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The nonsymmetric Lanczos method has recently received significant attention as a model 
reduction technique for large-scale systems. Unfortunately, the Lanczos method may produce 
an unstable partial realization for a given, stable system. To remedy this situation, unexpensive 
implicit restarts are developed which can be employed to stabilize the Lanczos generated 
model. 
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1. I n t r o d u c t i o n  

This paper  employs a modified Lanczos method to acquire a stable reduced 
order model  for a SISO (single input-single output)  system described by the state 
space equat ions 

.ic = A x  + bu,  (1) 

y ----- c x  + du. (2) 

It will be assumed throughout  the following that the system matrix, A E ]R n• is 
large, sparse and stable. Such an A can arise, for example, out  o f  finite-element 
discretizations of  various plants including chemical processes and mechanical 
systems. 

Convent ional  model  reduction techniques are ill-suited for large, sparse 
problems due to the sheer size of  A. For  example, many of  the "op t imal"  reduction 

*This work was supported in part by ARPA (US Army ORA4466.01), by ARPA (Grant 
60NANB2DI272), by the Department of Energy (Contract DE-FG0f-91ER25103) and by the 
National Science Foundation (Grants CCR-9209349 and CCR-9120008). 

�9 J.C. Baltzer AG, Science Publishers 



2 E.J. Grimme et al. / Model reduction of  state space systems 

strategies (balanced realization [26], Hankel norm optimal [17], etc:) require knowl- 
edge of the solutions to the Lyapunov equations 

AGc+GcA r+bb r=O and ArGo+GoA+crc+O. (3) 

Standard computational techniques for solving (3) entail O(n 3) operations [3]. As 
n >> 100 in the large sparse problem, these standard model reduction techniques 
are not practical in general. 

As an alternative to such model reduction techniques, this paper employs an 
oblique Krylov projector, ~r k = V k W~ to produce a kth order model, 

: + (W b)u = + 

= (cVk) +au = 

for the original system in (1) and (2). The matrices Vk E N n• and Wk E R "• are 
bi-orthogonal, i.e. WfVk = Ik. Moreover, Vk and Wk are related to Krylov 
spaces, Ek, in that 

COLSP(Vk) = ICk(A, vl) = span{v~, Avl, . . . ,  A k- Iv1 }, (4) 

COLSP(Wk) = ICk(AT, wl) = span{wI,Arw,,.. . ,Ak-lrwl}. (5) 

The utility of this Krylov projector comes from the fact that both Vk and Wk can be 
generated with only inner-products and matrix-vector multiplications. By taking 
advantage of the fact that the A matrix is sparse, one can compute the projector 
relatively cheaply. 

But regardless of how quickly 7r k can be computed, one is certainly also 
interested in the correspondence between the original system {A,b,c}. and 
reduced-order system {4,/~, k}. A major insight into this relationship comes from 
[16, 36]. 

Theorem 1 
Let the reduced order system {A,/~, 6} be a restriction of the system {A, b, c} by the 
projector, 7rk, where Vk and W~ are defined as in (4) and (5). If the starting vectors, 
v~ and wl, are parallel to b and c r respectively, then the first 2k Markov parameters 
of the original and reduced-order systems are identical, i.e., 

c A i - l b  : ~ .~ i - l~  

for 1 < i < 2 k .  

Restating theorem 1, the reduced order model is a Pad6 approximation (partial 
realization) of the original system. 

Model reduction via Pad~ approximation (explicit moment matching) has a long 
history in the literature [30,31,38]. Thus the observations of [36] are certainly of 
interest. But the concept of using oblique projectors to perform the Padb approxi- 
mation can be taken one step further by forming Vk and Wk via a two-sided, 
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nonsymmetric Lanczos method [25]. The Lanczos algorithm simultaneously 
computes the projector, ~rk, and a tridiagonal ~] with only O(k2n) operations. 
Employing the Lanczos method for model reduction is discussed in a multitude 
of recent papers including [1,4,24,33-35]. 

Model reduction via a Krylov projector is certainly cheaper, O(ldn),  than with 
an "optimal" reduction technique, O(n3), when n >> k. However, Pad+ approxi- 
mation and more specifically Lanczos-based model reduction is known to suffer 
from three significant disadvantages. 

(1) Singularities in the Pad6 table (ill-conditioned leading submatrices in the 
system's Hankel matrix) lead to "serious" breakdowns in the nonsymmetric 
Lanczos algorithm [20,21], which are related to controllability and observ- 
ability [28]. 

(2) Using Koenig's theorem [22], it can be shown that matching Markov para- 
meters (corresponding to an expansion of G(s) about s = c~) leads to a 
reduced-order model {~],/;, E'} which tends to approximate the high frequency 
poles of A [23]. Thus one can expect the transient response of the reduced- 
order model to closely follow that of the original system. On the other hand, 
the steady state error will be large in general. 

(3) The fact that the original system is stable does not insure that the Pad~ 
reduced-order model is stable. The g2 norm of the response error y(t)  - f~(t) 
is then unbounded [9]. 

At least for the SISO case, the first problem can be solved. Look-ahead can be 
incorporated into the Lanczos method [20,21,14] to treat singularities in the Pad~ 
table. And in many of the above references, the second problem is handled by 
moment matching about multiple frequencies [2]. For example, incorporating 
information from the Krylov spaces ~ (A- ' ,  b) and 1C(A - r ,  c r) into the projector 
leads to moment matching about s = 0. However, this paper will not dwell on 
these first two issues (although the second topic especially is in need of further 
work). Rather, we will concentrate on the stability of the reduced-order model. 
Note that this paper is not the first to do so. In [34,36], the stability of the 
reduced-order model is insured by incorporating an inverted Grammian, Gc l 
into the Krylov projector. However, solving for G c from (3) and factoring it 
both require O(n 3) arithmetic operations. The cost is not acceptable for large 
scale problems and would overwhelm the computational advantage of the 
Lanczos-based model reduction for large n. 

As an alternative, this paper addresses the stability issue by modifying the choice 
for the projector. If the results with the projector, 7rk, are unstable, a related 
projector, #k = 12k I'V~ r, is selected which corresponds to the new starting vectors 

9, = (o(A - tzpI)(A - Up-11) . . .  (A - # , I ) v ,  = ( ~ p ( A ) v , ,  (6) 

~'1 = r  = ~ , % ( A r ) w l  . (7) 

In section 2, a new and inexpensive technique, implicitly restarting the Lanczos 
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algorithm, is developed for directly generating this modified projector, #k, from 7rk. 
Analogous to the implicitly restarted Arnoldi method of [32], this approach 
incorporates shifted HR steps [6,7] into the nonsymmetric Lanczos method to 
produce #k. In section 3, the relationship between the modification of the projector 
and the resulting reduced-order model is explored. A strategy is developed for 
choosing the parameters, ~i, in (6) and (7) to stabilize the reduced-order model. 
In section 4, the numerical behavior of the implicitly restarted Lanczos method 
is examined in more detail. In particular, the efficiency and accuracy of implicit 
restarts is shown to be superior to explicit techniques for computing #k. 

2. An  implicit ly restar ted Lanczos  m e t h o d  

The degree of success achieved in applying a Lanczos-type method to a problem 
is dependent upon the choice of starting vectors, v~ and w~. In some cases, such as 
the model reduction problem, one can make an educated initial guess for these 
starting vectors (Vl = b/131 and wl = cT/71). However, as we shall demonstrate, 
there is considerable likelihood for an unstable model to arise from a stable 
system. The obvious choice of starting vectors to construct a model reduction 
may yield disastrous results. To overcome the consequences of a poor starting 
vector, one could explicitly compute a projector, #k, from ~l and v~ by perform- 
ing k additional Lanczos steps. However in this section, an implicit approach is 
developed for generating the modified projector, Vk l~k r, corresponding to (6), 
(7). Given Vk and Wk, one can implicitly pass almost immediately to /?k and I~ k. 
Because of this fact, implicit restarts are more economical than explicit ones. 
Also, one can typically expect a higher precision in the results of the implicit 
method. These statements are offered at this point only to motivate the need for 
implicit restarts. A more complete discussion of these two observations is post- 
poned until section 4. 

