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A set of necessary conditions that must be satisfied by the L2 optimal rational transfer 
matrix approximating a given higher-order transfer matrix, is briefly described. On its basis, 
an efficient iterative numerical algorithm has been obtained and implemented using standard 
MATLAB functions. The purpose of this contribution is to make the related computer 
program available and to illustrate some significant applications. 
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1. I n t r o d u c t i o n  

The model  reduction problem consists in the approximation of  a high-order 
linear system by a lower-order model  according to a suitable criterion. Its interest 
is motivated by the need for time-efficient numerical simulation and control system 
design that is easier to implement with reference to simplified controlled plant 
models. 

Quite different approaches to model  reduction have been proposed in the 
literature; some of  them are based on optimality criteria, some others on system- 
theoretic arguments,  like the popular  balancing method  of  Moore  [14]; according 
to this method,  the subsystems which contribute little to the impulse response of  
the overall system are identified and eliminated. Al though for many  problems 
the "weak subsystem" hypothesis leads to a nearly optimal (in the L2 sense) 

* Work partially supported by Consorzio Padova Ricerche through the IRI programme "Consortia 
Citth Ricerche - Central European Initiative". 
** e-mail: elen@elettl.dei.unipd.it 

(~) J.C. Baltzer AG, Science Publishers 



356 IV. Krajewski et al. / A program for  L 2 model reduction 

reduced-order model, there are cases in which the balancing method is much worse 
with respect to the least-squares criterion than the quadratically optimal reduced- 
order model [8]. These reasons motivate the enduring interest for optimality-based 
approaches and the search for simple algorithms to achieve the optimum, which is 
testified by many recent papers [3-5,10,20,24]. 

Most existing algorithms, however, are computationally demanding and their 
convergence is seldom guaranteed. The interesting and informative paper [20], 
where a convergence analysis is developed, is devoted to single-input single- 
output (SISO) continuous-time systems. The multi-input multi-output (MIMO) 
case was first considered by Wilson [22,23] and Mishra and Wilson [13], who 
proposed some algorithms involving the iterative solution of two algebraic 
matrix Lyapunov equations, whereas in [8] and [24] a projection approach using 
a rather large number of variables is adopted. 

In this paper, we present an efficient alternative algorithm which is based on a 
re-formation of the first-order necessary conditions of optimality in terms of 
interpolation constraints and does not require gradient computations. In fact, it 
has long been known [1,4,12,21] that in the SISO case the best approximating 
function must satisfy suitable interpolation conditions; similar conditions, 
however, hold in the MIMO case too [10]. These can be expressed in a compact 
form which is suggestive of an iterative numerical procedure consisting in the 
solution of a sequence of linear sets of equations. A similar approach has also 
been considered by Rosencher [17], Ruckebush [18] and Olivi and Steer [16]. In 
fact, though this is not immediately apparent, the iteration step of the present 
method in the scalar case corresponds to the one of Rosencher's algorithm for 
discrete-time systems (under the assumption that the iterates are stable, a 
condition which is not required by the algorithm illustrated in the following 
sections). Rosencher's heuristics has been generalized to the matrix case with 
bounded McMillan degree in [16] in the generic case of cyclic approximants. 
Here, instead, we refer to the case in which the degree of the least common 
denominator (l.c.d.) p of the reduced model has been fixed and to the necessary con- 
ditions of optimality first derived in [10]; let us recall that the related McMillan 
degree is included between p and p.min (mo,mi) , where mo and m i are the 
number of outputs and inputs, respectively, and is generally equal to p. min (mo, mi). 

In the following we illustrate the main features of the algorithm and describe the 
corresponding program that has been implemented using MATLAB functions. 
Despite the rather cumbersome notation used in section 3 to derive the basic 
equations of the algorithm, this is computationally much simpler than most 
optimal, or even suboptimal, reduction techniques as it only requires the solution 
of sets of linear equations. The MATLAB program implementing the algorithm, 
illustrated in section 4, is user-friendly and does not require the detailed knowledge 
of the method: the user must only supply the numerator and denominator 
coefficients of the original system and a starting guess for those of the reduced 
model. Finally, we discuss the results obtained by applying the above method to 
some meaningful examples taken from the literature. 
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2. Optimality conditions and iterative scheme 

By denoting the original stable mo x m i transfer matrix by 

N(s) 
F(s) = d(s ) '  (1) 

where d(s) is the 1.c.d. of degree v of all input-output transfer functions and N(s) is 
the mo x m i matrix formed from the corresponding numerators of degree at most 
v -  1, and by 

G(s) = M(s) 
c(s) (2) 

the stable approximating transfer matrix whose 1.c.d. c(s) has degree p < v, the 
approximation error is defined as 

E(s) := F(s) - G(s) = NE(s) (3) 
d e ( s )  ' 

where Ne(s) = N(s)c(s) - M(s)d(s) and de(s) = d(s)c(s). 
The index to be minimized with respect to the parameters of G(s) is 

1 f+oo 
J = IIg(s)ll2 = J- o tr E( jw)E*( jw)  dw, (4) 

where the star indicates complex conjugate transpose. 
By referring for notational simplicity to the case in which G(s) has p simple poles 

--Pk, G(s) can be written in the form: 

P Rk 
O ( s )  = 

= S + p k  

where Rk is an mo • mi complex matrix. 
It has been shown [10] that the following interpolation conditions are necessary 

for optimality: 

