
Annals of Operations Research 53(1994)121-173 121

Validation, verification, and testing techniques
throughout the life cycle of a simulation study

Osman Balci

Department of Computer Science, Virginia Polytechnic Institute
and State University, Blacksburg, VA 24061-0106, USA

Life cycle validation, verification, and testing (VV&T) is extremely important for the
success of a simulation study. This paper surveys current software VV&T techniques and
current simulation model VV&T techniques and describes how they can all be applied
throughout the life cycle of a simulation study. The processes and credibility assessment
stages of the life cycle are described and the applicability of the VV&T techniques for
each stage is stated. A glossary is provided to explicitly define important terms and
VV&T techniques.

1. Introduction

Simulation is the process of constructing a model of a system which contains
a problem and conducting experiments with the model on a computer for a specific
purpose of experimentation to solve the problem. Credibility of simulation results
not only depends on model correctness, but also is significantly influenced by
accurate formulation of the problem. Therefore, validation, verification, and testing
(VV&T) techniques must be employed throughout the life cycle of a simulation
study starting with problem formulation and culminating with presentation of simulation
results.

A model is a representation and an abstraction of anything such as a system,
concept, problem, or phenomena. It can have inputs, parameters, and outputs as
illustrated in figure 1. The term "system" is used to refer to the entity that contains
the problem to be solved.

Model Validation is substantiating that the model, within its domain of
applicability, behaves with satisfactory accuracy consistent with the study objectives.
Model validation deals with building the right model. It is conducted by running
the model under the "same" input conditions that drive the system and by comparing
model behavior with the system behavior. The comparison of model and system
behaviors should not be made one output variable at a time, i.e., O[n versus OF, O~ n
versus O~, etc. A multivariate comparison should be carried out to incorporate the
correlations among the output variables.

© J.C. Baltzer AG, Science Publishers

P1
 m

~

(~
 E
p2

m
~

n
m

--~

P

r.
1

h
1

3

0
m

m

 r
~

-

M
od

el
 In

pu
t V

ar
ia

bl
es

~ m

I o
Qo

S
IM

U
LA

TI
O

N

M
O

D
E

L

/ /

o~
 o

~
o;

.~
 oy

M

od
el

 O
ut

pu
t V

ar
ia

bl
es

Co
rr

es
po

nd
en

ce

<

Sy
st

em
 In

pu
t V

ar
ia

bl
es

o
o

o

-
p1

 s ":'r-
~ [N

mr
s~

Co
rr

es
po

nd
en

ce

In
fe

re
nc

e
"

~
~

I

>
o~

 s
o~

 s
o~

:,
o,

 s
Sy

st
em

 O
ut

pu
t V

ar
ia

bl
es

~
°

Fi
gu

re
 1

.
M

od
el

 a
nd

 S
ys

te
m

 C
ha

ra
ct

er
is

tic
s.

O. Balci, Validation, verification, and testing techniques 123

Model Verification is substantiating that the model is transformed from one
form into another, as intended, with sufficient accuracy. Model verification deals
with building the model right. The accuracy of transforming a problem formulation
into a model specification or the accuracy of converting a model representation in
micro flowchart into an executable computer program is evaluated in model verification.

Model Testing is demonstrating that inaccuracies exist or revealing the existence
of errors in the model. In model testing, we subject the model to test data or test
cases to see if it functions properly. "Test failed" implies the failure of the model,
not the test. Testing is conducted to perform validation and verification. Some tests
are devised to evaluate the behavioral accuracy (i.e., validity) of the model, and
some tests are intended to judge the accuracy of model transformation from one
form into another (verification). Therefore, we commonly refer to the whole process
as model VV&T.

Model VV&T is employed to prevent the occurrence of three major types of
errors in conducting simulation studies [8]: Type I Error is the error of rejecting the
model credibility when in fact the model is sufficiently credible. Type 11 Error is the
error of accepting the model credibility when in fact the model is not sufficiently
credible. Type III Error is the error of solving the wrong problem. Probability of
committing the Type I Error is called Model Builder's Risk and probability of committing
the Type II Error is called Model User's Risk. Committing the Type I error increases
the cost of model development. The consequences of committing the Type II and
Type III errors may be catastrophic. Therefore, a cost risk analysis should be conducted
in those cases where data can be collected from the system under study [12].

Significant differences exist between simulation software engineering and
other types of software engineering. First, simulation software engineering corresponds
to simulation modeling and as such the art of modeling should be applied. Second,
the results are obtained by experimenting with the simulation program (experimental
model) as opposed to just executing it once like other types of programs. Third, the
results are descriptive and must be carefully interpreted to come up with a solution
to the problem. Fourth, software requirements specification corresponds to problem
(system) description. Validation is conducted by comparing the model (computer
program) with the system description as opposed to with the requirements specification.
In spite of these differences, all software VV&T techniques are directly applicable
for simulation models.