The approach taken for implicitly restarting the Lanczos method is completely 
analogous to one developed in [32] for the Arnoldi method. In [32], QR steps 
(see [18]) are combined with the Arnoldi method to yield an implicitly restarted 
approach. In this section, a process denoted as the HR step is incorporated into 
the nonsymmetric Lanczos method in order to yield Lanczos restarts. As 
opposed to the implicit Lanczos restarts of [10] for the symmetric case, it should 
be stressed that the techniques developed below are for the nonsymmetric 
Lanczos method. Wherever the Lanczos method is mentioned in the following, 
the nonsymmetric version should be assumed. 

2.1. The standard Lanczos method 

Before exploring restarts, a brief review of the standard nonsymmetric Lanczos 
algorithm is provided. This subsection primarily establishes notation. For a more 
detailed discussion of the algorithm (including breakdown free variants), the 
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reader is referred to [13,18,20,21]. A standard implementation of the Lanczos 
method is provided as algorithm 1. 

Algorithm 1 

Step 1. Given b and c put/3j = v/[brc[ and ~,~ = sign(bTc)t3t. Initiate the starting 
vectors as Vl = b/131 and wl = cT/"/I. Define v0 = w0 = 0. 

Step 2. For j - -  1 t o k  
(a) set aj = wfAvj ,  
(b) set 0 = Avj - ajvj - "yjVj_l and qj = Arwj -- ajwj -- 13jWj_l, 

(c) set/3j+, = x/-~rfqj] and ~j+~ = sign((qj)/3j+t, 
(d) set vj.+l = O/13j+l and wj+l = qj/'Tj+l. 

Given v~ and Wl, the Lanczos algorithm produces the matrices 
Vk = [v l , . . . ,  Vk] E R n• and Wk = [wl , . . . ,  Wk] E R "• which satisfy the recursive 
identities 

A V  k = VkTk + 13k+lVk+te [, (8) 

A r W k  = WkT[  +'Tk+~Wk+,e[. (9) 

The vector ek is the kth standard basis vector and 

"OQ 

Tk= 

~2 

"~ �9 ~ 1 7 6 1 7 6  

"~176  ~176 ~ % 

/3k ak 

is a truncated reduction of A. Generally and throughout this paper, the elements/3 i 
and 7/are chosen so that [/3/[ = lTil and V[  Wk = I (bi-orthogonality). One pleasing 
result of this bi-orthogonality condition is that multiplying (8) on the left by W[ 
yields the relationship W [  A Irk = Tk. 

It will also be convenient in the following to denote the residuals/3k+ lVk+~ and 
7k+ l Wk+l as the vectors rk and qk, respectively. Then the relationships 

r k E K:k+l(A,Vl) and qk E ]~,k+I(AT, w1) (10) 

arise from the Lanczos identities in (8) and (9). 
Although expressions such as (8)-(10) define the Lanczos algorithm in exact 

terms, there are several difficulties which appear when the method is implemented 
numerically. Primary among these concerns is the loss of bi-orthogonality between 
Vk and Wk. In theory, the three-term recurrences in (8) and (9) are sufficient to 
guarantee IV[ Vk = I. Yet in practice, it is known [27] that bi-orthogonality will 
in fact be lost when at least one of the eigenvalues of Tk converges to an eigenvalue 
of A. Bi-orthogonality is crucial if ~rk is to be a valid projector of {A, b, c} to a 
reduced-order system, so the extra step of full reorthogonalization will be taken 
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in the following. During each iteration, 'Uk+ 1 and wk+~ are explicitly orthogonalized 
against the columns of Wk and Vk respectively via one iteration of a Gram-Schmidt 
process. This full reorthogonalization is costly; reorthogonalized Lanczos involves 
O(k2n) operation to compute Vk and Wk. However, this extra expense can be 
limited if the value of k can be kept sufficiently small. We refer to section 4 for 
more details of these aspects. 

2.2. The HR decomposition 

In [10,32], the decomposition (Tk -- #I) = QR and the corresponding QR step, 
Tk = QrTkQ, play a key role in implicit restarts for the symmetric Lanczos 
method. These transformations preserve the symmetry and tridiagonality of Tk 
as well as the orthogonality of the updated Lanczos basis vectors. Although sym- 
metry is lacking in the two-sided Lanczos process defined above, the tridiagonal 
matrix T k is sign symmetric. It turns out to be important and elegant to develop 
a QR-like implicit restarting scheme based on transformations that preserve this 
sign-symmetry along with the tridiagonality of the Tk and the bi-orthogonality 
of the basis vectors. 

The transformations that turn out to be useful are known as hyperbolic rota- 
tions. The corresponding implicit shift mechanism based upon these transfor- 
mations has already been developed [7] and is known as the HR algorithm. A 
slightly modified version of the notation of [7] will be employed to describe the 
sign symmetry of T, and the properties of the hyperbolic transformations. 

Definition 1 
S is a signature matrix (denoted S E diag(+l)) if it is diagonal with l 's  and/or - l ' s  
on its diagonal. 

Definition 2 
Let Sl, $2 E diag(+l). Then H E l~ k• is called (Sl, S2)-unitary if H r S l H  = $2. If 
S = $1 = $2 then we simply say that H is S-unitary. 

Definition 3 
Let S Ediag(+l).  Then M E]~ k• is S-symmetric (pseudo-symmetric) if 
M r S  = SM. 

Because the off-diagonal elements of Tk satisfy Iz ,l = 17;I for 1 < i < k, Tk is S- 
symmetric. The exact S corresponding to Tk can be constructed as [7] 

S~ = diag (1, sign (~22), . . . ,  sign (~22 . . . .  ~ ) )  (11) 

Corresponding to this more general form of symmetry, there typically exists a 
factorization, denoted the HR composition, which is more general than the QR 
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factorization. In particular, we are interested in the HR decomposition and corre- 
sponding iteration for the specific case of real, tridiagonal, S-symmetric matrices. 

Theorem 2 
Let Tk be a tridiagonal, unreduced, Sl-symmetric matrix and let R E 1R k• be upper- 
triangular. Then 

(i) There exists an (S1,S2)-unitary H and an upper-triangular R such that 
Tk = HR if and only if the principal minors of TrS1 Tk are non-zero and the 
product of the first i diagonal elements of $2 corresponds to the sign of the 
ith principal minor of TrS~ Tk for 1 < i < k. 

(ii) I f H  and R satisfying (i) exist, then Tk = H-1TkH = R H  is tridiagonal and S2- 
symmetric. 

(iii) If H and R satisfying (i) exist and if Tk is singular, then the last row and column 
of Tk = R H  are zero. 

Proof 
For the original statement and proof of (i), see [7]. 

For (ii) and (iii), assume that an (S1, S2)-unitary H and an upper-triangular R 
exist such that Tk = HR. Then construct partitions 

T k = [ T k ,  k_lltk], H = [ n k ,  k_ llhk] and R =  I R k - l ' k - l l r l ,  
~ u I k 

where Tk, k_ 1 and Hk, k-1 are the respective first k - 1 columns of T k and H, and 
Rk_ l , k_  I is the leading ( k -  1) x ( k -  l) submatrix of R. The columns of Tk, k-1 
are linearly independent since Tk is unreduced (all 15i's non-zero) and the 
columns of Hk, k-1 are linearly independent since H is nonsingular. Hence the 
matrix Rk_l ,k_ 1 m u s t  be nonsingular since Tk, k-I = Hk, k - l g k - l , k - 1 .  It follows 
that Hk, k-I = Tk, k-1Rk I 1,k-l is upper Hessenberg and that Tk is singular if and 
only if the scalar rk, k is zero. 

