to two linear equations) 
need be computed per iteration. The other residuals pairs can be carried over 
from one iteration to the next because the values ofv  (0 and w (i) used in computing 
the ith residual pair depend on ~r i but not k. The vector v (;) used in rk (0 is chosen to 
be the most recent column of Vk which was also formed via multiplication by 
(A - f f i E ) - l E .  

One of the most important components of algorithm 3 is (A3.1). Based on the i- 

_(i) r_(,) I, an interpolation point is selected for use in the kth itera- values of or/21 ,k_l qk-l 
tion. A justification for this selection criterion arises out of the following result. 

Theorem 3 
Let Vk W r be the projector formed via the first k </~ iterations of algorithm 3 and 
assume cri was chosen to be the desired interpolation point of (A3.1) inji  of these 
previous k iterations. If i ~ i~*, then (q(kg))rr~ i) is proportional to the difference 
between m2j,+l (cri) = c r { (A - a i E  ) - l  E } 2j'+l (A - cr iE) - l  b and rh2j~+ l (ai). Other- 
wise, ' (O,r (0 ^ (qk ) rk is proportional to majq (o'i;) - m2jq (trq). 

P r o o f  
The distinction between i = i~ and i r i~ is a minor technicality arising out of the 
fact that the first vector in Wk needs to be c rather than E r (A - crq)-rc. A proof is 
only provided for i r 
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Given the definitions of r~ i) and q(k 0 in (27) and (28), 

q(k i)r r(k i) = W ( i ) r  { ( A  - o" i E ) - ' E  } 2 v ( ' )  - w ( i ) r  ( A  - cr i E)-IEVk W r (A - ~r i E ) - '  Ev (i). 

(29) 

From theorem 1, it is known that v (i) is a linear combination of vectors which serve 
as a basis for the union of i-Krylov subspaces. In particular, because a; was chosen 
to be the interpolation point in j,. of the previous k iterations, v (') can be written as 

(i) + ~(0 where 

~(i) = ,ff~i)-I { ( A -- o'i)-l E } ji-I ( A - tTie  ) - l  b E colsp(Vk) 

and 

~( i )  �9 ~./_1 ((A _o . iE ) - lE , (A  _o . iE ) - l b )U ,~ j , ( (A  _c r IE) - IE , (A  _o. tE)- ,b)  

C colsp(Vk). 

Combining the expression for ~3(i) with lemma 1 yields (A - ai E)-lEf)(i) E 
colsp(Vk) SO that VkWr(A-a iE) -aEv(g )=VkWr( f ( r l i ) ) -X (A-a i ) - lE~( i )+  
( A -  o iE)- lE~ (i). Although not essential to the proof, an inspection of algo- 
rithm 3 shows that 7n (i) = I-I,~l ~[t,t-I where ~[t,t-I = 7t, t-I if it* = i and ~ t , t - I  = 0 

otherwise. Similarly, one can write w (;1 as #(0 +#( ; )  where #( i1= (/3n(")) -I 
= (# ( i ) )T(A- f f i ) - lE  , and /~i) = { ET  IA - o ' iE) -T } hc, (~v(i)) T (/1 - o'i) -1 EVk W~ 

-4-7~ ~). Using all of these facts in (29) yields 

(i)\T (i) qk ) rk = (w(i))r {(A - criE)-lE} 2~(i) - (ff;(i))r(A - ~r iE)- lEVkW: 

X (A - t T i E ) - l E v  (i) 

= -I-(-),n(i))-2 (c r { (A - a i E ) - ' E  } j'+' (I - V k W r ){ (A - a i E ) - I E  } Ji 

x ( A - o i E ) - I b ) .  (3O) 

As mE,.+l(ai)= c r { ( A -  criE)-lE}2Ji+I(A- criE)-lb, the proof is complete if 
Ji T -1 ji-k[ T -1 Ji --1 " the term c { ( A - a i  E) E}  VkWk { ( A - a i  E) E}  ( A - a i E )  b m (30) is 

rh2j,+~(ai). To quickly demonstrate this last fact, we employ a small trick from 
[7]. Note that the original system (1) can be rewritten as 

