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1. Introduction 

Parallel simulation is a highly relevant research area today, given the high 
computational demands of  large discrete-event simulations, and ready availability 
of  high-performance multiprocessors. The number of  researchers in the field has 
increased dramatically in the last few years, f rom a handful in the early 80's to over 
a hundred today. The annual Workshop on Parallel and Distributed Simulation has 
been held six times, drawing over fifty paper submissions in each of  the last three 
years. The annual Winter  Simulation Conference has had sessions (and sometimes 
entire tracks) on parallel simulation throughout this period as well. 

The purpose of  this paper is to outline the state of  the art in six active 
research areas within parallel simulation to an audience assumed to have-already 
a passing familiarity with the topic. The topics we cover are new protocols, mathematical 
performance analysis, time parallelism, hardware support, load balancing, and dynamic 
memory  management.  We conclude the discussion of each topic with ideas for 
future research. 
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2. New protocols 

Interest in parallel simulation first arose with the problem of synchronization; 
it is a problem that has remained the focus of most, research in the area. Over the 
course of 15 years, a profusion of new protocols have been proposed; we cannot 
but touch upon a few of the new ones here. Our intention is to give examples 
illustrating general trends in protocol research - enhancements to classical C h a n d y -  
Misra-Byrant  (CMB) style protocols [16, I0], enhancements to Time Warp [43], 
and new, synchronous protocols. 

Before discussing the new directions, let us briefly revisit the synchronization 
problem and the classical approaches to it. Consider the network of four queues 
illustrated in fig. l(a). Each queue may route a job to one of two other queues, a 
communication pattern which forms a simple bidirectional ring. Each queue maintains 
a list of events; in the figure, for example, A: 4 denotes a job arrival event scheduled 
for time 4. Values on communication arcs (hereafter called link times) denote the 
time-stamp of the last message sent over that arc. Let us suppose that each queue 
is simulated on its own processor; let us also suppose that the service time of any 
job is at least 0.1. At the beginning of the simulation, a queue knows its initial job 
arrival (presumably placed there as part of initialization), and arc times are initialized 
to zero. In CMB style protocols, no queue can simulate its first event until it is 
certain that it will not receive a routed job with a time-stamp less than its first 
arrival time. Now we have a problem, for the arrival times are all strictly greater 
than the initial link times. In order to resolve this, every queue reasons "even if I 
were to receive a job at time 0, that job would require at least 0.1 service time, 
whence I can promise not to send a job until at least time 0.1"; this reasoning 
permits the queue to send a null-message with time-stamp 0.1 to both queues to 
which it routes jobs. Since every queue does this, every link time eventually increases 
to 0.1. Under the CMB rules, the queue may receive and process the message 
associated with the least link time. Eventually, a queue receives two null messages, 
with the same time-stamp, and these may be processed. As a result, each queue 
sends two new null messages, now with time-stamp 0.2. This sort of gradual escalating 
of null-message time-stamps continues until the link times increase to the point of 
the Q1 arrival at time 2. At this point, actual simulation activity begins. Observe 
that twenty rounds of  null-message increments were needed just to reach this point. 
Suppose the Q1 arrival goes into service, is non-preemptable, and will depart at 
time 3. Knowing this, Q1 can send null messages with time-stamp 3 ("looking 
ahead" to the job 's  completion) to Q2 and Q4, leading to the situation illustrated 
in fig. l(b). Continued incremental advances in null-message time-stamps are needed 
to raise link times to a high enough level so that the Q1 departure at time 3 can 
be simulated. 

The problem with the above scheme is clearly the high volume of null messages. 
An optimistic approach such as Time Warp avoids these. In Time Warp, every 
queue checkpoints its state, then optimistically executes the first event. However, 
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(b) After first event simulated 

Fig. 1. Example of  four queueing nodes, assigned one per processor. 
Events  at init ialization time are shown, as are link times - the 
t ime-stamp on the last message to cross a communicat ion link. 

this approach has its perils also. The Q1 arrival at time 2 departs at time 3 and may 
be routed to Q4. Alas, Q4 has likely simulated an arrival at time 4, which must now 
be undone, along with all messages that may have been sent prior to time 3. It 
recovers its initial state and simulates the new arrival. Suppose that a single unit 
of service time is given, and that the job is routed to Q3 at time 4. Since Q3 has 
already simulated an arrival at time 5, it too must roll back, send anti-messages after 
messages it erroneously sent, recover its initial state, and simulate the new arrival. 

These descriptions are intended to suggest that synchronization protocols 
typically impose severe overheads. The goal of some current protocol research is 
to reduce those overheads. Let us now turn to some specific examples. 

2.1. E N H A N C E M E N T S  TO CMB ALGORITHMS 

One of the reasons the CMB example above requires so many null messages 
is that the null messages carry very little information. If somehow QI came to learn 
that it was essentially waiting for itself and no one else before proceeding, it could 
clearly execute the arrival at time 2, If it could then learn that no other queue will 
send a job prior to time 3, it can then simulate the departure. This observation is 
explored in [ 12], the "Carrier Null Message" approach. In standard CMB algorithms, 
null messages propagate through a system - the result of receiving a null message 
is usually to send a slew of others. In the Carrier Null Message approach, one 
appends a list of visited sites and pending event times to null messages. This 
information allows a queue to infer when it is free to execute an event, potentially 
more rapidly than when ordinary null messages are used. Consider: Q1 initially 
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sends out null messages with time-stamp 0. I, but appends its identity and first event 
time (Q1, 2). One copy of the message is received by Q2, who appends (Q2, oo) and 
sends it back to not only Q1, but also to Q3. Q3 appends (Q3, 5) and sends a copy 
to Q4, who appends (Q4, 4) and sends a copy to Q1 :The feedback on both incoming 
arcs permits Q1 to infer that it may proceed. 

Even with carrier null messages, CMB algorithms still generate many null 
messages. Another optimization, explored in [79], attempts to reduce null message 
propagation by recognizing when a null message becomes stale. In the earlier 
example, Q1 sends a stream of null messages to Q2 (and Q4), successive ones 
increasing in time-stamp by 0.1. Now suppose a null message with time-stamp t 
arrives from QI at Q2's message queue, where it finds an unreceived null message 
from Q1 at time s < t. There is no point in having Q2 process the earlier null 
message; it may be annihilated. Indeed, any message from Q1 that discovers a null 
message with smaller time-stamp may annihilate the null message. 

Still another set of optimizations arise when considering the high cost of 
message-passing in distributed memory machines. The cost of sending a v byte 
message is very well modeled as a + vfl, where a is a large fixed startup cost owing 
(usually) to software overhead, and fl is a per byte transfer cost. This provides a 
strong incentive to pack logical messages together into a single physical message. 
CMB variations doing this are explored in [88]. A number of issues are examined, 
including receiver or sender initiated transfer, as well as lazy or eager transmission. 

2.2. ENHANCEMENTS TO TIME WARP 

Another body of work examines optimizations to the basic Time Warp 
mechanism. The problem addressed by these optimizations is the possibility in 
Time Warp of  a "fast" processor or a set of processors surging far ahead of  other 
processors in simulation time. The danger is greatest when interaction between 
processors is light and processor loads are uneven. Thrashing may occur, as may 
cascading rollbacks. For example, some straggler can roll back a fast processor, 
who has generated a great many messages which are now cancelled. While the 
slower processors are busy annihilating message/anti-message pairs, some of  them 
rolling back and generating additional anti-messages, the fast processors may surge 
forward again. While the argument can be made that the fast processors may as well 
execute optimistically since they have nothing else to do, the countering argument 
is that there is a non-trivial cost associated with correcting the errors it may make 
by doing so. 

One idea for preventing uncontrolled chaotic rollbacks is to cause controlled 
preemptive rollbacks. For example, when one processor needs to roll back it may 
immediately issue rollback instructions to other processors, who will likely have to 
roll back anyway as a result. One way to view this is as the parallelization of 
rollbacks that would otherwise occur serially. This idea finds expression in [62]. 
Another way of  implementing this same basic idea is to build p e r i o d i c -  or 
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random - preemptive rollbacks that occur independently of any activity in the 
simulation model [61]. The idea is to ensure that all processors are more-or-less 
synchronized in the same region of simulation time, with the hope that rollback 
cascades are less likely as a result. 

A related line of thought is to simply constrain Time Warp's optimism. For 
example, one may advance simulation time by "windows". Within a window [t, t + A] 
processors execute standard Time Warp, except that no event with a time-stamp 
greater than or equal to t + A is executed. Once all processors have synchronized 
at time t (which is itself a non-trivial problem, addressed in [68]), a new window 
It + A, t + 2A] is simulated. This basic proposal is found originally in [85], with 
variations appearing in [90] and [5]. A similar proposal to extend constrained 
optimistism to the Bounded-Lag protocol is found in [60]. 

2.3. PROTOCOLS BASED ON WINDOWS 

One emerging theme in protocol research is to study protocols that constrain 
all concurrent simulation activity to be within some window of global synchronization 
time. These protocols typically compute, distribute and are controlled by global 
system information. In this, they reflect a philosophical shift away from the roots 
of parallel simulation in asynchronous distributed system theory. 