Since Hk,k- l is upper-Hessenberg, H is upper Hessenberg, and thus ]'k = R H  is 
upper-Hessenberg. And as SIH = H-rS2,  ]'k is S2-symmetric because [7] 

T~S2 = HTT~H-rS2  = H T T ~ S , H  = HTS, TkH = S 2 H - ' T k H =  S2Tk. 

Being both upper-Hessenberg and S2-symmetric, 7~k is tridiagonal and thus (ii) is 
established. 

If Tk is singular then rk, k = 0 which implies that the last row of RH is zero. 
Because 7"k = R H  is S2-symmetric, the last column must also be zero and (iii) is 
proved. [] 

Assuming its existence, the HR decomposition and HR step (i.e., 
]'k = H-l  TkHk) possesses many of the desirable properties of the QR method. 
For the remainder of this section, it will be assumed that the HR decomposition 
always exists. A discussion of the existence of stability of the HR algorithm in 
the context of the Lanczos algorithm is provided in section 4. 
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An algor i thm for comput ing  H and R for an S-symmetr ic  t r idiagonal  matr ix is 
provided in detail in [6,7]. To briefly sketch out  this technique,  first define a Givens 

H~(i,j) = 

rota t ion [18] as 

I 

C - - S  

I 

C 

I 

where the c = cos(0) and s = sin(0) entries are in the (i, i)th, (i , j) th,  (/, i)th and 
( j , j ) th positions. Values for c and s can always be found such that  

[:s :lI:;?= 
[c cS]=E~+4 oj Ix, xj] s 

and 

(12a) 

(12b) 

for an arbitrary xi and xj. Thus  the rota t ion will annihilate the entry xj if 
c = xi/v/-s 2 + x 2. The symmetry in both  equat ions of  (12) explains why a single 
Givens rota t ion annihilates both  xj entries. When  this symmetry  is only present  
in an S-symmetr ic  sense, one must  turn  to the hyperbolic rota t ion [18] 

I 

C S 

I 
s 

I 

Hh(i,j) = 

If  [x,[ > [xj[, the values of  c = cosh(0) and s = sinh(0) are selected so that  

E cs cS] ixil I 
and 

0j 

(13a) 

(13b) 

When  put t ing  c = x,/v/-s 2 - x] and s = xJ  x/x 2 - x~, both  xj entries are annihi la ted 
even though  there is a sign difference between the two sides of  (13) (i.e., [xi xj] r = 
diag(1, - 1)[x; - xj]). Alternatively, if Ixjl > Ixil, one can avoid complex  ar i thmetic  
by const ruct ing the rota t ion Hh(i, j) to be 

[ -cs -cSJ[Xi]=[:,9 2 ~ "  (14a) 
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and 

01 
In this case, putting c = xi/v/xx] - x2i and s -- xj/v/x] - x~ annihilates the )9 entries. 
The hyperbolic rotation is now defined everywhere except for the event [x/] --- [xi[. If 
this occurs it will cause a breakdown of the HR decomposition (see theorem 2(i)). 
However, as stated above, it will be assumed that such breakdowns do not occur 
until they can be more fully addressed in section 4. 

Using the different rotations defined above, the algorithm of [6] annihilates the 
lower off-diagonal elements of Tk by applying (n - l) rotations from the left in a 
technique analogous to the explicit QR step for symmetric tridiagonal matrices. 
The product of these rotations forms H -1 while H-ITk = R. As Tk is only S1- 
symmetric, the sign symmetry of the off-diagonal terms must be taken into con- 
sideration as the transformation proceeds. Sign consistencies (inconsistencies) in 
the off-diagonal entries are treated with Givens (hyperbolic) rotations. With a 
proper ordering of Givens and hyperbolic rotations (see [6,7] for further details), 
Tk-----H-ITk H can be made tridiagonal and S2-symmetric. Additionally, it is 
claimed (see [7] for a proof) that this sequence of rotations which places H-ITk 
into an unreduced, upper-triangular form with positive subdiagonal elements is 
unique. 

As with explicit QR steps, the expense of explicit HR steps comes from the fact 
that both H -1 and H must be explicitly computed. A preferred alternative is the 
implicit HR step, an analogue to the Francis QR step [l 8]. The first implicit rotation, 
H(1,2), is selected so that the first columns of the implicit and explicit H are 
equivalent. The remaining implicit rotations H(i, i + l) perform a bulge-chase 
sweep down the tridiagonal. As the implicit HR step is completely analogous to 
the implicit QR step for symmetric tridiagonal matrices (including the handling 
of shifts and double shifts [18]), this technique will not be discussed here in detail. 

Before this discussion of the HR algorithm is concluded, one additional result 
will be needed to aid in the development of implicit Lanczos restarts. 

Lemma 1 
If H and R form an HR decomposition of (T - /~I )  then HrRTHrel  = pel where 

P = +rl, 1. 

Proof 
If H and R form an HR decomposition of ( T - / . d )  then by construction, 
H T S 1 H = S 2  where $1,$2 E diag(:E1) and TrsI  =S1T.  Since eTSl =~:e  T it 
follows that 

+e r HRH = e[ St ( T - lzI)H 

= eT(T -- # I ) rS tH  
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= [H rSI(T - #I)el] r 

= [HrS1HRel] r 

= [S2Rel] r 

= pe r, 

where p = -t-r~, ~ and the desired result is obtained. [] 

2.3. Implicit Lanczos restarts 

As an intermediate step between the standard Lanczos method and the new 
factorization corresponding to (6), (7), we will first derive a technique for arriving 
at the Lanczos factorization 

AVk = 17"kTk + rke r, (15) 

= +OkeL (16) 

which corresponds to the starting vectors, 

~, = pv(A - #I)Vl and #1 = Pw( A t -  #I)w~, (17) 

associated with the application of a real shift ~. Given that Vk and W, are known, 
it would be desirable to obtain 17" k and Wk without having to explicitly restart 
the Lanczos process with the vectors in (17). It would be preferable to obtain 
(15), (16) directly from (8), (9) using an implicit restart mechanism analogous to 
the technique introduced in [32]. This implicit restarting mechanism will now be 
derived. 

If one obtains the decomposition ( T k -  #I) = HR, (8) can be reexpressed in 
several different forms 

(A - UI) V~ 

(A - #I) V k 

(A - #I) VkH 

A V k H  

A(VkH)  

= Vk(Tk -- lzI) + rk er, 

= Vk(HR ) + rke r, 

= VkHRH + rke[H, 

= V k H ( R H  + I~I) + rke2H, 

= (VkU)(U -1TkU ) + rkerH. 

The analogous expressions for (9) are 

(A r -  #I)Wk = Wk(T r -  ~I) + qk er, 

(A T .  #I)Wk = W k H - T H r ( R T H  v) + qke~, 

(AT - uI) W H-T = WkH-T R + qke U -T, 

(18) 

(19) 

(20) 
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ATWk H - r  = W k H - T ( R H  + lZI) r + qkerH -T, 

AT(Wk H - r )  = ( W k H - r ) ( H  -~ TkH) r + qkerH -r.  (21) 

It is convenient to define I? k = VkH, l'~'k = Wk H - r ,  and 7"k = H-~ TkH so that (19) 
and (21) become 

A~" k = VkTZk + rkerH, (22) 

A T ITV k = 17V k "i'[ + q k g H  -T. (23) 

Multiplying 08 )  on ihe right by el yields 

(A - -  ].LI)'o 1 = VkHRe, = (/kRe, = f)lr,,1, (24) 

while multiplying (20) on the right by el and recalling lemma 1 yields 

(A T - -  I~I)WI = Wk H - T  H r R t r i t e ,  = lYgk H r  R r H re, = -t-r (25) 

