
Annals of Operations Research 53(1994)249-285 249

Parallel simulation today

David Nicol

Department of Computer Science, College of William and Mary,
Williamsburg, VA 23187-8785, USA

Richard Fujimoto

College of Computing, Georgia Institute of Technology,
Atlanta, GA 30332-0280, USA

This paper surveys topics that presently define the state of the art in parallel
simulation. Included in the tutorial are discussions on new protocols, mathematical
performance analysis, time parallelism, hardware support for parallel simulation, load
balancing algorithms, and dynamic memory management for optimistic synchronization.

Keywords: Parallel processing, discrete-event simulation, synchronization protocols,
memory management, load balancing, performance analysis.

1. Introduction

Parallel simulation is a highly relevant research area today, given the high
computational demands of large discrete-event simulations, and ready availability
of high-performance multiprocessors. The number of researchers in the field has
increased dramatically in the last few years, f rom a handful in the early 80's to over
a hundred today. The annual Workshop on Parallel and Distributed Simulation has
been held six times, drawing over fifty paper submissions in each of the last three
years. The annual Winter Simulation Conference has had sessions (and sometimes
entire tracks) on parallel simulation throughout this period as well.

The purpose of this paper is to outline the state of the art in six active
research areas within parallel simulation to an audience assumed to have-already
a passing familiarity with the topic. The topics we cover are new protocols, mathematical
performance analysis, time parallelism, hardware support, load balancing, and dynamic
memory management. We conclude the discussion of each topic with ideas for
future research.

© J.C. Baltzer AG, Science Publishers

250 D. Nicol, R. Fujimoto, Parallel simulation today

2. New protocols

Interest in parallel simulation first arose with the problem of synchronization;
it is a problem that has remained the focus of most, research in the area. Over the
course of 15 years, a profusion of new protocols have been proposed; we cannot
but touch upon a few of the new ones here. Our intention is to give examples
illustrating general trends in protocol research - enhancements to classical C h a n d y -
Misra-Byrant (CMB) style protocols [16, I0], enhancements to Time Warp [43],
and new, synchronous protocols.

Before discussing the new directions, let us briefly revisit the synchronization
problem and the classical approaches to it. Consider the network of four queues
illustrated in fig. l(a). Each queue may route a job to one of two other queues, a
communication pattern which forms a simple bidirectional ring. Each queue maintains
a list of events; in the figure, for example, A: 4 denotes a job arrival event scheduled
for time 4. Values on communication arcs (hereafter called link times) denote the
time-stamp of the last message sent over that arc. Let us suppose that each queue
is simulated on its own processor; let us also suppose that the service time of any
job is at least 0.1. At the beginning of the simulation, a queue knows its initial job
arrival (presumably placed there as part of initialization), and arc times are initialized
to zero. In CMB style protocols, no queue can simulate its first event until it is
certain that it will not receive a routed job with a time-stamp less than its first
arrival time. Now we have a problem, for the arrival times are all strictly greater
than the initial link times. In order to resolve this, every queue reasons "even if I
were to receive a job at time 0, that job would require at least 0.1 service time,
whence I can promise not to send a job until at least time 0.1"; this reasoning
permits the queue to send a null-message with time-stamp 0.1 to both queues to
which it routes jobs. Since every queue does this, every link time eventually increases
to 0.1. Under the CMB rules, the queue may receive and process the message
associated with the least link time. Eventually, a queue receives two null messages,
with the same time-stamp, and these may be processed. As a result, each queue
sends two new null messages, now with time-stamp 0.2. This sort of gradual escalating
of null-message time-stamps continues until the link times increase to the point of
the Q1 arrival at time 2. At this point, actual simulation activity begins. Observe
that twenty rounds of null-message increments were needed just to reach this point.
Suppose the Q1 arrival goes into service, is non-preemptable, and will depart at
time 3. Knowing this, Q1 can send null messages with time-stamp 3 ("looking
ahead" to the job 's completion) to Q2 and Q4, leading to the situation illustrated
in fig. l(b). Continued incremental advances in null-message time-stamps are needed
to raise link times to a high enough level so that the Q1 departure at time 3 can
be simulated.

The problem with the above scheme is clearly the high volume of null messages.
An optimistic approach such as Time Warp avoids these. In Time Warp, every
queue checkpoints its state, then optimistically executes the first event. However,

D. Nicol, R. Fujimoto, Parallel simulation today 251

1 -®-

1

- ® -

o

F®- o I

°t, ®.
o I

C-zr]

(a) Initial configuration

I

2 * ' @ -

I

-®

3
* - -

2 1

2

2 T

2 I
[-zrl

(b) After first event simulated

Fig. 1. Example of four queueing nodes, assigned one per processor.
Events at init ialization time are shown, as are link times - the
t ime-stamp on the last message to cross a communicat ion link.

this approach has its perils also. The Q1 arrival at time 2 departs at time 3 and may
be routed to Q4. Alas, Q4 has likely simulated an arrival at time 4, which must now
be undone, along with all messages that may have been sent prior to time 3. It
recovers its initial state and simulates the new arrival. Suppose that a single unit
of service time is given, and that the job is routed to Q3 at time 4. Since Q3 has
already simulated an arrival at time 5, it too must roll back, send anti-messages after
messages it erroneously sent, recover its initial state, and simulate the new arrival.

These descriptions are intended to suggest that synchronization protocols
typically impose severe overheads. The goal of some current protocol research is
to reduce those overheads. Let us now turn to some specific examples.

2.1. E N H A N C E M E N T S TO CMB ALGORITHMS

One of the reasons the CMB example above requires so many null messages
is that the null messages carry very little information. If somehow QI came to learn
that it was essentially waiting for itself and no one else before proceeding, it could
clearly execute the arrival at time 2, If it could then learn that no other queue will
send a job prior to time 3, it can then simulate the departure. This observation is
explored in [12], the "Carrier Null Message" approach. In standard CMB algorithms,
null messages propagate through a system - the result of receiving a null message
is usually to send a slew of others. In the Carrier Null Message approach, one
appends a list of visited sites and pending event times to null messages. This
information allows a queue to infer when it is free to execute an event, potentially
more rapidly than when ordinary null messages are used. Consider: Q1 initially

252 D. Nicol, R. Fujimoto, Parallel simulation today

sends out null messages with time-stamp 0. I, but appends its identity and first event
time (Q1, 2). One copy of the message is received by Q2, who appends (Q2, oo) and
sends it back to not only Q1, but also to Q3. Q3 appends (Q3, 5) and sends a copy
to Q4, who appends (Q4, 4) and sends a copy to Q1 :The feedback on both incoming
arcs permits Q1 to infer that it may proceed.

Even with carrier null messages, CMB algorithms still generate many null
messages. Another optimization, explored in [79], attempts to reduce null message
propagation by recognizing when a null message becomes stale. In the earlier
example, Q1 sends a stream of null messages to Q2 (and Q4), successive ones
increasing in time-stamp by 0.1. Now suppose a null message with time-stamp t
arrives from QI at Q2's message queue, where it finds an unreceived null message
from Q1 at time s < t. There is no point in having Q2 process the earlier null
message; it may be annihilated. Indeed, any message from Q1 that discovers a null
message with smaller time-stamp may annihilate the null message.

Still another set of optimizations arise when considering the high cost of
message-passing in distributed memory machines. The cost of sending a v byte
message is very well modeled as a + vfl, where a is a large fixed startup cost owing
(usually) to software overhead, and fl is a per byte transfer cost. This provides a
strong incentive to pack logical messages together into a single physical message.
CMB variations doing this are explored in [88]. A number of issues are examined,
including receiver or sender initiated transfer, as well as lazy or eager transmission.

2.2. ENHANCEMENTS TO TIME WARP

Another body of work examines optimizations to the basic Time Warp
mechanism. The problem addressed by these optimizations is the possibility in
Time Warp of a "fast" processor or a set of processors surging far ahead of other
processors in simulation time. The danger is greatest when interaction between
processors is light and processor loads are uneven. Thrashing may occur, as may
cascading rollbacks. For example, some straggler can roll back a fast processor,
who has generated a great many messages which are now cancelled. While the
slower processors are busy annihilating message/anti-message pairs, some of them
rolling back and generating additional anti-messages, the fast processors may surge
forward again. While the argument can be made that the fast processors may as well
execute optimistically since they have nothing else to do, the countering argument
is that there is a non-trivial cost associated with correcting the errors it may make
by doing so.

One idea for preventing uncontrolled chaotic rollbacks is to cause controlled
preemptive rollbacks. For example, when one processor needs to roll back it may
immediately issue rollback instructions to other processors, who will likely have to
roll back anyway as a result. One way to view this is as the parallelization of
rollbacks that would otherwise occur serially. This idea finds expression in [62].
Another way of implementing this same basic idea is to build p e r i o d i c - or

D. Nicol, R. Fujimoto, Parallel simulation today 253

random - preemptive rollbacks that occur independently of any activity in the
simulation model [61]. The idea is to ensure that all processors are more-or-less
synchronized in the same region of simulation time, with the hope that rollback
cascades are less likely as a result.

A related line of thought is to simply constrain Time Warp's optimism. For
example, one may advance simulation time by "windows". Within a window [t, t + A]
processors execute standard Time Warp, except that no event with a time-stamp
greater than or equal to t + A is executed. Once all processors have synchronized
at time t (which is itself a non-trivial problem, addressed in [68]), a new window
It + A, t + 2A] is simulated. This basic proposal is found originally in [85], with
variations appearing in [90] and [5]. A similar proposal to extend constrained
optimistism to the Bounded-Lag protocol is found in [60].

2.3. PROTOCOLS BASED ON WINDOWS

One emerging theme in protocol research is to study protocols that constrain
all concurrent simulation activity to be within some window of global synchronization
time. These protocols typically compute, distribute and are controlled by global
system information. In this, they reflect a philosophical shift away from the roots
of parallel simulation in asynchronous distributed system theory.

The algorithms studied in [85, 14,75,3,87,32] all compute a minimum time
defining a time beyond which a processor will not venture until the next window
"phase". Typically, this calculation involves lookahead of some kind. For example,
in the queueing simulation examined earlier, we may take advantage of a non-
preemptive queueing discipline, and state-independent service times and routing
decisions by pre-sending job completions at the point the job enters service, and by
pre-sampling a job 's service time upon recognizing the message reporting its arrival.
The algorithm studied in [75] reasons as follows. Since we know all there is to
know about the job's departure at the time it enters service, we may as well immediately
report the job 's arrival at its next queue (this sort of pre-sending is also implicit
with Time Warp messages). Using knowledge of the queueing discipline and the
assumption that no further jobs will arrive, the queue can at any time compute the
time of the next message it will send. That time is necessarily the departure time
of the next job to enter service (assuming no further messages arrive). Let us
suppose that all processors have simulated up to time t and have synchronized
globally. Each processor i is asked to compute the time 6i(t) of the next message
it will send (in the absence of receiving further messages), and the processors
cooperatively compute the minimum t~(t) = mini{ ~i(t)}. The window [t, t~(t)) is thus
defined, and every processor is now free to simulate all events with time-stamps
within this window. Because of the window's construction, and by the practice of
pre-sending job departures, we are assured that no message that is sent between
processors during this interval has a time-stamp smaller than tS(t).

254 D. Nicol, R. Fujimoto, Parallel simulation today

I

- e
V ¥

- @ - - @ -

I

@.., _ @.... _ @ . . .
I I

(b) Configuration after first window
(a) Initial configuration Next window = [3,4)

Next window = [0,3)

I r@-
I

i
1 I

I T I T -@- - @ - -@- - @ -

I v

_ @..,_ _@.._ _®. , . _ @ . , .

~ (d) Configuration after third window
(c) Configuration after second window Next window = [7,9)

Next window = [4,7)

Fig. 2. Simulation using conservative windows.