(A - a i E ) - l E 2 ( t )  = (A - a i E ) - l A x ( t )  + (A - a i E ) - l b u ( t )  and y(t) : crx(t) 

so that the restriction of (1) by Vk W]" becomes 

W T ( A  - tT iE)- lEVkfC( t )  = W T ( A  - c r i E ) - l A V k 2 ( t )  q- w T ( A  - ~r iE) - lbu( t ) ;  

~ ( t ) : c r V k 2 ( t ) .  (31) 

Taking the Laplace transform of (31) yields that the transfer function of the order-k 
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model is 

~, (s) = c r v,[ W r  ( A - a, E )- '  A Vk - s W r  ( A - a~ E )-t EVk]-' Wk( A - ai E )- '  b 

= C r V k [ I + ( a i - s )  w r ( A - a i E ) - l g v k ] - l w ] ' ( A - t r i E ) - ' b .  (32) 

The (2j; + 2)nd coefficient of the power series expansion of (32) in terms of 
(s-cry) is CrVk{Wr(A--cr~E)-~EVk}Zj i+lWk(A--cr iE)- lb  which is equal to 
c r{(A - a , E ) - ' E } Y ' + ' V k W ~ { ( A  - a i E ) - I E } J ' ( A  - a , E ) - ' b .  [] 

The quantity (r~i))rqCkil is proportional to the absolute error between the first 
unmatched moment about tr i of the original system and the reduced-order 
model of dimension C;) 2 03 r (;) k. In fact, (~'fi) (qk)  rk is an exact expression for the 
absolute error. The use of the absolute moment error appears to be best suited 
for imaginary interpolation points and will be reported on elsewhere in the 
future. In this paper, real shifts are employed (recall the discussion at the beginning 
of this section), and an approximation of the relative error in the moments, 
(72[,~(i)~T r(i) i ktlk ] *k ' seems to be most useful. The scalar a :  normalizes the residuals 
against the distance from the interpolation point to the iw axis. 

Given no other information, it makes little sense to match a moment in the 
( k +  1)st iteration if the error between that moment and the corresponding 
moment of the order-k model is already small. Rather, one should logically 
direct their effort towards a value of ~ri where the error in the first unmatched 
moment (e.g., m2ji+ I (O'i) v e r s u s  r~/2ji§ I (O'i))  is large. After choosing cr i as the inter- 
polation point for the (k + 1)st iteration, and performing this iteration, theorem 
2 tells us that this error, m2j,+l (~r;) - rh2j,+l (cri), becomes 0. This concludes our justi- 
fication of step 1 of algorithm 3. By choosing a o'~ among the i- possibilities which 
maximizes tri2(rCki)) rq~i), one hopes to add as much beneficial information as pos- 
sible to the reduced-order model in the ( k +  1)st iteration. The selection at 
(A3.1) is in some sense locally optimal and is perhaps the best one can hope for 
given the limited quantity of information available at the (k + 1)st iteration. 

Finally, one should note that the dot-product of the residuals is an infamous 
quantity in the standard (single interpolation point) non-symmetric Lanczos algo- 
rithm. The occurrence of a zero or near zero dot-product with r k ~ 0, qk ~ 0 is 
termed a serious breakdown [22] as it leads to division by zero in the algorithm. 
A large amount of effort has been placed towards working around this breakdown 
in the standard non-symmetric Lanczos algorithm, e.g., the look-ahead Lanczos 
method [9,21]. The serious breakdown itself is known to be connected with 
system theory [22]. For example, i f  r~+lqk+ l = 0, the order-k and order - (k+ 1) 
models of the single-point Lanczos method would share the same minimal realiza- 
tion. This fact is entirely consistent with theorem 3. Rational Lanczos tends to 
avoid such breakdowns since one works to maximize a scaled version of 
(r(ki))rq(k i). Selecting an interpolation point with the goal of maximizing the 
amount of new information included in the order-(k + 1) over the order-k model 
leads to a fortuitous by-product: a tendency to naturally avoid breakdowns. Of 
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course, given that one can only reasonably access a finite number of interpolation 
points << n, pathological cases exist where none of the fpoints yield new informa- 
tion at the kth iteration. Look-ahead or additional, new interpolation points would 
be required in this case. Such a situation has not yet been encountered in practice 
and is seemingly unlikely unless the reduced-order model has actually converged 
over the specified frequency range�9 

