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Summary. The informational content ofgenomes 
of nuclear and mitochondrial origin is examined. 
By using the parameters of Shannon's information 
theory the language of mitochondrial DNA is shown 
to be more similar to the language of bacterial DNA 
than to that of nuclear DNA in more evolutionarily 
advanced animals. Moreover, using the parameters 
of Kolmogorov's theory on randomness, genes of 
different organisms (Neurospora crassa and Saccha- 
romyces cerevisiae) coding for the same protein (sub- 
unit 9 of ATPase) are shown to have, if both of  
mitochondrial origin, a similar degree of random- 
ness, whereas genes coding for the same protein, 
both belonging to the same organisms, exhibit a 
quite different degree of randomness when one is of  
mitochondrial origin and the other of nuclear origin. 
These results are in favor of the symbiotic origin of  
mitochondria. 
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Introduction 

Application of information theory to the analysis of 
the genetic message began shortly after the discovery 
of the genetic code (Gatlin 1968, 1972). Since 1977, 
when the complete sequence of ~X174 DNA was 
decoded (Sanger et al. 1977), the library of DNA 
sequences for various organisms has been greatly 
enriched, and now we have at our disposal, for the- 
oretical analysis and interpretation, a great deal of 
data regarding not only sequences of  nuclear origin, 
but also of mitochondrial origin. 
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The determination of the most significant infor- 
mational parameters of DNA sequences from var- 
ious organisms can help to assign to them a degree 
of "linguistic complexity," and to relate it to an 
evolutionary meaning. In particular, the linguistic 
analysis of the genetic message of mitochondrial 
origin could provide some insight into the origin of 
these eukaryotic organelles. It is well known, in fact, 
that there are two main theories on this subject: 
according to the first one, the so-called "symbiotic 
theory," the mitochondrion was originally a free- 
living bacterium, while, for the second one, the "en- 
dogenous" or "nonsymbiotic" theory, all genes, in- 
cluding those of the mitochondria, arose within the 
organism. 

In the present work we perform an informational 
analysis of some mitochondrial DNA sequences in 
order to compare them with sequences of  nuclear 
origin, and to obtain some new indications about 
the symbiotic or nonsymbiotic origin of the mito- 
chondrion itself. 

The well-known concept of  entropy, as intro- 
duced by Shannon in the context of information 
theory, recently provided some interesting results 
regarding the analysis of  exact DNA sequences. In 
particular, the analysis of viral genomes showed that 
overlapping genes influence information content and 
are indications of the degree of dependence in base 
sequences (Granero-Porati et al. 1980; Rowe and 
Trainor 1983). Moreover, informational measures 
of chromosomal and extra-chromosomal coding se- 
quences (Lipman and Maizel 1982) have been done, 
confirming the validity of  the use of information 
content of DNA as a suitable evolutionary measure 
(Subba Rao et al. 1982). 

The main difficulty in this kind of  statistical anal- 
ysis lies in the relative shortness of the sequences. 
We feel that, in the case of short sequences, this 
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obstacle may  be overcome by the use of  a more  
recent concept  o f  en t ropy developed by Kolmogo-  
roy (1968) and applied by Ebeling and Jimenez-  
Montafio (1980) to biological molecular  sequences. 

Analysis of Mitochondrial Sequences with 
the Aid of S-entropy 

In order  to analyze polynucleot ide sequences, let us 
briefly recall some definitions, as in t roduced by Gat-  
lin (1972) in the context  o f  Shannon 's  informat ion 
theory: 

D~ (= divergence from 

equiprobabil i ty)  = Hm,x - Hj 

D2 (= divergence from 

independence)  = H~ "d - Ha2 ~p 

R (= redundancy) = (D~ + D2)/2, 

where 

HI = - ~ pilog2pi; 
i~ l  

Hmax = --~i=1--nl logz -nl (when  

H2~a = _ ~ Pip)log2PiPj; 
i j = l  

H 2 d e p  = - -  ~ PiPij1og2PiPij 
id=t  

1vi) P~ n 

where p~ is the relative frequency o f  the i lh base o f  
the given sequence, and p~j the condit ional  proba-  
bility that the base x i follows the base x~. 