G(p*k) = F(p~,), 
t ,  

tr{[F (p~) = G'*(p~,)]. Rk} = 0,  

k =  1, . . . ,p ,  (5) 

k =  1 , . . . ,p ,  (6) 

in which the prime denotes derivative with respect to s. If the coefficients of the 
polynomials involved are real, equations (5) and (6) can be given the compact 
form of the following polynomial identities: 

N(s)c(s) - M(s)d(s)  = Ql(S)C(-S), (7) 

t r { a ~ ( s ) M ( - s ) }  = q2(s)c(-s), (8) 

where Ql (s) is an mo • mi matrix of polynomials whose degree is at most v - 1 and 
q2(s) is a polynomial of degree at most v - 2 (the superscript T denotes transpose). 
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Equating the coefficients of the equal powers of s on both sides of (7) and (8), we 
obtain, respectively, (u + p) .  (m o .mi) and u + p -  1 equations in the 
p. (m o .m i + 1) unknown numerators and denominator coefficients of G(s) and 
in the v . ( m o . m i +  1 ) -  1 auxiliary unknown coefficients of Ql(S) and qa(s). 
These equations have degree 2 in the considered unknowns but can be solved by 
means of an iterative procedure that, at each iteration, makes use of linear 
equations and essentially requires the inversion of matrices of order p and u 
only, as shown in the next section. 

Precisely, by denoting with superscript (h) the quantities computed in the hth 
iteration and with superscript (h + 1) those to be evaluated in the current 
(h + 1)th iteration, the basic equations of the procedure are: 

N(S)c(h+I)(s) -- M(h+a)(s)d(s) = Qlh+l)(s)c(h)(-s),  (9) 

tr{Qlh+l)r(s)MCh)(--s)} = q~h+l)(s)c(h)(--s), (10) 

which in the case of SISO systems reduce to: 

F I ( S ) c ( h + I ) ( s )  - -  m(h+l)(s)d(s) = q(h+l)(s)[c(h) (--S)] 2, (1 1) 

where n(s) and m (h+l) (S) are the numerator polynomials of the original and reduced 
(scalar) transfer functions, respectively, and q(h+l)(s) is an auxiliary polynomial. 

fficl (0) (0) Clearly, in the first iteration the values of the coe "ents of c (s) and M (s) 
should be suitably guessed, and a stopping criterion should be provided (on the 
basis of the difference between two consecutive vectors of the coefficients of 
c(s)). Since, in general, the problem exhibits more than one solution, the procedure 
must be started from different initial points in order to identify and compare the 
local minima of J. Usually, the globally optimal model is "close" to, and can 
rapidly be reached from, the reduced model obtained through balancing, even if 
this is not always the case [8]. According to experience [20], the poles of the locally 
optimal models are often near those of the original system and, in particular, the 
poles of the best model are near the dominant poles (in the L2 sense) of the original 
system which can be determined as suggested in [9]. 

Some considerations on the algorithm convergence are developed in the 
appendix. It is shown there that the critical points that are not minima of the 
index (4) are always repelling; usually, the minima are attracting, even if some 
very "fiat" minima can be repelling too. 

3. Outline of  the algorithm 

In this section we describe the structure of the equations resulting from the 
polynomial identities (9) and (10), and the steps of the algorithm that has been 
implemented using standard MATLAB functions. 

To this purpose, it is necessary to introduce first some notation. 
Matrices will be denoted by capital letters, scalars by small letters, and vectors by 
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bold small letters. Zero matrices and column vectors will be indicated by Op,q and 
Op, where p and q correspond to their row and/or column dimensions. To simplify 
notation, the matrix entry of position (i, j)  will be assigned a single subscript k 
according to the lexicographic order: 

k = m i ( i - 1 ) + j ,  i = l , . . . , m o ,  j = l , . . . , m i ,  

and the product too. mi will be indicated by #, so that k = 1,2,. . . , /z.  
According to this notation, the entry nij(s) of N(s) will be denoted by nk(s ) and 

its coefficients by nk,t, i.e., 

~--I 

nk(S ) = ~ nk,, st. 
l=0 

From these coefficients we form the row vector: 

nk : [nk.0, nk,1,..., nk,~-l] E ]~. 

Similarly, from the polynomial entries m(kt)(S) of M ( t ) ( s ) , l = h , h +  1, and 
Ulk"(h+l)(S) of Olh+l)(s), from the polynomial q~h+l)(S) and from the momc 
polynomials d(s) and c(t)(s), l = h,h + 1, we form the row vectors: 

: [mk,O, frtk, 1 ~ �9 �9 �9 ~ rftk, p_lJ E ][~P~ 

q(h+~) ~ (h+~) (h+l) _(h+~) 1 
lk  = [q lk ,0  , qlk,1 , ' "  ",  t / lk ,  v - l J  E R ~, 

q(h+l) [~(h+l) ,,7(h+l) |(h-FI) ] ][~v-I 
2 = tff2,0 ~ "/2,1 ~ " " �9 ~ ~2 ,u -2J  E 

d = [ d 0 , d l , . . . , d ~ _ l ]  E R", 

c(t) r:(Z) :(z) _(t) 1 ~p. m_ L"O ~'1 " ' ' ~ U p - l J  ~ 

By properly ordering the unknowns to be determined at the current (h + 1)th 
iteration, the column vector x collecting these unknowns can be written as 

T T T ~(~+:)(~+I)-I x = [xLxL. . . , x . ,x .+ , ]  

where 

x~ r__O+l) -0+01 = Link ,tll k j, k =  1 , 2 , . . . , / z ,  

T r,,(h+l) cCh+l)]. 
X # + l  ~ 1112 

In this way, the linear set of equations for the current (h + 1)th iteration, which is 
denoted by 

A x : b ,  (12) 

takes on the particularly convenient structure illustrated in the following. 
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To this purpose, let us introduce the matrices: 

D I = 

do 0 . . .  0 

dl do . . .  0 

de-, d~_2 . . .  do 

~pxp 

D 2 = 

dp  dp_t . . .  d l 

�9 . 