Consider how this mechanism would be applied to our earlier example. Initially,
all processors are synchronized at time 0, as shown in fig. 2(a). Q1 computes
t~ l (0) = 3, Q2 computes 63(0) = ~, Q3 and Q4 compute 63(0) = 7, and using a parallel
min-reduction they compute ~0) = 3. Each queue identifies the completion time of
the next job to receive service, a calculation made possible by pre-sampling service
times (which are marked by parentheses in the event blocks illustrated in fig. 2).
Only one event occurs in the first window, the arrival at Q1. Upon placing the job
in service, Q1 decides that Q4 will next receive the job, and sends a message to
Q4 notifying it of the arrival. Q1 also generates a departure event (D) at time 3 and
places it in its event list. Figure 2(b) illustrates the resulting situation, just prior to
the second window. Note that Q4 pre-sampled the service requirement of its new

D. Nicol, R. Fujimoto, Parallel simulation today 255

job to be 1. Now the minimum time of the next message to be sent happens to be
the departure time of the new arrival at Q4. Consequently, the second window is
[3, 4), wherein the departure at Q1 is simulated, the corresponding arrival at Q4 is
simulated, and notification of a new arrival at time 4 is given to Q3 (who then pre-
samples a service time of 3). The third window is computed to be [4, 7). In this
interval, Q4 simulated a departure at time 4 and an arrival at time 4, pre-sending
notification of that job's departure (at time 7) to Q1, who chooses a service time
of 2. Simultaneously, Q3 simulates a job arrival at time 4 (pre-sending its transfer
to Q2), and simulates the job arrival at time 5 by marking the job as enqueued (since
the server is busy). Upon receiving the arrival at time 7, Q2 pre-samples a service
time of 5 units and places the new arrival event in its event list.

The natural question to ask of such algorithms is whether windows tend to
admit enough parallel events to be effective. This issue has been addressed for the
very algorithm above, as well as for the Bounded Lag algorithm [59]. Both algorithms
are sca lab le , which means that their performance characteristics do not degrade as
the size of the problem and architecture simultaneously increase. Some insight into
this phenomenon is gained if we suppose that a job's service time is always at least
c > 0. Since the t~i(t) value computed by a processor is the completion time of a job
that has not yet entered service, one infers that tSi(t) - t > c for all i, so that the span
of simulation time covered by the window is at least c time units wide. The average
number of events processed in a window is at least cA, where A is the event density
(events/unit simulation time) for the entire simulation model. Increasing the problem
size increases the event density; the number of events in a window increases
proportionally with A. Assuming the simulation load is evenly balanced (or that the
imbalance does not grow with the number of processors), the number of events a
processor executes per window does not decrease if the number of processors and
event density simultaneously increase in fixed proportion.

Another advantage of window-based protocols is that they are relatively
easier to use on SIMD (Single Instruction Multiple Data) architectures. Successful
window-based SIMD simulation of a switching network is reported in [8], and of
a circuit-switched communication network in [32].

2.4. APPLICATION SPECIFIC PROTOCOLS

It is frequently the case that the importance of an application justifies tailoring
a protocol to its special requirements and characteristics. This approach often delivers
performance advantages over "general" protocols, which may suffer extra overheads
to support circumstances rarely encountered in the application.

One such example is the simulation of digital logic networks. VLSI simulation
is notorious for its computational demands; the significance of successful parallelization
would be large. Standard CMB and Time Warp approaches have been attempted
[86, 63], with only mixed results. Recognizing that feedback loops pose one of the

256 D. Nicol, R. Fujimoto, Parallel simulation today

hardest problems for a conservative synchronization algorithm, an approach is
proposed in [20] where the network to be simulated is transformed into another
(larger) one containing no feedback loops. This algorithm is tested on a latch
constructed from two cross-coupled NAND gates.

Another important class of simulation models are continuous time Markov
chains (CTMC). A CTMC is a mathematical model that encapsulates the notion of
system state and time duration. Stated simply, a CTMC is always in one of a
possibly infinite number of states. Upon entering state s, the CTMC remains in that
state for a random period of time (called the holding time) which is exponentially
distributed, with state-dependent mean 1/&(s). At the completion of the holding
time, the CTMC makes a random transition into another state. The probability
distribution of the transition also depends on s. CTMCs are very general constructs,
and are often used to model complex computer systems and communication
networks.

In a series of paper [41,70, 71], it is shown that the mathematical structure
of CTMC models can be exploited for the purposes of synchronization. Using the
notion of uniformization, it is possible to simulate a CTMC on a parallel machine
in two phases. In the first phase, one randomly selects a set of times at which
processors will synchronize. That is, for every ordered pair of processors (i, j) , we
construct a communication schedule of times where i may send a message to j. The
interarrival times in this schedule are exponentially distributed with a mean 1/~ma x
which is smaller than the mean time of any distribution of times between i ---)j
messages. In the second phase, one performs the simulation, selecting a mathematically
correct sample path where all actual communication instants are already identified
in the pre-computed lists. To ensure that the statistics generated by such a method
are correct, whenever a processor reaches one of its pre-selected communicat ion
points it decides randomly whether to send a "real" communication that will affect
the recipient processor, or to send a "pseudo" communication to release the other
processor from waiting for this message. The probability of sending a real message
depends on the state of the simulation at the communication instant. It should be
recognized that the ability to pre-select all communication instants removes most
of the difficulty of synchronizing a parallel simulation. The only drawbacks to this
method are that it is not general, and that it is possible to spend too much time
generating and synchronizing upon pseudo communications. The algorithm has also
been implemented on the Intel Touchstone Delta architecture using up to 256
processors. Speedups in excess of 220 are reported, simulating on a moderate
sized queueing network where every processor synchronizes with every other
processor.

A final illustration of application-dependent protocols occurs considering the
simulation of Timed Petri Nets (TPNs). The semantics of a TPN simulation do not
fit easily into the CMB world-view. As a consequence, extensions to the CMB
protocol have been proposed in [47] and [89]. However, it is possible to simulate
a TPN using a general windowing protocol, as shown in [72].

D. Nicol, R. Fujimoto, Parallel simulation today 257

2.5. FUTURE DIRECTIONS

Synchronization will always be an interesting area of study. However, the
fact remains that a number of different approaches have been shown to work, albeit
under varying circumstances and with varying degrees of success. If the practice
of parallel simulation is to become widespread, most of the difficult details of
synchronization must be embedded within a parallel simulation environment where
they remain hidden from the simulation modeler. It seems to us that the critical
problems for parallel simulation lie in its automation. The important future work
in protocol design lies in developing protocols whose application is automatable to
a wide variety of simulation models, and whose overheads are minimal.

3. Mathematical performance analysis

The last three years have witnessed an explosion of papers on the mathematical
performance modeling of parallel simulations. A common trait among these are
assumptions made for the purposes of mathematical tractability. For example, it is
commonly assumed that the time-advance associated with executing an event is an
exponential random variable; it is commonly assumed that when sent, a message
is routed to some processor selected uniformly at random from among all processors.
Markov chains of one kind or another frequently underlie these analyses. Despite
obvious limitations, this ground-breaking work in analysis is exciting because it
helps to shed new understanding on the potentials - and limits - of parallel simulation.
The remainder of this section examines different topical areas of recent analytic
work.

3.1. SYNCHRONOUS VERSUS ASYNCHRONOUS

A significant body of work is devoted to comparing different synchronization
algorithms. In [23], it is shown that the average performance difference between
synchronous time-stepping and an optimistic asynchronous algorithm such as Time
Warp is no more than a factor of O(log P), P being the number of processors. The
derivation of this result is straightforward. Imagine that each processor executes
exactly K "stages" of work, that the execution time associated with a stage is
exponentially distributed with common mean/.t, and that the computation is finished
only after all processors have completed all stages. Given these assumptions,
synchronous time-stepping is well modeled by assuming that processors engage in
a barrier synchronization after every stage. The average time required for the last
processor to finish a stage is no greater than/.t log P, whence the average time to
termination is no greater than K # log P. If we relax the synchronization requirement
- as does Time Warp - then the average time to completion is at least K#. Consequently,
the ratio of synchronous to asynchronous finishing times is no greater than log P.
This is actually an extreme case - if the time-advance distribution is bounded from

258 D. Nicol, R. Fujimoto, Parallel simulation today

above, the performance difference is no more than a factor of 2. For example,
suppose the stage processing time is uniformly distributed on [a, b]. Then the time
required for the synchronous method to finish is no more than Kb, whereas the
average time for the asynchronous method is at, least K(a + b)/2. Their ratio
is 2b/(a + b) < 2. While simple, this model serves to show that in a statistical sense,
one ought to limit one's expectations of asynchronous versus synchronous methods.

3.2. OPTIMALITY OF OPTIMISM

Conditions for the optimality of Time Warp (in the absence of overhead
costs) are demonstrated in [50]. At a glance, this result seems intuitive, because
Time Warp need never block. However, the analysis is careful to point out that
Time Warp need not be optimal if ever a processor executing a piece of work on
the critical path in a correct state (which, of course, cannot be known a priori) is
rolled back. This causes the effective critical path to lengthen. Again, even though
the model is simple and the assumption of zero-cost overhead is unrealistic, some
insight is gained into the behavior of the protocols studied.

In a similar vein, an interesting asymmetry is demonstrated in [57], with
examples showing that Time Warp is capable of arbitrarily better performance than
most conservative methods and a proof that the converse is not true. Even though
such disparities are rarely observed in practice, the results are interesting in that
they highlight precisely how Time Warp can guess correctly, while a conservative
method blocks. Likewise, the proof that Time Warp is no worse than conservative
methods by a constant factor demonstrates Time Warp's essential resiliency, at least
under the model assumptions (constant cost rollbacks, zero-cost message passing,
and state saving). The degree to which deviation from these benign assumptions
affects Time Warp's relative performance remains a topic of hot debate.

3.3. FANOUT AND TIME-ADVANCE VARIABILITY

Two models address themselves to the effects on performance of message-
fanout, and (more indirectly) the variability in the probability distribution used to
advance simulation time at a processor. A conservative windowing algorithm is
compared with Time Warp in [73]. This analysis includes overheads for both methods,
and captures the dependence of performance on lookahead. Not surprisingly, the
results of the comparison depend on the magnitudes of the overhead costs. In this
model, each of P processors is assumed to always be busy. Each event advances
the processor's simulation clock by a random amount (different distributions are
considered); the time required to process an event is constant. The latter assumption
lets us view the system as responding to a global clock, where every "tick" events
may be executed. At the end of every event, the processor chooses k other processors
uniformly at random, and sends them commonly time-stamped messages. The value
of this time-stamp depends on the assumed degree of lookahead. Assuming no

D. Nicol, R. Fujimoto, Parallel simulation today 259

lookahead, the time-stamp is the time of the simulation clock at the time of transmission.
With one "cycle" of lookahead, the time-stamp is what the clock value will be after
the next event is processed; this essentially models pre-sending completion messages
as was seen in section 2.3. In the conservative algorithm, a processor is not permitted
to execute an event until it is certain not to receive a message in its past. No such
constraint is placed on Time Warp, but it is assumed that a straggler message
always causes a rollback. The results show that processor utilization under the
conservative method with one-cycle lookahead is proportional to 1/~/ff, while the
utilization under Time Warp is no greater than 1/k. Intuitive understanding of the
t /k figure is gained by considering the effect achieved when the processor with the
least time-stamp (say, train) sends messages to/¢ randomly chosen neighbors. The
advance in global virtual time in the next tick is no greater than the difference
between /min and the least time-stamp of the next message sent by any of the k
recipients. The distribution of time between tmin and a processor's next message
time is the equilibrium distribution [83] associated with the time-stamp advancement
distribution, which in the case of the exponential is the exponential itself. The
minimum of k independent exponentials with mean # is well-known to be exponential
with mean #/k. Consequently, simulation time advances by no more than (1/k)th of
a simulation time unit in a tick. A similar analysis gives the upper bound for the
conservation method with lookahead. Without lookahead, the conservative method
achieves a processor utilization of l iP - serial processing - which demonstrates its
reliance on lookahead to achieve good performance.