We performed a computer  est imation o f  these 
parameters  for some mitochondria l  sequences, in 
order to compare  our  results with those already ob- 
tained by Gatlin (1972) relative to sequences o f  nu- 
clear origin. It is to be noted that Gatl in 's  results 
were der ived from nearest neighbor data, whereas 
ours were obtained from exact sequences. In par- 
ticular, we examined the complete  sequences o f m i -  
tochondrial  D N A  in the following mammals :  1) Mus 
musculus (length 16,295 bases, Bibb et al. 1981), 2) 
Homo sapiens (length 16,569 bases, Anderson et al. 
1981), and 3 )Bos  taurus (length 16,338 bases, An- 
derson et al. 1982). 

The  values of  0 2 VS R for these mitochondria l  
DNAs (mtDNAs)  and the values obtained by Gatl in 
relative to nuclear D N A  extracted from organs o f  
the same mammals  are plotted in Fig. 1. F rom Fig. 
1 one can easily see that in the (R, D2) plane two 
clearly separated clusters of  points are present: the 
first is formed o f  points belonging to mtDNA,  the 
second to nuclear DNA. The cluster o f  m t D N A  is 

characterized by a higher value o f  R and a lower 
value o f  D2. Further,  the values o f  D2 for bacterial 
D N A  (Gatlin 1972) are close to the values o f m t D N A  
in mammals .  

I f  we perform a similar analysis (i.e., D2 vs R) 
for single mitochondria l  genes, we notice (Table 1) 
that the values o f  D2 and R are, in general, much  
higher than those found for complete  mi tochondr ia l  
sequences. In fact, sequences coding for tRNAs 
are also present in a complete  mi tochondr ia l  se- 
quence in which the nonspecific part, i.e., the one 
not  subjected to specific rules, is intrinsically more  
" ' r andom" than the one o f  single genes. I f  we recall 
that D2 means divergence from independence,  and 
R = (D~ + D2)/2, it is clear that the insert ion o f  
r andom sequences has the effect o f  lowering the val- 
ues of  D2 and R. It is interesting to note  that  we 
found the same results when some sequences o f  U R F  
(unidentified reading frames, Table 2) were exam- 
ined. Moreover ,  in some cases, the values o lD2 and 
R relative to the U R F  sequences are higher than 
those found for single genes. This result supports 
the hypothesis  that the U R F  are coding sequences. 
In fact, it has been recently shown that some U R F  
of  human m t D N A  encode components  of  the res- 
piratory chain (Chomyn et al. 1985). 

K-entropy Analysis 

Sequence analysis based on the parameters  o f  Shan- 
non 's  informat ion theory is greatly l imited when 
dealing with short  sequences (~  102 symbols),  as oc- 
curs in many  biological cases. In fact, in the case o f  
short sequences, one cannot  assign the "probabi l i -  
ties," Pi, to the observed frequencies, fi, nor  take as 
"condi t ional  probabili t ies," Pij, the observed dou- 
blet frequencies, f~j. 

A more  recent approach to the problem of  defin- 
ing randomness  (Chaitin 1966; Kolmogorov  1968), 
makes it possible to overcome these difficulties, be- 
cause for short sequences, it is possible to assign a 
quanti tat ively defined "degree o f  randomness"  and 
consequently a value o f  an entropy-l ike function as 
a measure of  the randomness  itself. 

Following Kolmogorov  and Chaitin: "A  se- 
quence o f  symbols p = (Ail, Ai2 . . . . .  Ai.), where 
Aik ~ (A~, A2 . . . . .  A~) is called ' random' ,  i f  there 
does not exist a shorter program q = (Ajl, Aj2 . . . . .  
Aj~) (i.e. v < n), which uses the same alphabet,  and 
is able to reconstruct  the original sequence."  This 
means that for a sequence o f " t r u e "  r andom num-  
bers, e.g., written in binary units, there does not  
exist a program, with a lower number  o f  bits, able 
to reconstruct  the given sequence. 

On the other  hand, a sequence with some "reg- 
ularities" has a shorter representat ion than itself. 
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Fig. 1. The points representing nuclear and mitochondrial DNA 
are grouped in two c]early separated clusters. The dashed region 
contains the values of D 2 for bacteria. 