Clearly the desired result is near; new starting vectors can be obtained which 
fit the desired form of (17). Unfortunately,  the corresponding expressions in (22), 
(23) do not define a valid Lanczos factorization. Let hi, j and h},~ l) be the (i, j ) th  
entry in H and H -1 respectively. Then the residual terms in (22) and (23) are 

/ . ( - l )  _T k( -1)~T~ rk(hk, k-leff_l + hk,ke~) and qk(nk_,,kek_ l + .k,k ~k : 

rather than just vectors times eft. This difficulty can be remedied however by trun- 
cating off a port ion of  (22), (23). That  is, (22) and (23) can be rewritten as 

A~'k = [~'k-l, ~k, rk] 

Tk- 1 ~kek - 

hk ,~- le~- i  

 ekl] 
ArlTVk = [17gk-,,wk, qk] ] ~/kerk - ,  &k , 

L h(k---ll,ke~ - , "%kl'(-l) 

and 

(26) 

(27) 

so that equating the first k - 1 columns of  (26) and (27) results in the new Lanczos 
identities 

AVk_l  = fZk_l'f'k_l +rk_leT_l  and A T W k _ l  = l'~'rk_lT~_l q-(Ik_leT_,.  (28) 

The new starting vectors ~31 and wl are still defined as in (24) and (25). The new 
residual vectors are derived from (26) and (27): 

~ - - .(-I) 
r k - I  = t~k~)k -~- hk, k - l rk  and q k - l  = ~ k W k  dr- nk-l,kqk. 

One can also easily show that I7" k_ i, l'~'k- l, rk - I, and q k -  1 meet the bi-orthogonality 
condition. Thus (28) is indeed a valid Lanczos factorization for the new starting 
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Vectors. Only one additional step of the standard Lanczos process is required to 
obtain (15) and (16) from (28). 

From the above work, the extension of this technique to the multiple shift case is 
straightforward. One is now interested in a series of HR decompositions. The ith 
decomposition is 

H,R, = ( f tFJlrfI,_,  - #iI), 

where 

f l i -  i = H I  H 2  . . . H , _  I . 

In practice, the decompositions are performed implicitly so that the H's  are never 
explicitly formed. Pairs of complex conjugate shifts may be handled via double HR 
steps in real arithmetic just as in the implicitly shifted QR setting. 

Applying p implicit restarts yields the new Lanczos factorization 
_-- - - ~ T A~+k-p Vk-pTk-p + k-pek-p, 

- - - Z A r gG-p Wk-pTr-p + qk-pea-p, 

where 7"k-p, ~'k-p and l'Vk_ p are the appropriate submatrices of 

Tk ~ I~t; 1ZkI~Ip~ 

gVrk ~ WkI~I;  T , 

The new residuals are 

r k - p  = f l k - p + l V k - p + l  q- hk, k - p r k  

and new starting vectors are 

- /T, ( - 1 )  
a n d  qk-p = 7 k - p + l W k - p + l  q- •k-p, kttk, 

and #i = r Ar  - # j ) . . - (  Ar -/ZlI)Wl- 

In this case, p additional standard Lanczos steps are required to obtain the order-k 
Lanczos factorization, 

AfZk = VkTk +fk er and ArlTVk = ff'k ~r +glke r, (29) 

corresponding to 9~ and #1. However forp << k, this implicit approach represents a 
considerable saving in computations over the k standard Lanczos steps required for 
an explicit Lanczos restart. 

For more details on the implicitly restarted method, the reader is referred to 
section 4. 

3. Mode l  reduct ion via Lanczos  techniques 

Given theorem 1, it is a simple matter to connect the standard Lanczos method 
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to model reduction. Equation (10) indicates that one should select the starting 
vectors as vl = b//3j and wl = cr/'yl so that 7rk = VkW r corresponds to the 
Krylov spaces 1C(A,b) and IC(Ar, c r) respectively. Then A =  W r A V =  T k, 
b = Wrb = el/31 and ~ = cVk = er71 is the desired partial realization. 

3.1. Performing restarts to stabilize a model 

Of course, it has been repeatedly stated that the resulting Pad6 approximant need 
not be stable. In this case, we construct a modified projector which corresponds to a 
stable reduced-order'model. Crucial for arriving at such a stabilizing projector is 
the proper selection of the restart shifts, #;. Although there is certainly an endless 
number of possibilities for these shifts, a practical policy arises from theorem 2. 

Lemma 2 
Let { 0 1 , .  �9 �9 , 0 k }  [-J { i /Z l ,  �9 �9 �9 , ~p} be a disjoint partition of the spectrum of Tk+ p and 
define 7~k to be the tridiagonal matrix resulting from p implicit restarts with 
shifts #i through #p. Then the eigenvalues of 7~k are {01,..., Ok}. 

Proof 
The proof follows from extending theorem 2, result (iii), to the case of multiple 
shifts. Alternatively, a proof completely analogous to one for the Arnoldi 
method [32, theorem 2.8] can be developed. [] 

Restarting with exactly p eigenvalues of Tk+p as the shifts deflates out these p 
eigenvalues from 7~k . This matrix is in fact easily seen to be the projected matrix 
of Tk+p on its stable invariant subspace since in the new coordinate system, 7~k+p 
is block diagonal with leading diagonal submatrix 7~k . For our application, given 
that T~ is unstable, one needs to proceed until a Tk+p is determined with q < p 
unstable modes (i.e., eigenvalues with real parts greater than zero). Then if q 
restarts are performed where each shift is an unstable mode of Tk+p, the resulting 
7~k +p_q is stable. Note that the condition "find Tk +p with at least k stable modes" is 
far less restrictive than finding a stable Tk+p. 

For clarity, this approach for obtaining a stable, reduced-order model is sum- 
marized in the following algorithm. 

Algorithm 2 

Step 1. Perform k standard Lanczos steps to compute TI,, Vk, and Wk. Set q equal 
to the number of unstable modes in Tk and set p = 0. 

Step 2. While q > p, 
(a) increment p, 
(b) perform another standard Lanczos step to obtain Tk+p, 
(c) set q equal to the number of unstable modes in Tk+p. 

Step 3. O b t a i n  '~'k+p-q, ~rk+p-q, a n d  I/~'rk+p_q by implicitly restarting with q #i's 
selected to be the unstable modes of Tk+p. 
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Step 4. Define the stable, reduced-order model to be A = Tk+p-q, ~ : lTv'T+p-q b, 
and 6 = CVk+p_q. 

Remark 
The above algorithm is not the only way to guarantee a stable reduced system 
of order k. One alternative is, e.g., to limit at any time the order of the model 
to at most k. One would then deflate out, say, the p unstable eigenvalues from 
this model and complete the system again to order k with p Lanczos steps. If 
this new model still has a number of unstable eigenvalues, we repeat the above 
procedure. The advantage of this method is that one never has to store bases 
larger than what one is finally interested in. This can be relevant when k and n 
are so large that memory (or cache) constraints become important. This method 
was also tested and gave similar results to algorithm 2 in terms of total amount 
of work. 

There is an alternative view on selecting shifts which agrees with well-known 
observations on the relationship between Pad6 approximation and stability. Note 
that the starting vector, vl, can be expressed as a linear combination of the eigen- 
vectors, y,., of A, i.e., vl = ~-'~'= ~ 7i %. Then a shifted starting vector takes the form 

n 

vl = r - #I)Vl = - G  ~ 7i(# - Ai)Yi. (30) 
i = 1  

By assumption, the eigenvalues, A;, of A have negative real parts while the shifts are 
selected to have positive real parts. So from (30), applying such restarts to vl tends 
to emphasize those eigenvectors of A in ~3~ which correspond to the high-frequency 
modes of the original system since the "weights" ( # -  A~) are larger for these 
vectors. One can thus consider restarts with non-negative shifts as a way to empha- 
size the high-frequency modes in #k and thus also in 2Pk. Such interpretation corre- 
sponds well to the observation [30] that unstable realizations are obtained by better 
approximations of the original system's high-frequency modes. 