The algorithms studied in [85, 14,75,3,87,32] all compute a minimum time 
defining a time beyond which a processor will not venture until the next window 
"phase". Typically, this calculation involves lookahead of some kind. For example, 
in the queueing simulation examined earlier, we may take advantage of a non- 
preemptive queueing discipline, and state-independent service times and routing 
decisions by pre-sending job completions at the point the job enters service, and by 
pre-sampling a job 's  service time upon recognizing the message reporting its arrival. 
The algorithm studied in [75] reasons as follows. Since we know all there is to 
know about the job's departure at the time it enters service, we may as well immediately 
report the job 's  arrival at its next queue (this sort of pre-sending is also implicit 
with Time Warp messages). Using knowledge of the queueing discipline and the 
assumption that no further jobs will arrive, the queue can at any time compute the 
time of  the next message it will send. That time is necessarily the departure time 
of the next job to enter service (assuming no further messages arrive). Let us 
suppose that all processors have simulated up to time t and have synchronized 
globally. Each processor i is asked to compute the time 6i(t) of the next message 
it will send (in the absence of receiving further messages), and the processors 
cooperatively compute the minimum t~(t) = mini{ ~i(t)}. The window [t, t~(t)) is thus 
defined, and every processor is now free to simulate all events with time-stamps 
within this window. Because of the window's  construction, and by the practice of  
pre-sending job departures, we are assured that no message that is sent between 
processors during this interval has a time-stamp smaller than tS(t). 
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Fig. 2. Simulation using conservative windows. 

Consider how this mechanism would be applied to our earlier example. Initially, 
all processors are synchronized at time 0, as shown in fig. 2(a). Q1 computes 
t~ l (0) = 3, Q2 computes 63(0) = ~, Q3 and Q4 compute 63(0) = 7, and using a parallel 
min-reduction they compute ~0)  = 3. Each queue identifies the completion time of 
the next job to receive service, a calculation made possible by pre-sampling service 
times (which are marked by parentheses in the event blocks illustrated in fig. 2). 
Only one event occurs in the first window, the arrival at Q1. Upon placing the job 
in service, Q1 decides that Q4 will next receive the job, and sends a message to 
Q4 notifying it of the arrival. Q1 also generates a departure event (D) at time 3 and 
places it in its event list. Figure 2(b) illustrates the resulting situation, just prior to 
the second window. Note that Q4 pre-sampled the service requirement of its new 
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job to be 1. Now the minimum time of the next message to be sent happens to be 
the departure time of the new arrival at Q4. Consequently, the second window is 
[3, 4), wherein the departure at Q1 is simulated, the corresponding arrival at Q4 is 
simulated, and notification of a new arrival at time 4 is given to Q3 (who then pre- 
samples a service time of 3). The third window is computed to be [4, 7). In this 
interval, Q4 simulated a departure at time 4 and an arrival at time 4, pre-sending 
notification of that job's departure (at time 7) to Q1, who chooses a service time 
of 2. Simultaneously, Q3 simulates a job arrival at time 4 (pre-sending its transfer 
to Q2), and simulates the job arrival at time 5 by marking the job as enqueued (since 
the server is busy). Upon receiving the arrival at time 7, Q2 pre-samples a service 
time of 5 units and places the new arrival event in its event list. 

The natural question to ask of such algorithms is whether windows tend to 
admit enough parallel events to be effective. This issue has been addressed for the 
very algorithm above, as well as for the Bounded Lag algorithm [59]. Both algorithms 
are sca lab le ,  which means that their performance characteristics do not degrade as 
the size of the problem and architecture simultaneously increase. Some insight into 
this phenomenon is gained if we suppose that a job's service time is always at least 
c > 0. Since the t~i(t) value computed by a processor is the completion time of a job 
that has not yet entered service, one infers that tSi(t) - t > c for all i, so that the span 
of simulation time covered by the window is at least c time units wide. The average 
number of events processed in a window is at least cA, where A is the event density 
(events/unit simulation time) for the entire simulation model. Increasing the problem 
size increases the event density; the number of events in a window increases 
proportionally with A. Assuming the simulation load is evenly balanced (or that the 
imbalance does not grow with the number of processors), the number of events a 
processor executes per window does not decrease if the number of processors and 
event density simultaneously increase in fixed proportion. 

Another advantage of window-based protocols is that they are relatively 
easier to use on SIMD (Single Instruction Multiple Data) architectures. Successful 
window-based SIMD simulation of a switching network is reported in [8], and of 
a circuit-switched communication network in [32]. 

2.4. APPLICATION SPECIFIC PROTOCOLS 

It is frequently the case that the importance of an application justifies tailoring 
a protocol to its special requirements and characteristics. This approach often delivers 
performance advantages over "general" protocols, which may suffer extra overheads 
to support circumstances rarely encountered in the application. 

One such example is the simulation of digital logic networks. VLSI simulation 
is notorious for its computational demands; the significance of successful parallelization 
would be large. Standard CMB and Time Warp approaches have been attempted 
[86, 63], with only mixed results. Recognizing that feedback loops pose one of the 
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hardest problems for a conservative synchronization algorithm, an approach is 
proposed in [20] where the network to be simulated is transformed into another 
(larger) one containing no feedback loops. This algorithm is tested on a latch 
constructed from two cross-coupled NAND gates. 

Another important class of simulation models are continuous time Markov 
chains (CTMC). A CTMC is a mathematical model that encapsulates the notion of 
system state and time duration. Stated simply, a CTMC is always in one of a 
possibly infinite number of states. Upon entering state s, the CTMC remains in that 
state for a random period of time (called the holding time) which is exponentially 
distributed, with state-dependent mean 1/&(s). At the completion of the holding 
time, the CTMC makes a random transition into another state. The probability 
distribution of the transition also depends on s. CTMCs are very general constructs, 
and are often used to model complex computer systems and communication 
networks. 

In a series of paper [41,70, 71], it is shown that the mathematical structure 
of CTMC models can be exploited for the purposes of synchronization. Using the 
notion of uniformization, it is possible to simulate a CTMC on a parallel machine 
in two phases. In the first phase, one randomly selects a set of times at which 
processors will synchronize. That is, for every ordered pair of processors (i, j) ,  we 
construct a communication schedule of times where i may send a message to j. The 
interarrival times in this schedule are exponentially distributed with a mean 1/~ma x 
which is smaller than the mean time of any distribution of times between i ---)j 
messages. In the second phase, one performs the simulation, selecting a mathematically 
correct sample path where all actual communication instants are already identified 
in the pre-computed lists. To ensure that the statistics generated by such a method 
are correct, whenever a processor reaches one of  its pre-selected communicat ion 
points it decides randomly whether to send a "real" communication that will affect 
the recipient processor, or to send a "pseudo" communication to release the other 
processor from waiting for this message. The probability of sending a real message 
depends on the state of the simulation at the communication instant. It should be 
recognized that the ability to pre-select all communication instants removes most 
of  the difficulty of synchronizing a parallel simulation. The only drawbacks to this 
method are that it is not general, and that it is possible to spend too much time 
generating and synchronizing upon pseudo communications.  The algorithm has also 
been implemented on the Intel Touchstone Delta architecture using up to 256 
processors. Speedups in excess of  220 are reported, simulating on a moderate 
sized queueing network where every processor synchronizes with every other 
processor. 

A final illustration of  application-dependent protocols occurs considering the 
simulation of Timed Petri Nets (TPNs). The semantics of a TPN simulation do not 
fit easily into the CMB world-view. As a consequence, extensions to the CMB 
protocol have been proposed in [47] and [89]. However, it is possible to simulate 
a TPN using a general windowing protocol, as shown in [72]. 
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2.5. FUTURE DIRECTIONS 

Synchronization will always be an interesting area of study. However, the 
fact remains that a number of different approaches have been shown to work, albeit 
under varying circumstances and with varying degrees of success. If the practice 
of parallel simulation is to become widespread, most of the difficult details of 
synchronization must be embedded within a parallel simulation environment where 
they remain hidden from the simulation modeler. It seems to us that the critical 
problems for parallel simulation lie in its automation. The important future work 
in protocol design lies in developing protocols whose application is automatable to 
a wide variety of simulation models, and whose overheads are minimal. 

3. Mathematical performance analysis 

The last three years have witnessed an explosion of papers on the mathematical 
performance modeling of parallel simulations. A common trait among these are 
assumptions made for the purposes of mathematical tractability. For example, it is 
commonly assumed that the time-advance associated with executing an event is an 
exponential random variable; it is commonly assumed that when sent, a message 
is routed to some processor selected uniformly at random from among all processors. 
Markov chains of one kind or another frequently underlie these analyses. Despite 
obvious limitations, this ground-breaking work in analysis is exciting because it 
helps to shed new understanding on the potentials - and limits - of parallel simulation. 
The remainder of this section examines different topical areas of recent analytic 
work. 

3.1. SYNCHRONOUS VERSUS ASYNCHRONOUS 

A significant body of work is devoted to comparing different synchronization 
algorithms. In [23], it is shown that the average performance difference between 
synchronous time-stepping and an optimistic asynchronous algorithm such as Time 
Warp is no more than a factor of O(log P), P being the number of processors. The 
derivation of this result is straightforward. Imagine that each processor executes 
exactly K "stages" of work, that the execution time associated with a stage is 
exponentially distributed with common mean/.t, and that the computation is finished 
only after all processors have completed all stages. Given these assumptions, 
synchronous time-stepping is well modeled by assuming that processors engage in 
a barrier synchronization after every stage. The average time required for the last 
processor to finish a stage is no greater than/.t log P, whence the average time to 
termination is no greater than K #  log P. If we relax the synchronization requirement 
- as does Time Warp - then the average time to completion is at least K#. Consequently, 
the ratio of synchronous to asynchronous finishing times is no greater than log P. 
This is actually an extreme case - if the time-advance distribution is bounded from 
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above, the performance difference is no more than a factor of 2. For example, 
suppose the stage processing time is uniformly distributed on [a, b]. Then the time 
required for the synchronous method to finish is no more than Kb, whereas the 
average time for the asynchronous method is at, least K(a + b)/2. Their ratio 
is 2b/(a + b) < 2. While simple, this model serves to show that in a statistical sense, 
one ought to limit one's expectations of asynchronous versus synchronous methods. 