The last topic to be covered with respect to algorithm 3 is the structure of the 
matrices making up the reduced-order model of dimension/~. This reduced-order 
model again takes the form of (14). Related to (9) and (11), the kth columns of 
H~+1.~ and K~+~,~ are defined for algorithm 3 through the expression 

�9 J 

(A -- oi;E ) V/~+I /[r il 1 
l,k 

(";)~ I 
- -  71,0 t~l : (0"i;+ I - -  O'il*) 

(i;+1) : (ik+l) 
"~k+l,k ~ k + l , k  

~ .  0 0 

if l'k*+i r {i l*, ' ' ' ,  i~}. Otherwise, 

- .. ] 

( A - ~ E ) Vf:+1 "~('i +l) 
7(i~+1 ) 
+ l , k  

/ "_ (i;+l)" 
"Yl,k 

= EV~+ I (0"i,~+ I - -  O'i( ) -JI- eri; 
~ ik*+l) 

+l ,k  

0 

As in section 4, a number of the 7 elements making up H~,~ and K~,~ are zero due to 
step (A3.5). Figure 4 provides as an example the structure of a simple H12,11 matrix 
constructed by switching back and forth between interpolation points Ol and a2. 
H~,~ is primarily tridiagonal with nonzero elements only appearing above the tri- 
diagonal when a change in the interpolation point occurs�9 These changes in the 
interpolating point are indicated by the dashed partitioning of Hl2,1t in figure 4. 
Using arguments similar to those provided in section 4, one can show that the 
first nonzero element in the kth column of H~,~ is in the/~th row. The value of/~ 
is the index of the next to last column vector of Vk which was constructed using 
the same interpolation point as Vk+t. This next to last behavior is a generalization 
of the three-term recurrences of single-point, nonsymmetric Lanczos. In single- 
point Lanczos, the next to last column vector of Vk is always Vk_l. 

From the definition of/~, the upper bandwidth of Hk, k can be restricted to i-if the 
interpolation points are perfectly interspersed, i.e., if the interpolation points are 
chosen so that the difference k -  k is always equal to i. Algorithm 2, on the 



K. Gallivan et al. / Lanczos algorithm for model reduction 55 

if 
I 

2 

1 2  1 

0 

o o o  

o o  D 

o o l a D  

Q Q O Q  Q 

Q I O  O Q  

Q O  o o  

I Q Q O Q  

O D O O  

D 

a 

2 4 6 8 

c o l u m n  

1 0  1 2  

Figure 4. Structure of a sample matrix Hi2,t ] . The first four columns of H~2,1 t correspond to the vec- 
tors v2 through v5 with interpolation point ~rl. The last three columns of Ht2,H also correspond to tr~ 

while the middle four columns correspond to cr 2. 

other hand, computes all of its iterations corresponding to a given interpolation 
point in order. Hence the strategy of algorithm 2 leads to off-tridiagonal spikes 
which always rise to the first row. In between these two extremes, the interpolation 
points are chosen with respect to improving the reduced-order model and struc- 
tures similar to figure 4 typically result. It may be advantageous in future work 
to achieve shorter recursions by compromising between the proposed interpola- 
tion selection strategy (based on theorem 3) and perfectly interspersed interpola- 
tion points. 