An interesting point of comparison is developed in [24], where the distributional
assumptions concerning simulation time advance and per-event execution time are
exactly r e v e r s e d - an event is assumed to require an exponential processing time
(with mean 1), but advances simulation time by a deterministic one unit. One can
imagine the behavior of a processor on the simulation time line as taking discrete,
single-step jumps forward with exponentially distributed pauses between jumps,
and occasional rollbacks to an earlier time-step. The key idea in this analysis is to
consider how long (in processing time) it takes GVT to move forward one step.
Consider the instant when the GVT changes. This happens because there was one
processor with the least time-stamp n, and it finally moved forward to time n + 1.
In doing so, it sent k messages out (with time-stamp n + 1) which may cause rollback.
In any case, we are assured that at the instant the GVT becomes n + 1, there are at
least k + 1 processors whose clocks have that value (the sender plus k recipients of
the message). How long does it take for all k + 1 of these to advance? Since exponentials
are memoryless, this time is the maximum of k + 1 exponentials, a random variable
whose mean is approximately log(k + 1). This means GVT advances at a rate no
greater than 1/log(k + 1) simulation time units per execution unit. For all but the
smallest values of k, we have 1/k ~ l/log(k + 1), which shows that the upper bound
on Time Warp performance under the new set of assumptions is much greater.
Furthermore, the bounds become close to observed simulated rates as k grows.

260 D. Nicol, R. Fujimoto, Parallel simulation today

The only difference between the models in [73] and [24] is distributional, and
yet the results are very different. Both analyses look at how GVT advances; the
difference in results derives immediately from the stochastic component of GVT
advance. In the first model, we measure the GVT advance per unit execution time
as the minimum of k exponentials, with the result that on average k execution units
are needed to advance GVT by one simulation time unit. In the second model, we
measure the number of execution time units needed to advance GVT by a single
time unit, and find that the maximum of k exponentials defines this time. The mean
minimum of k exponentials is inversely proportional to k, whereas the mean maximum
of k exponentials is not proportional to k. It would then seem that the difference
between methods can largely be attributed to the different responses of the exponential
distribution when taking the minimum as opposed to the maximum of k independent
samples. The disparity may just be an artifact of the model assumptions.

3.4. ANALYSIS OF WINDOWING ALGORITHMS

As we have already seen, synchronization algorithms based on windows are
becoming increasingly important. One attraction is that they are relatively easier to
analyze than are completely asynchronous algorithms, since one's attention need
only by focused on one representative window.

The conservative windowing algorithm described in section 2.3 is analyzed
in [75]. While the details are complex, the general idea is simple. The model
assumes that

• event times are distributed as a constant c plus an exponential with rate #;

° upon comPleting, an event schedules other events at a random subset of other
LPs (the event causation assumptions are very general);

• event-completion messages are pre-sent;

° executing events are not preempted.

The analysis establishes an approximated lower bound on the mean width of the
window. Under some additional uniformizing assumptions, this bound is essentially
the mean minimum of N random variables Z1 ZN, where each Zi is the sum
of c (possibly zero), plus an Erlang-2 with parameter #. The mean min imum is
proportional to c + #~t-N, implying that if the system model simulation activity rate
is A events per unit simulation time, then at least A(c + p~c-~) events are available
to be processed in the window. The paper goes on to show that the overheads
involved in computing and communicat ing the window bound are no greater than
those of event-list management, whence the algorithm is asymptotically optimal
(assuming the load is balanced).

Another effort analytically examines the cost of widening the conservation
window defined above somewhat, thereby finding more events to execute in parallel,

D. Nicol, R. Fujimoto, Parallel simulation today 261

but also suffering the risk of being rolled back [21]. Analysis of the extension
shows that the window construct prevents rollbacks from cascading very far.
Furthermore, if state-saving costs are not large, the benefit of extending the window
exceeds the costs, and better performance than the conservative window scheme
may be achieved.

Essentially the same algorithm is analyzed in [87], but in a very different
way. A differential wave equation is constructed expressing the density of events
within a window at time t (assuming the window starts at 0). Numerical solution
shows excellent agreement, both with empirical results and with the values predicted
by the earlier model.

Finally, an analysis of synchronous relaxation is given in [22]. The convergence
rate is always (or ought to be) the primary issue ~vith any relaxation algorithm. The
key idea behind this analysis is to represent the computation as connected event-
lines, where each of N LPs has its own event-line, and logical dependency between
LPs is reflected by a "bond" between their time-lines at the appropriate time. The
number of iterations required to converge is related to the "height" of the bond
graph so constructed, which turns out to have mean proportional to logN.

3.5. ANALYSIS BASED ON MARKOV CHAIN MODELS

A number of performance models are based on analysis of a Markov chain
one discovers after making sufficiently benign assumptions. Generally, it is the
analysis of the chain that is difficult, not so much its construction. Let us now
describe a few of these models.

First consider a system of two processors. They are loaded so that one advances
simulation time at a constant rate A (simulation units per execution time), and
another at rate B, A < B. At the end of every execution tick, the "slow" processor
sends a t ime-stamped message to the fast processor with probability Pl; conversely,
the fast processor sends a message to the slow one with probability P2. Rollback
may occur, and is assumed to require one execution tick. A processor rolling back
does not advance simulation time. Now at any time, either the fast processor is
ahead in simulation time, or the slow processor is (which may happen immediately
following a rollback of the fast processor). The associated discrete-time Markov
chain has but two states. Transition probabilities follow immediately from the
message probabilities.

A more complex two-processor model is analyzed in [25]. Here, one assumes
that a processor takes only integer-valued time-stamps, and that upon executing an
event (assumed to require a deterministic 1 tick), it advances its local clock by a
random geometrically distributed amount. With some probability p, the processor
sends a message to the other, which will roll back if the message t ime-stamp is less
than its own clock. We let X(t) denote the simulation time of one processor at tick
t, let Y(t) similarly describe the other processor, and define D(t) = X(t) - Y(t). D(t)
is a stationary process, whereas X(t) and Y(t) tend to increase in t. D(t) is a discrete-

262 D. NicoL R. Fujimoto, Parallel simulation today

time Markov chain on the space of all integers, and has a fairly imposing transitional
structure since an infinite number of states are reachable from any given state.
Solution of the chain's equilibrium probabilities is non-trivial, but can be done
exactly.

Markov models of Time Warp on multiple processors have also been developed.
The model in [40] assumes

• unlimited memory at each processor;

• message processing is comprised of advancing the simulation clock by an
exponential amount, and by sending one message to another processor, chosen
uniformly at random;

• the time required to execute an event is exponentially distributed.

The analysis identifies the process holding the least-time uncommitted event as the
GVT-regulator. Given the time-stamp t of the least-time uncommitted event, we can
conceptually identify for any processor the number of events k it has processed with
time-stamps greater than t and less than the processor's local clock. This k is the
state of the processor. The state changes when either

• The processor is rolled back. This causes the state to decrease.

• The GVT-regulator completes its event. This causes the GVT to advance,
which may decrease the processor's state.

• The processor completes an event. This causes the state to increase by one.

A Markov model that accurately describes each and every processor is too large to
solve exactly. Consequently, an approximation is made to represent the entire system
with one "representative" processor. This can be defined on the grounds that under
the model assumptions, each processor's subchain will have the same equilibrium
state probabilities. Even so, the transition probabilities can only be approximated,
and then only in terms of multiple (=I0) model unknowns. Solution requires a
fixed-point numerical procedure to solve a set of a dozen or so coupled nonlinear
equations.

The Time Warp model above was extended in [1] to consider the effects of
limited memory in a shared memory system. It is assumed that all memory is
allocated from a global buffer, with capacity supporting up to M uncommitted
events. The basic assumptions about simulation behavior are the same, except that
no processor may execute an additional event if the memory is exhausted. A different
Markov chain is analyzed, where the state is the total number of processed but
uncommitted messages in the system. The state space is thus finite, since memory
is limited. Complex approximations for transition probabilities are developed, and
the chain is solved numerically. Performance is measured as the number of messages
committed per unit time, a metric from which speedup can be derived.

D. Nicol, R. Fujimoto, Parallel simulation today 263

3.6. ANALYSES OF TIME WARP ROLLBACK

The behavior of rollback in Time Warp has fascinated researchers from the
very beginning. Some recent analytic work attempts to explain this behavior. Lazy
and aggressive cancellation are examined in [55]. Equations for the probability of
rollback are derived for some simple queueing networks, as is the probability that
a rolled back message is actually correct. This latter probability assesses the utility
of lazy cancellation.

A sophisticated model of rollback behavior based on the theory of branching
processes is developed in [58]. The model assumes that the effect of processing an
event is to generate a random number b of other events. This assumption essentially
defines a branching process of event causality. "One can view the progress of a
simulation in terms of the growth of this tree. Now, if a processor is rolled back
to some event el, it is necessary (assuming aggressive cancellation) to roll back all
events descended from el. Another parameter, h, is related to the rate at which
information about incorrect events propagates through the system. The analysis
identifies a relationship b = e h that defines a performance cusp. Rollbacks are rare
when b < e h, and recovery is quick. When b > e h, the simulation is eventually
swamped with cascading rollbacks. An example of the latter phenomenon is illustrated
with the simulation of a shuffle-exchange communication network.

3.7. FUTURE DIRECTIONS

Existing mathematical models of parallel simulations range in complexity
from being very simple to being very complex. The simple ones have the attraction
of clearly exposing some performance feature of interest, and the results obtained
using such a model may give some insight into the qualitative behavior of parallel
simulations with respect to that feature. Complex models may do a better job of
predicting behavior, but their results lack an intuitive feeling. In our opinion, open
avenues of inquiry include the inter-relationship between sychnronization, load
balancing, scheduling, and memory management. We believe that the most valuable
models will be ones that are sufficiently complex to capture these inter-relationships,
yet are sufficiently simple so that the relationships can be explained qualitatively
from the results, not just quantitatively from numerical solution.

4. Time parallelism

The most obvious parallelism in physical systems is due to concurrent activity
among spatially separated objects, so-called space parallelism. This very parallelism
suggests that a parallel approach might be taken. However, there are limitations. For
example, if you simulate 100 objects in a domain, then spatial parallelism is likely
limited to a factor of 100. After considering synchronization and communication overheads,
it may be that the best parallel performance is achieved using only 10 processors.

264 D. Nicol, R. Fujimoto, Parallel simulation today

It has recently been recognized that parallelism can also be found in
t ime - when the behavior of a single object at different points in time can be
concurrently simulated. Early recognition of this fact is found in [I5], where the
authors observe that simulations are fixed-point computations, and as such can be
executed as asynchronous-update computations. Practical exploitation of t ime
parallelism was first established by work reported in [39], where it was shown how
certain queueing systems can be expressed as systems of recurrence relations (in
the time domain), which can be solved using standard parallel prefix methods on
massively parallel machines. The idea is elegant, and bears further discussion.

4.1. METHODS BASED ON PARALLEL PREFIX

Consider a single FCFS G/G/1 queue. There is seemingly little parallelism
here; the process appears to be inherently serial. However, supposing that service
times and job interarrival times are independent of the queue state, there is no reason
we cannot pre-sample (in parallel!) a large number of job interarrival times rl, r2 rN

(ri is the time between the arrival of the (i - 1)st and ith jobs), and service times
sl, s2 sN for the corresponding jobs. Now the basic job of the simulation is to
compute, for each job, the amount of time between the job's arrival and its entry into
service. Given these delays , most statistics of interest can be computed. Denote the
delay associated with the ith job as d i. There is a well-known recurrence relation for
di:

d i = (d i _ l + S i _ l - r i) +, f o r i = l , 2 N, (1)

where (x)÷= max{0, x}. It is helpful to view these equations as di = (P(di-l , Zi),
where zi = (si-1 - ri) and ~(y, x) = (y + x) +.