3.2. OPTIMALITY OF OPTIMISM 

Conditions for the optimality of Time Warp (in the absence of overhead 
costs) are demonstrated in [50]. At a glance, this result seems intuitive, because 
Time Warp need never block. However, the analysis is careful to point out that 
Time Warp need not be optimal if ever a processor executing a piece of work on 
the critical path in a correct state (which, of course, cannot be known a priori) is 
rolled back. This causes the effective critical path to lengthen. Again, even though 
the model is simple and the assumption of zero-cost overhead is unrealistic, some 
insight is gained into the behavior of the protocols studied. 

In a similar vein, an interesting asymmetry is demonstrated in [57], with 
examples showing that Time Warp is capable of arbitrarily better performance than 
most conservative methods and a proof that the converse is not true. Even though 
such disparities are rarely observed in practice, the results are interesting in that 
they highlight precisely how Time Warp can guess correctly, while a conservative 
method blocks. Likewise, the proof that Time Warp is no worse than conservative 
methods by a constant factor demonstrates Time Warp's essential resiliency, at least 
under the model assumptions (constant cost rollbacks, zero-cost message passing, 
and state saving). The degree to which deviation from these benign assumptions 
affects Time Warp's relative performance remains a topic of hot debate. 

3.3. FANOUT AND TIME-ADVANCE VARIABILITY 

Two models address themselves to the effects on performance of message- 
fanout, and (more indirectly) the variability in the probability distribution used to 
advance simulation time at a processor. A conservative windowing algorithm is 
compared with Time Warp in [73]. This analysis includes overheads for both methods, 
and captures the dependence of performance on lookahead. Not surprisingly, the 
results of the comparison depend on the magnitudes of the overhead costs. In this 
model, each of P processors is assumed to always be busy. Each event advances 
the processor's simulation clock by a random amount (different distributions are 
considered); the time required to process an event is constant. The latter assumption 
lets us view the system as responding to a global clock, where every "tick" events 
may be executed. At the end of every event, the processor chooses k other processors 
uniformly at random, and sends them commonly time-stamped messages. The value 
of this time-stamp depends on the assumed degree of lookahead. Assuming no 
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lookahead, the time-stamp is the time of the simulation clock at the time of transmission. 
With one "cycle" of lookahead, the time-stamp is what the clock value will be after 
the next event is processed; this essentially models pre-sending completion messages 
as was seen in section 2.3. In the conservative algorithm, a processor is not permitted 
to execute an event until it is certain not to receive a message in its past. No such 
constraint is placed on Time Warp, but it is assumed that a straggler message 
always causes a rollback. The results show that processor utilization under the 
conservative method with one-cycle lookahead is proportional to 1/~/ff, while the 
utilization under Time Warp is no greater than 1/k. Intuitive understanding of the 
t /k  figure is gained by considering the effect achieved when the processor with the 
least time-stamp (say, train) sends messages to/¢ randomly chosen neighbors. The 
advance in global virtual time in the next tick is no greater than the difference 
between /min and the least time-stamp of the next message sent by any of the k 
recipients. The distribution of time between tmin and a processor's next message 
time is the equilibrium distribution [83] associated with the time-stamp advancement 
distribution, which in the case of the exponential is the exponential itself. The 
minimum of k independent exponentials with mean # is well-known to be exponential 
with mean #/k. Consequently, simulation time advances by no more than (1/k)th of 
a simulation time unit in a tick. A similar analysis gives the upper bound for the 
conservation method with lookahead. Without lookahead, the conservative method 
achieves a processor utilization of l iP  - serial processing - which demonstrates its 
reliance on lookahead to achieve good performance. 

An interesting point of comparison is developed in [24], where the distributional 
assumptions concerning simulation time advance and per-event execution time are 
exactly r e v e r s e d -  an event is assumed to require an exponential processing time 
(with mean 1), but advances simulation time by a deterministic one unit. One can 
imagine the behavior of a processor on the simulation time line as taking discrete, 
single-step jumps forward with exponentially distributed pauses between jumps,  
and occasional rollbacks to an earlier time-step. The key idea in this analysis is to 
consider how long (in processing time) it takes GVT to move forward one step. 
Consider the instant when the GVT changes. This happens because there was one 
processor with the least time-stamp n, and it finally moved forward to time n + 1. 
In doing so, it sent k messages out (with time-stamp n + 1) which may cause rollback. 
In any case, we are assured that at the instant the GVT becomes n + 1, there are at 
least k + 1 processors whose clocks have that value (the sender plus k recipients of 
the message). How long does it take for all k + 1 of these to advance? Since exponentials 
are memoryless, this time is the maximum of k + 1 exponentials, a random variable 
whose mean is approximately log(k + 1). This means GVT advances at a rate no 
greater than 1/log(k + 1) simulation time units per execution unit. For all but the 
smallest values of  k, we have 1/k ~ l/log(k + 1), which shows that the upper bound 
on Time Warp performance under the new set of assumptions is much greater. 
Furthermore, the bounds become close to observed simulated rates as k grows. 
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The only difference between the models in [73] and [24] is distributional, and 
yet the results are very different. Both analyses look at how GVT advances; the 
difference in results derives immediately from the stochastic component  of  GVT 
advance. In the first model, we measure the GVT advance per unit execution time 
as the minimum of k exponentials, with the result that on average k execution units 
are needed to advance GVT by one simulation time unit. In the second model, we 
measure the number of execution time units needed to advance GVT by a single 
time unit, and find that the maximum of k exponentials defines this time. The mean 
minimum of k exponentials is inversely proportional to k, whereas the mean maximum 
of k exponentials is not proportional to k. It would then seem that the difference 
between methods can largely be attributed to the different responses of the exponential 
distribution when taking the minimum as opposed to the maximum of  k independent 
samples. The disparity may just be an artifact of the model assumptions. 

3.4. ANALYSIS OF WINDOWING ALGORITHMS 

As we have already seen, synchronization algorithms based on windows are 
becoming increasingly important. One attraction is that they are relatively easier to 
analyze than are completely asynchronous algorithms, since one's  attention need 
only by focused on one representative window. 

The conservative windowing algorithm described in section 2.3 is analyzed 
in [75]. While the details are complex, the general idea is simple. The model 
assumes that 

• event times are distributed as a constant c plus an exponential with rate #;  

° upon comPleting, an event schedules other events at a random subset of other 
LPs (the event causation assumptions are very general); 

• event-completion messages are pre-sent; 

° executing events are not preempted. 

The analysis establishes an approximated lower bound on the mean width of  the 
window. Under some additional uniformizing assumptions, this bound is essentially 
the mean minimum of N random variables Z1 . . . . .  ZN, where each Zi is the sum 
of  c (possibly zero), plus an Erlang-2 with parameter #. The mean min imum is 
proportional to c + #~t-N, implying that if the system model simulation activity rate 
is A events per unit simulation time, then at least A(c + p~c-~) events are available 
to be processed in the window. The paper goes on to show that the overheads 
involved in computing and communicat ing the window bound are no greater than 
those of  event-list management,  whence the algorithm is asymptotically optimal 
(assuming the load is balanced). 

Another effort analytically examines the cost of widening the conservation 
window defined above somewhat, thereby finding more events to execute in parallel, 
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but also suffering the risk of being rolled back [21]. Analysis of the extension 
shows that the window construct prevents rollbacks from cascading very far. 
Furthermore, if state-saving costs are not large, the benefit of extending the window 
exceeds the costs, and better performance than the conservative window scheme 
may be achieved. 

Essentially the same algorithm is analyzed in [87], but in a very different 
way. A differential wave equation is constructed expressing the density of events 
within a window at time t (assuming the window starts at 0). Numerical solution 
shows excellent agreement, both with empirical results and with the values predicted 
by the earlier model. 

Finally, an analysis of synchronous relaxation is given in [22]. The convergence 
rate is always (or ought to be) the primary issue ~vith any relaxation algorithm. The 
key idea behind this analysis is to represent the computation as connected event- 
lines, where each of N LPs has its own event-line, and logical dependency between 
LPs is reflected by a "bond" between their time-lines at the appropriate time. The 
number of  iterations required to converge is related to the "height" of the bond 
graph so constructed, which turns out to have mean proportional to logN. 

3.5. ANALYSIS BASED ON MARKOV CHAIN MODELS 

A number of performance models are based on analysis of a Markov chain 
one discovers after making sufficiently benign assumptions. Generally, it is the 
analysis of the chain that is difficult, not so much its construction. Let us now 
describe a few of  these models. 

First consider a system of two processors. They are loaded so that one advances 
simulation time at a constant rate A (simulation units per execution time), and 
another at rate B, A < B. At the end of every execution tick, the "slow" processor 
sends a t ime-stamped message to the fast processor with probability Pl; conversely, 
the fast processor sends a message to the slow one with probability P2. Rollback 
may occur, and is assumed to require one execution tick. A processor rolling back 
does not advance simulation time. Now at any time, either the fast processor is 
ahead in simulation time, or the slow processor is (which may happen immediately 
following a rollback of the fast processor). The associated discrete-time Markov 
chain has but two states. Transition probabilities follow immediately from the 
message probabilities. 