Unfortunately, stabilizing a realization leads to discrepancies between the 
moments of the actual and reduced-order systems. The following lemma indicates 
that these identities are then replaced by an equal number of identities relating what 
could be called "modified moments". 

Lemma 3 
Let Tk, ~'k, and l~k be the result of an implicit Lanczos process with shifts charac- 
terized by the polynomial ~,(s) = (s - #p) . . .  (s - #l). Then we have the following 
equations relating modified moments of the original system and the restarted 
Lanczos model: 

c~b(a)ai-l~b(A)b = c~b(A) ~"e ~ -1  lZv'~b(A)b (31) 

for i _< 2k, where J = 7~k = 17V'~A~'k, D = 17r and ~ = CF'k are the reduced order 
model parameters. 
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Proof 
As 12 k and I~k correspond to the starting vectors (v(A- lzI)b and (w(A-  lz/)c 
respectively, theorem 1 yields immediately the desired result. [] 

The cost of modifying the projector is thus that the resulting approximation is no 
longer of a Pad6 type. However, it should be stressed that this approximation is 
preferable when the true Pad6 approximation is unstable. We also point out that 
the above lemma suggests that other choices for/~ and ~ could be used rather 
than/~ = ff'krb and ~ = c ~'1k, but this is still under investigation. 

3.2. Example: the portable Compact Disc player 

The Compact Disc player is a well-known mechanism for sound reproduction. 
At the heart of the CD player is an optical unit (consisting of a laser diode, 
lenses, and photodetectors) which is mounted on the end of a radial arm [5]. The con- 
trol problem consists of employing two magnets as actuators in order to (i) adjust the 
position of the radial arm so that the laser beam is correctly centred on one of the 
thousands of tracks on the disc, and (ii) adjust the position of a spring-mounted 
focusing lens so that the laser beam strikes an appropriate depth on the disc. 
The control system is thus a 2-input 2-output system. In this paper, the emphasis 
is on SISO systems. Therefore, rather than working with the entire CD player 
mechanism, four smaller SISO systems are studied. In particular, this example 
concentrates on the relationship between the lens actuator and lens position. 

Traditionally, the behavior of the lens position is represented by a third-order 
differential equation [5]. However, controllers designed from these simple, low- 
order systems experience difficulties when employed in the newer, portable 
Compact Disc players [5]. External physical shocks must now be taken into con- 
sideration which leads to higher Order models. 

A better model of the behavior of the CD player is obtained via finite element 
approximation of the various portions of the CD player. These models are typi- 
cally large and sparse. Moreover, the open loop system is stable by construction, 
but with very small damping. Models constructed in this way have orders varying 
from 100 to several thousands. The system matrix of the example used here is 120, 
which is already relatively small. Although this last fact is unfortunate from a 
model reduction point of view, this example is well suited to demonstrate both 
the severity of the unstable realization problem and the power of implicit restarts 
in overcoming this problem. 

A very valid concern is the total number of Lanczos models (Tk, W~b, CVk, 
1 < k < 120) which are actually unstable. If there are only a few values of k for 
which Tk is unstable, then incorporating implicit restarts into the standard Lanc- 
zos method is unnecessary work. One could simply perform one or two more stan- 
dard Lanczos steps to find a stable Krylov model. But figure 1 demonstrates that Tk 
stable is the exception, not the rule, for this example. Beyond k = 47, an additional 
49 Lanczos steps are required before another stable model is found. In general, one 
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Figure 1. The number  of  unstable eigenvalues in Tk, where k is the number  of  standard Lanczos steps 
performed. 

cannot count on stumbling upon stability at the appropriate recursion step k. The 
explanation of this phenomenon is that the original system has low damping and 
hence has poles very close to the unstable region, and the Pad6 approximations 
seem to move a few of these poles over the stability boundary. 

However, employing implicit restarts with appropriate choices for the #~'s (i.e., 
via algorithm 2) quickly stabilizes the reduced-order model. Table 1 indicates the 
number of extra forward Lanczos steps, p, and implicit restarts, q, required to 
obtain a stable Tk+p-q given various Tk'S. The main point to be drawn from this 
table and this example is that a model of arbitrary size can be stabilized with 
q << k implicit restarts. 

It is also important to recognize that the implicit restarts in this example do not 
have a detrimental effect on the accuracy of the final, stabilized model (and, in fact, 
they are extremely beneficial when the original approximation is unstable). For 
example, figure 2 displays the impulse responses for both an initially stable Lanc- 
zos model (k = 47) and a restarted (stabilized) Lanczos model (k = 50). Even 
with a modified projector, #, which no longer matches Markov parameters, the 
restarted model's response is closer to that of the actual system. 

Table 1 
Restarts needed to stabilize an order-k model,  

k = 20 k = 30 k = 40 k = 50 k = 60 

No.  restarts, q 5 0 2 3 t 
No. forward steps, p 5 0 4 5 5 
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4. Numerical  properties of  implicit Lanczos restarts 

4.1. Implicit vs explicit restarts 

In this section we analyze the differences between implicit restarts and explicit 
ones. As noted in section 2, implicit restarts typically have a higher numerical 
accuracy than explicit restarts and moreover they are more economical to imple- 
ment. These questions are further investigated below. 

The amount of work involved in the implicitly restarted Lanczos method is pro- 
vided in table 2. The values of k and n are defined in section 2. The value, a, is the 
average number of non-zero elements in a row of A. As an aside, it is interesting to 
note that full reorthogonalization is not a dominating cost in the overall process if 
the number of steps, k is on the order of a. 

Once a Lanczos factorization of size k is known, the amount of work, O(pkn), 
involved in p << k implicit restarts is split between recovering p truncated Lanczos 
steps and forming the new matrices l? and if'. However, this cost is clearly 
preferred over the O(k2n) operations needed for an explicit Lanczos restart 
with full reorthogonalization. The efficiency of the implicit technique comes from 

Table 2 
Dominating cost (in flops) of each stage of the implicit Lanczos restart. 

Stage of method Flops required 

k Lanczos steps (3-term recurrence) 
reorthogonalization during all k steps 
p implicit restarts (obtain 7~k_p) 
p reorthogonalized Lanczos steps (obtain 7~k) 

2kn(9 + 2a) 
4n(k  - 2) 2 
12~,kn 
@n(k + a) 
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avoiding the reorthogonalization required during the first k - p ste.ps of an explicit 
restart. 

But even if one avoids full reorthogonalization (so that explicit restarts are no 
more expensive than implicit ones), the new projector, #, formed via implicit 
restarts should generally be preferred. One of the major advantages of the Lanczos 
method is that in order to compute the Krylov space it does not simply multiply the 
starting vector by powers of A. Yet in explicit restarts one is forced to directly 
multiply the starting vector by matrices of the form (A - #iI), and this is avoided 
by the implicit method. Even with non-zero shifts, it is quite possible that the vector 
~1 = (A - # p I ) . . .  (A  - #~I)Vl  will be dominated by information from only a few 
of the largest (in absolute value) eigenvalues of A (recall (30)). As a result, a near 

f o r t u i t o u s  Lanczos breakdown [28] would soon occur at some step i and the 
residual vector, ri, would consist of noise. An implicit restart, on the other hand, 
directly forms l?k_p from the wide range of information available in Vk. Even if 
the first columns of Vk_p are dominated by a few eigenvectors of A, the implicitly 
restarted method can call on information from Vk to accurately form the latter 
columns of l?k_p. 