It turns out that one can solve this system of equations using the notion of
p a r a l l e l p re f i x , defined as follows. Given inputs Zl zN and an associative
operator o, we wish to compute the N partial products z~, z~ o z2 zl ° z2 • • • z/v.
One can compute all these products in O(log N) time on a parallel processor with
up to N processors; routines for doing so are typically provided in a system library
on SIMD machines. The trick to solving eq. (1) is to cast them as a matrix recurrence
in the semi-ring where max is the addition operator with identity -oo and + is the
multiplication operator with identity 0. Equation (I) is then expressible as

where
Di = MiOi-1,

[s lr/ 0]
0 ' M i = -~o 0 '

and the usual rules of vector and matrix multiplications apply but with scalar addition
and multiplication taken to be max and +, respectively. Unrolling the recursion, we
have

Di = M i M i - 1 . . . M2DI .

D. Nicol, R. Fujimoto, Parallel simulation today 265

To parallelize, we suppose that the ri and si values are distributed so that
processor i holds si and ri÷ I. We may compute the d i in two steps. In the first, we
compute the partial matrix products M~, M~ = M 3 M 2 , and so on. As a result, processor
i receives M[. In the second, we compute D i = M : D l for i = 2 N, a task made
simpler by the fact that DI is the zero vector.

The same basic idea can be extended in a number of ways, including networks
of feed-forward queues [39] and certain classes of timed Petri nets [4]. The remarkable
thing about this approach is that the degree of parallelism we may exploit is limited
only by the size of the parallel machine and its memory.

The class of recurrence equations that yield directly to this approach is
actually quite constrained. However, even in more.general cases there is often some
utility in viewing the simulation as the solution of recurrence relations, because one
can solve the equations iteratively. The following approach, called "sweeping" in
[32], shows how. Consider a communication link that is able to carry K calls
simultaneously. If a new call arrives at an instant when the trunk is saturated, the
call is lost. Now suppose we pre-sample N call arrival times a I < a2 < • • • < aN, with
N corresponding call durations s l , s2, • • • , SN. For each call i, let ci = ai + s i be the
time at which the calI completes, i f i t i s a c c e p t e d . The problem is that we do not
know whether the call can be accepted without knowing the number of calls being
carried at time a i. Now merge and sort the arrival times and potential departure
times into a sequence el < e2 < •, • e2N. Let3~ denote the number of additional calls
that can be carried at the time instant just after event e i. We may write

f0 = g ,

(f i -1 -- 1) +

= (J _l + 1) +

(jS-1) ÷

if e i is an arrival,

if ei is a departure for an accepted call,

otherwise.

These are tantalizingly close to the equations we solved before; we can express
them as ~ = ~ (f - l , z i) , where (as before) q~(x, y) = (x + y)+. However, there is a
significant difference - at any given departure event el , we do not yet know whether
the associated call is accepted; we therefore do not know whether zi = + 1 or zi = 0

for such an event. However, we can iteratively solve the equations, as follows.
Initially classify every call arrival as being unsure. We then iterate, where each
iteration uses fast parallel prefix operations whose results classify additional calls
as either accepted or rejected. Iteration continues until every call is classified. We
approach the problem by computing lower and upper bounds -fi and f / o n e a c h j~.
The lower bound is constructed assuming conditions leading to the heaviest load
- that every unsure call arrival is accepted and never finishes. Similarly, the upper
bound is constructed assuming the lightest possible load - that every unsure call
is rejected. The resulting equations are

266 D. Nicol, R. Fujimoto, Parallel simulation today

and

-fo - - g ,

(--fi-1 - 1)+

- - f / = (--f / -1 + 1)+

(_f i_ l) ÷

f 0 - - g ,

f
(L- - 1) +

= + 1) +

(L _ l) +

if e i is an accepted or unsure arrival,

if e i is a departure for an accepted call,

otherwise,

if e i is an accepted arrival,

if ei is a departure for an accepted call,

otherwise.

The principal difference between these and the equations for ~ is that we d o know
what argument each e i offers to ()+; call classifications of unsure, accepted, and
rejected are known from the previous iteration and determine these arguments.
Given a set of call classifications, the --fi and f/ values can be computed using
parallel prefix. Now, following the solution of -fi and f / a t a given iteration, we
attempt to classify additional unsure call arrivals as follows. If e i is an unsure
arrival, and the value -fi-1 satisfies -fi-l > 0, then we may reclassify e i as accepted.
Similarly, if fi = 0 we may reclassify e i as rejected. Such reclassifications improve
the state of knowledge about the system; given sufficient iterations, every call
arrival will be classified. Eventual convergence is assured, since during any sweep
the unsure arrival with least time will always be classified. We note in passing that
the general sweep approach applies to a wider range of problems than the single
one given here.. The motivating problem was a network of similar links, with the
additional complication that one attempts to reroute rejected called through randomly
selected alternative routes, and every link reserves some of its capacity for original
traffic. Convergence was rapid on a 16 K PE SIMD architecture; typically, thousands
of calls were classified using only a handful of sweep iterations.

4.2. OTHER METHODS

Time parallelism was also noticed in LRU trace-driven cache simulations [42]
for MIMD (each memory reference constitutes an event); this observation was
extended in [69] for more general replacement policies and SIMD machines. The
latter approach also involves the parallel solution of recurrence equations, but in a
less direct fashion than the methods described so far.

A direct approach to time parallelism is to partition the time domain, assigning
different processors to different regions of time. A processor p a s s u m e s some initial
state for the system at the beginning point of its interval, say time t, and then
simulates its interval. Now the processor whose interval terminates at t may have

D. Nicol, R. Fujimoto, Parallel simulation today 267

a different final state at t than the one assumed by p. In this case, a fix-up operation
must be performed. This method will work if the cost of a fix-up is much
less than the cost of resimulating the interval. Variations on this idea are found in
[2] and [56].

4.3. FUTURE DIRECTIONS

Time offers another dimension in which we may seek performance gains
through parallelism. However, as yet any implementation observed to actually achieve
performance gains relies very heavily on the specifics of the problem being simulated.
This should not be surprising, given the diversity of ways in which simulation
models evolve in simulation time. It then seems unlikely that a general purpose
protocol can consistently be effective in exploiting time parallelism. Nevertheless,
as seen above, there are some non-trivial examples of important applications that
can benefit from time parallelism. Future efforts might be directed towards expanding
the class of applications where time-parallelism works, in formal characterizations
of such applications, in generating time-parallelism approaches to be less application-
specific, and in performance analysis of such approaches.

5. Hardware support

Hardware support for parallel discrete event simulation has been discussed
in the literature for some time. Machines have been developed for simulation of
logic circuits (for example, see [26] for a survey of approaches); however, these
usually do not allow concurrent execution of events containing different time-
stamps. Although these machines do not implement parallel simulation protocols
such as those described here, they do demonstrate that there is interest in hardware
support in certain portions of the commercial sector.

Hardware support for parallel simulation has been studied largely in three
domains:

• new machine organizations for parallel simulation,

• hardware support for state saving in Time Warp, and

• hardware support for dissemination of global information.

The first category involves new machine organizations designed from the start with
parallel simulation in mind. The latter two involve "add on" hardware that implements
certain time-consuming operations used in parallel simulation, and is intended to
be attached to an existing parallel or distributed architecture. One advantage of the
latter approach is that the hardware designs may more easily "ride the technology
wave" as newer, faster microprocessors and denser memory chips become
available.

268 D. Nicol, R. Fufimoto, Parallel simulation today

5,1, MACHINE ORGANIZATIONS

Machine architectures for parallel simulation have been studied for at least
ten years. For example, Georgiadis et al. proposed a multiprocessor implementation
for Simula programs in the early 1980's [34]. The're, a special purpose parallel
simulation, engine was envisioned that utilizes a controller processor to manage the
execution of the parallel simulator and determine which processes are available for
execution. A program called the Simula Parallel Process Recognizer performs a
static anaiysis/bf the Simula process and builds tables that enumerate possible
process interactions, e.g. access to common state variables or invocation of
communication primitives ((re)activate, passivate, cancel, wait, or hold). These
tables are theh used by the runtime mechanism to conservatively synchronize the
execution. The machine architecture itself is a network of processors, with some
processors dedicated tO performing specific functions, e.g. coordinates of process
execution~ Details Of the hardware orga0ization are sketchy, however.

Concepclondescribes an architecture for discrete event simulation called the
hierarchical multibus multiprocessor architecture (HM2A) [17]. This architecture is
motivated by a methodology'that is proposed for constructing hierarchical, modular
simulation models, which are then mapped to the multiprocessor. The machine
structure is a tree of clusters, where each cluster includes a collection of "slave"
processors (each with local memory) connected by a bus. Each slave contains a
connection tO thecluster's bus, and a single link to one child cluster at the next level
dOWn ~the tree: A Slave at level i in the tree acts as the master for the processors
in ~ b l~vel i ÷ 1 child cluster to which it is attached. The level i processor is
referred to as 1he coordinator for the cluster, and is responsible for transmitting
messages for data and synchronization to the slave processors of the cluster. Slaves
are aCtivated when they receive messages, and are otherwise passive. The cluster
at ~ tile :r6ot of the tree contains a Coordinator processor as well as the slaves.

The simulator is specified hierarchically, and is then mapped directly onto
the tree strtietured machine architecture. Coordinators pass work (messages) to their
slave processors, then wait until all of the slaves have responded that they are
finished. A special bus within each cluster is used to transmit the "done" signals.
When the slaves have all indicated that they have completed the task, the coordinator
waits for theiaext task from its master. In this way, simulation computations propagate
up and down the tree, activating simulation models at different levels of hierarchy
as needed.

A th~d-~machine proposal is the Virtual Time Machine [28, 35]. Unlike the
above.madfine organizations, this machine is based on optimistic synchronization.
'Tla¢ machine is a shared memory multiprocessor with a special type of memory
s~ystemealled.space-time memory, and a hardware implemented rollback mechanism.

The most ~teresfing aspect of the machine architecture is its memory. Consider
S e fal!owi~g siSation: an event at time (say) 100 expects to see the state of the
si~ulator'as it existed at time 100, while another event at time 200 expects to see

R.K. Kincaid, Solutions to discrete noxious location problems 269

Simulated annealing, however, must be used with some care. In addition to
determining how to generate random moves, one must also pick a starting value for
the parameter To (this parameter drives the computation of the probability of
accepting nonimproving states - exp(Aobj/T) in the pseudo-code below), a rate at
which T is to be decreased, tfactr, a maximum number of moves generated at each
T, sample_size, and a final value for the Parameter T, Ty. In practice, one also
includes parameters (nsucc and nover) for exiting the local improvement phase of
the algorithm early if a prespecified (nover) number of successful (nsucc) moves
has been achieved. If these parameters are not chosen appropriately, simulated
annealing will produce poor results and/or exceedingly long execution times. A
pseudo-code for simulated annealing is given below.