A more complex two-processor model is analyzed in [25]. Here, one assumes 
that a processor takes only integer-valued time-stamps, and that upon executing an 
event (assumed to require a deterministic 1 tick), it advances its local clock by a 
random geometrically distributed amount. With some probability p, the processor 
sends a message to the other, which will roll back if the message t ime-stamp is less 
than its own clock. We let X(t) denote the simulation time of  one processor at tick 
t, let Y(t) similarly describe the other processor, and define D(t)  = X(t)  - Y(t). D(t)  
is a stationary process, whereas X(t) and Y(t) tend to increase in t. D(t) is a discrete- 
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time Markov chain on the space of all integers, and has a fairly imposing transitional 
structure since an infinite number of states are reachable from any given state. 
Solution of the chain's equilibrium probabilities is non-trivial, but can be done 
exactly. 

Markov models of Time Warp on multiple processors have also been developed. 
The model in [40] assumes 

• unlimited memory at each processor; 

• message processing is comprised of advancing the simulation clock by an 
exponential amount, and by sending one message to another processor, chosen 
uniformly at random; 

• the time required to execute an event is exponentially distributed. 

The analysis identifies the process holding the least-time uncommitted event as the 
GVT-regulator. Given the time-stamp t of the least-time uncommitted event, we can 
conceptually identify for any processor the number of events k it has processed with 
time-stamps greater than t and less than the processor's local clock. This k is the 
state of the processor. The state changes when either 

• The processor is rolled back. This causes the state to decrease. 

• The GVT-regulator completes its event. This causes the GVT to advance, 
which may decrease the processor's state. 

• The processor completes an event. This causes the state to increase by one. 

A Markov model that accurately describes each and every processor is too large to 
solve exactly. Consequently, an approximation is made to represent the entire system 
with one "representative" processor. This can be defined on the grounds that under 
the model assumptions, each processor's subchain will have the same equilibrium 
state probabilities. Even so, the transition probabilities can only be approximated, 
and then only in terms of multiple (=I0)  model unknowns. Solution requires a 
fixed-point numerical procedure to solve a set of a dozen or so coupled nonlinear 
equations. 

The Time Warp model above was extended in [1] to consider the effects of 
limited memory in a shared memory system. It is assumed that all memory is 
allocated from a global buffer, with capacity supporting up to M uncommitted 
events. The basic assumptions about simulation behavior are the same, except that 
no processor may execute an additional event if the memory is exhausted. A different 
Markov chain is analyzed, where the state is the total number of processed but 
uncommitted messages in the system. The state space is thus finite, since memory 
is limited. Complex approximations for transition probabilities are developed, and 
the chain is solved numerically. Performance is measured as the number of messages 
committed per unit time, a metric from which speedup can be derived. 



D. Nicol, R. Fujimoto, Parallel simulation today 263 

3.6. ANALYSES OF TIME WARP ROLLBACK 

The behavior of rollback in Time Warp has fascinated researchers from the 
very beginning. Some recent analytic work attempts to explain this behavior. Lazy 
and aggressive cancellation are examined in [55]. Equations for the probability of 
rollback are derived for some simple queueing networks, as is the probability that 
a rolled back message is actually correct. This latter probability assesses the utility 
of lazy cancellation. 

A sophisticated model of rollback behavior based on the theory of branching 
processes is developed in [58]. The model assumes that the effect of processing an 
event is to generate a random number b of other events. This assumption essentially 
defines a branching process of event causality. "One can view the progress of a 
simulation in terms of the growth of this tree. Now, if a processor is rolled back 
to some event el, it is necessary (assuming aggressive cancellation) to roll back all 
events descended from el. Another parameter, h, is related to the rate at which 
information about incorrect events propagates through the system. The analysis 
identifies a relationship b = e h that defines a performance cusp. Rollbacks are rare 
when b < e h, and recovery is quick. When b > e h, the simulation is eventually 
swamped with cascading rollbacks. An example of the latter phenomenon is illustrated 
with the simulation of a shuffle-exchange communication network. 

3.7. FUTURE DIRECTIONS 

Existing mathematical models of parallel simulations range in complexity 
from being very simple to being very complex. The simple ones have the attraction 
of clearly exposing some performance feature of interest, and the results obtained 
using such a model may give some insight into the qualitative behavior of parallel 
simulations with respect to that feature. Complex models may do a better job of 
predicting behavior, but their results lack an intuitive feeling. In our opinion, open 
avenues of inquiry include the inter-relationship between sychnronization, load 
balancing, scheduling, and memory management. We believe that the most valuable 
models will be ones that are sufficiently complex to capture these inter-relationships, 
yet are sufficiently simple so that the relationships can be explained qualitatively 
from the results, not just quantitatively from numerical solution. 

4. Time parallelism 

The most obvious parallelism in physical systems is due to concurrent activity 
among spatially separated objects, so-called space parallelism. This very parallelism 
suggests that a parallel approach might be taken. However, there are limitations. For 
example, if you simulate 100 objects in a domain, then spatial parallelism is likely 
limited to a factor of 100. After considering synchronization and communication overheads, 
it may be that the best parallel performance is achieved using only 10 processors. 
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It has recently been recognized that parallelism can also be found in 
t ime  - when the behavior of a single object at different points in time can be 
concurrently simulated. Early recognition of this fact is found in [I5], where the 
authors observe that simulations are fixed-point computations, and as such can be 
executed as asynchronous-update computations. Practical exploitation of  t ime 
parallelism was first established by work reported in [39], where it was shown how 
certain queueing systems can be expressed as systems of recurrence relations (in 
the time domain), which can be solved using standard parallel prefix methods on 
massively parallel machines. The idea is elegant, and bears further discussion. 

4.1. METHODS BASED ON PARALLEL PREFIX 

Consider a single FCFS G/G/1 queue. There is seemingly little parallelism 
here; the process appears to be inherently serial. However, supposing that service 
times and job interarrival times are independent of the queue state, there is no reason 
we cannot pre-sample (in parallel!) a large number of job interarrival times rl, r2 . . . . .  rN 

(ri is the time between the arrival of the ( i -  1)st and ith jobs), and service times 
sl, s2 . . . . .  sN for the corresponding jobs. Now the basic job of the simulation is to 
compute, for each job, the amount of time between the job's  arrival and its entry into 
service. Given these delays ,  most statistics of interest can be computed. Denote the 
delay associated with the ith job as d i. There is a well-known recurrence relation for 
di: 

d i = ( d i _ l + S i _ l - r i )  +, f o r i = l ,  2 . . . . .  N, (1) 

where (x)÷= max{0, x}. It is helpful to view these equations as di = (P(di-l ,  Zi), 
where zi = (si-1 - ri) and ~(y, x) = (y + x) +. 

It turns out that one can solve this system of equations using the notion of 
p a r a l l e l  p re f i x ,  defined as follows. Given inputs Zl . . . . .  zN and an associative 
operator o, we wish to compute the N partial products z~, z~ o z2 . . . . .  zl ° z2 • • • z/v. 
One can compute all these products in O(log N) time on a parallel processor with 
up to N processors; routines for doing so are typically provided in a system library 
on SIMD machines. The trick to solving eq. (1) is to cast them as a matrix recurrence 
in the semi-ring where max is the addition operator with identity -oo and + is the 
multiplication operator with identity 0. Equation (I) is then expressible as 

where 
Di = MiOi-1, 

[s lr/ 0] 
0 ' M i =  -~o 0 ' 

and the usual rules of vector and matrix multiplications apply but with scalar addition 
and multiplication taken to be max and +, respectively. Unrolling the recursion, we 
have 

Di = M i M i - 1 . . .  M2DI .  
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To parallelize, we suppose that the ri and si values are distributed so that 
processor i holds si  and ri÷ I. We may compute the d i in two steps. In the first, we 
compute the partial matrix products M~, M~ = M 3 M 2 ,  and so on. As a result, processor 
i receives M[.  In the second, we compute D i = M : D  l for i = 2 . . . . .  N, a task made 
simpler by the fact that DI is the zero vector. 

The same basic idea can be extended in a number of ways, including networks 
of feed-forward queues [39] and certain classes of timed Petri nets [4]. The remarkable 
thing about this approach is that the degree of parallelism we may exploit is limited 
only by the size of the parallel machine and its memory. 

The class of  recurrence equations that yield directly to this approach is 
actually quite constrained. However,  even in more.general cases there is often some 
utility in viewing the simulation as the solution of recurrence relations, because one 
can solve the equations iteratively. The following approach, called "sweeping" in 
[32], shows how. Consider a communication link that is able to carry K calls 
simultaneously. If a new call arrives at an instant when the trunk is saturated, the 
call is lost. Now suppose we pre-sample N call arrival times a I < a2 < • • • < aN,  with 
N corresponding call durations s l ,  s2, • • • ,  SN. For each call i, let ci  = ai + s i  be the 
time at which the calI completes, i f  i t  i s  a c c e p t e d .  The problem is that we do not 
know whether  the call can be accepted without knowing the number of calls being 
carried at time a i. Now merge and sort the arrival times and potential departure 
times into a sequence el < e2 < •, • e2N. Let3~ denote the number of  additional calls 
that can be carried at the time instant just after event e i. We may write 

f0 = g ,  

( f i -1  -- 1) + 

= (J _l + 1) + 

( jS-1) ÷ 

if e i is an arrival, 

if ei is a departure for an accepted call, 

otherwise. 