1 dr_ l . . .  d,-p+1 
0 1 ... d,,-p+2 

�9 , , o 

0 0 ... I 

]~vxp 

C~ h) = 

- c ~  h) 0 . . .  0 0 . . .  O 

cl h) - c ~  h) . . .  0 0 . . .  0 

- ( - 1 )  p-'c~h_ ), - ( - 1  P-It(h) . --C~ h) ) "p-2  "" 0 . . .  0 

~_ ]~pxv 

- ( - 1 ) ~  - ( - 1 ) ~ - '  ~ . . .  cl ~ _~c: o . . .  

o - ( - 1 :  . . .  -c~ ~> cl ~ -~o ~ . . .  

0 0 

0 

0 

. . .  0 . . .  0 . . .  - ( - 1 )  p 

~ ~'x ~'I 

DI C~h) 1 A = E R (~'+p) • 
D 2 C ~ ' ) J  

Let us now indicate with ~h)  E R p• the matrix obtained from C~ h) b y  delet-c h) 
ing its last column and with ~h)  E ~(~-1)• the matrix obtained from by 
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deleting its last row and column, and form the square matrix: 

361 

A =  [~}h) Op, p ] E R ('+p-l)• 

Let us also define the matrices: 

N k , 1  

nk, 0 0 . . .  0 

nk,  l nk,  0 . . .  0 

nk,  p - I  nk,  p - 2  �9 . . nk,O 

~pxp 

N k , 2  = 

nk,  p nk, p - I  �9 . . nk,  1 

�9 o o 

n k , ~ - !  n k , ~ - 2  . . .  nk,  u -p  

�9 . �9 

0 0 nk,~-i 

0 0 . . .  0 

E ~uxp 

Op ~,_l Nk'l l 
Nk = 

O~,.-i Nk,2J 
E R (~'+p)X(~'+p-1), 

M (h) 
k,l 

mCh) 0 0 0 
k,O . . . . . .  

_,..,(h) ,,.(h) 0 0 
'"k,l "~k ,O  . . . . . .  

o ) ""k,p-2 . . . . .  ' k ,O  " ' "  

O 
. 

0 

0 
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Mff) ,2 : 

"0  ( - - 1 ) P - l m  (h) .. (h) ,,,(h) k,p-I * ' '  --rrtk,1 " 'k ,0  

0 0 .. Ch) _,~,(h) " ' '  t r t k , 2  " 'k , l  

0 

and 

�9 ~ . 

0 .. .  0 0 

Mk(h [ Op, p 
O v - l , p  

� 9  0 

m(h) 0 
k,O "'" 

0 ( t ~ P-l'~'(h) 
�9 �9 . k - - x /  " ~ k , p - I  

I M(h) 1 k,1 E ]~(~'-Fp- 1) x (~'+p) 

With the above notation, matrix A in (12) takes the form: 

A 

0 

A =  

0 

M I  (h) 

and column vector b is given by: 

with 

. . � 9  0 

A . . .  0 

0 . . .  A 

M~2 h) . . .  Mf f  ) 

N I  

N2 

b [b T,bT,.. -T T 1T = . ~ Dp, O~+p-lJ  

b T T r-T = bk] ,  

r-T 
b k = [ - -nk ,O , - -nk ,  l , . . .  , --nk, ._l] E ~ .  

where 

E R(~'-l)xv, 

(13) 

The direct solution of (12) would thus require the inversion of matrix (13) 
which is of order [(v + p)(# + 1 ) -  1]. However, by eliminating the auxiliary 
variables ql h+l) and q~h+l), which can be done by inverting the (triangular) 
nonsingular matrices C~ h) and ~h) ,  we obtain a set of [p(# + 1 ) -  1] linear 
equations in the same number of unknowns�9 The related coefficient matrix is 
certainly invertible at least in the neighbourhood of the considered stationary 
points, as shown in the appendix�9 
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The computational complexity of the algorithm can, in general, be further 
reduced by exploiting the sparseness of A. This result is achieved with the 
simplified procedure illustrated below. It essentially requires the inversion of 
matrices of order v and p only, whose invertibility is generically guaranteed 
(cf. appendix). 

From the first/z block rows of A, we obtain: 

D m(h+l )  T /,. (h)_(h+l) T 
l i nk  at- ~1  t l lk _~_ ~rlyk, lC(h+l)T : Op, 

D m(h+l)T f ' (h)t l (h+l)T fat- Nk,2 c(h+I)T : bk, 
2"**k d-  "-'2 "ilk 

k =  1 , . . . , # ,  (14) 

k =  1,. . . , /z.  