T=T0
nSUCC = 0

while (T > Tf) do
do I0 i = 1, sample_size

[generate random move, compute Aobj]
if (Aobj > 0 or unfrm(O, 1] < exp(Aobj/T)) then

[update system, obj = obj + Aobj]
nsucc = nsucc + 1

endif
if (nsucc >nover) exit loop

10 continue
T = T * tfactr

end do

The parameters sample_size, {factr, nover, To, and Tf are problem specific. As
was shown by Lundy and Mees [17], the value of To must be much larger than the
difference between the worst objective function value and the best objective function
value. For the p-dispersion problem, To is set equal to the largest entry in the matrix
D and for the p-defense-sum problem, To is set equal to p times the difference
between the smallest entry and the largest entry in the matrix D. Rather than specify
a value for Tf, we use a maximum iteration bound of n In (n), suggested by Lundy
and Mees [17]. Some experimentation is involved in selecting the appropriate
combination of tfactr and sample_size, the maximum number of moves generated
at each value of the parameter T (length of the Markov chain).

Figure 1 displays the output for a typical simulated annealing run for the p-
dispersion problem. Note the random variation in the objective function value as
the probability of accepting nonimproving states remains high (iterations 0-30), the
general increase in the objective function value (iterations 30-42), and the final
state (iterations 43-115).

270 D. Nicol, R. Fujimoto, Parallel simulation today

simplified prototype implementation of the rollback chip has been developed in the
commercial sector [11]. Also, the hardware design of the rollback chip has been
verified using formal techniques [38].

5.3. GLOBAL SYNCHRONIZATION NETWORKS

One of the reasons protocols for parallel simulation are nontrivial is the fact
that critical synchronization information is distributed across the muttiprocessor
system. For instance, in conservative protocols, information indicating which events
can be safely processed may be distributed across other processors. Similarly,
optimistic protocols require information that is distributed across the system to
compute global virtual time.

Reynolds has proposed a hardware mechanism to rapidly collect, operate on,
and disseminate synchronization information throughout a parallel simulation system
[64,78]. The hardware is configured as a binary tree, with a processor assigned to
each node. To compute a lower bound on the time-stamp of any future message,
each processor computes a local minimum among the processors assigned to it,
makes the minimum available to the synchronization hardware, and the tree
automatically computes the global minimum in a distributed fashion (each node
computes the minimum of its local value and that of its neighbors, and propagates
the new minimum up the tree) and distributes the computed value to all processors
in the system by broadcasting values down the tree. Simulations indicate that the
computation time is reduced by orders of magnitude over software-based approaches.
A prototype system is currently under construction.

5.4. FUTURE DIRECTIONS

Hardware support is a promising approach because it helps alleviate the
overheads associated with parallel simulation protocols, which are sometimes
substantial. The key to successfully exploiting special-purpose hardware is to identify
those aspects of the parallel simulation mechanism that are bottlenecks which seriously
degrade performance. The important future directions of research in hardware are
therefore to identify performance limiting factors in new approaches to parallel
simulation, and to develop efficient hardware mechanisms to accelerate their
performance.

6. Load balancing

A simulation contains some initial set of logical processes. New processes
may be created, or existing processes deleted as the simulation progresses. Ideally,
these processes should be distributed across the parallel processor so that (1) all
processors remain busy doing useful work all of the time, and (2) interprocessor
communication is minimized. The importance of the communication aspect depends

D. Nicol, R. Fujimoto, Parallel simulation today 271

on the hardware platform. It is more important in distributed memory and networked
workstations where communication is relatively expensive compared to tightly coupled
shared memory multiprocessors.

6.1. CLASSES OF LOAD MANAGEMENT METHODS

Static load balancing algorithms distribute a fixed set of processes over the
processors in the system. Dynamic algorithms allow processes to migrate during the
execution of the parallel simulation. Dynamic algorithms are more appropriate if
(1) information to achieve proper load balancing is not available until runtime, or
(2) the proper distribution of processes to processors changes dynamically throughout
the program's execution. A combat model, for example, may exhibit both of these
behaviors. It is usually difficult to predict in advance which combat units will
interact with which other units, and thereby entail the complex computations and
interactions with other simulation processes that accompany the simulation of a
battle. Also, these models often move through phases such as (1) advance to engage
the enemy, (2) interact with enemy units, and (3) "clean up" after the battle. The
computational and communication aspects of the computation are very different in
each of these phases, necessitating a different load distribution for each one.

On the other hand, dynamic load management entails certain overheads to
collect status information on the system, decide what load balancing actions should
be taken, if any, and move computations and data from one processor to another
to balance the load. These overheads may negate any positive effects of more
evenly distributing the workload or reducing interprocessor communication.

Related to load balancing are load sharing and partitioning schemes. Load
sharing refers to the question of selecting the processor to receive a newly created
process (as opposed to migrating existing processes). Partitioning refers to subdividing
the simulation model to logical processes. If the partitioning of the model to processes
is changed during the execution of the simulation, e.g. to achieve a more balanced
workload, it is referred to as dynamic repartitioning.

Load balancing has been widely used for general (i.e. not necessarily simulation)
parallel and distributed computation. Many of the techniques that have been proposed,
e.g. simulated annealing [45], distributed drafting [67], pressure-based load
migration [48], among others, can be applied to parallel simulation programs.

6.2. STATIC LOAD BALANCING TECHNIQUES

Early work on static load balancing is found in [76,74]. The basic idea
behind the mapping algorithm is to examine the critical paths through multiple
executions of a simulation, and cluster in such a way that the critical paths are left
as undisturbed as possible. A dynamic load balancing algorithm is also described
that is actually dynamic invocation of the static algorithm, based on a statistical
decision process the monitors the simulation's behavior and triggers a remapping

272 D. lqico~ R. Fujimoto, Parallel simulation today

~hen it~is probable that the resulting performance gains exceed the total remapping
cost,,= ,The po l icy was empirically studied on a parallelized time-stepped combat
model [77], where remapping may occur between the advancement and engagement
phases of the simulation.

Nandy and Loucks use an iterative, static load balancing algorithm for parallel
simulation using the Chandy-Misra-Bryant synchronization protocol (null messages)
[~6]. The algorithm begins with an initial, random partitioning of the task graph,
andthen continually evaluates possible movement of nodes (logical processes) from
one'partition,to another. A gain function is calculated that considers communication
cOstS~of:the proposed move relative to the existing partitioning in order to estimate
the r~benefit of the move. An additional constraint ensures that equal amounts of
computation are assignedto each processor to avoid bottlenecks. As is the case with
any static algorithm; this approach £ssumes much is known about the simulation in
tem~ of Computation and communication requirements of logical processes.

Nandy and Loucks use.this approach to map simulations of digital logic
circuits' tO a,parallvI ~ computer. They report performance improvements of up to
25% on, eight processors over an algorithm based on selecting random partitions.
One would expect larger impf'0vements in performance with more processors because
communication Overheads then become more significant.

Dav0ren [19] and Briner [9] also examine static partitioning algorithms for
digital ~ logic simulation. Davoren bases his work on the Chandy-Misra-Bryant
null-message algorithm. He constructs a locality tree-that is based on the hierarchical
design of the circuit through different levels of abstraction (transistors, gates,
multiplvxors;' etc.): This approach of using the design hierarchy to partition the
Circuit~is referred to as structural partitioning. The tree is used to approximate
communication within the circuit. A divide and conquer approach is then used to
map the tree to a grid of ,processors. The locality tree is divided into subtrees;
similarly; the processor grid is divided into groups. The subtrees are assigned to the
groups; and the process is repeated recursively until individual circuit elements (the
leaves of ~he tree) are mapped to specific processors. The number of gates in each
node is used to,approximate computation load. Experiments on a transputer network
indicate~that this.approach reduces the amount of inte~rocessor communication and
execution time,relative to an alternative mapping scheme whose primary goal is to
evenly distribute the ,workload to processors.

Briner's work is based on Time Warp. He compares a random assignment of
logic gates to processors with several different bisection algorithms• The bisection
algonthm divides the c~rcmt into two pieces so that communication is minimized
between the~b~Circuits. The sub-circuits are mapped to different processors. This
process is'repeated recursively, much like the approach proposed by Davoren. Briner
al$b cxamineda Variation on this approach where communication lines are weighted
aoo0rdiffgto, the amount of traffic expected to be sent on the line. Such information
van be~obtaincdifrom aprior simulation of the circuit, or by using knowledge of the
p~l~bil t ty ofchanges on signal lines and the logic function performed by the gate.

D. Nicol, R. Fufimoto, Parallel simulation today 273

Briner's experiments on a BBN Butterfly GP-1000 indicate that random
partitioning outperforms the bisection algorithms. The modified bisection algorithm
~i¢lds only a modest improvement over the original algorithm. He reports that hand
partitioning based on the hierarchical structure of the computation (such as that
proposed by Davoren) yields up to three times better performance compared to the
bisection algorithms.

Kravitz and Ackland [46] also examine some simple static partitioning schemes
for circuit simulations. Based on empirical studies, they conclude that these approaches
~ield reasonably good results, and the overhead for dynamic repartitioning does not
justify the potential performance gain. Their work is based on time-stepped simulations~

The JPL TWOS (Time Warp Operating System) group performed static load
balancing for their Time Warp programs by first collecting a trace of the program's
.~xeeution. Based on this trace, a task graph showing all dependencies between
events is constructed, and a bin packing algorithm is used to determine a suitable
assignment of processes to processors. The "off-line" nature inherent in this approach
led them to develop and rely upon dynamic load management algorithms instead,
:,which are described next.

6.3. DYNAMIC LOAD BALANCING

As mentioned previously, dynamic load balancing/partitioning attempts to
reassign work to processors during the execution of the simulation. Optimistic
~ynchronization mechanisms introduce a new wrinkle to dynamic load balancing:
high processor utilization does not necessarily imply good performance because a
processor may be busy executing work that is later undone. In this case, it would
be beneficial to migrate processes to processors with high utilizations because the
added load will tend to allocate fewer CPU cycles to the computations that are
constantly being rolled back. To address this issue, Reiher and Jefferson propose
a new me[ric called effective processor utilization, which is defined as the fraction
of the time during which a processor is executing computations that are eventually
committed [82]. This effectively treats time spent executing wrong computations as
idle time. Based on this metric, they propose a strategy that migrates processes from
processors with high effective utilization to those with low utilization.

An algorithm that is similar in spirit is proposed in [36]. This algorithm
allocates virtual time-slices to processes, based on their observed rate of advancing
~e local simulation clock. Uniprocessor simulation studies reveal scenarios in which
this time-slicing approach achieves significantly better performance than the Reiher
and Jefferson algorithm (as much as 33%), and others where the performance of the
two methods is comparable.

A second Problem in Time Warp is the fact that process migration may be
-~ery expensive because processes contain a large amount of history information.
Reiher and Jefferson propose splitting a process into phases when the process
migrates to another processor. Each phase spans a contiguous segment of simulated

~I4 D..Nicol, R. Fujimoto, Parallel simulation today

time.that does not overlap with other phases. When migration occurs, the old phase
(and its corresponding history information) remain on the original processor, and
the ;new phase begins at the new processor. Rollbacks may span phase boundaries.
A,~phase is logically similar to dynamically creating n new process that is a "clone"
of:the migrating process in that its state is initialized to the state of process when
the migration occurs. Reiher and Jefferson demonstrate that phase splitting and the
effective utilization metric are useful to dynamically balance the load in simulations
of a communication network, a system of colliding pucks, and a combat model [82].

Goldberg describes an interesting approach to the load distribution
problem [37].If a process becomes a bottleneck, it is replicated to form two or more
|d'~ entical eopie's, each able to execute concurrently with the others. Read requests
are. sent to one replica, while write requests are sent to all of them. The replicated
cOpieS are kept.consistent with a Time Warp based synchronization facility. A
R~plic~tted Time Warp algorithm is defined based on these ide~as.

6.4, FUTURE DIRECTIONS

While load balancing for general parallel processing has been extensively
studied, application of these techniques to parallel simulation applications and their
impact on synchronization protocols has not been widely examined. It is not known,
forinstance, how load distribution and scheduling affect the number of null messages
produced by theChandy-Misra-Bryant algorithm, and only very limited experimental
work has studied the impact of load management on rollbacks in Time Warp. With
the~exeeptiotr 0f digital logic network simulations, little work has been completed
in evaluating static and dynamic load management approaches in specific application
domailaS.Much Work is still required to evaluate precisely when static load balancing
~aeehanisms suffice, and when one should resort to dynamic mechanisms.