These are tantalizingly close to the equations we solved before; we can express 
them as ~ = ~ ( f - l , z i ) ,  where (as before) q~(x, y ) =  (x + y)+. However,  there is a 
significant difference - at any given departure event el ,  we do not yet  know whether  
the associated call is accepted; we therefore do not know whether  zi = + 1 or zi  = 0 

for such an event. However,  we can iteratively solve the equations, as follows. 
Initially classify every call arrival as being unsure. We then iterate, where each 
iteration uses fast parallel prefix operations whose results classify additional calls 
as either accepted or rejected. Iteration continues until every call is classified. We 
approach the problem by computing lower and upper bounds -fi and f / o n e a c h  j~. 
The lower bound is constructed assuming conditions leading to the heaviest load 
- that every unsure call arrival is accepted and never finishes. Similarly, the upper 
bound is constructed assuming the lightest possible load - that every unsure call 
is rejected. The resulting equations are 
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and 

-fo - - g ,  

(--fi-1 - 1)+ 

- - f / =  (--f / -1  + 1)+ 

(_f i_ l )  ÷ 

f 0  - - g ,  

f 
(L-  - 1) + 

= + 1) + 

( L _ l )  + 

if e i is an accepted or unsure arrival, 

if e i is a departure for an accepted call, 

otherwise, 

if e i is an accepted arrival, 

if ei  is a departure for an accepted call, 

otherwise. 

The principal difference between these and the equations for ~ is that we d o  know 
what argument each e i offers to ( )+; call classifications of unsure, accepted, and 
rejected are known from the previous iteration and determine these arguments. 
Given a set of call classifications, the --fi and f/ values can be computed using 
parallel prefix. Now, following the solution of -fi and f / a t  a given iteration, we 
attempt to classify additional unsure call arrivals as follows. If e i  is an unsure 
arrival, and the value -fi-1 satisfies -fi-l > 0, then we may reclassify e i as accepted. 
Similarly, if fi = 0 we may reclassify e i as rejected. Such reclassifications improve 
the state of knowledge about the system; given sufficient iterations, every call 
arrival will be classified. Eventual convergence is assured, since during any sweep 
the unsure arrival with least time will always be classified. We note in passing that 
the general sweep approach applies to a wider range of problems than the single 
one given here.. The motivating problem was a network of similar links, with the 
additional complication that one attempts to reroute rejected called through randomly 
selected alternative routes, and every link reserves some of its capacity for original 
traffic. Convergence was rapid on a 16 K PE SIMD architecture; typically, thousands 
of calls were classified using only a handful of sweep iterations. 

4.2. OTHER METHODS 

Time parallelism was also noticed in LRU trace-driven cache simulations [42] 
for MIMD (each memory reference constitutes an event); this observation was 
extended in [69] for more general replacement policies and SIMD machines. The 
latter approach also involves the parallel solution of recurrence equations, but in a 
less direct fashion than the methods described so far. 

A direct approach to time parallelism is to partition the time domain, assigning 
different processors to different regions of time. A processor p a s s u m e s  some initial 
state for the system at the beginning point of its interval, say time t, and then 
simulates its interval. Now the processor whose interval terminates at t may have 
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a different final state at t than the one assumed by p. In this case, a fix-up operation 
must be performed. This method will work if the cost of a fix-up is much 
less than the cost of resimulating the interval. Variations on this idea are found in 
[2] and [56]. 

4.3. FUTURE DIRECTIONS 

Time offers another dimension in which we may seek performance gains 
through parallelism. However, as yet any implementation observed to actually achieve 
performance gains relies very heavily on the specifics of the problem being simulated. 
This should not be surprising, given the diversity of ways in which simulation 
models evolve in simulation time. It then seems unlikely that a general purpose 
protocol can consistently be effective in exploiting time parallelism. Nevertheless, 
as seen above, there are some non-trivial examples of important applications that 
can benefit from time parallelism. Future efforts might be directed towards expanding 
the class of applications where time-parallelism works, in formal characterizations 
of such applications, in generating time-parallelism approaches to be less application- 
specific, and in performance analysis of such approaches. 

5. Hardware support 

Hardware support for parallel discrete event simulation has been discussed 
in the literature for some time. Machines have been developed for simulation of 
logic circuits (for example, see [26] for a survey of approaches); however, these 
usually do not allow concurrent execution of events containing different time- 
stamps. Although these machines do not implement parallel simulation protocols 
such as those described here, they do demonstrate that there is interest in hardware 
support in certain portions of the commercial sector. 

Hardware support for parallel simulation has been studied largely in three 
domains: 

• new machine organizations for parallel simulation, 

• hardware support for state saving in Time Warp, and 

• hardware support for dissemination of global information. 

The first category involves new machine organizations designed from the start with 
parallel simulation in mind. The latter two involve "add on" hardware that implements 
certain time-consuming operations used in parallel simulation, and is intended to 
be attached to an existing parallel or distributed architecture. One advantage of the 
latter approach is that the hardware designs may more easily "ride the technology 
wave" as newer, faster microprocessors and denser memory chips become 
available. 
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5,1, MACHINE ORGANIZATIONS 

Machine architectures for parallel simulation have been studied for at least 
ten years. For example, Georgiadis et al. proposed a multiprocessor implementation 
for Simula programs in the early 1980's [34]. The're, a special purpose parallel 
simulation, engine was envisioned that utilizes a controller processor to manage the 
execution of the parallel simulator and determine which processes are available for 
execution. A program called the Simula Parallel Process Recognizer performs a 
static anaiysis/bf the Simula process and builds tables that enumerate possible 
process interactions, e.g. access to common state variables or invocation of 
communication primitives ((re)activate, passivate, cancel, wait, or hold). These 
tables are theh used by the runtime mechanism to conservatively synchronize the 
execution. The machine architecture itself is a network of processors, with some 
processors dedicated tO performing specific functions, e.g. coordinates of process 
execution~ Details Of the hardware orga0ization are sketchy, however. 

Concepclondescribes an architecture for discrete event simulation called the 
hierarchical multibus multiprocessor architecture (HM2A ) [17]. This architecture is 
motivated by a methodology'that is proposed for constructing hierarchical, modular 
simulation models, which are then mapped to the multiprocessor. The machine 
structure is a tree of clusters, where each cluster includes a collection of "slave" 
processors (each with local memory) connected by a bus. Each slave contains a 
connection tO thecluster's bus, and a single link to one child cluster at the next level 
dOWn ~the tree: A Slave at level i in the tree acts as the master for the processors 
in ~ b  l~vel i ÷ 1 child cluster to which it is attached. The level i processor is 
referred to as 1he coordinator for the cluster, and is responsible for transmitting 
messages for data and synchronization to the slave processors of the cluster. Slaves 
are aCtivated when they receive messages, and are otherwise passive. The cluster 
at ~ tile :r6ot of  the tree contains a Coordinator processor as well as the slaves. 

The simulator is specified hierarchically, and is then mapped directly onto 
the tree strtietured machine architecture. Coordinators pass work (messages) to their 
slave processors, then wait until all of the slaves have responded that they are 
finished. A special bus within each cluster is used to transmit the "done" signals. 
When the slaves have all indicated that they have completed the task, the coordinator 
waits for theiaext task from its master. In this way, simulation computations propagate 
up and down the tree, activating simulation models at different levels of hierarchy 
as needed. 

A th~d-~machine proposal is the Virtual Time Machine [28, 35]. Unlike the 
above.madfine organizations, this machine is based on optimistic synchronization. 
'Tla¢ machine is a shared memory multiprocessor with a special type of memory 
s~ystemealled.space-time memory, and a hardware implemented rollback mechanism. 

The most ~teresfing aspect of the machine architecture is its memory. Consider 
S e  fal!owi~g siSation: an event at time (say) 100 expects to see the state of the 
si~ulator'as it existed at time 100, while another event at time 200 expects to see 
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Simulated annealing, however, must be used with some care. In addition to 
determining how to generate random moves, one must also pick a starting value for 
the parameter To (this parameter drives the computation of the probability of 
accepting nonimproving states - exp(Aobj/T) in the pseudo-code below), a rate at 
which T is to be decreased, tfactr, a maximum number of moves generated at each 
T, sample_size, and a final value for the Parameter T, Ty. In practice, one also 
includes parameters (nsucc and nover) for exiting the local improvement phase of 
the algorithm early if a prespecified (nover) number of successful (nsucc) moves 
has been achieved. If these parameters are not chosen appropriately, simulated 
annealing will produce poor results and/or exceedingly long execution times. A 
pseudo-code for simulated annealing is given below. 

T=T0 
nSUCC = 0 

while (T > Tf) do 
do I0 i = 1, sample_size 

[generate random move, compute Aobj] 
if (Aobj > 0 or unfrm(O, 1] < exp(Aobj/T)) then 

[update system, obj = obj + Aobj] 
nsucc  = nsucc  + 1 

endif 
if (nsucc >nover) exit loop 

10 continue 
T = T * tfactr 

end do 

The parameters sample_size, {factr, nover, To, and Tf are problem specific. As 
was shown by Lundy and Mees [17], the value of To must be much larger than the 
difference between the worst objective function value and the best objective function 
value. For the p-dispersion problem, To is set equal to the largest entry in the matrix 
D and for the p-defense-sum problem, To is set equal to p times the difference 
between the smallest entry and the largest entry in the matrix D. Rather than specify 
a value for Tf, we use a maximum iteration bound of n In (n), suggested by Lundy 
and Mees [17]. Some experimentation is involved in selecting the appropriate 
combination of tfactr and sample_size, the maximum number of moves generated 
at each value of the parameter T (length of the Markov chain). 

Figure 1 displays the output for a typical simulated annealing run for the p- 
dispersion problem. Note the random variation in the objective function value as 
the probability of accepting nonimproving states remains high (iterations 0-30), the 
general increase in the objective function value (iterations 30-42), and the final 
state (iterations 43-115). 
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simplified prototype implementation of the rollback chip has been developed in the 
commercial sector [11]. Also, the hardware design of the rollback chip has been 
verified using formal techniques [38]. 