It must be stressed that the structure of the H~,~ and K~,~ matrices holds in 
theory. In practice, the use of short recurrences in any Lanczos type algorithm 
will lead to a gradual loss of biorthogonality between Vk and Wk as k increases. 
Super-tridiagonal elements of H~,~ will in turn be non-zero. The loss of biortho- 
gonality between Vk and Wk is well-known [13] and complete fixes (e.g., complete 
reorthogonalization) are expensive. In the following example, ignoring the loss of 
biorthogonality versus complete reorthogonalization had a negligible impact on 
the results. A more detailed study of the effects of loss of orthogonalization in 
the context of model reduction remains an area of current and future work. 

As a second example, we consider a 120th order SISO system which describes the 
dynamics between the lens actuator and radial arm position of a portable compact 
disc player discussed in [31]. The transfer function of this system is shown as a solid 
line in figure 5. Due to physical constraints on the size of the system's controller, a 
model with k < 15 is desired. Rational Lanczos (algorithm 3), using in order the 15 
interpolation points {105, 103, 100, 104, 104, 10, 105, 105, 100, 100, 100, 100, 100, 100, 
100} yields a frequency response which is nearly identical to that of the actual 
system. On the other hand, the difference between the frequency responses of an 
order-15 single-point Lanczos model about cr = 0 and the original system is signifi- 
cant for w > 100. The transfer function for a single point model about w,,~, = 105 is 
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Figure 5. Frequency response for example 2. 

also displayed in figure 5. The error for this single-point model is large for 
w < 1000. The convergence of the single-point models is delayed by the difficulties 
discussed in section 3. 

6. Mode l ing  error  

A knowledge of the error between the original system and reduced-order model 
is important for several reasons. In simulation, one needs to know that the response 
of the reduced-order model is sufficiently close to that of the original system. In 
control, one hopes to construct a controller from the reduced-order model which 
is robust enough to yield acceptable performance with the actual system. Even in 
performing model reduction with rational Lanczos, we would like to make 
improved choices for future interpolation points based on the error up to the kth 
iteration. In all of these cases, it is desirable to quantify the error in terms of the 
differences between the frequency responses of the original system, g(s), and of 
the reduced-order model, ~(s). 

Theorem 4 
If ~(s) is the transfer function of the reduced-order model defined via (14), 
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then 

/ 1 \  
c(s) = g ( s ) - ~ ( s ) =  { c r ( s E - A ) - l b } f ~ s - - ~ ) ,  (33) 

where b = (A - lzE)r~,  f ( s )  = e[ (H~,~  - sK~,~)-Ie171,o and # is the first interpola- 
tion frequency, e.g., ~rq. in algorithm 3. 

P r o o f  
From (14) and the definition of the transfer function, 

g(s)  -ao ( s  ) = c T ( sE  - A ) - I  b - cV~Kf~,~(H~,~(s - #) - K,~,/~) - 1 W : ( A  - p,E ) b 

= c T ( s E  - A ) - I ( A  - u E ) { ( A  - p ~ g ) - l b  

+ ( (A  - I z E ) - I E ( s  - Iz) - I)V~Kf~,f,(Hf,,f,(s - U) - Kt~,/~)-lelTl,o} �9 

(34) 

Adapting an argument from [17, theorem 3.4], recall (12) and rewrite (34) as 

= c (sE - A ) - '  ( A  - - - - 

x (H~,~(s - #) - Kt~,~)-l} e,Tl,o 

= c r ( sE  - A ) - I ( A  - # E  ){ (s - I z) rr, e r (Hr,,f,(s - #) - K~,~)-' e 171,0 ]' 

c r ( s E  A ) - ' ( A  I zE) r~e{ (H~ ,~  (s - l  - I  . . . . .  #) K~,i) e171,o- [] 