D 2 R 

Table 1. Informational parameters of  mitochondrial genes 

Gene D2 R 

Cytochrome oxidase subunit I 

Homo sapiens 0.0345 0.0383 
Mus musculus 0.0629 0.0594 
Bos taurus 0.0547 0.0524 

Cytochrome oxidase subunit II 

Homo sapiens 0.0541 0.0608 
Mus musculus 0.1122 0.1100 
Bos taurus 0.1079 0.1040 

Cytochrome oxidase subunit III 

Homo sapiens 0.0653 0.0650 
Mus musculus 0.0707 0.0746 
Bos taurus 0.0714 0.0673 

Cytochrome B 

Homo sapiens 0.0799 0.0925 
Mus musculus 0.0629 0.0811 
Bos taurus 0.0783 0.0830 

ATPase 6 

Homo sapiens 0.0290 0.0690 
Mus musculus 0.0349 0.0778 
Bos taurus 0.0354 0.0682 

Mitochondrial DNA 

a) Mus musculus 0.0120 0.0482 
b) Homo sapiens 0.0122 0.0406 
c) Bos taurus 0.0110 0.0388 

Nuclear DNA" 

1) Mouse liver 0.0409 0.0309 
2) Mouse thymus 0.0367 0.0281 
3) Human spleen 0.0380 0.0318 
4) Bovine liver 0.0394 0.0251 
5) Bovine thymus 0.0424 0.0266 

Bacterial DNA" 

1) Micrococcus lysodeikticus 0.0132 0.0709 
2) Myeobaeterium phlei 0.0273 0.0582 
3) Haemophilus influenzae 0.0225 0.0315 
4) Bacillus subtilis 0.0200 0.0149 
5) Aeromonas aerogenes 0.0196 0.0145 
6) Escheriehia coli B b 0.0200 0.0109 
7) Escherichia coli B. 0.0159 0.0080 

"Data  from Gatlin (1972) 

On the basis o f  the intuit ive idea that the absence 
o f  regularity is a s y m p t o m  o f  randomness ,  Kol-  
rnogorov gave the fol lowing quantitat ive definit ion 
o f  "entropy o f  a sequence  o f  symbols":  "The en- 
tropy K(p) o f  a sequence  o f  symbol s  p = (All, Ai2, 
�9 . . ,  A~u) is the m i n i m u m  length o f  the computer  
program capable o f  generating p." K o l m o g o r o v  also 
demonstrated  that K(p) exists, but that a "rule" for 
finding K(p) does  not  exist. 

The concept  o f  K-entropy has been recently ap- 
plied to the analysis  o f  molecular  sequences  (Ebeling 
and J imenez -Monta f io  1980). In the present work  
we use the parameters defined in the paper o f  Ebel- 

ing and J imenez-Montaf io ,  to which  the reader is 
referred for more  details. 

Given  a sequence of  ~ symbols (a "word") :  

P = (Air, Ai2 . . . . .  Aiu) 

the " 'complexity o f  the product ion  rule" is defined 
as: 

K(cr -~ q) = l(q) 

where l(q) is the length o f  the rule, and the "entropy" 
o f  the word is defined as: 

K(p) = ~ K(g -~ q) + if 
cr 

where if is the length o f  the final word.  A measure  
o f  the "randomness"  o f  the word is the ratio K(p)/  
K ...... where Kmax is the initial length, ~, o f  the word  
itself. 

To  clarify, let us give a s imple  example:  given the 
s e q u e n c e  o f  b i n a r y  s y m b o l s  p = ( 1 0  1 0 1 1 0 
1 0 1 1 1 0 1 0 ) ( #  = Kma~ = 1 5 ) , w e  p o s e r  --" 10,  
and we obtain the sequence  Pt = a~ a~ 1 a~ at 11 at at 
with K (gl --" 10)  = 2. Go ing  further, we  pose or2 
a t c , ,  [K(a2 -~ or, at) = 2], and we obtain P2 = 
az 1 ~211  cr2. At this point  the procedure ends,  and 
we have  K(p) = (2 + 2) + 6 = 10 and K(p)/Kmax ~ 
0.67. 

Obvious ly ,  this procedure is not  unique.  I f  we  
take the fol lowing product ion rules: ~t ~ 1 0 1, and, 
successively,  ~2 ~ ~t 0, we  obtain,  as final sequence: 
(21 (21 1 ~2, with K(p) = 1 I, and K(p)/Km,x -~ 0.73.  
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Table 2. Informational parameters of URF sequences 