5.3. GLOBAL SYNCHRONIZATION NETWORKS 

One of the reasons protocols for parallel simulation are nontrivial is the fact 
that critical synchronization information is distributed across the muttiprocessor 
system. For instance, in conservative protocols, information indicating which events 
can be safely processed may be distributed across other processors. Similarly, 
optimistic protocols require information that is distributed across the system to 
compute global virtual time. 

Reynolds has proposed a hardware mechanism to rapidly collect, operate on, 
and disseminate synchronization information throughout a parallel simulation system 
[64,78]. The hardware is configured as a binary tree, with a processor assigned to 
each node. To compute a lower bound on the time-stamp of any future message, 
each processor computes a local minimum among the processors assigned to it, 
makes the minimum available to the synchronization hardware, and the tree 
automatically computes the global minimum in a distributed fashion (each node 
computes the minimum of its local value and that of its neighbors, and propagates 
the new minimum up the tree) and distributes the computed value to all processors 
in the system by broadcasting values down the tree. Simulations indicate that the 
computation time is reduced by orders of magnitude over software-based approaches. 
A prototype system is currently under construction. 

5.4. FUTURE DIRECTIONS 

Hardware support is a promising approach because it helps alleviate the 
overheads associated with parallel simulation protocols, which are sometimes 
substantial. The key to successfully exploiting special-purpose hardware is to identify 
those aspects of the parallel simulation mechanism that are bottlenecks which seriously 
degrade performance. The important future directions of research in hardware are 
therefore to identify performance limiting factors in new approaches to parallel 
simulation, and to develop efficient hardware mechanisms to accelerate their 
performance. 

6. Load balancing 

A simulation contains some initial set of logical processes. New processes 
may be created, or existing processes deleted as the simulation progresses. Ideally, 
these processes should be distributed across the parallel processor so that (1) all 
processors remain busy doing useful work all of the time, and (2) interprocessor 
communication is minimized. The importance of the communication aspect depends 
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on the hardware platform. It is more important in distributed memory and networked 
workstations where communication is relatively expensive compared to tightly coupled 
shared memory multiprocessors. 

6.1. CLASSES OF LOAD MANAGEMENT METHODS 

Static load balancing algorithms distribute a fixed set of processes over the 
processors in the system. Dynamic algorithms allow processes to migrate during the 
execution of the parallel simulation. Dynamic algorithms are more appropriate if 
(1) information to achieve proper load balancing is not available until runtime, or 
(2) the proper distribution of processes to processors changes dynamically throughout 
the program's execution. A combat model, for example, may exhibit both of these 
behaviors. It is usually difficult to predict in advance which combat units will 
interact with which other units, and thereby entail the complex computations and 
interactions with other simulation processes that accompany the simulation of a 
battle. Also, these models often move through phases such as (1) advance to engage 
the enemy, (2) interact with enemy units, and (3) "clean up" after the battle. The 
computational and communication aspects of the computation are very different in 
each of these phases, necessitating a different load distribution for each one. 

On the other hand, dynamic load management entails certain overheads to 
collect status information on the system, decide what load balancing actions should 
be taken, if any, and move computations and data from one processor to another 
to balance the load. These overheads may negate any positive effects of more 
evenly distributing the workload or reducing interprocessor communication. 

Related to load balancing are load sharing and partitioning schemes. Load 
sharing refers to the question of selecting the processor to receive a newly created 
process (as opposed to migrating existing processes). Partitioning refers to subdividing 
the simulation model to logical processes. If the partitioning of the model to processes 
is changed during the execution of the simulation, e.g. to achieve a more balanced 
workload, it is referred to as dynamic repartitioning. 

Load balancing has been widely used for general (i.e. not necessarily simulation) 
parallel and distributed computation. Many of the techniques that have been proposed, 
e.g. simulated annealing [45], distributed drafting [67], pressure-based load 
migration [48], among others, can be applied to parallel simulation programs. 

6.2. STATIC LOAD BALANCING TECHNIQUES 

Early work on static load balancing is found in [76,74]. The basic idea 
behind the mapping algorithm is to examine the critical paths through multiple 
executions of a simulation, and cluster in such a way that the critical paths are left 
as undisturbed as possible. A dynamic load balancing algorithm is also described 
that is actually dynamic invocation of the static algorithm, based on a statistical 
decision process the monitors the simulation's behavior and triggers a remapping 
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~hen it~is probable that the resulting performance gains exceed the total remapping 
cost,,= ,The po l icy  was empirically studied on a parallelized time-stepped combat 
model [77], where remapping may occur between the advancement and engagement 
phases of the simulation. 

Nandy and Loucks use an iterative, static load balancing algorithm for parallel 
simulation using the Chandy-Misra-Bryant synchronization protocol (null messages) 
[~6]. The algorithm begins with an initial, random partitioning of the task graph, 
andthen continually evaluates possible movement of nodes (logical processes) from 
one'partition,to another. A gain function is calculated that considers communication 
cOstS~of:the proposed move relative to the existing partitioning in order to estimate 
the r~benefit of  the move. An additional constraint ensures that equal amounts of 
computation are assignedto each processor to avoid bottlenecks. As is the case with 
any static algorithm; this approach £ssumes much is known about the simulation in 
tem~ of Computation and communication requirements of logical processes. 

Nandy and Loucks use.this approach to map simulations of digital logic 
circuits' tO a,parallvI ~ computer. They report performance improvements of up to 
25% on, eight processors over an algorithm based on selecting random partitions. 
One would expect larger impf'0vements in performance with more processors because 
communication Overheads then become more significant. 

Dav0ren [19] and Briner [9] also examine static partitioning algorithms for 
digital ~ logic simulation. Davoren bases his work on the Chandy-Misra-Bryant 
null-message algorithm. He constructs a locality tree-that is based on the hierarchical 
design of the circuit through different levels of abstraction (transistors, gates, 
multiplvxors;' etc.): This approach of using the design hierarchy to partition the 
Circuit~is referred to as structural partitioning. The tree is used to approximate 
communication within the circuit. A divide and conquer approach is then used to 
map the tree to a grid of ,processors. The locality tree is divided into subtrees; 
similarly; the processor grid is divided into groups. The subtrees are assigned to the 
groups; and the process is repeated recursively until individual circuit elements (the 
leaves of ~he tree) are mapped to specific processors. The number of gates in each 
node is used to,approximate computation load. Experiments on a transputer network 
indicate~that this.approach reduces the amount of inte~rocessor communication and 
execution time,relative to an alternative mapping scheme whose primary goal is to 
evenly distribute the ,workload to processors. 

Briner's work is based on Time Warp. He compares a random assignment of 
logic gates to processors with several different bisection algorithms• The bisection 
algonthm divides the c~rcmt into two pieces so that communication is minimized 
between the~b~Circuits. The sub-circuits are mapped to different processors. This 
process is'repeated recursively, much like the approach proposed by Davoren. Briner 
al$b cxamineda Variation on this approach where communication lines are weighted 
aoo0rdiffgto, the amount of  traffic expected to be sent on the line. Such information 
van be~obtaincdifrom aprior simulation of the circuit, or by using knowledge of the 
p~l~bil t ty ofchanges on signal lines and the logic function performed by the gate. 
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Briner's experiments on a BBN Butterfly GP-1000 indicate that random 
partitioning outperforms the bisection algorithms. The modified bisection algorithm 
~i¢lds only a modest improvement over the original algorithm. He reports that hand 
partitioning based on the hierarchical structure of the computation (such as that 
proposed by Davoren) yields up to three times better performance compared to the 
bisection algorithms. 

Kravitz and Ackland [46] also examine some simple static partitioning schemes 
for circuit simulations. Based on empirical studies, they conclude that these approaches 
~ield reasonably good results, and the overhead for dynamic repartitioning does not 
justify the potential performance gain. Their work is based on time-stepped simulations~ 

The JPL TWOS (Time Warp Operating System) group performed static load 
balancing for their Time Warp programs by first collecting a trace of the program's 
.~xeeution. Based on this trace, a task graph showing all dependencies between 
events is constructed, and a bin packing algorithm is used to determine a suitable 
assignment of processes to processors. The "off-line" nature inherent in this approach 
led them to develop and rely upon dynamic load management algorithms instead, 
:,which are described next. 

6.3. DYNAMIC LOAD BALANCING 

As mentioned previously, dynamic load balancing/partitioning attempts to 
reassign work to processors during the execution of the simulation. Optimistic 
~ynchronization mechanisms introduce a new wrinkle to dynamic load balancing: 
high processor utilization does not necessarily imply good performance because a 
processor may be busy executing work that is later undone. In this case, it would 
be beneficial to migrate processes to processors with high utilizations because the 
added load will tend to allocate fewer CPU cycles to the computations that are 
constantly being rolled back. To address this issue, Reiher and Jefferson propose 
a new me[ric called effective processor utilization, which is defined as the fraction 
of the time during which a processor is executing computations that are eventually 
committed [82]. This effectively treats time spent executing wrong computations as 
idle time. Based on this metric, they propose a strategy that migrates processes from 
processors with high effective utilization to those with low utilization. 

An algorithm that is similar in spirit is proposed in [36]. This algorithm 
allocates virtual time-slices to processes, based on their observed rate of advancing 
~e  local simulation clock. Uniprocessor simulation studies reveal scenarios in which 
this time-slicing approach achieves significantly better performance than the Reiher 
and Jefferson algorithm (as much as 33%), and others where the performance of the 
two methods is comparable. 