The error expression (33) is in fact identical in form to the rational interpolation 
error already derived in [18, section 3]. However, the rational interpolation algo- 
rithm of [18] assumes no more than one moment is matched about each interpola- 
tion frequency cr i and does not make use of the Lanczos algorithm. Analogous to 
the comments of [18, section 3], several points should be made concerning the 
modeling error, c(s). First, f ( s )  corresponds to a/c-dimensional system which can 
be evaluated cheaply. Thus the modeling error can be expressed as a scalar 
function times the frequency response of the original system except that the 
input vector b is replaced by b. As a rough estimate of the error is typically 
sufficient, one can approximate (33) as f ( 1 / ( s - # ) )  times some low-order 
approximation for c r ( s E -  A)-l[~. The restriction of { A , E , b ,  c} by IIk is not a 
good candidate for this approximation though because the error is orthogonal to 
the projection, e.g., W ~ ( A  - #E)-l/~ = 0. 

As suggested by the proof of theorem 4, the modeling error (33) is also related to 
the residual errors derived in [17]. It is proposed in [17] that the norm of the residual 
error, b - ( s I  - A )  V~(sI  - H~:,~) - 1 W r b ,  should be made small when performing 
model reduction via the nonsymmetric Lanczos method (note that [17] assumed 
E = I and an expansion point at infinity so that H~,~ is a tridiagonal, low-order 
approximation for A in that paper). For rational Lanczos and thus rational 
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interpolation, the methods of [17] can easily be adapted to express the appropriate 
residual error as 

Er(S ) = ( A  - -  # E ) - ' b  - ( (A  - # E ) - ' E ( s  - # )  - I ) V f ,  Kf,,f,(H~,~(s - # )  - K k , ~ ) W  r 

x (A  - # E ) - l b  

r~e[(Hk,~  ( s - -  -1 -!  = -- I~) K~,~) ei71,o 

= rf~ 

Striving for a small residual error as suggested in [17] can therefore be thought 
of as approximating e(s) with er(S) where IIr ll is used as an estimate for 
c r ( s E - A ) - l b .  

With error expressions, one should be able to actively adapt the set of interpola- 
tion points as k increases to rapidly address those frequencies where large error still 
exists. With the standard Lanczos algorithm on the other hand, one can do nothing 
to promote convergence away from the interpolation point except increase the 
value of k. The use of error expressions in conjunction with rational Lanczos is 
currently being explored. 

7. Conc lus ion  

This paper showed that the rational Lanczos method (algorithm 2) leads to Pad~ 
approximants about multiple interpolation frequencies. The approach of [7] is a 
special case of the rational Lanczos method where only one interpolation point 
is allowed. The earlier methods of [4,20,27] are an even more specialized case of 
the rational Lanczos approach where only an interpolation point at zero is per- 
mitted. Given multiple interpolation points, this paper presented an easily com- 
putable criterion based on the inner-product r~qk for choosing among the 
possibilities. Two examples were provided to indicate why model reduction via a 
rational Lanczos method has the potential for significant improvement over exist- 
ing single-point Lanczos approaches. Utilizing multiple interpolation points pro- 
vides the freedom to search out the dominant dynamics of the system. The 
convergence of a single-point interpolant, on the other hand, can be slowed by 
the presence of non-dominating dynamics. 

Linear time-invariant, SISO systems were considered for model reduction. A 
block rational Lanczos algorithm has been developed and will be available in a 
forthcoming paper. However, other issues still require additional work. Complex 
interpolation points, the moment error expressions of section 5 and the transfer 
function error expressions of section 6 should be better utilized to increase the effec- 
tiveness of the rational Lanczos method. Approaches for inverting (A - cr i E)  are 
also needed. Sparse matrix factorizations or iterative techniques must be utilized 
to avoid large computational costs. 
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Appendix 

Lemma 1 
If a and ~ are two nonidentical interpolation points, then 

(A - crE)- 'E{(A - ~E) -1E}J - I (A  - ~E) - ' b  

E {span{ (A - a E ) - ' b }  tO X)( (A  - CE) -1 E, (A - ~E)- lb)}  

and 

E r ( A  _ o e ) - T { e T ( A  --  C E )  - }j-lc 

E {span{Er(A - aE)  - rc )  tO :Uj(Er(A - ~E)-r ,  c)} 

for any value o f j  >_ 1. 