_(h+]) (note that C~ h) is always invertible), we get: Solving (15) for qlk 

r, ,  (h+l) T ;~7" ~(h+l) T ] "(h+l)T = (C~h))-l[bk- z)2mk --~'k,2"- J "ilk 

and substituting this expression into (14), we have: 

_(h+l) T Fm k q- Ok c(h+I)T = tk, k = 1 , . . . , # ,  

where 

r : -  D 1 - c ~ h ) ( c ( h ) )  -ID 2 E R pxp, 

= N ,I- R 

tk  = - - c } h ) ( c } h ) ) - ' b k  E ]Ra. 

From the last (/z + 1)th block row of (13), we get: 

?t,r T . -'~(h) (h+l) T 
~"~k,1 ' i l k  -]- (-'I q2 = Oa, 

k=l 

s ~lAr(h).(h+l) T • "~(h)n(h+l)T 
~,.Lk,2"il k T " 2  "i2 : OU--I" 

k=l 

_(h+l) (note that ~h)  is always invertible), we obtain: Solving (19) for qz 

q~ h+l)T : --(-'c~h))-l [k=~l ]~(h)'~(h+l)T]'~rZk,2"ilk J 

Using (16) and (20), from (18) we have: 

/l 
E l l "  .~(h+l)  T (I)c(h+ 1) T 

X.tkiat k ~ : t~+ 1 , 
k=l 

(15) 

(16) 

(17) 

(18) 

(19) 

(20) 

(21) 
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where 

i-~k [ A t ( h )  "~(h)  , " ~  (h) x -  1 ~ Ar (h)l/, ,",(h) x -  I r~ ~ p x p ,  
: P ' k , l  -- t" l  l,t'2 } IVlk,2Jl, t... 2 ) I-I 2 E 

/J 

'~"~[AAr(h) -'~(hl(-"~(h),~-I AAr(hl l (c~hl)- lNk,2 E R #x", 
~ ~..r  - -  ~'-'I k~"2 ] "trlk,2J 

k=l  

# 
~ - '~ r~ar (h )  _ ~ ( h ) ( ~ ( h ) ~ - i  Aar(h)l t,+l =/_.,I,--k,l "~1 t'--'2 J ""k,2J(C~h))-Ibk �9 
k=l  

From (17) we get: 

mtk h+llT = - - • - lOke(h+l ) r  + t,  k = 1 , . .  �9 ,Iz,  

and substituting these expressions into (21), we finally obtain: 

c (h§  T : H-Iv,  

where 
# 

H = �9 - E I I k F - l O k  E R px#, 
k=l  

# 

v = t~+l - ~ IIktk E ]I~ p. 
k=l  

(22) 

(23) 

On the basis of the previous relations, the solution algorithm entails the 
_(h+l) using (23) and (22), respectively. successive evaluation of vectors e (h+l) and m k 

Equation (23) requires the inversion of the p x p matrix H, which in turn requires 
the inversion of the p x p matrix F. Equations (22) do not require the inversion of 
other matrices. Considerations on the invertibility of the mentioned matrices are 
made in the appendix. 

The above procedure is not computationally demanding. In fact, it is only 
(h) necessary to invert at each step the triangular matrix C 2 of order v, its triangular 

submatrix ~h)  of order v - 1, and the p x p matrices F and H. 

4. P r o g r a m  descr ip t ion  

The program implementing the algorithm of section 3 consists of 10 MATLAB 
routines (called: s i no ,  mino, 12siso,  12mimo, energy,  sin.r, sour,  min.r, moux, 
rever) .  The package is self-contained and does not require extra MATLAB 
functions. Even if the reduction of SISO systems could well be performed by 
resorting to the more complex procedure for the general case of MIMO systems, 
two separate routines have been developed for the two cases. 

For convenience, polynomial coefficients are to be supplied according to 
ascending powers of s and so are stored. In the MIMO case, the polynomials in 
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the numerator matrix are arranged row by row. If the number of numerator 
coefficients specified by the user is less than the model order, the related routine 
autonomously sets to zero the coefficients of the relevant higher powers of s. 
Also, if the supplied denominator is not monic, the input function divides all the 
numerator and denominator coefficients by the coefficient of the highest power 
of s in the denominator. Various controls are made in the execution of the program 
functions to check the data consistency. 

Only two functions need be used to run the program from a MATLAB session. 
Specifically, in the SISO case they are: 

[num, den] = sino; 

[nr,dr,jr,kr,np,dp,jp,kp] = 12siso(num,den,epsa,kmax,kdisp) ; 

and in the MIMO case they are: 

[num, den, mi,mo] = mino ; 
[nr, dr, j r, kr, np, dp, j p, kp] = 12mimo (num, den, mi, mo, ep s a, kmax, kdi sp) ; 

Functions s ino and mimo perform the input operators. They store the vectors of 
the original numerator(s) and denominator coefficients (hUm and den, respectively) 
as required by the routines 12s iso  and 12mimo. Clearly, it is not necessary to repeat 
the input operation to find reduced models of different order for the same original 
system. 

The parameters epsa, kmax and kdisp  are optional. Parameter epsa determines 
the stopping criterion; it sets the tolerance on the difference between the parameter 
values computed at two consecutive iterations according to: 

max [el h+ll - clh>[ < epsa" min Iclh)l. 
i i 

The default value for epsa is 0.001. If this stopping criterion is not satisfied 
within lmax iterations, the procedure is arrested. The default value for kmax is 
50. Partial results are displayed every kdisp  iterations. If this parameter is not 
specified, no partial results are displayed. 