A second Problem in Time Warp is the fact that process migration may be 
-~ery expensive because processes contain a large amount of history information. 
Reiher and Jefferson propose splitting a process into phases when the process 
migrates to another processor. Each phase spans a contiguous segment of simulated 
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time.that does not overlap with other phases. When migration occurs, the old phase 
(and its corresponding history information) remain on the original processor, and 
the ;new phase begins at the new processor. Rollbacks may span phase boundaries. 
A,~phase is logically similar to dynamically creating n new process that is a "clone" 
of:the migrating process in that its state is initialized to the state of process when 
the migration occurs. Reiher and Jefferson demonstrate that phase splitting and the 
effective utilization metric are useful to dynamically balance the load in simulations 
of a communication network, a system of colliding pucks, and a combat model [82]. 

Goldberg describes an interesting approach to the load distribution 
problem [37].If a process becomes a bottleneck, it is replicated to form two or more 
|d'~ entical eopie's, each able to execute concurrently with the others. Read requests 
are. sent to one replica, while write requests are sent to all of them. The replicated 
cOpieS are kept.consistent with a Time Warp based synchronization facility. A 
R~plic~tted Time Warp algorithm is  defined based on these ide~as. 

6.4, FUTURE DIRECTIONS 

While load balancing for general parallel processing has been extensively 
studied, application of these techniques to parallel simulation applications and their 
impact on synchronization protocols has not been widely examined. It is not known, 
forinstance, how load distribution and scheduling affect the number of null messages 
produced by theChandy-Misra-Bryant algorithm, and only very limited experimental 
work has studied the impact of load management on rollbacks in Time Warp. With 
the~exeeptiotr 0f digital logic network simulations, little work has been completed 
in evaluating static and dynamic load management approaches in specific application 
domailaS.Much Work is still required to evaluate precisely when static load balancing 
~aeehanisms suffice, and when one should resort to dynamic mechanisms. 

Currently, again with the exception of digital logic simulations, partitioning 
the simulation model toform logical processes is done entirely by the programmer, 
and is'usually governed by the modeler's conceptualization of the system. This may 
or may not correspond to the partitioning that maximizes performance. Partitioning 
the simulation into very fine grained objects is not an appropriate solution because 
this may lead to inappropriately small computation grains. It is clear that both 
mapping and load balancing issues require much additional study. 

7. Memory management 

While l~he analyses discussed above are primarily concerned with time 
performance, a related question is that of memory performance. A growing body 
Of re'search examines storage utilization of parallel simulations, especially optimistic 
mecn.anisiiis Such as Time Warp. In  Time Warp, four types of mechanisms have 
i~eefi proposed to limit the amount of memory that is required to perform the 
simulation: 
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• fossil collection, 

• infrequent state saving, 

• rollback-based recovery mechanisms, and 

• protocols using limited optimism. 

Approaches that limit the amount of optimistic execution in the system implicitly 
~educe the amount of memory that is required. These were discussed earlier, so we 
will not dwell on this issue here. The other techniques enumerated above will be 
described next. 

7.1. FOSSIL COLLECTION AND GVT 

Optimistic mechanisms maintain information concerning the history of the 
program's execution in order to enable recovery from synchronization errors. In 
Time Warp, for instance, each process maintains past state vectors in its state queue, 
processed events in its input queue, and records of previously sent messages (anti- 
messages) in its output queue. A mechanism called fossil collection is provided to 
~eclaim "old" history information that is no longer needed [43]. Fossil collection 
l~elies on the computation of a quantity called global virtual time (GVT), which will 
be defined momentarily. Storage used by message buffers and snapshots of process 
state that are older than GVT can be reclaimed and used for other purposes. Even 
with fossil collection, however, the amount of storage that is required to execute 
Time Warp programs may be large. 

Let us digress for a moment to discuss the computation of GVT. GVT represents 
a lower bound on the time-stamp of any future rollback. In Time Warp, as originally 
proposed in [43], rollbacks only arise from receiving positive or negative messages 

the past. Further, a process at simulated time T might produce a new (positive) 
message with time-stamp equal (or only slightly larger than, in systems that do not 
~ low zero time-stamp increments) to T. Therefore, GVT is computed as the minimum 
among (1) the local clocks (sometimes called local virtual time or LVT) of all 
processes, and (2) the (receive) time-stamp of all messages in transit, i.e. messages 
tiiat have been sent but not yet received. As we will see later, certain memory 
management schemes for Time Warp use a mechanism called message sendback 
which necessitates a different definition of GVT. If a process has no unprocessed 
messages in its input queue, then the process's local clock is usually set to infinity. 

there are no unprocessed messages or messages in transit in the entire system, 
[IVT then becomes infinity and the simulation terminates. 

In a tightly coupled multiprocessor, computation of GVT is straightforward 
because one can use a barrier synchronization to "freeze" the computati.on and 
obtain a global snapshot of the system, though care must be taken or serious 
aerformance degradations may occur, particularly if the system contains a limited 
~tmount of memory [ 1]. However, computation of GVT is more complex in distributed 
and loosely coupled systems because such snapshots are not easily obtained. In 
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particular, two problems arise in computing GVT in this context: (1) accounting for 
transient messages, and (2) race conditions may arise, causing an erroneous value 
of GVT to be computed. 

The first problem is usually solved by using message acknowledgements to 
identify messages in transit. A process must consider the time-stamps of messages 
that it has sent for which it has not yet received an acknowledgement when it 
performs its local GVT computation. Lin and Lazowska propose a scheme that 
avoids acknowledgements by having each process communicate with the other 
processes to which it communicates when it begins a GVT computation in order to 
identify any transient messages. Details of their algorithm are described in [51]. 

Race conditions may arise because the individual processors receive the 
"start GVT computation" signal at different points in time. For example, processor 1 
might compute its local minima to be 100. Moments later, a second processor that 
has not initiated the GVT computation might send the first processor a message with 
time-stamp 90, receive the acknowledgement, and then advance ahead in simulated 
time. If the second processor now receives the start GVT signal and computes its 
local minima, the message it had previously sent (time-stamp 90) is not accounted 
for in the GVT computation, even though message acknowledgements were used. 

The above problem could be solved using a barrier synchronization to ensure 
that all simulation computations halt before the GVT computation is begun. In fact, 
Nicol has developed a barrier algorithm for optimistic computations that can effectively 
serve to compute GVT [68]. The processors agree to synchronize globally at some 
simulation time t. A processor enters the barrier once it has no events to process 
with time-stamp less than T, but rolls back out of the barrier if it later receives a 
message with time-stamp less than t. The algorithm ensures that a processor not be 
told it can leave the barrier until all processors have completed all simulation work 
at times less than or equal to t. Emerging from this barrier, a processor knows the 
GVT is t; it may perform fossil collection and proceed optimistically to the next 
agreed upon synchronization time. Samadi proposes another approach that tags 
messages sent after a GVT computation initiates, but has not yet been completed, 
allowing messages such as that in the preceding example to be accounted for [84]. 

Other approaches to computing GVT have been proposed. Preiss uses a 
token-passing scheme where the processors making up the simulation are organized 
in a ring, and continually compute GVT as the token is passed from one processor 
to the next [81]. This approach has some similarity to ring-based algorithms for 
detecting deadlock [65]. Bellenot uses a statically defined tree to initiate, compute,  
and disseminate GVT values [6]. Reynolds also uses a tree structure to compute 
GVT in his hardware synchronization network, described earlier [64]. 

7.2. INCREMENTAL AND INFREQUENT STATE SAVING 

Nearly all Time Warp based memory management schemes use fossil collection 
to reclaim state. However, fossil collection is not, by itself, sufficient because the 
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computation may still consume excessive amounts of memory. We will now focus 
our attention on other mechanisms that are used in conjunction with fossil collection 
to conserve memory. 

When the state vector is large and only a small portion is modified by each 
event, incremental state saving may be useful. Here, only changes to the state are 
recorded rather than taking snapshots of the entire state vector, thereby reducing 
both memory utilization and copying time. A drawback of this approach, however, 
is that rollbacks become more expensive because the state vector must be reconstructed 
from the incremental changes. This is problematic because, as illustrated in [29], 
the computation is more prone to unstable execution if rollback costs are high. 
Nevertheless, Briner uses incremental state saving in an implementation of Time 
Warp for logic simulations, and reports state saving overheads of only 20% for 
transistor level simulation, and 60% for gate level simulation [9]. 

An alternative approach is to save entire state vectors, but reduce the frequency 
of state saving. To roll back to simulated time T, a process must (1) roll back to 
the most recent state vector older than T, and (2) recompute forward again to reach 
simulated time T. Message sending must be "turned off" during the recomputation 
phase or a domino effect could occur that rolls back the simulation beyond GVT. 
Like incremental state saving, infrequent state saving also increases the cost of each 
rollback because on average the length of each rollback is greater, and the number 
of events in each recomputation phase is increased. That is perhaps the greatest 
drawback of this approach. 

Although infrequent state saving increases rollback overhead, it also decreases 
the time required to perform state saving, which can be substantial. This tradeoff 
suggests that there may be an optimal state saving frequency that balances state 
saving overhead and recomputation costs. This question has been studied in the 
context of fault tolerant computation, for example, see [13,33]. More recently, Lin 
and Lazowska considered this tradeoff in the context of Time Warp programs, and 
show that an error in overestimating the state saving frequency is more costly than 
an equal magnitude error in underestimating the frequency, i.e. it is better to err on 
the side of less-frequent-than-optimal state saving in order to maximize 
performance [52]. In particular, they conclude that mopt, the number of events 
processed between state saves, should be set in the range 

where 

and 

+ 
/'Ropt < mopt </~opt,  

mopt m e 
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and a is the number of events executed between rollbacks when state saving is 
performed after each event (or equivalently, the number of events executed by the 
process divided by the number of rollbacks when state saving is performed after 
each event), 5 is the cost to perform a state save (i.e, to copy the state vector), and 
e is the expected execution time of an event. 