As an example, consider a 20th order system with a block diagonal A matrix: 

A = diag - 2 0 e 5 , - 1 9 , - 1 8 , - 1 7 , - 1 6 , . . . , - 6 , - 5 , - 4 , - 3 ,  2 

and with input and output vectors 

b = 

-0.25837983924820" 
0.41004175548909 

-0.42821549481164 
-0.01782129915330 

0.47742513053931 
0.08416897411652 

-0.37205202359336 
-0.07836053361109 
-0.00548840151424 
-0.24356424982825 

0.41565313651955 
-0.11773451586148 

0.23599191603064 
0.31613272699347 
0.24274257931055 

-0.22546952763827 
-0.46635101640893 

0.03846721515919 
-0.48151481942344 

0.18042995020767 

cT ~- 

0.48617314034429 
0.11196976649201 

-0.12413456878817 
-0.32969762283829 
-0.22794704312829 
-0.10595385711917 

0.23352339804802 
-0.17224900688615 

0.01094126445751 
-0.11016826266896 

0.40200932272803 
-0.42931290992038 
-0.46207703182570 
-0.12867389462361 

0.37785306101565 
-0.42360350998286 

0.49580771801798 
0.04031672819532 

-0.39674922120606 
-0.16416081025459 
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The system is obviously stable since the eigenvalues of A are its scalar diagonal 
elements and -1  + 2i, i = x/Z-] -, for the 2 x 2 block. 

After 6 standard Lanczos steps with vl = b/El and w~ = cr/'yl, the eigenvalues 
of the tridiagonal matrix, T6 = W[A V6 are 

- 1.99999999964382 "l 
0.00000824023822 + 0.00002392349475i / 0.00000824023822 - 0.00002392349475i 

A ( T 6 )  = 0.00000046571227 " 106" 

-0.00002277422501 
-0.00006519548026 

To remove the three unstable eigenvalues from the reduced-order model, one can 
perform three implicit restarts as prescribed by algorithm 2. Then the eigenvalues 
of the resulting tridiagonal matrix, T3, are 

-1.99999999964112 ) 
A ( T 3 )  = -0.00002277422692 . 106.  

-0.00006519510588 

Theorem 2 says that these should be the stable eigenvalues of Tr. The implicit HR 
steps separated the stable from the unstable eigenvalues but lost 3 to 5 figures along 
the way. The sensitivity of the eigenvalues of T6 and the condition number of the 
transformation separating these eigenvalues, are in fact both of the order of 103, 
which explains that loss of accuracy. Alternatively, one should theoretically be 
able to obtain 7~3 by explicitly restarting the Lanczos process with the starting 
vectors ~el and ~el which (as denoted by the subscript e) are explicitly computed 
via (6) and (7). However, the eigenvalues of the explicitly computed 2Fe3 are 

-2.oooooooooooooo } 
)~(Te3) = -0.00002320939927 �9 106. (32) 

-0.00003385741443 

This time we lost from 5 to 10 digits of accuracy, which is much more than expected 
from the conditioning of the problem. The large relative error in the smaller eigen- 
values of (32) results from a near fortuitous Lanczos breakdown. Due to the stiff- 
ness of the A matrix, the explicitly restarted starting vectors, Oel and ~e~, are both 
close approximations to the eigenvector of A corresponding to A = -2 .106.  And as 
a result, the first residual vector, ~el, is very small (ll e  II -- 1.3458.10-8). This severe 
loss of precision in the residual vectors leads to a certain degree of randomness 
in the vectors ~e2 and we2. Thus the eigenvalues of the reduced matrix, 7~3, are 
not the eigenvalues of the implicitly generated 7~3 (the stable eigenvalues of T6). 
In fact, it is conceivable that an explicitly restarted T~ could be unstable even 
though 7 ~ is stabilized via implicit restarts. 

In summary, explicit restarts will lead to numerical difficulties when either the 
stiffness of the A matrix or the number of restarts becomes large. Thus implicit 
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restarts, which typically avoid these problems, should be preferred for stabilizing 
the reduced-order model. 

4.2. Breakdowns in the HR decomposition 

To this point in the discussion, it has been assumed that the HR decomposition 
always exists. Yet it is easy to see that this assumption does not always hold. If 
there are two starting vectors, (A - #I)Vl and (A - #I)rWl, for which an explicit 
Lanczos restarts breaks down, it is impossible to tridiagonalize A with any pro- 
jector corresponding to these starting vectors [8]. The HR decomposition of 
( T k -  #I) cannot exist in this situation; otherwise a tridiagonal Tk could be 
constructed. 

This turns out to be the only way that breakdowns in the HR decomposition can 
occur. A serious breakdown [28] of the Lanczos process beginning with starting vec- 
tors ( A -  #I)vl and ( A -  #I)rwl will occur at the j th  step if and only if the j th  
(hyperbolic) rotation of the implicit restart process fails to exist. This is stated 
and proved formally in the following. 

Theorem 3 
Suppose the tridiagonal matrix Tk in (8) and (9) is unreduced and let # E ~. Let 
H(j,  j + 1) be the j th  rotation required in the HR decomposition of (T k - #I). If 
the first j - 1 rotations of the decomposition exist, then a finite H(j,  j + 1) fails 
to exist if and only if O r_ l~j_ 1 = 0, where 0j- l ,  rj-1 are the non-zero updated 
Lanczos residuals. 

Proof 
Assume that the firstj - 1 rotations H(i, i + 1), 1 < i < j  - 1 exist and let 

- I - [ n ( i , i +  l) .  
i=1 

Then 

(33) 

A ~  = ~.~. +/3j+,vj+,e]'I-Ij, (34) 

T - T  Arl, Pj= I, PjTf + Tj+,wj+,e) H) , (35) 

where ~ = Hf '  TJ-/j, ~ = VJ-/j, and l~j = Wfl-/f r. The orthogonality relations 
together with (34) and (35) imply 

7" A- (36) (A  - 6 l j _ l I ) + j _ l  = Vj_2~'j_l -+- ~Jj~j-+-Vj+lW)+ 1 v j_ , ,  

( A T - - ~ - I [ ) I ~ j - I  = Wj -2~ j - I  + i~llj'r "Jr Wj+I'OT-i-IATkvj-I �9 (37) 
The leading ( j  + 1) x (j  + 1) principal submatrix of 

H(i , i+  1 ) - ' T k H H ( i , i +  1) 
i=1  
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is 

(Wj,  wj+I)T A(~rj.,'Uj+I) = 

"~l +2 

~2 ' ' � 9  
~ 
~ - 2  •j-1 

aj_ ,  ?: 

+ +TAr++, 
T - ^ Wj+lAVj_i wf+IAvj o9+ 1 

(38) 
where the hatted quantities denote entries and vectors that would change if the H R  
update were continued beyond step ( j -  1). It is readily verified that this matrix 
is sign-symmetric and that the rotation H ( j ,  j + 1) is required to be a hyperbolic 
rotation if and only if 

sign(,~j~f_ i Avj  + , ) = --s ign(~wf+ ~ A,?:_ l ) (39) 

and this hyperbolic rotation will fail to exist if and only if 

13+1 = IWf+lA+j-,I # 0. 

If the rotation fails to exist, there is no loss in generality to assume that 

3} = wr+,A+j_,,  (40) 

since this may be arranged with a diagonal similarity scaling involving only sign 
changes. From the recurrence relations, it is easily shown that 

+j3jgvf ~j = O r , f j _ ,  (41) 

= ( # f _ , ( A - d g _ f l ) - ~ j _ , ~ t ' f  z ) ( ( A - & j _ , I ) + } _ l - ~ } _ 2 + j _ l )  (42) 

= 1~?_ l(A -- ~j_lI )2+j_l  -- ~j_ l+ j - l "  (43) 

However, if the two conditions (39), (40) hold, then the sign-symmetry implies that 

?+ = 

and this together with the relations (36), (37) and the identity I~: -r ~. = I, implies 

w?_I(A - ~ j _ l I ) 2 O j _ l  = ~v?_I(A - ~ j _ l I ) ( ~ j _ 2 + j _ l  + vj~j + ~)j+IWT+IAZlj-I) 

__ ~T ~ ~ ~?_IA,Uj+I)~ j - J-~Avs-z'YJ-~ + (+s + 

Hence #jr~j = 0 as claimed since 
r 

(44) 

(45) 

(46) 

the assumption that T~ is unreduced implies 
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This argument has shown that an HR breakdown implies a serious Lanczos 
breakdown. The opposite implication follows from the uniqueness of the ( j  + 1)- 
step Lanczos factorization. This uniqueness implies that the Lanczos process 
with starting vectors ( A -  #I)vl and ( A -  #I)rWl must produce precisely the 
same j-step factorization as the implicitly restarted Lanczos process applied to 
the (j  + 1)-step factorization if Tj+I - lzI has an HR factorization. The existence 
of this factorization implies that (39), (40) cannot hold and (44) therefore could 
not be obtained. Hence, ~f-i~,-_ ~ :fi 0 concluding the proof. [] 

Although not typically treated as such, serious Lanczos breakdowns can be 
considered to be the result of an ill-conditioned problem. The breakdown is the 
result of a poor choice for starting vectors and is not due to instabilities of the 
Lanczos method. For similar reasons, it is not disappointing that the implicitly 
restarted approach breaks down for a select set of ill-conditioned problems. One 
can only expect as much. 