When a solution has been found, the corresponding polynomial coefficients are 
displayed according to ascending powers of s and stored in the output parameter 
vectors m- and dr. The output parameter j r gives the related index value and kr 
the number of iterations needed to reach the solution. The index value (squared 
error norm of the error between the original and the reduced transfer function) 
is computed by a suitable function, called energy, according to the Routh-like 
algorithm suggested by ,~strrm [2]. Note that the final solution corresponding to 
the satisfaction of the adopted stopping criterion might lead to an index value 
(j r) slightly greater than that characterizing a previous iteration. In this case, the 
program also gives the latter minimum value jp, together with the related reduced 
numerator rip, denominator dp and number of iterations kg. 

Four specific functions, called sitar, sour, rain.r, mow:, are used by 12siso and 
12mimo to perform the input and output operations concerning the reduced model. 
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Finally, to facilitate the use of MATLAB routines (which require that the 
polynomial coefficients be supplied according to descending powers of s), like the 
function impulse,  included in the Control system toolbox and used in the example 
section, a special function, named rover ,  has been included in the package: it 
reverses the order of the denominator and numerator(s) coefficients and associates 
with the (common) denominator the numerator of interest. 

5. Examples 

The performance of the algorithm has been tested on a number of examples. In 
any case, the number of iterations required to find a (local) minimum of J has been 
small even if the initial guess had not been close to it and the stopping criterion very 
stringent (typically, less than 10 iterations for original systems of order 6-8 with 
less than 3 inputs and/or outputs). However, if the distribution of the original 
system poles and zeros is very spread and/or quasi-cancellations of pole-zero 
pairs occur, the problem may become ill-conditioned and the number of iterations 
increases: for instance, the number of iterations needed to find an 8th-order 
approximant for a 17th-order system with the above characteristics has been 
greater than 40. Clearly, since different local minima can be present, a suitable 
number of starting points should be considered. 

5.1. Example 1 

The first example, which refers to an SISO system, is taken from [19] and has also 
been considered in [9] in connection with pole retention techniques. 

The original 8th-order transfer function is: 

with 

n(s) 
f ( s )  - a ( s )  

n(s) = 4.026610.104 -k- 1.853269. 105s + 2.215650. 105s 2 + 1.224091. 105s 3 

+ 3.632059. 104s 4 q- 5.975406. 103s 5 -k- 5.137200. 102s 6 -k- 1.8.10s 7 

= 18(s + 0.32)(s + 2.45 - j0 .53) (s  + 2.45 +j0.53)(s + 5 - j0 .65)  

(s + 5 +j0.65)(s + 5.89)(s + 7.43), 

d(s) = 40320 + 109584s + 118124s 2 + 67284s 3 + 22449s 4 + 4536s 5 

+ 546s 6 + 36s 7 + s 8 

= ( s +  1 ) ( s + 2 ) ( s + 3 ) ( s + 4 ) ( s + 5 ) ( s + 6 ) ( s + 7 ) ( s + 8 ) .  
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As already oberved, the poles of the optimal models tend to occur near the poles 
of the full-order system, which gives support to the suggestion made in [9] of 
choosing a suitable set of original poles, i.e., the dominant ones, as a convenient 
starting point. In fact, this choice has led in a very small number of iterations to 
the L/-optimal models. However the same solutions have been reached in less 
than 8 iterations adopting initial guesses with all coefficients equal to 1. In the 
sequel, we give the models of order from 5 to 1 with the corresponding minimum 
index values obtained in this way (the values for the models of order 7 and 6 are 
extremely small and comparable with the effects of rounding errors). 

my(s) = 17.999968(s + 4.880298)(s + 2.355235 -j0.5977134) 

(s + 2.355235 +j0.5977134)(s + 0.3199891), 

cv(s) = (s + 7.773184)(s + 3.866904)(s + 2.616948)(s + 2.114325) 

(s + 0.9992669), 

J~ = 5.468801.10-11; 

miv(S) 

ci (s) 

J,,, 

= 18.00051(s + 5.546283)(s + 1.860185)(s + 0.3205420), 

= (s + 7.868239)(s + 4.733892)(s + 1.562191)(s + 1.024225), 

= 5.799822.10-8; 

mill(S) 

Ciii(S) 

Jiii 

= 17.98747(s + 3.502370)(s + 0.3130394), 

= (s + 7.453438)(s + 2.864725)(s + 0.9287173), 

= 2.520804.10-5; 

mii(s) 

c,,(s) 

J,, 

= 17.78501(s + 0.2596419), 

= (s + 6.662265)(s + 0.7330904), 

= 5.590181.10-3; 

mi(s) = 18.61081, 

ci(s) = s + 8.220893, 

Ji = 6.202763- 10 -1. 

Note that the values of J are appreciably smaller than those for the best 
pole-retaining models given in [9]. 

The impulse responses of the original system and of the reduced models of order 
2 and 1 are shown in figure 1: the second-order model reproduces the original 
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Figure 1. Impulse response of the original system of example 1 (solid line) and of the reduced models 
of order 2 (dashed-dotted line) and 1 (dashed line). 

behaviour  very satisfactorily. The  responses of  the other  higher-order  reduced 
models  are not  represented because they practically coincide with the original one. 