Currently, again with the exception of digital logic simulations, partitioning
the simulation model toform logical processes is done entirely by the programmer,
and is'usually governed by the modeler's conceptualization of the system. This may
or may not correspond to the partitioning that maximizes performance. Partitioning
the simulation into very fine grained objects is not an appropriate solution because
this may lead to inappropriately small computation grains. It is clear that both
mapping and load balancing issues require much additional study.

7. Memory management

While l~he analyses discussed above are primarily concerned with time
performance, a related question is that of memory performance. A growing body
Of re'search examines storage utilization of parallel simulations, especially optimistic
mecn.anisiiis Such as Time Warp. In Time Warp, four types of mechanisms have
i~eefi proposed to limit the amount of memory that is required to perform the
simulation:

D. Nicol, R. Fujimoto, Parallel simulation today 275

• fossil collection,

• infrequent state saving,

• rollback-based recovery mechanisms, and

• protocols using limited optimism.

Approaches that limit the amount of optimistic execution in the system implicitly
~educe the amount of memory that is required. These were discussed earlier, so we
will not dwell on this issue here. The other techniques enumerated above will be
described next.

7.1. FOSSIL COLLECTION AND GVT

Optimistic mechanisms maintain information concerning the history of the
program's execution in order to enable recovery from synchronization errors. In
Time Warp, for instance, each process maintains past state vectors in its state queue,
processed events in its input queue, and records of previously sent messages (anti-
messages) in its output queue. A mechanism called fossil collection is provided to
~eclaim "old" history information that is no longer needed [43]. Fossil collection
l~elies on the computation of a quantity called global virtual time (GVT), which will
be defined momentarily. Storage used by message buffers and snapshots of process
state that are older than GVT can be reclaimed and used for other purposes. Even
with fossil collection, however, the amount of storage that is required to execute
Time Warp programs may be large.

Let us digress for a moment to discuss the computation of GVT. GVT represents
a lower bound on the time-stamp of any future rollback. In Time Warp, as originally
proposed in [43], rollbacks only arise from receiving positive or negative messages

the past. Further, a process at simulated time T might produce a new (positive)
message with time-stamp equal (or only slightly larger than, in systems that do not
~ low zero time-stamp increments) to T. Therefore, GVT is computed as the minimum
among (1) the local clocks (sometimes called local virtual time or LVT) of all
processes, and (2) the (receive) time-stamp of all messages in transit, i.e. messages
tiiat have been sent but not yet received. As we will see later, certain memory
management schemes for Time Warp use a mechanism called message sendback
which necessitates a different definition of GVT. If a process has no unprocessed
messages in its input queue, then the process's local clock is usually set to infinity.

there are no unprocessed messages or messages in transit in the entire system,
[IVT then becomes infinity and the simulation terminates.

In a tightly coupled multiprocessor, computation of GVT is straightforward
because one can use a barrier synchronization to "freeze" the computati.on and
obtain a global snapshot of the system, though care must be taken or serious
aerformance degradations may occur, particularly if the system contains a limited
~tmount of memory [1]. However, computation of GVT is more complex in distributed
and loosely coupled systems because such snapshots are not easily obtained. In

276 D. Nicol, R. Fujimoto, Parallel simulation today

particular, two problems arise in computing GVT in this context: (1) accounting for
transient messages, and (2) race conditions may arise, causing an erroneous value
of GVT to be computed.

The first problem is usually solved by using message acknowledgements to
identify messages in transit. A process must consider the time-stamps of messages
that it has sent for which it has not yet received an acknowledgement when it
performs its local GVT computation. Lin and Lazowska propose a scheme that
avoids acknowledgements by having each process communicate with the other
processes to which it communicates when it begins a GVT computation in order to
identify any transient messages. Details of their algorithm are described in [51].

Race conditions may arise because the individual processors receive the
"start GVT computation" signal at different points in time. For example, processor 1
might compute its local minima to be 100. Moments later, a second processor that
has not initiated the GVT computation might send the first processor a message with
time-stamp 90, receive the acknowledgement, and then advance ahead in simulated
time. If the second processor now receives the start GVT signal and computes its
local minima, the message it had previously sent (time-stamp 90) is not accounted
for in the GVT computation, even though message acknowledgements were used.

The above problem could be solved using a barrier synchronization to ensure
that all simulation computations halt before the GVT computation is begun. In fact,
Nicol has developed a barrier algorithm for optimistic computations that can effectively
serve to compute GVT [68]. The processors agree to synchronize globally at some
simulation time t. A processor enters the barrier once it has no events to process
with time-stamp less than T, but rolls back out of the barrier if it later receives a
message with time-stamp less than t. The algorithm ensures that a processor not be
told it can leave the barrier until all processors have completed all simulation work
at times less than or equal to t. Emerging from this barrier, a processor knows the
GVT is t; it may perform fossil collection and proceed optimistically to the next
agreed upon synchronization time. Samadi proposes another approach that tags
messages sent after a GVT computation initiates, but has not yet been completed,
allowing messages such as that in the preceding example to be accounted for [84].

Other approaches to computing GVT have been proposed. Preiss uses a
token-passing scheme where the processors making up the simulation are organized
in a ring, and continually compute GVT as the token is passed from one processor
to the next [81]. This approach has some similarity to ring-based algorithms for
detecting deadlock [65]. Bellenot uses a statically defined tree to initiate, compute,
and disseminate GVT values [6]. Reynolds also uses a tree structure to compute
GVT in his hardware synchronization network, described earlier [64].

7.2. INCREMENTAL AND INFREQUENT STATE SAVING

Nearly all Time Warp based memory management schemes use fossil collection
to reclaim state. However, fossil collection is not, by itself, sufficient because the

D. Nicol, R. Fujimoto, Parallel simulation today 277

computation may still consume excessive amounts of memory. We will now focus
our attention on other mechanisms that are used in conjunction with fossil collection
to conserve memory.

When the state vector is large and only a small portion is modified by each
event, incremental state saving may be useful. Here, only changes to the state are
recorded rather than taking snapshots of the entire state vector, thereby reducing
both memory utilization and copying time. A drawback of this approach, however,
is that rollbacks become more expensive because the state vector must be reconstructed
from the incremental changes. This is problematic because, as illustrated in [29],
the computation is more prone to unstable execution if rollback costs are high.
Nevertheless, Briner uses incremental state saving in an implementation of Time
Warp for logic simulations, and reports state saving overheads of only 20% for
transistor level simulation, and 60% for gate level simulation [9].

An alternative approach is to save entire state vectors, but reduce the frequency
of state saving. To roll back to simulated time T, a process must (1) roll back to
the most recent state vector older than T, and (2) recompute forward again to reach
simulated time T. Message sending must be "turned off" during the recomputation
phase or a domino effect could occur that rolls back the simulation beyond GVT.
Like incremental state saving, infrequent state saving also increases the cost of each
rollback because on average the length of each rollback is greater, and the number
of events in each recomputation phase is increased. That is perhaps the greatest
drawback of this approach.

Although infrequent state saving increases rollback overhead, it also decreases
the time required to perform state saving, which can be substantial. This tradeoff
suggests that there may be an optimal state saving frequency that balances state
saving overhead and recomputation costs. This question has been studied in the
context of fault tolerant computation, for example, see [13,33]. More recently, Lin
and Lazowska considered this tradeoff in the context of Time Warp programs, and
show that an error in overestimating the state saving frequency is more costly than
an equal magnitude error in underestimating the frequency, i.e. it is better to err on
the side of less-frequent-than-optimal state saving in order to maximize
performance [52]. In particular, they conclude that mopt, the number of events
processed between state saves, should be set in the range

where

and

+
/'Ropt < mopt </~opt,

mopt m e

278 D. Nicol, R. Fujimoto, Parallel simulation today

and a is the number of events executed between rollbacks when state saving is
performed after each event (or equivalently, the number of events executed by the
process divided by the number of rollbacks when state saving is performed after
each event), 5 is the cost to perform a state save (i.e, to copy the state vector), and
e is the expected execution time of an event.

Preiss et al. [80] and Bellenot [7] validate Lin's results experimentally. Bellenot
also observes that benefits in reducing state saving frequency diminish or become
liabilities as the number of processors is increased.

Finally, it might be noted that infrequent state saving economizes on storage
for state vectors, but at the expense of storage for event messages. This is because
events that are older than GVT, but newer (in simulated time) than the last saved
state prior to GVT cannot be fossil collected because they may be needed after a
rollback beyond GVT (to reach the last saved state). Storage for these events could
be reclaimed if state saving were more frequent. Empirical studies of queueing
network simulations indicate, however, that total memory utilization is reduced
with infrequent state saving [80].

7.3. ROLLBACK-BASED PROTOCOLS

The strategies discussed thus far (fossil collection, incremental/infrequent
state saving, limiting optimism) all have the following drawback: if the system does
run out of memory, the simulation must be terminated unless some additional
mechanism is provided to reclaim memory. Fossil collection will not be able to
reclaim memory if the smallest time-stamped unprocessed event at the last invocation
of fossil collection has not since been able to complete, e.g. because it attempted
to send a message and found no buffer was available to hold the message. In this
situation, GVT will not be able to advance, so fossil collection will fail. Should this
occur, it is not appropriate to abort the program because the "fault" may lie with
the Time Warp mechanism itself rather than the application. It could be that the
simulation mechanism was too optimistic in executing the program, and as a result,
ran out of memory.

Several approaches have been developed to address this concern. The basic
idea behind these mechanisms is to roll back overly optimistic computations, and
reclaim the memory they use for other purposes. Jefferson first proposed a mechanism
called message sendback to achieve this effect [43]. In message sendback, the Time
Warp executive may return a message to its original sender without ever processing
it, and reclaim the memory used by the message. Upon receiving the returned
message, the sender will (usually) roll back to the send-time-stamp of the message
(i.e. the virtual time of the sender of the message when it was generated), and
regenerate it. This rollback causes anti-messages to be sent (assuming aggressive
cancellation), and the subsequent annihilations release additional memory resources
in the system. Only messages with send-time-stamp greater than GVT can be returned,
since otherwise a rollback beyond GVT might result.

D. Nicol, R. Fujimoto, Parallel simulation today 279

Jefferson's original proposal invokes message sendback when a process receives
a message, but finds that there is no memory available to store it [43]. The message
with the largest send-time-stamp is returned. Gafni proposes a protocol that utilizes
message sendback as well as other mechanisms to reclaim storage used by state
vectors and messages stored in the output queue when a process finds that its local
memory is exhausted [31].

More recently, Jefferson has proposed an alternative approach called cancel-
back [44]. While Gafni's algorithm will only discard state in the process that ran
out of memory, cancelback allows state in any process to be reclaimed. Messages
containing high send-time-stamps are sent back to reclaim storage allocated to
messages. This tends to roll back processes that are ahead of others in the simulation.

Message sendback, and therefore cancelback', necessitates a new definition of
GVT. Messages returned to their sender may initiate rollbacks, so the send time-
stamps of messages must now be considered in addition to the receive time-stamps.
For cancelback, GVT is defined as the minimum among (1) the local clocks of the
processes in the simulation, and (2) the send-time-stamp of all messages in
transit [49]. The artificial rollback protocol, described below, also uses this definition
of GVT.