In [7], it is shown that there are at most k(k + 1) shifts,/z, for which the HR 
decomposition of (Tk - #I) fails to exist. Hence avoiding ill-conditioned problems 
may demand that one take better advantage of the degrees of freedom afforded by 
the shifts #i. Even the order in which the shifts, #;, are applied to Tk can be impor- 
tant. Alternatively, one could relax the requirement that 7~k be tridiagonal and use a 
lookahead technique [20,21]. However, the loss of tridiagonality in 7~k introduces 
extra complexity into the execution of additional implicit restarts. We leave the 
development of lookahead and/or improved shift selection in implicit restarts as 
an area for future work. 

4.3. Stability of the implicit restart 

There are some important questions regarding the numerical stability of the 
implicit restart mechanism. The first of these is related to the general two sided 
Lanczos process: What is the numerical quality of the bi-orthogonality in the 
vectors computed through the recursions in finite precision? Secondly: How is 
this numerical orthogonality and the accuracy of the eigenvalues of Tk effected 
during the implicit restarting due to the possible ill-conditioning of the S-orthogonal 
transformations? 

Without some form of reorthogonalization, the Lanczos algorithm is numeri- 
cally unstable (i.e., Wk r Vk will eventually drift far from the identity matrix). Yet 
by implementing reorthogonalization, one loses the efficiency of three-term recur- 
rences. The technique of [11] may be generalized to maintain this bi-orthogonality. 
Our limited experience with this indicates that it is possible to maintain numerical 
bi-orthogonality at the level of round-off in working precision. The fact that the 
number of columns in Wk and V k remain below a fixed modest size assures the 
cost of maintaining the bi-orthogonality can remain reasonable. However, further 
numerical experience with this technique is needed in this setting. 

The next question is the numerical stability of hyperbolic rotations in this 
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context. The ill-conditioning of these transformations has been intimately tied to 
serious Lanczos breakdown in the previous section. However, even though this 
ill-conditioning is possible, there are good reasons to use hyperbolic rotations 
anyway. The fact that these transformations preserve tridiagonality, sign-symmetry 
and bi-orthogonality is very attractive. It is natural to ask if there are any other 
transformations which retain these properties and yet have better conditioning. 

In fact, there is a much wider class of decompositions that could be utilized to 
construct an implicit restart mechanism. Any decomposition of the form HR 
where /~ = H D ,  [~ = D-1R ,  and D is a diagonal scaling could be used in an 
implicit restart. For example, in [19] a prototype of the implicitly restarted 
Lanczos method was developed with H computed via L R  decompositions. 
However, this more general H is generally not (Sl, S2)-unitary. For this reason 
alone, one might argue that an / - )  based on Givens and hyperbolic rotations is 
the best selection. However there is a more compelling justification. Of all possible 
transformations which preserve the tridiagonal structure when applied to an 
S-symmetric diagonal matrix the S-orthogonal transformations are optimally 
conditioned. 

This result will be developed through a sequence of lemmas. The first result 
establishes the optimal conditioning for the two by two case. In the two by two 
case it is only necessary to consider a hyperbolic rotation since the condition 
number of a Givens rotation is 1. 

Lemma 4 
Suppose [a[ > [b[ and consider any 2 x 2 matrix P which satisfies 

,a 0, (47) 

for the vector [a b]. The hyperbolic rotation 

E c H =  with c = a / ~ / a  2 - b 2, s = b / ~ -  b 2 
s 

satisfies (47) and possesses the smallest condition number of any matrix P satisfying 
(47). 

P r o o f  
Conditions (47) imply a/3 = a 2 - b 2 and that any such P must have the form 

Thus P satisfies 

r bl;] 
P= Lbl  alBJ" 

where 
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with 6 = a/fl  and 0 = ~ -  b2/a. Now, cond(P)= cond(HD) so consider the 
singular values 0.1 > 0.2 of  H and the singular values #l > #2 of  HD. Observe that  

(#i#2) 2 = det(DT rHD) = 62 de t (H  r H )  = 62(0.10.2) 2 

and that  

#~ + #2 = trace(DHrHD)= (1 + 62)(c a + s 2) 

= (1 + 62) t race(H TH) /2  

= (1 + 62)(o,  + 

Thus  (assuming wi thout  loss of  generality that  6 > 0) 

al + _ 
1/6). 

#1 #2 0.10"2 

Since the funct ion ~(T) = r + 1/T satisfies ~(v) > 2 for ~- > 0 it follows that  

+ 1 / ~ =  (~ + 1/~)�89 + 1/6) > (m + I / n ) ,  

where g = cond(P) and n = cond(H). Finally, the fact that  ~b(r) is strictly 
increasing for r > 1 implies that  g > ~ with equali ty holding if and only if 6 = 1 
and hence P = OH. [] 

Of  all possible P 's  satisfying (47), the hyperbol ic  rota t ion has the smallest 
possible condi t ion  number .  The  following corollary indicates when this value will 
be one. 

Corollary 1 
Assume a hyperbolic  rota t ion is used in (47). Then  as b/a ~ 0 or a/b ~ 0, the 
condi t ion number  of  the hyperbolic  rota t ion approaches  one and as [b/a I ---* 1 
the condi t ion  number  o f  the hyperbolic  ro ta t ion  approaches  oo. 

Proof 
Assume tbl < lal. Then  as above, 

cond(H) = cond b/a 1 - T - - p '  

where p = Ib/al, and the result follows immediately.  The  case la[ < Ibl has a similar 
proof.  []  

When  the difference between a and b is large, the hyperbol ic  ro ta t ion  is ideally 
condi t ioned.  Of  course as shown in theorem 3, the problems arise when  a and b 
are approximate ly  equal. 

Let us now turn  to the general case. 
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Lemma 5 
Suppose H is (S~, S2)-unitary. Then there are permutations e 1 and P2 such that 
121 -- Pi Hpr is S-unitary, i.e. 

fIr SlgI = S with S = [ lpO -Olq ] 

with p _< q. 

eroof 
I f  HrSIH = $2 then H must be nonsingular and Sylvester's inertia theorem 
indicates that Sl and $2 have the same inertia. Both sides of the relation 
HrS~H = $2 may be multiplied by - 1  if necessary to arrange that S~ and $2 
each have p ones and q negative ones on their respective diagonals where 
p < q. Hence there are permutations P1 and P2 such that S = PIS1Pr = P2S2 Pr 
with 

s-- _/q. 

Therefore, 

T T T T P2 H P1 PlSlP1 PIHP2 = P2S2P r, 

so that lglrSI5I = S as claimed. [] 

If D is diagonal then P1HDpr = HD w i t h / )  = P2DP~. Therefore the desired 
result will be established in general if it is established for right-diagonal scalings 
of S-orthogonal matrices H. In order to obtain this result, it will be useful to 
develop an analogy to the C-S decomposition of unitary matrices [12]. 