(35) 

(36) 

(37) 

Proof  
We prove (36). The key is to note that (A - c rE )  -I can be rewritten as 

( A  - = (A - -  E)(A - 

= (A - o ' E )  - I  (A - tTE + (cr -- ~ ) E ) ( A  -- ~E)- ' ,  

which yields 

(a - ~)(A - crE)- tE(A - r  -1 = (A - c r E ) - '  - (A - ~E) -l.  (38) 

Using (38), (36) follows via induction. I f j  = 1, multiplying (38) on the right by b 
gives 

(A - o E l - l E ( A  - CE)-lb = (o" - r - oE) -1 - (A - CE)-l}b 

and (36) is satisfied. Next assume that (_36) holds for j  = 1 , . . . ,  ( ] -  1). Multiplying 
(38) on the right by E { ( A  - ~E) - IE}J -2 (A  - ~E)- Ib  yields 

(O ' - -  ( ) ( A  - o'E )-I  E {  (A - ( E ) - I  E } ]-I (A - ( g ) - l  b = (A - o " 8 ) - 1 8  

• { A - ~ E ) - I E } J - 2 ( A - C E ) - l b - { ( A - r 1 6 2  (39)  

Thus under the assumption that (36) holds fo r j  = ] -  1, (39) shows that (36) also 
holds for j  = j. The induction step and thus (36) hold in general. The proof of (37) is 
the dual to that provided for (36). [] 

Lemma 2 
Let Wk+l, Vk+l, Kk+l,k and Hk+1,k be the results of algorithms 2 or 3 with k =/~ (i.e., 
the algorithm is run to completion), then 

W ~ ( A  - ~ , E ) - ' ( A  - ~ , E ) V k  

= [Kk, k- -  W r ( A - a , E ) - ' ( A - c r ,  E)rkeff(  ~r, --cr,)]Jk, k (40) 
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Wr ( A - o'i E )-I EVk Kk, k = Kk, k Jk, k Hk, k 

+ W ] ' ( A - a i E ) - X ( A  - t r ,  E ) r k e : { I  + Jk, kHk, k(tr I -- cri)}, 

where Jk, k = [Kk, k + Hk, k(a, -- cr/)] -1 �9 

(41) 

Proof  
Recalling (12) gives (A - O ' l E ) - l  E V k + l g k + l , k  = Vk+lnk+l , k  . Multiplying both sides 
of this expression by (cr I - cr;) and adding Vk+lKk+l,k to both sides yields 

[I + (A - O ' l E ) - l E ( o l  - oi)] gk+lKk+l,  k -~- gk+ 1 [Kk+l, k @ Ok+l,k(O" 1 -- O'i)], 

which can be rearranged as 

Vk+lKk+l, k = [I + (A - t T l E ) - l E ( o l  - o'i)] -1Vk+l[Kk+l,  k -~- Hk+l,k(O" 1 -- 0"i)]. (42) 

Multiplying both sides of (42) on the left by Wk r, recalling that Vk+lKk+l,k = VkKk, k, 
and noting that Vk+lHk+l,k = VkHk, k + rk er  since Hk+l,k is upper-Hessenberg 
yields 

Kk.k = Wr[ I  + (A - o l E  )-l E(ol  -- Oi)]-l { Vk[Kk, k "71- Hk, k(crl - or,)] 

-q- (O" I -- O'i) rkek r }, 

SO that 

W]" [I + ( A - a lE  )- '  E(cr , - ai)]-' V k 

= Kk, kSk, k + W~[I  + ( A - a l e ) - l E ( a , - - a i ) ] - l r k e [ J k ,  k(al--O'i) (43) 

= Kk, kJk, k + W ] ' [ ( A -  a , E ) - I { ( A - a , E )  + E(a  1 --ai)}]-'rkerJk, k(aX-cri) 