Preiss et al. [80] and Bellenot [7] validate Lin's results experimentally. Bellenot 
also observes that benefits in reducing state saving frequency diminish or become 
liabilities as the number of processors is increased. 

Finally, it might be noted that infrequent state saving economizes on storage 
for state vectors, but at the expense of storage for event messages. This is because 
events that are older than GVT, but newer (in simulated time) than the last saved 
state prior to GVT cannot be fossil collected because they may be needed after a 
rollback beyond GVT (to reach the last saved state). Storage for these events could 
be reclaimed if state saving were more frequent. Empirical studies of  queueing 
network simulations indicate, however, that total memory utilization is reduced 
with infrequent state saving [80]. 

7.3. ROLLBACK-BASED PROTOCOLS 

The strategies discussed thus far (fossil collection, incremental/infrequent 
state saving, limiting optimism) all have the following drawback: if the system does 
run out of memory, the simulation must be terminated unless some additional 
mechanism is provided to reclaim memory. Fossil collection will not be able to 
reclaim memory if the smallest time-stamped unprocessed event at the last invocation 
of  fossil collection has not since been able to complete, e.g. because it attempted 
to send a message and found no buffer was available to hold the message. In this 
situation, GVT will not be able to advance, so fossil collection will fail. Should this 
occur, it is not appropriate to abort the program because the "fault" may lie with 
the Time Warp mechanism itself rather than the application. It could be that the 
simulation mechanism was too optimistic in executing the program, and as a result, 
ran out of memory. 

Several approaches have been developed to address this concern. The basic 
idea behind these mechanisms is to roll back overly optimistic computations, and 
reclaim the memory they use for other purposes. Jefferson first proposed a mechanism 
called message sendback to achieve this effect [43]. In message sendback, the Time 
Warp executive may return a message to its original sender without ever processing 
it, and reclaim the memory used by the message. Upon receiving the returned 
message, the sender will (usually) roll back to the send-time-stamp of the message 
(i.e. the virtual time of the sender of the message when it was generated), and 
regenerate it. This rollback causes anti-messages to be sent (assuming aggressive 
cancellation), and the subsequent annihilations release additional memory resources 
in the system. Only messages with send-time-stamp greater than GVT can be returned, 
since otherwise a rollback beyond GVT might result. 
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Jefferson's original proposal invokes message sendback when a process receives 
a message, but finds that there is no memory available to store it [43]. The message 
with the largest send-time-stamp is returned. Gafni proposes a protocol that utilizes 
message sendback as well as other mechanisms to reclaim storage used by state 
vectors and messages stored in the output queue when a process finds that its local 
memory is exhausted [31]. 

More recently, Jefferson has proposed an alternative approach called cancel- 
back [44]. While Gafni's algorithm will only discard state in the process that ran 
out of memory, cancelback allows state in any process to be reclaimed. Messages 
containing high send-time-stamps are sent back to reclaim storage allocated to 
messages. This tends to roll back processes that are ahead of others in the simulation. 

Message sendback, and therefore cancelback', necessitates a new definition of 
GVT. Messages returned to their sender may initiate rollbacks, so the send time- 
stamps of  messages must now be considered in addition to the receive time-stamps. 
For cancelback, GVT is defined as the minimum among (1) the local clocks of the 
processes in the simulation, and (2) the send-time-stamp of all messages in 
transit [49]. The artificial rollback protocol, described below, also uses this definition 
of GVT. 

Another approach, proposed by Lin, is the artificial rollback algorithm [49]. 
When storage is exhausted and fossil collection fails to reclaim additional memory, 
processes are rolled back to recover memory. The process that is the furthest ahead 
is rolled back to the time of the second most advanced process. This procedure is 
repeated until the supply of free memory reaches a certain threshold. We refer to 
this threshold as the salvage parameter. Artificial rollback is semantically similar 
to cancelback in the sense that cancelback returns messages which cause the sender 
to roll back, and artificial rollback rolls back the processes directly. The principal 
advantage of artificial rollback over cancelback is that it is simpler to implement. 

Artificial rollback and cancelback have the interesting property that they are 
able to execute the simulation program using no more memory than that required 
by the sequential execution that utilizes an event list. Lin refers to protocols such 
as these, that require no more than a constant times the amount of  memory required 
for sequential execution, as storage optimal. This is an attractive property because 
it allows the Time Warp program to execute with whatever memory is available, 
provided there is enough to execute the sequential version. 

One can see that rollback-based policies achieve storage optimality by examining 
the storage requirements of a sequential simulator. Consider the set of pending 
events in a sequential simulator at simulated time T. Let us assume that events at 
time T have not yet been processed. The event list will contain all events that were 
scheduled prior to simulated time T, but with time-stamp greater than or equal to 
T. Consider the parallel simulator, where T is the current value of GVT. The 
parallel simulator need only remember those events whose send and receive time- 
stamps "straddle" GVT, and all others, i.e. those with both a send and receive time- 
stamp greater than GVT, are eligible for deletion. Using this idea, rollback-based 
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memory management schemes can reclaim all memory that would not be needed 
in the sequential simulator at simulated time T, enabling them to execute using no 
more memory than the sequential program. The only questions that remain are (1) 
which events among the set that can be deleted ,should be eliminated and their 
storage reclaimed, and (2) how much memory should be reclaimed when we run 
out. As mentioned earlier, conventional wisdom is to reclaim events with high send- 
time-stamps first (these tend to roll back the processes furthest ahead). The second 
parameter, the salvage parameter that was defined earlier, is a control for tuning 
performance. 

It is interesting to note that while Time Warp with cancelback or artificial 
rollback are storage optimal, certain conservative simulation protocols are not. Lin 
et al. [54] and Jefferson [44] show that the Chandy-Misra-Bryant  algorithm may 
require O(nk) space for parallel simulations executing on n processors, whereas the 
sequential simulation requires only O(n + k) space. Further, Lin and Preiss [53] 
report the existence of simulations where Chandy-Misra-Bryant  have exponential 
space complexity, and thus utilize much more storage than the sequential simulation. 
On the other hand, they also indicate that this algorithm may sometimes use less 
storage than that which is required by the sequential simulator. Time Warp with 
cancelback or artificial rollback always requires at least this much [53]. 

Of course, a Time Warp program will run very slowly if one provides only 
the absolute minimum amount of memory. The question of Time Warp performance 
as the amount of memory is varied has been studied [1]. An analytic model was 
developed that indicates, for homogeneous workloads, that Time Warp requires 
relatively little memory to achieve good performance, i.e. performance with unlimited 
memory. In particular, this work indicates that four to five buffers per processor 
(where a buffer holds a state vector and an event) beyond the amount required for 
sequential execution achieves performance that is comparable to Time Warp with 
unlimited memory. This model was validated by experimental measurements of an 
operational implementation of Time Warp augmented with cancelback. 

Further, an experimental study has examined the performance/memory tradeoff 
using several non-homogeneous workloads, and specifically, workloads designed to 
have some number of overly optimistic processes that advance, more or less unthrottled, 
into the simulated future, constrained only by the amount of memory in the system [18]. 
This provides a clear stress case for any Time Warp system. This study found that 
Time Warp, augmented with cancelback, can efficiently execute such asymmetric 
workloads using only a modest amount of memory beyond that required for sequential 
execution (somewhat more than the symmetric workload case, however), provided 
the salvage parameter (amount of memory reclaimed when the system runs out) is 
appropriately set. It was found that setting the salvage parameter too low (e.g. 1 or 2) 
causes poor performance if the system is memory bound, and setting it too high (the 
maximal setting will delete everything except that required for sequential execution) 
also degrades performance because correct computations are unnecessarily rolled 
back. Between these two extremes, however, performance appears to be relatively 
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insensitive to the salvage parameter setting. Further, it was discovered that an 
inefficient implementation of the event list (i.e. the input queue) in each process, 
e.g. a linear list, can have a dramatic, detrimental affect on the performance of the 
system in limited memory situations. 

7.4. FUTURE DIRECTIONS 

Although much has been learned with respect to techniques to control memory 
utilization in optimistic protocols, important unanswered questions remain. Although 
experimental data provide useful insights as to how controls such as the "salvage" 
parameter should be set, no mathematical models yet exist to definitely answer this 
question. Further, although much work has been completed in the context of Time 
Warp, the performance/memory properties of conservative protocols have not been 
extensively studied. Mechanisms to ensure storage optimal execution for conservative 
protocols have not yet been developed. 

In Time Warp, fossil collection and GVT computations are used to commit 
any irrevocable operations, e.g. I/O. Thus far, most of the work in parallel simulation 
has been focused on simulators that have relatively little I/O. When parallel simulation 
is used in interactive simulations, rapid commitment of events (and thus GVT 
computations) become critical. The adequacy of parallel simulation techniques, and 
GVT computation and fossil collection in particular, have not been widely studied 
in this context. 

8. Conclusions 

Parallel simulation is a rapidly growing area of research, with significant 
potential for increasing the size and complexity of models considered by users to 
be simutatable in a reasonable amount of time. The field is developing rapidly, 
growing in many directions. In this paper, we give a snapshot of the state of the 
art, in 1992, of six areas: synchronization protocols, mathematical performance 
analysis, time parallelism, hardware support, load balancing, and dynamic memory 
management. For each topic, we have identified what we feel are relevant and 
important directions for future research. 
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