Gene D2 R 

URF 1 
Homo sapiens 
Mus musculus 
Bos taurus 

URF 2 
Homo sapwns 
Mus musculus 
Bos taurus 

URF 3 
Homo sapiens 
Mus musculus 
Bos taurus 

URF 4 
l tomo sapiens 
Mus musculus 
Bos taurus 

URF 4L 
Homo saptens 
Mus musculus 
Bos taurus 

URF 5 
Homo sapiens 
Mus musculus 
Bos taurus 

URF 6 
Homo sapiens 
Mus musculus 
Bos taurus 

URF A6L 
H o m o  sapiens 
Mus musculus 
Bos taurus 

0.0260 0.0628 
0.0252 0.0566 
0.0732 0.0821 

0.0618 0.0965 
0.0546 0.1081 
0.0260 0.0818 

0.1712 0.1592 
0.1535 0.1569 
0.1881 0.1601 

0.0329 0.0805 
0.0418 0.0829 
0.0617 0.0806 

0.1981 0.1611 
0.1686 0.1551 
0.2311 0.1930 

0.0462 0.0806 
0.0434 0.0820 
0.0551 0.0838 

0.1363 0.1824 
0.1322 0.2006 
0.1517 0.1821 

0.1833 0.2207 
0.1731 0.2170 
0.2360 0.2328 

One can, o f  course, try with other  p roduc t ion  
rules, for example  with ~j ~ 1 0 1 0, obtaining a 
K ( p ) =  10, o r w i t h n z  ~ 1 0 1 0 1 ,  a K ( p )  = 12. At  
this point,  we can say that  the t r u e  value o f  K(p) is 
" p r o b a b l y "  the lowest value we found,  namely  
K(p) = 10, and  that  the relative r andomness  o f  our  
word  p is 10/15 --- 0.67. 

Because the final value o f  K(p) depends on the 
product ion  rules used, it is clear that  it is possible 
to use a great n u m b e r  o f  different algori thms,  and  
then choose the best value (i.e., the m i n i m u m  value) 
o f  K(p) only with a fast computer .  We can only say 
that  the t r u e  value K~(p) is less than or equal  to the 
lowest value Kr(p) found: obvious ly  the probabi l i ty  
that  K,(p) = Kr(P) increases as the n u m b e r  o f  trials 
increases. 

With  this k ind of  procedure  we examined  three 
relatively short  (med i um  length, 240 bases) nucleo- 
tide sequences, i.e.: a) subunit  9 of  nuclear ATPase  
gene f rom the ascomycete  N e u r o s p o r a  crassa ,  r )  

subunit  9 of  mi tochondr ia l  ATPase  gene f rom N e u -  

r o s p o r a  crassa ,  and 3') subuni t  9 of  mi tochondr ia l  
ATPase  gene f rom the yeast S a c c h a r o m y c e s  cere-  

v i s i a e  (data f rom van  den Boogart  et al. 1982). 
These three sequences are genes coding for the 

same protein: our  interest  was focused on the eval-  
uat ion o f  K(p)/Kmax for these genes in order  to see 
i f  the two mi tochondr ia l  genes f rom different or- 
ganisms were more  " s imi l a r "  to each other,  in the 
sense o f  linguistic complexi ty ,  than two genes f rom 
the same organism ( N e u r o s p o r a  c ras sa ) ,  but  on two 
different genomes  (nuclear and  mitochondrial) .  

With  the aid o f  the computer ,  we used an algo- 
r i thm able to discr iminate ,  step by step, a mono-  
tonically decreasing value o f  K(p ) /K  . . . .  starting 
f rom the initial value 1. When  the value of  K(p)/  
Kmax did not  decrease further,  the compu te r  stopped.  
The  values found for K(p ) /K  ....  were N e u r o s p o r a  

crassa ,  mitochondr ia l  = 0.62; N e u r o s p o r a  crassa ,  

nuclear = 0.56; and  S a c c h a r o m y c e s  cerev i s iae ,  mi-  
tochondrial  = 0.60. We recall that  all these genes 
p robab ly  code for the same protein (subunit  9 o f  
ATPase) .  

Our  linguistic analysis shows that  there is a good 
similari ty (in the sense o f  K-ent ropy ,  o f  course) be- 
tween the two mi tochondr ia l  genes. These results, 
al though obta ined  in the case o f  three genes on!y, 
are in agreement  with the ones der ived with the aid 
o f  Shannon  entropy.  When,  in the future, m a n y  s im- 
ilar data  (i.e., sequences of  mi tochondr ia l  and nu- 
clear origin coding for the same sequences) will be 
available,  it will be possible to cluster the data  and  
gain more  meaningful  insight on the p rob lem o f  the 
origin o f  mi tochondf ia .  