= Kk, kJk, k + W r ( A - a i E ) - ' ( A - - a l E ) r k e [ J k ,  k (a l - -a i ) .  (44) 

To acquire (41), note that multiplying (12) on the left by W r ( A  - eriE) -1 yields 

W : ( A  - o ' i E ) - I E V k K k ,  k = W : ( A  - o ' i / )  -1 (A - o 1 / )  Vk+lOk+l ,k  

= W : ( A - c r i E ) - l ( A - O ' l E ) V k H k ,  k 

+ 

Rewriting Wkr(A - c r iE )  -~ (A - a lE  ) VkHk,  k as in (43) yields (41). [] 

Lemma 3 
Let Wk+l, Vk+l, Kk+l,k and Hk+l,k be the results of algorithm 2 with k =/~ (i.e., the 
algorithm is run to completion), then 

W]' (A- -cr iE) - l (A- - tT lE)rk{e~(Jk ,  kHk, k)J-lJk, kel} = 0  (45) 
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and 

c T V k { W r ( A - o ' i E ) - l E V k I J - l w ~ ' ( A - a i E ) - I ( A - c r l E ) r k = O  (46) 

for i =  1,2, . . .  ,{, j  ----- 1,2, . . .  , ] a n d  where Jk, k = [Kk, k + Hk, k(al -- ai)] -I. 

Proof  
For the case i =  1, both (45) and (46) are trivial since W r ( A - a i E )  -1 
(A - a lE)rk  = W r  rk " 0 by the imposed biorthogonality condition. 

For i > 1, (45).can be demonstrated by first noting that the leading 
( i -  1 ) j x  ( i -  1)] submatrix of [Kk, k + Hk, k ( a l -  a/)] is upper-Hessenberg while 
from (11), columns l = ( i -  1 ) ] +  1 , . . . ,  i f -  1 of [Kk, k q-Hk, k(~ I --0"i)] are 

["yt;l,l] (O ' i -~ l ) ' t - e t  - -[~' loi , t j (O' l --O' i)=el"  

Thus [Kk, k + Hk, k(al -- ai)] takes the form 

0 ~ 0  X2 , (47) 

where X1 E R (i-~H• 1"2 E R kx('--;)J+l , and I E 11~ (j-l/• is an identity matrix. 
By simple inspection, Jk, k must also take on the general form of (47). Thus for 

i > 1 ,  

k 

atet r for ( i -  1) j  < l < if, 

,=t (48) eT Jk, k = k 

~-~ atet r for l>_ i], 
t=ij 

because columns (i - 1 ) ] +  1 through i ] -  1 of Jk, k = [Kk, k + Hk, k(al -- ai)] -~ are 
standard unit vectors. Since Ilk, k is upper-Hessenberg, 

k 

eTHk, k = ~ atet r 
t=l-I 

for any value of l. Through repeated use of (48) and (49), one obtains 

: o e )e 0 
t=ij-j+1 

(49) 

for i > 1 and j < ] so that (45) is shown. 
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To show (46) for i > 1, we begin by rewriting the left hand side of(46)  as (similar 
to (44)) 

cT Vk{ W2(A - o ,e ) - l  evk}  W2{I  + (A - o,E)-l e(o, - 

= ( f f i -  Crl)cTVk{Wk( A -- c r iE) - lEVk}  j-I w T (  A -- cr iE)- lErk �9 (50) 

N o w  since Vk Wk r is a biorthogonal  projector with the column spaces of  Vk and Wk 
defined in theorem 1, c r { ( A  - a i E ) - I E } J - l V k W ] "  = CT{(A -- o i E ) - l E }  j - l  for 
j = 1 , 2 , . . . ,  ]. Repeated use of  this last fact on (50) yields that the left hand side 
of  (46) is equivalent to 

(ai - a l ) c  r { (A - ai E ) - '  E } Jr k. (51) 

But (51) is zero for 1 < j_< f since CT{(A -- a i E ) - l E }  j E r o w s p ( W  r )  and 
W f r k  = 0 .  []  
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