Another approach, proposed by Lin, is the artificial rollback algorithm [49].
When storage is exhausted and fossil collection fails to reclaim additional memory,
processes are rolled back to recover memory. The process that is the furthest ahead
is rolled back to the time of the second most advanced process. This procedure is
repeated until the supply of free memory reaches a certain threshold. We refer to
this threshold as the salvage parameter. Artificial rollback is semantically similar
to cancelback in the sense that cancelback returns messages which cause the sender
to roll back, and artificial rollback rolls back the processes directly. The principal
advantage of artificial rollback over cancelback is that it is simpler to implement.

Artificial rollback and cancelback have the interesting property that they are
able to execute the simulation program using no more memory than that required
by the sequential execution that utilizes an event list. Lin refers to protocols such
as these, that require no more than a constant times the amount of memory required
for sequential execution, as storage optimal. This is an attractive property because
it allows the Time Warp program to execute with whatever memory is available,
provided there is enough to execute the sequential version.

One can see that rollback-based policies achieve storage optimality by examining
the storage requirements of a sequential simulator. Consider the set of pending
events in a sequential simulator at simulated time T. Let us assume that events at
time T have not yet been processed. The event list will contain all events that were
scheduled prior to simulated time T, but with time-stamp greater than or equal to
T. Consider the parallel simulator, where T is the current value of GVT. The
parallel simulator need only remember those events whose send and receive time-
stamps "straddle" GVT, and all others, i.e. those with both a send and receive time-
stamp greater than GVT, are eligible for deletion. Using this idea, rollback-based

280 D. Nicol, R. Fujimoto, Parallel simulation today

memory management schemes can reclaim all memory that would not be needed
in the sequential simulator at simulated time T, enabling them to execute using no
more memory than the sequential program. The only questions that remain are (1)
which events among the set that can be deleted ,should be eliminated and their
storage reclaimed, and (2) how much memory should be reclaimed when we run
out. As mentioned earlier, conventional wisdom is to reclaim events with high send-
time-stamps first (these tend to roll back the processes furthest ahead). The second
parameter, the salvage parameter that was defined earlier, is a control for tuning
performance.

It is interesting to note that while Time Warp with cancelback or artificial
rollback are storage optimal, certain conservative simulation protocols are not. Lin
et al. [54] and Jefferson [44] show that the Chandy-Misra-Bryant algorithm may
require O(nk) space for parallel simulations executing on n processors, whereas the
sequential simulation requires only O(n + k) space. Further, Lin and Preiss [53]
report the existence of simulations where Chandy-Misra-Bryant have exponential
space complexity, and thus utilize much more storage than the sequential simulation.
On the other hand, they also indicate that this algorithm may sometimes use less
storage than that which is required by the sequential simulator. Time Warp with
cancelback or artificial rollback always requires at least this much [53].

Of course, a Time Warp program will run very slowly if one provides only
the absolute minimum amount of memory. The question of Time Warp performance
as the amount of memory is varied has been studied [1]. An analytic model was
developed that indicates, for homogeneous workloads, that Time Warp requires
relatively little memory to achieve good performance, i.e. performance with unlimited
memory. In particular, this work indicates that four to five buffers per processor
(where a buffer holds a state vector and an event) beyond the amount required for
sequential execution achieves performance that is comparable to Time Warp with
unlimited memory. This model was validated by experimental measurements of an
operational implementation of Time Warp augmented with cancelback.

Further, an experimental study has examined the performance/memory tradeoff
using several non-homogeneous workloads, and specifically, workloads designed to
have some number of overly optimistic processes that advance, more or less unthrottled,
into the simulated future, constrained only by the amount of memory in the system [18].
This provides a clear stress case for any Time Warp system. This study found that
Time Warp, augmented with cancelback, can efficiently execute such asymmetric
workloads using only a modest amount of memory beyond that required for sequential
execution (somewhat more than the symmetric workload case, however), provided
the salvage parameter (amount of memory reclaimed when the system runs out) is
appropriately set. It was found that setting the salvage parameter too low (e.g. 1 or 2)
causes poor performance if the system is memory bound, and setting it too high (the
maximal setting will delete everything except that required for sequential execution)
also degrades performance because correct computations are unnecessarily rolled
back. Between these two extremes, however, performance appears to be relatively

D. Nicol, R. Fujimoto, Parallel simulation today 281

insensitive to the salvage parameter setting. Further, it was discovered that an
inefficient implementation of the event list (i.e. the input queue) in each process,
e.g. a linear list, can have a dramatic, detrimental affect on the performance of the
system in limited memory situations.

7.4. FUTURE DIRECTIONS

Although much has been learned with respect to techniques to control memory
utilization in optimistic protocols, important unanswered questions remain. Although
experimental data provide useful insights as to how controls such as the "salvage"
parameter should be set, no mathematical models yet exist to definitely answer this
question. Further, although much work has been completed in the context of Time
Warp, the performance/memory properties of conservative protocols have not been
extensively studied. Mechanisms to ensure storage optimal execution for conservative
protocols have not yet been developed.

In Time Warp, fossil collection and GVT computations are used to commit
any irrevocable operations, e.g. I/O. Thus far, most of the work in parallel simulation
has been focused on simulators that have relatively little I/O. When parallel simulation
is used in interactive simulations, rapid commitment of events (and thus GVT
computations) become critical. The adequacy of parallel simulation techniques, and
GVT computation and fossil collection in particular, have not been widely studied
in this context.

8. Conclusions

Parallel simulation is a rapidly growing area of research, with significant
potential for increasing the size and complexity of models considered by users to
be simutatable in a reasonable amount of time. The field is developing rapidly,
growing in many directions. In this paper, we give a snapshot of the state of the
art, in 1992, of six areas: synchronization protocols, mathematical performance
analysis, time parallelism, hardware support, load balancing, and dynamic memory
management. For each topic, we have identified what we feel are relevant and
important directions for future research.

Acknowledgements

The contribution of David Nicol ~¢as supported in part by NASA grants
NAG-l-1060 and NAG-I-995, NSF grants ASC 8819373 and CCR-920t 195. The
contribution of Richard Fujimoto was supported in part by Innovative Science and
Technology contract number DASG60-90-C-0147 provided by the Strategic Defense
Initiative Office and managed through the Strategic Defense Command Advanced
Technology Directorate Processing Division, and NSF grant CCR-8902362.

282 D. Nicol, R. Fujimoto, Parallel simulation today

References

[I] I.F. Akyildiz, L. Chen, S.R. Das, R.M. Fujimoto and R. Serfozo, Performance analysis of Time Warp
with limited memory, Proc. 1992 ACM SIGMETRICS Conf~ on Measuring and Modeling Computer
Systems, VoI. 20 (1992).

[2] H. Ammar and S. Deng, Time Warp simulation using time scale decomposition, in: Advances in
Parallel and Distributed Simulation, Vol. 23, SCS Simulation Series (1991) pp. 11-24.

[3] R. Ayani, A parallel simulation scheme based on the distance between objects, Proc. SCS Multiconf.
on Distributed Simulation, Vol. 21 (1989) pp. 113-118.

[4] R. Baccelli and M. Canales, Parallel simulation of stochastic Petri nets using recurrence equations,
ACM TOMACS 3(1993)20-4I.

[5] D. Ball and S. Hoyt, The adaptive Time-Warp concurrency control algorithm, Proc. SCS Multiconf.
on Distributed Simulation, Vot. 20 (1990) pp. 174-i77.

[6] S. Bellenot, Global virtual time algorithms, Proc. SCS Multiconf. on Distributed Simulation, Vol.
22 (1990) pp. 122-127.

[7] S. Bellenot, State skipping performance with the Time Warp operating system, in: 6th Workshop on
Parallel and Distributed Simulation, Vot. 24, SCS Simulation Series (1992) pp. 53-64.

[8] B. Berkman and R. Ayani, Parallel simulation of multistage interconnection networks on an SIMD
computer, in: Advances in Parallel and Distributed Simulation, Vol. 23, SCS Simulation Series
(1991) pp. 133-140.

[9] J.V. Briner, Parallel mixed-level simulation of digital circuits using virtual time, Ph.D. Thesis, Duke
University, Durham, NC (1990).

[10] R.E. Bryant, Simulation of packet communication architecture computer systems, MIT-LCS-TR-
188, Massachusetts Institute of Technology (1977).

[11] C.A. Buzzell, M.J. Robb and R.M. Fujimoto, Modular VME rollback hardware for Time Warp, Proc.
SCS Multiconf. on Distributed Simulation, Vol. 22 (1990) pp. 153-156.

[12] W. Cai and S.J. Turner, An algorithm for distributed discrete-event simulation - the "carder null
message" approach, Proc. SCS Multiconf. on Distributed Simulation, Vol. 22 (1990) pp. 3-8.

[13] K.M. Chandy, A survey of analytic models of rollback and recovery strategies, IEEE Comp. 8(1975)
40-47.

[14] K.M. Chandy and R. Sherman, The conditional event approach to distributed simulation, Proc. SCS
Multiconf. on Distributed Simulation, Vol. 21 (1989) pp. 93-99.

[15] K.M. Chandy and R. Sherman, Space, time, and simulation, Proc. SCS Multiconf. on Distributed
Simulation, Vol. 21 (1989) pp. 53-57.

[16] K.M. Chandy and J. Misra, Distributed simulation: A case study in design and verification of
distributed programs, IEEE Trans. Software Eng. SE-5(1979)440-452.

[17] A.I. Concepcion, A hierarchical computer architecture for distributed simulation, IEEE Trans. Comp.
C-38(1989)311-319.

[18] S.R. Das and R.M. Fujimoto, A performance study of the cancelback protocol for Time Warp,
Technical Report GIT-CC-92/50, College of Computing, Georgia Institute of Technology, Atlanta,
GA (1992).

[19] M. Davoren, A structural mapping for parallel difital logic simulation, in: Proc. SCS Multiconf. on
Distributed Simulation, Vol. 21, SCS Simulation Series (1989) pp. 179-182.

[20] E. DeBenedictis, S. Ghosh and M.-L. Yu, A novel algorithm for discrete-event simulation, Computer
24(6)(I 991)21-33.

[21] P.M. Dickens, Performance analysis of parallel simulations, Ph.D. Thesis, University of Virginia
(1992).

[22] S. Eick, A. Greenberg, B. Lubachevsky and A. Weiss, Synchronous relaxation for parallel simulations
with applications to circuit-switched networks, in: Advances in Parallel and Distributed Simulation,
Vol. 23, SCS Simulation Series (1991) pp. 151-162.

D. Nicol, R. Fujimoto, Parallel simulation today 283

[23] R. Felderman and L. Kleinrock, An upper bound on the improvement of asynchronous versus
synchronous distributed processing, in: Distributed Simulation, Vol. 22, SCS Simulation Series
(1990) pp. 131-136.

[24] R. Felderman and L. Kleinrock, Bounds and approximations for self-initiating distributed simulation
without lookahead, ACM Trans. Modeling Comp. Simul. 1(1991).

[25] R. Felderman and L. Kleinrock, Two processor Time Warp analysis: Some results on a unifying
approach, in: Advances in Parallel and Distributed Simulation, Vol. 23, SCS Simulation Series
(1991) pp. 3-10.

[26] M.A. Franklin, D.F. Wann and K.F. Wong, Parallel machines and algorithms for discrete-event
simulation, Proc. 1984 Int. Conf. on Parallel Processing (1984) pp. 449-458.

[27] R.M. Fujimoto, Time Warp on a shared memory multiprocessor, Trans. Soc. Comp. Simul. 6(1989)
211-239.

[28] R.M. Fujimoto, The virtual time machine, Int. Symp. gn Parallel Algorithms and Architectures
(1989) pp. 199-208.