Moreover ,  the n u m b e r  of  steps by which the min-  
i m u m  value o f  K(p) is reached by the c o m p u t e r  is 
exactly the same for the two mi tochondr ia l  genes 
(14 steps), and very different f rom the n u m b e r  o f  
steps necessary for the nuclear  one (18 steps). These 
results are also in agreement  with the test o f  ho- 
mology of  the amino  acid sequences of  the proteins  
encoded by these genes (van den Boogart  et al. 1982). 

Conclusion 

The  linguistic complexi ty  analysis o f  polynucleot ide 
sequences, with the aid o f  the pa ramete r s  o f  Shan- 
non entropy,  seems to indicate that  the language o f  
the mi tochondr ia l  genetic message is m o r e  similar  
to the language o f  the bacterial  genome  than to the 
language of  the nucleus in more  evolut ionar i ly  ad- 
vanced animals.  Moreover ,  within the same organ- 
ism ( N e u r o s p o r a  c ras sa ) ,  the two genes coding for 
the same specific protein,  one o f  mi tochondr ia l  or- 
igin and the other  o f  nuclear origin, are very different 
in the sense o f  K o l m o g o r o v  entropy,  whereas the 
gene o f  mi tochondr ia l  origin is very similar  to the 
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one, again of  mitochondrial origin, belonging to 
another organism (Saccharomyces cerevisiae). These 
results appear to support the theory of  the exogenous 
symbiotic origin of  mitochondria. 

Acknowledgments. We thank Prof. C. Saccone for the DNA 
sequences supplied from Banca Dati Sequenze Acidi Nucleici in 
Bari. 

References 

Anderson S, Bankier AT, Barrel BG, de Bruijn MHL, Coulson 
AR, Drovin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, 
Schreier PH, Smith AJH, Staden R, Young IG (1981) Se- 
quence and organization of the human mitochondrial  ge- 
nome. Nature 290:457--464 

Anderson S, de Bruijn MHL, Coulson AR, Eperon IC, Sanger F, 
Young IG (1982) Complete sequence of bovine mitochon- 
drial DNA: conserved features of the mammalian mitochon- 
drial genome. J Mol Biol 156:683-717 

Bibb M J, Van Etten RA, Wright CT, Walberg MW, Clayton DA 
(1981) Sequence and gene organization of mouse mitochon- 
drial DNA. Cell 26:167-180 

Chaitin G (1966) On the length of programs for computing 
finite binary sequences. J Assoc Comput Mach 13:547-569 

Chomyn A, Mariottini P, Cleeter MWJ, Ragan CI, Matsuno-Yagi 
A, Hatefi Y, Doolittle RF, Attardi G (1985) Six unidentified 
reading frames of human mitochondrial DNA encode com- 
ponents of the respiratory-chain NADH dehydrogenase. Na- 
ture 314:592-597 

Ebeling W, Jimenez-Montafio MA (1980) On grammar, com- 
plexity and information measures of biological macromole- 
cules. Math Biosci 52:53-71 

Gatlin LL (1968) The information content of DNA. II. J Theor 
Biol 18:181-194 

Gatlin LL (1972) Information theory and the living system. 
Columbia University Press, New York 

Granero-Porati MI, Porati A, Zani L (1980) Informational pa- 
rameters of an exact DNA base sequence. J. Theor Biol 86: 
401-403 

Kolmogorov A (1968) Logical basis for information theory and 
probability theory. IEEE Trans Information Theory IT-14: 
662-664 

Lipman DJ, Maizel J (1982) Comparative analysis of nucleic 
acid sequences by their general constraints. Nucleic Acids Res 
10:2723-2739 

Rowe GW, Trainor LEH (1983) On the informational content 
of viral DNA. J Theor Biol 107:151-170 

Sanger F, Air GM, Barrell BG, Brown NL, Coulson AR, Fiddes 
JC, Hutchinson III CA, Slocombe PM, Smith M (1977) Nu- 
cleotidic sequence of bacteriophage ~X 174 DNA. Nature 265: 
687-695 

Subba Rao J, Geevan CP, Subba Rao G (1982) Significance of 
the information content of  DNA in mutations and evolution. 
J Theor Biol 96:571-577 

van den Boogart P, Samallo J, Agsteribbe E (1982) Similar 
genes for mitochondrial ATPase subunit in the nuclear and 
mitochondrial genomes of Neurospora crassa. Nature 298: 
187-189 

Received June 3, 1986/Revised July 27, 1987/Accepted August 
19, 1987 