5.2. Example 2 

This second example refers to an S IMO system with 2 ou tpu ts  which has first 
been studied in [11]. It has also been considered in [7] where a t tent ion concentrates  
on the reduct ion in balanced and moda l  coordinates.  The  original 6th-order  trans- 
fer matr ix  is 

with 

r,.,,,(s)l 
F(s) - Ln21(s)J 

nil(s) = - (5 .892792.105  + 1.703558. 107s-k 1.933526.10Ss 2 

+ 2.980877.10as 3 -k- 1.045770. 102s 4 -k- 3.479562s5), 

n21(s) = - (1 .705535.107  -k 3.172180. 105s + 3.439612. 104s 2 

+ 3.649765. 102s 3 + 8.133429s 4 + 5.232000.10-2s5),  

d(s) = 2.664275- 105 + 5.843032. 105s + 2.371008. 106s 2 

+ 2.790969. 104s 3 q- 4.577306. 103s 4 + 1.766590- 10s 5 + s 6. 
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In order  to find a 4th-order  model ,  we have arbitrarily started the suggested 
a lgor i thm f rom the following model:  

m~~ = - ( 5  + 20s + s 2 + 0.01s3), 

m~~ = - ( 1  + 10s + s 2 + 0.1s3), 

c(~ = 1 + 10s + 100s 2 + 1000s 3 + s 4, 

which has turned out  to be very far f rom the opt imal  solution. Nevertheless, after 7 
i terations only, the following model  has been obtained: 

mll (S)  = - (9 .849753 .102  + 2.851144. 104s + 7.639196.10s 2 + 3.705600s3), 

m21 (s) = - (2 .854926.104  + 2.981424. 102s + 7.890070s 2 + 5.217566- 10-2s3), 

c(s) = 4.459679.102 + 9.744784. 102s + 3.960059. 103s 2 

+ 1.296605.10s 3 + s 4, 

J = 6.096262.10 -3. 

No te  that  the reduced model  practically retains the four  modes  with the largest 
absolute  values of  the residues, i.e., those cor responding  to the poles at about  
-6.3 +j62 and - 0 . 1 2  + j0 .31 .  

The  impulse responses of  the reduced model  are a lmost  coincident  with those of  
the original system and,  therefore, are not  represented. 

5.3. Example 3 

This third example refers to an M I M O  system with 2 inputs  and 2 outputs .  It  has 
been considered in [15] in connect ion  with an error  minimizat ion technique with 
fixed poles. The  original system is: 

with 

F(s)  = 

nll(S n,2(s) ] 
n2,(s) n2 (s) 

d(s) 

nil(s) = 1 0 2 +  133s+  63s 2 + 13s 3 + s  4, 

n12(s) = 1581 + 2163.5s + 1109.5s 2 + 264.5s 3 + 28.5s 4 + s s, 

n21(s) = 4 + 4 1 . 3 s +  13.1s 2 + s  3, 

n22(s) = 62 + 644.15s + 244.35s 2 + 28.6s 3 + s 4, 

d(s) = 50 + 212.5s + 318s 2 + 223s 3 + 81s 4 + 14.5s 5 + s 6 

= ( s +  5 ) ( s + 4 ) ( s + 2 - j ) ( s + 2 + j ) ( s +  1 ) ( s+0 .5 ) .  
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In this case too, by starting from arbitrary initial points (e.g., all coefficients 
equal to 1), the algorithm arrives in about 10 iterations at the following model 
with deg{c(s)} = 2: 

rm,,.> m,..>] 
G(s) = I_m21(s) m22(s) 

with 

m l l ( S  ) = 1.041851 - 5.720402. lO-3s, 

m l 2 ( S  ) = 16.15166 + 9.447782. lO-ls, 

m21(s ) : 1.196381 + 8.155153.10-2s, 

m22(s) = 1.812015 + 1.503528s, 

c(s) = 5.196188.10 -l + 1.469527s + s 2. 

The corresponding index value turns out to be J ~ 3.13, whereas the value for 
the model obtained in [15], which retains the poles at -0 .5  and -1 ,  is J -~ 8.6. 
Observe again that the l_~-optimal model poles are close to the original system 
poles chosen in [15]. 

Figure 2 shows the impulse responses corresponding to each i/o pair of the 
original system and of the reduced model. It is clearly seen that the responses at 
output 1 to an impulse applied to inputs 1 and 2 are approximated very well, 
whereas the approximation of the responses at output 2 to an impulse applied to 

From input 1 to output 1 
0.6 

0.4 

0.2 

0 

-0.2 

0.2 

0.1 

O: 

-0.1 

2 4 6 

time 

From input 1 to output 2 

8 10 

From input 2 to output 1 
10 

0 
( 2 4 6 8 10 

time 
From input 2 to output 2 

. . . . . .  

2 4 6 8 10 0 2 4 6 8 10 

time time 

Figure 2. Inpulse reponses of the original system of example 3 (solid lines) and of the reduced model 
(dashed lines). 
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inputs 1 and 2 are poorer, even if the deviations are magnified by the different 
scales adopted. It might be said that the better approximation of the response 
characterized by the highest peak (from input 2 to output 1) is obtained at the 
expense of a worse approximation of the other responses. 

6. Conclusions 

In this paper we have considered the problem of computing a reduced-order 
model of form (2) for an original higher-order multivariable linear system 
with transfer matrix (1) in such a way that the squared L2 norm (4) of the 
approximation error (3) is minimal. To this purpose, a numerical algorithm has 
been developed (section 3) which is based on the compact form (7)-(8) of the 
first-order necessary conditions of optimality. It is characterized by remarkable 
computational simplicity compared to the other available techniques. 

The algorithm described in section 4 has been implemented on a PC using 
standard MATLAB functions. It is available in library NUMERALGO of netlib. 

The program has successfully been tested on a variety of examples, three of 
which have been discussed in section 5. 