Lemma 6 
Suppose H is S-orthogonal, i.e. HrSH = S where 

['o S =  -Iq 

with p < q. Then there are orthogonal matrices U~ and 1Ii of order p, orthogonal 
matrices U2 and V2 of order q and non-negative diagonal matrices [,, E of order 

H = 

p such that 

w i t h  [,2 = E2 + Ip.  

0 [i F 0 

o 
o ] 

o 
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Proof 
Partition H conforming to S so that 

[Hll H u ]  
H= [ I-I l U2:J 

with Hll of order p and H22 of order q. Since SHTS = H -l, we have S H r S H  = 
H S H r S  and it follows from the partitioning that 

H~Hll = HT H21 + Ip, Hll HT = Hl2H~ + Ip (48) 

and that 

HT H22 = HT Hl2 + Iq, H22 HT = n21HT + Iq. (49) 

Let Hl l = UII'V r be the Singular Value Decomposition (SVD) of Hl l and let 
UzE V [ be the SVD of H22. From (48) we see that 

r 2 =  V~(H~Hl l )V  l = VT(H~H21)V1 + Ip 

and 

Hence, 

F 2 = U T ( H l l O T ) O l  = u T ( O l 2 O T ) U l - t - I p .  

~2 = 1,2 _ Ip = Ur(H, zH r) = VT(HT H21)VI) 

with y:2 a non-negative diagonal matrix. The diagonal elements matrix Z therefore 
must be the singular values of both H12 and Hzl. Also, it follows that the left 
singular vectors of H12 can be chosen to be the columns of Ul while the right 
singular vectors of H21 can be chosen to be the columns of Vl. Equations (49) 
imply that the left singular vectors of H21 can be chosen to be the columns of U2 
and the right singular vectors of H u  can be chosen to be the columns of II2. 
Thus the SVDs of these matrices are of the form 

Z]v  = U2 0 

and it also follows from (49) that 

and Hu=U1[P~ O]V r 

and this concludes the proof. 

0] 
[] 

This result is interesting in its own right because it establishes a Hyperbolic C-S 
decomposition for S-orthogonal matrices. The following corollary is an immediate 
consequence: 



E.J. Grimme et al. / Model reduction of state space systems 27 

Corollary 2 
If H is S-orthogonal with S as in lemma 6, then the singular values of H are the 
diagonal elements of the matrices 

F + E ,  I " - E ,  and Iq_p, 

where 1', ~ are as in lemma 6. Moreover, if cr is a singular value of H then its 
reciprocal 1/or is also a singular value. Hence 

cond(H) = (7~ + al )  2, 

where 71 is the largegt diagonal element of F and 7~ = a~ + 1. 

Proof  
The result follows immediately from the relation 

F H I + ~  0 ] [, '_,]= [Ii Ill 
and the fact that 

( r  + ~ ) ( r -  ~,) = i,  

with the largest diagonal element of l" satisfying 7~ = cr~ + 1 _> 1. [] 

Finally, we are in a position to establish the optimal conditioning of these 
S-orthogonal transformations. 

Lemma 7 
Suppose H is S-orthogonal, i.e. H T S H  = S. Let D be any nonsingular diagonal 
matrix with the same order as H. Then 

cona(~D) >_ cona(n). 

Proof  
Let D be an arbitrary diagonal scaling and partition 0] 

, D 2 

with D~, D2 diagonal and of order p and q respectively. Then 

I 1[i o H D  = UI 0 ~" 0 

0 U2 0 Iq_ v 0 VTD2 

Since Ui and U2 are orthogonal, it is sufficient to consider the matrix 

ISI - 2 r 0 V f  D2 
0 0 Iq_p 
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and to note that the submatrix consisting of thefirst and (p + 1)st rows of this 
matrix is 

] or1 71 0 er v2r D2 ' 

assuming that the diagonal elements of P (and hence E) are ordered in decreasing 
order. Defining 6i = [[DiViel [[ we also have that the singular values of M are the 
same as the singular values of the two by two matrix 

trl 71 62 

since M M  r = !(-I)(-1 r. Now, since _/I;/hT/r is a principal submatrix of H ~ r ,  it follows 
from the Cauchy Interlacing Theorem that 

81 ~" 81 ~_~ 8 2 ~> 8n, 

where 8~, 8, are, respectively, the largest and smallest singular values of HD and 
where 81,82 are respectively the largest and smallest singular values of 57/. Thus 

cond(~l) = --81 < __81 = cond(HD). 
o2 fin 

From lemma 4 it follows that 

c~ I_O, q',~ -< cond(J(/I) but 
\ L crl 71 

and this chain of inequalities proves the lemma. [] 

This result is somewhat comforting, but it does not imply numerical instability in 
any sense. Further investigation on this issue is required. From the results estab-. 
lished in section 4.2 we do know that the condition of H must be intrinsically 
linked to the phenomena of serious breakdown in the two-sided Lanczos 
process. Learning how to avoid these breakdowns will probably be an important 
aspect of establishing the stability of this procedure. 

5. Conc lud ing  remarks  

Applying implicit restarts to the Krylov spaces Ek(A, b) and Ek(A T, c r) is an 
efficient approach for insuring that the impulse response of the reduced-order 
system is bounded. But with or without restarts, it is rather obvious that the pro- 
jector corresponding to these Krylov spaces does a poor job of modeling the 
low-frequency response of the CD player. Similar results are observed in the 
modeling of Tokamak plasmas in [1]. The order of k must approach that of n 
before sufficient low-frequency information is included in the Lanczos model. 
As mentioned in the introduction, a solution to this problem is to incorporate 
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information from A -~ into the Krylov spaces. Work along these lines is still needed 
to guarantee the accurate reproduction of the low-frequency dynamics. But regard- 
less of this fact, we stress the observation of [30]: the number of spurious, unstable 
modes in the reduced-order model tends to increase as emphasis is placed on the 
low-frequency modes. Incorporating A -l into the Krylov spaces may increase the 
need for implicit restarts. 

It should also be noted that although this paper explored the computation of 
stable models for stable problems, there are also applications in which unstable 
reduced-order models must be accurately computed for unstable plants. For 
stable, open loop problems (i.e., systems in which no feedback is applied), the 
need for stable reduced-order models is undeniable. One example of this class of 
problems is the simulation of large-scale circuits [15,29]. But for problems in 
which feedback is present, one is typically more interested in the accurate modeling 
of the unstable modes. The stabilizing controller for a large-scale plant is typically 
developed through the analysis of a reduced-order model. Thus in this situation, is 
of the utmost importance that the unstable modes of the large-scale system appear 
in some form in the reduced-order model. The use of implicit restarts to achieve this 
remains an area for future research. 

Lanczos methods are already being applied to model reduction problems in the 
area of control [4,24,35]. However, in many applications, sparse systems occur in 
implicit state space systems rather than in explicit ones. In other words, instead 
of working with (1) and (2), the more general state space equation 

E 2  = A x  + Bu, (50) 

y = C x  + Du  (51) 

should be treated. In this case, one must be concerned with the inversion of E for 
high-frequency moments or A for low-frequency moments. But for the more 
general case (for example, when direct methods result in a high degree of "fill- 
in"), it would seem that one must turn to iterative strategies for approximating 
those matrix-vector products involving inverses. Moreover, block versions of the 
above schemes ought to be developed for dealing with the case where B and C 
are not just vectors (see e.g. the CD player example used in section 3.2). 

The occurrence of ill-conditioned table entries is well-studied in the Lanczos 
algorithm [28], where it is termed a "serious" breakdown. By employing look- 
ahead into the Lanczos method, [20,21,14], one possesses a powerful tool for 
detecting and avoiding ill-conditioned table entries. Along similar lines, block 
versions of these algorithms should be developed in order to cope appropriately 
with the MIMO case. 
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