[29] R.M. Fujimoto, Parallel discrete event simulation, Commun. ACM 33(1990)30-53.
[30] R.M. Fujimoto, J. Tsai and G. Gopalakrishnan, Design and evaluation of the rollback chip: Special

purpose hardware for Time Warp, IEEE Trans. Comp. C-41(1992)68-82.
[31] A. Gafni, Rollback mechanisms for optimistic distributed simulation systems, Proc. SCS Multiconf.

on Distributed Simulation, Vol. 19 (1988) pp. 61-67.
[32] B. Gaujal, A. Greenberg and D. Nicol, A sweep algorithm for massively parallel simulation of

circuit-switched networks, ICASE Technical Report ICASE-92-30 (1992), to appear in J. Parallel
Distr. Comp.

[33] E. Gelenbe, On the optimum checkpoint interval, J. ACM 26(1979)259-270.
[34] P.I. Georgiadis, M.P. Papazoglou and D.G. Maritsas, Towards a parallel simula machine, Proc. 8th

Annual Symp. on Computer Architecture, Vol. 9 (1982) pp. 263-278.
[35] K. Ghosh and R.M. Fujimoto, Parallel discrete event simulation using space-time memory, Proc.

1991 Int. Conf. on Parallel Processing, Vol. 3 (1991) pp. 201-208.
[36] D.W. Glazer, Load balancing parallel discrete-event simulation, Ph.D. Thesis, McGill University

(1992).
[37] A. Goldberg, Virtual time synchronization of replicated processes, in: 6th Workshop on Parallel and

Distributed Simulation, Vol. 24, SCS Simulation Series (1992) pp. 107-116.
[38] G. Gopalakrishnan and R.M. Fujimoto, Design and verification of the rollback chip using HOP: A

case study of formal methods applied to hardware design, Technical Report UUCS-91-015, Department
of Computer Science, University of Utah (t991).

[39] A.G. Greenberg, B.D. Lubachevsky and I. Mitrani, Algorithms for unboundedly parallel simulations,
ACM Trans. Comp. Syst. 9(1991)201-221.

[40] A. Gupta, I.F. Akyildiz and R.M. Fujimoto, Performance analysis of Time Warp with multiple
homogeneous processors, IEEE Trans. Software Eng. SE- 17(1991) 1013 - 1027.

[41] P. Heidelberger and D. Nicol, Conservative parallel simulation of continuous time Markov chains
using uniformization, IBM Technical Report RC-16780, IBM Research Division (1991), to appear
in IEEE Trans. Parallel Distr. Syst.

[42] P. Heidelberger and H. Stone, Parallel trace-driven cache simulation by time partitioning, IBM
Technical Report RC-15500, IBM Research Division (1990).

[43] D.R. Jefferson, Virtual time, ACM Trans. Progr. Languages Syst. 7(1985)404-425.
[44] D.R. Jefferson, Virtual time II: Storage management in distributed simulation, Proc. 9th Annual

ACM Symp. on Principles of Distributed Computing (1990) pp. 75-89.
[45] D.S. Johnson, C.R. Aragon, L.A. McGeoch and C. Shevon, Optimization by simulated annealing:

An experimental evaluation: Part I, graph partitioning, Oper. Res. 37(1989)865-892.
[46] S.A. Kravitz and B.D. Ackland, Static vs. dynamic partitioning of circuits for a MOS timing

simulator on a message-based multiprocessor, in: Proc. SCS Mutticonf. on Distributed Simulation,
Vol. 19, SCS Simulation Series (1988) pp. 136-140.

284 D. Nicol, R. Fujimoto, Parallel simulation today

[47] D. Kumar and S. Harous, An approach towards distributed simulation of timed Petri nets, in: Proc.
1990 Winter Simulation Conf., New Orleans, LA (1990) pp. 428-435.

[48] F. Lin and R.M. Keller, The gradient model oad balancing method, IEEE Trans. Software Eng. SE-
11 (1987)32-38.

[49] Y.-B. Lin, Memory management algorithms for optimistic phrallel simulation, in: 6th Workshop on
Parallel and Distributed Simulation, Vol. 24, SCS Simulation Series (1992).

[50] Y.-B. Lin and E.D. Lazowska, Optimality considerations of "Time Warp" parallel simulation, in:
Distributed Simulation, Vol. 22, SCS Simulation Series (1990) pp. 29-34.

[51] Y.-B. Lin and E.D. Lazowska, Determining the global virtual time in a distributed simulation,
Technical Report 90-01-02, Department of Computer Science, University of Washington, Seattle,
WA (1989).

[52] Y.-B. Lin and E.D. Lazowska, Reducing the state saving overhead for Time Warp parallel simulation,
Technical Report 90-02-03, Department of Computer Science, University of Washington, Seattle,
WA (1990).

[53] Y.-B. Lin and E.D. Lazowska, A time-division algorithm for parallel simulation, ACM Trans. Mod.
Comp. Simul. 1(1991)73-83.

[54] Y.-B. Lin, E.D. Lazowska and J.-L. Baer, Conservative parallel simulation for systems with no
lookahead prediction, Proc. SCS Multiconf on Distributed Simulation, Vot. 22 (1990) pp. 144-I49.

[55] Y.-B. Lin and E.D. Lazowska, A study of Time Warp mechanisms, ACM Trans. Mod. Comp. Simul.
I(199I)51-72.

[56] Y.-B. Lin and E.D. Lazowska, A time-division algorithm for parallel simulation, ACM Trans. Mod.
Comp. Simul. 1(1991)73-83.

[57] R. Lipton and D. Mizell, Time Warp vs. Chandy-Misra: A worst-case comparison, in: Distributed
Simulation, Vol. 22, SCS Simulation Series (1990) pp. 137-143,

[58] B. Lubachevsky, A. Weiss and A. Shwartz, An analysis of rollback-based simulation, ACM Trans.
Mod. Comp. Simul. 1(1991)154-I92.

[59] B.D. Lubachevsky, Scalabitity of the bounded lag distributed discrete event simulation, Proc. SCS
Multiconf on Distributed Simulation, Vol. 21 (1989) pp. 100-107.

[60] B.D. Lubachevsky, A. Shwartz and A. Weiss, Rollback sometimes works. . , if filtered, 1989 Winter
Simulation Conf. Proc. (1989) pp. 630-639.

[61] V. Madissetti, D. Hardaker and R. Fujimoto, The mimdix operating system for parallel simulation,
in: 6th Workshop on Parallel and Distributed Simulation, Vol. 24, SCS Simulation Series (1992)
pp. 65-74,

[62] V. Madisetti, J. Walrand and D. Messerschmitt, Wolf: A rollback algorithm for optimistic distributed
simulation systems, 1988 Winter Simulation Conf Proc. (1988) pp. 296-305.

[63] J. Briner, Jr., Fast parallel simulation of digital systems, in: Advances in Parallel and Distributed
Simulation, Vol. 23, SCS Simulation Series (1991) pp. 71-77.

[64] P. Reynolds, Jr., An efficient framework for parallel simulations, in: Advances in Parallel and
Distributed Simulation, Vol. 23, SCS Simulation Series (1991) pp. 167-174.

[65] J. Misra, Distributed discrete-event simulation, ACM Comp. Surveys 18(1986)39-65.
[66] B. Nandy and W. Loucks, An algorithm for partitioning and mapping conservative parallel simulation

onto multicomputers, in: 6th Workshop on Parallel and Distributed Simulation, Vol. 24, SCS
Simulation Series (1992) pp. 139-146.

[67] L.M. Ni, C.W. Zu and T.B. Gendreau, A distributed drafting algorithm for load balancing, IEEE
Trans. Software Eng. SE-9(1985).

[68] D. Nicol, Optimistic barrier synchronization, ICASE Technical Report 91-34 (1992).
[69] D. Nicol, A. Greenberg, B. Lubachevsky and S. Roy, Massively parallel algorithms for trace-driven

cache simulation, in: 6th Workshop on Parallel and Distributed Simulation, Vol. 24, SCS Simulation
Series (1992) pp. 3-11.

[70] D. Nicol and P. Heidelberger, Optimistic parallel simulation of continuous time Markov chains using
uniformization, J. Parallel Distr. Comp. 18(1993)395-410.

D. Nicol, R. Fujimoto, Parallel simulation today 285

[71] D. Nicol and P. Heidelberger, Parallel simulation of Markovian queueing networks using adaptive
uniformization, in: Proc. 1993 SIGMETR1CS Conf, Santa Clara, CA (1993) pp. 135-145.

[72] D. Nicol and S. Roy, Parallel simulation of timed Petri nets, in: Proc. 1991 Winter Simulation Conf.,
Phoenix, AZ (1991) pp. 574-583.

[73] D.M. Nicol, Performance bounds on parallel self-initiating discrete-event simulations, ACM Trans.
Mod. Comp. Simul. 1(199I)24-50.

[74] D.M. Nicot, The automated partitioning of simulations for parallel execution, Ph.D. Thesis, University
of Virginia (1985).

[75] D.M. Nicol, The cost of conservative synchronization in parallel discrete-event simulations, J. ACM
40(1993)304-333.

[76] D.M. Nicol and P.F. Reynolds, Jr., A statistical approach to dynamic partitioning, in: Distributed
Simulation 85, VoI. 15, SCS Simulation Series (1985) pp. 53-56.

[77] D.M. Nicol and P.F. Reynolds, Jr., Optimal dynamic remapping of data parallel computations, IEEE
Trans. Comp. C-39(1990)206-219.

[78] C. Pancerella, Improving the efficiency of a framework for parallel simulations, in: 6th Workshop
on Parallel and Distributed Simulation, Vol. 24, SCS Simulation Series (1992) pp. 22-32.

[79] B. Preiss, W. Loucks, I. Maclntyre and J. Field, Null message cancellation in conservative distributed
simulation, in: Advances in Parallel and Distributed Simulation, Vol. 23, SCS Simulation Series
(1991) pp. 33-38.

[80] B. Preiss, I. Maclntyre and W. Loucks, On the trade-off between time and space in optimistic parallel
discrete-event simulation, in: 6th Workshop on Parallel and Distributed Simulation, Vol. 24, SCS
Simulation Series (1992) pp. 33-42.

[81] B.R. Preiss, The Yaddes distributed discrete event simulation specification language and execution
environments, Proc. SCS Multiconf. on Distributed Simulation, Vol. 21 (1989) pp. 139-144.

[82] P.L. Reiher and D. Jefferson, Dynamic load management in the Time Warp Operating System,
Trans. Soc. Comp. Simul. 7(1990)91-120.

[83] H.R. Ross, Stochastic Processes (Wiley, New York, 1983).
[84] B. Samadi, Distributed simulation, algorithms and performance analysis, Ph.D. Thesis, University

of California, Los Angeles (1985).
[85] L.M. Sokol, D.P. Briscoe and A.P. Wieland, MTW: a strategy for scheduling discrete simulation

events for concurrent execution, Proc. SCS Multiconf. on Distributed Simulation, Vol. 19 (1988) pp.
34-42.

[86] L. Soule and A. Gupta, An evaluation of the Chandy-Misra-Byrant algorithm for digital logic
simulation, ACM Trans. Mod. Comp. Simul. 1(1991).

[87] J. Steinman, Speedes: synchronous parallel environment for emulation and discrete event simulation,
in: Advances in Parallel and Distributed Simulation, Vol. 23, SCS Simulation Series (1991) pp.
95-103.

[88] W.K. Su and C.L. Seitz, Variants of the Chandy-Misra-Bryant distributed discrete-event simulation
algorithm, Proc. SCS Multiconf. on Distributed Simulation, Vol. 21 (1989) pp. 38-43.

[89] G. Thomas and J. Zahorjan, Parallel simulation of performance Petra nets: Extending the domain
of parallel simulation, in: Proc. 1991 Winter Simulation Conf., Phoenix, AZ (1991) pp. 564-573.

[90] S. Turner and M. Xu, Performance evaluation of the bounded Time Warp algorithm, in: 6th Workshop
on Parallel and Distributed Simulation, Vol. 24, SCS Simulation Series (1992) pp. 117-128.