Appendix 

A1. Algorithm convergence 

For simplicity, we shall limit attention to the case of SISO systems for which the 
reduced transfer function g(s)  has simple real poles; the extension to the general 
case would entail a considerable increase in notation without changing the 
essential features of the problem. 

With the above assumption, we have 

p 

, ri E ~,,Pi E R+, (24) g(s) = s + p~ 

where ri is the (scalar) residue at pole -P i ,  and the index to be minimized can be 
expressed as 

1 :+J~ 
J(r,p) = ~-~ J-/oo [f(s) - g(s)][ f (-s)  - g(-s)]  ds 

= r TPll r -- 2rTf(p) q-Ilfll 2, 

where f ( s )  is the original transfer function, r T = [ r l , r 2 , . . . , r p ] , P l t =  
{(Pi +P/) - l } , i , J  = 1 ,2 , . . . ,P ,  PT=[pI ,P2 , . . . ,Pp] , fT(P)=[ f (Pl ) , f (P2) , . . . , f (Pp)]  �9 
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It is easy to verify that the associate 2p x 2p Hessian matrix H(r, p) can be 
written as 

H(r,p) = 2 [ I  0 0 ] ~ ( r , p ) [ I  O O] 

with R = diag{r;},i = 1 ,2 , . . . ,p ,  and 

[o o 1 
H ( r , p ) =  [Pl2 P22 - B2 R-l] = P -  B2 R-1 ' (25) 

where PI2 and P22 are symmetric matrices given by Pl2={- (p i+p j )  -2) 
and P22 ~ ( 2 ( p i  _}_pj)-3}, i j  ~ 1 , 2 , . . . ,  p,  respectively, and B E ~ diag{(O/Opi) 
[f '(Pi)-g'(Pi)]),  i= 1,2 , . . . ,p .  

Clearly, H(r, p) is positive (negative) semidefinite if H(r, p) is. Now, Pll is posi- 
tive definite for Pi > 0, i = 1 ,2 , . . . ,  p, so that H(r, p) cannot be negative semidefi- 
nite and J(r, p) does not exhibit maxima: this property (often overlooked) is of 
course a consequence of the fact that the restriction of the objective function to 
the linear space obtained by fixing the values of the poles is quadratic and thus 
convex. 

However, by setting 0J( r ,p) /0r  to zero, which is a necessary condition for 
optimality, we form a set of p equations linear in the components of r (whose 
coefficient matrix is precisely P~). These components can thus be expressed as 
functions of p, i.e., r = r(p). Replacing r by r(p) in J(r, p), we obtain a function 
of p only: 

J(p) = J(r(p),p), 

whose derivative with respect to p must also be zero at a stationary point. Of 
course, J(p) may well exhibit maxima which are therefore saddle points for J(r, p). 

The equation (11) describing the generic step of the iterative procedure in the 
SISO case corresponds to a set of interpolation conditions: in fact, it simply 
means that the current error e(h+l)(S)=f(s)--g(h+l)(s) must exhibit zeros of 
multiplicity 2 at the opposites p~h),k = 1.2 . . . .  ,p, of the poles of the function 
g(h)(s) computed in the preceding step, in other words, g(h+l)(s) must interpolate 
the given function f(s) at the above points with intersection number 2. 
Specifically, we have: 

f(p~h))_g(h+l)(p~h)) = 0 ,  k =  1 ,2 , . . . ,p ,  (26) 

f,(p~h)) _ g,(h+,)(p(kh) ) = 0, k = 1,2, . . .  ,p. (27) 

Unlike the methods of descent type, the heuristics under consideration need not 
a priori ensure the attracting nature of the minima of 3 and the repelling nature of 
its maxima. Therefore, it is necessary to investigate the convergence of the 
algorithm. To this purpose, we shall refer to the parameters Pk and r k of g(s), 
which clearly identify the same function as the corresponding numerator and 
denominator coefficients. 
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Set (26,27) can be rewritten in vector form as: 

~ l ( p ( h ) ,  p(h+l) ,  r (h+l))  : O, 

where 
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(28) 

with 

and 

and 

where gel  and ff~/E2 a r e  vectors of dimension p. 
By assuming the invertibility of the Jacobian O~T-/I/0~/E (which is guaranteed in the 
neighbourhood of the considered critical points, as we shall see later), the derivative 
of gE with respect to pth) can be expressed as: 

d p ( h )  = _ LO~E J Op(h) ' 

where, taking into account the partial fraction expansion (24) of g(s), we have 

with 

~= = {2(plh)+pSh+,))-3}, 

= {-(plh  

= diag {rlh+l)}, i,j = 1,2 , . . .  ,p, 

OP (h) B2 

-Bl = diag {~[ f (P lh ) )  -- g(h+ll(Plhl)]} 

-B2 = diag{~Tjh)[f'(plh))--g'(h+O(plh))]}. , i =  1,2, . . . , p .  

p(i) r n(i) n(i) (i)~T 
~--- IFl 'Y2 , ' ' ' , P p  J ' i=h,h+ 1, 

r(h+l) t (h+l) v(h+l) (h+l) T 
= [rl , "2 , . . . , rp ] . 

Equation (28) implicitly defines a function k~ E that supplies the values of r <h+0 and 
p(h+l) f r o m  those o f  p(h), i.e., 
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By dropping the bars from the symbols that refer to the situation in which 
p(h+l) = p(h) = p and r (h+0 : r (h) : r (stationary point), and taking into account 
that Bl = O and 

0XI/I 0 IxT/...._~ I __ [ O ]  

�9 - ~ ( h )  lplhl=p-- B2 ' 

after simple manipulations, from the above equations we obtain 

0ff~/E2 OqXI'tE2 = R-~(P22 - P~2P~I*P12)-XB2 . (30) 
Op :---- Op (h) lpch)=p 

Let us note that: 

(i) matrix R is invertible under the assumption that all residues ri are different 

(ii) 
from zero, i.e., the order of g(s) is precisely p, and 
the invertibility of PII and P22-  PI2p~Ip12 descends from the fact that the 
2p x 2p matrix P in (25) is the positive definite matrix of the quadratic form: 

fO Xi e-pit - t xp+i e-pit dt, Pi ~ O. 
Li=I 

As is known, an "equilibrium" point p is repelling for the considered algorithm if 

K = B2 R-l ,  S = P22 - P12P~IIpI2 �9 

Since this pencil is regular because S is positive definite, there exists a (nonsingular) 
transformation [6, pp. 310-314]: 

by which the quadratic form: 

y : Zz, 

yr(K - AS)y 

where 

K - AS, 

at least one eigenvalue of (30) has magnitude greater than 1, and it is attracting if all 
its eigenvalues, which remain unchanged under the similarity transformation: 

0~E2 1 R - - - ~ - R -  = ( P 2 2  - PIEP~IIIpIE)-IB2 R-l, (31) 

have magnitude less than 1. 
According to a classic result of matrix analysis, the positive or negative (semi)- 

definite character of the block symmetric matrix H(r, p) in (25) depends both on 
that of Pll, which is positive definite, and on that of its Schur complement: 

- - ~  = P22 - B2 R - I  - P1EP~II1p12 �9 (32) 

Now, matrix E in (32) is obtained for the value 1 of parameter A from the pencil: 
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is transformed into 

z'r(A - M)z, 

where I is the identity matrix of order p and A is the p x p (real) diagonal matrix 
formed from the solutions A; of 

det ( K -  AS) = 0 

(characteristic values of the pencil). 
At a saddle point of J, which may correspond to either a saddle point or a 

maximum of J, matrix E is neither positive nor negative semidefinite. Therefore, 
at least one eigenvalue of A -  1 is positive or, equivalently, one characteristic 
value )~; is greater than 1. 

Since det(K - AS) = 0 if and only if 

det (S-1K - M)  = 0 

(recall that det S # 0), at least one eigenvalue of (31) or (30) is greater than 1, which 
in turn implies that the maxima and saddle points of J are (generically) repelling. 

According to a similar argument, it is possible to see that at a point of minimum 
every eigenvalue of (30) is less than 1. Of course, this is not enough to ensure 
convergence and, in fact, it is possible to design examples where some eigenvalues 
are less than -1 .  In the many cases we have considered, however, this has seldom 
occurred and corresponded to very fiat local minima, which means that many 
reduced models are characterized by almost the same value of the index and per- 
form equally well from the practical point of view. This typically occurs when 
one wants to approximate an original second-order system exhibiting an under- 
damped oscillatory mode by means of a first-order model. 

Let us finally make a remark about the stability of the iterates. It may happen 
that an unstable g(s) satisfies the interpolation conditions (5) and (6) (that are no 
longer necessary for optimality in this case). If this g(s) is revealed by the iterative 
procedure, it must be discarded. On the other hand, the Hurwitz property of all the 
iterates c(h)(s) is not necessary for the algorithm to converge to a Hurwitz c(s), 
even if for continuity arguments there exists a neighbourhood of every attracting 
(stable) minimum from which this is reached through Hurwitz iterates only. 

A2. lnvertibility of the coefficient matrix and its submatrices 

(h+l) ,#+1) and q: , the linear set of equations By eliminating the auxiliary variables "~ik 
(12) of section 3 has been reduced to equations (17) and (21) which can be 
represented in compact form as: 

E ~ = t ,  (33) 
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where 

I ' ~  0 . ~ 1 7 6  

0 F . . .  

0 0 . . .  

Hi H2 . . .  

0 01 

0 02 

�9 ~ 
E R (~'+l)p• (34) 

r (h+l) (h+l) m(h+l) e(h+l)]T ]~(~+l)p 
= Lml , m2 , �9 �9 �9 "-u , E 

t = ItS, t~' , . . . ,  t~+l] r ~ R I~+I)p. 

In the previous section A1, it has been shown that the Jacobian (29) is non- 
singular in the neighbourhood of the considered critical points of order p, so 
that the implicit function theorem ensures the existence and uniqueness of the 
function supplying the values of the poles and residues in such neighbourhood. 
Since there is a one-to-one correspondence between this parametrization and the 
set of numerator and denominator coefficients (entries of ~), equation (33) also 
admits a unique solution and, consequently, the coefficient matrix E is nonsingular. 

In order to use the simplified version of the algorithm described in section 3, 
submatrix P should be nonsingular too. This is only generically true. However, 
the invertibility of F is guaranteed when p < # = mi.mo. In fact, if the rank of F 
were equal to p - 1, the rank of _E would be at most a = #(p - 1) + 2p because 
of the structure of (34). Now, ~r cannot match the actual (full) rank of E, 
i.e., (# + l)p, for p </z; it follows that in this case F must be nonsingular. For 
higher values of p, F can be singular only for a set of zero measure in its parameter 
space. 
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