Every organization conducting a substantial simulation study should have a
department or group called Simulation Quality Assurance (SQA). The SQA group
is responsible for total quality management and closely works with the simulation
project managers in planning, preparing test cases, and administering some of the
VV&T activities throughout the simulation study. The SQA is a manage/'ial approach
which is critically essential for the success of a simulation study. Oren [71-73]
presents concepts, criteria, and paradigms which can be used in establishing an
SQA program within an organization.

124 O. Balci, Validation, verification, and testing techniques

The purpose of this paper is to survey current software VV&T techniques and
current model VV&T techniques and describe how they can all be applied throughout
the life cycle of a simulation study. Section 2 presents the life cycle of a simulation
study and provides guidelines for conducting its ten processes. The VV&T techniques
are briefly described under a taxonomy in section 3. Section 4 describes the credibility
assessment stages of the life cycle and shows the applicability of the VV&T techniques
for each stage. Concluding remarks and research directions are given in section 5.
A glossary is provided in section 6 to explicitly define important terms and VV&T
techniques.

2. The life cycle of a simulation study

The life cycle of a simulation study is presented in figure 2 [8, 64]. The
phases are shown by shaded oval symbols. The dashed arrows describe the processes
which relate the phases to each other. The solid arrows refer to the credibility
assessment stages. Banks et al. [18] and Knepell and Arangno [51] review other
modeling processes for developing simulations.

The life cycle should not be interpreted as strictly sequential. The sequential
representation of the dashed arrows is intended to show the direction of development
throughout the life cycle. The life cycle is iterative in nature and reverse transitions
are expected. Every phase of the life cycle has an associated VV&T activity.
Deficiencies identified by a VV&T activity may necessitate returning to an earlier
process and starting all over again.

The VV&T is not a phase or step in the life cycle, but a continuous activity
throughout the entire life cycle. Conducting the VV&T for the first time in the life
cycle when the experimental model is complete is analogous to the teacher who
gives only a final examination [40]. No opportunity is provided throughout the
semester to notify the student that he or she has serious deficiencies. Severe problems
may go undetected until it is too late to do anything but fail the student. Frequent
tests and homeworks throughout the semester are intended to inform the students
about their deficiencies so that they can study more to improve their knowledge as
the course progresses.

The situation in the VV&T is exactly analogous. The VV&T activities throughout
the entire life cycle are intended to reveal any quality deficiencies that might be
present as the simulation study progresses from the communication of the problem
until the implementation of the simulation results. This allows us to identify and
rectify quality deficiencies during the life cycle phase in which they occur.

The ten processes of the life cycle are shown by the dashed arrows in figure 2.
Although each process is executed in the order indicated by the dashed arrows, an
error identified may necessitate returning to an earlier process and starting all over
again. Some guidelines are provided below for each of the ten processes.

O. Balci, Validation, verification, and testing techniques 125

COMMUNICATED
PROBLEM

Q3

'I Problem I I Fomlulated Problem
Formulation I I VV&T

T

FORMULATED " ~
PROBLEM

DECISION MAKERS

(

(

1

Investigation of I 1
Solution Techniques I

I Acceptability of
Simulation Results

INTEGRATED ~
DECISION
SUPPORT

A

.~_ ~, >

~ o ,~
:~ I I

/
I

!
I

: l

SIMULATION ~
RESULTS

/
/ /

f

Feasibilily Assessment
lalion

I
System I

Investigation I I

Experimental
Model VV&T

System and Objectives
Definition VV&T

SYSTEM AND
OBJECTIVES
DEFINITION

Model
Qualification

N,

",,,, Model Fomlul:.ition

C no'g:;n,k,;t v; ,o,,

Data ~ . ~ COMMUNICATIVE
VV&T MODEL(S)

~ MProde';aVaV& d I t Progra,'nming /;
PROGRAMMED

k,, . . .
, I D o s ~ , , , , v ~ .~.,"

EXPERIMENTAL ~ N ~ / D e s i g i ') of Expcrin')enis
MODEL ~

Figure 2. The life cycle of a simulation study.

126 O. Balci, Validation, verification, and testing techniques

2.1. PROBLEM FORMULATION

When a problem is recognized, a decision maker (a client or sponsor group)
initiates a study by communicating the problem to aft analyst (a problem-solver, or
a consultant/research group). The communicated problem is rarely clear, specific,
or organized. Hence, an essential study to formulate the actual problem must follow.
Problem Formulation (problem structuring or problem definition) is the process by
which the initially communicated problem is translated into a formulated problem
sufficiently well defined to enable specific research action [98].

Balci and Nance [10] present a high-level procedure that: (1) guides the
analyst during problem formulation, (2) structures the formulated problem VV&T,
and (3) seeks to increase the likelihood that the study results are utilized by decision
makers.

2.2. INVESTIGATION OF SOLUTION TECHNIQUES

All alternative techniques that can be used in solving the formulated problem
should be identified. A technique whose solution is estimated to be too costly or
is judged to be not sufficiently beneficial with respect to the study objectives should
be disregarded. Among the qualified ones, the technique with the highest expected
benefits/cost ratio should be selected.

The statement "when all else fails, use simulation" is misleading if not invalid.
The question is not to bring a solution to the problem, but to bring a sufficiently
credible one which will be accepted and used by the decision maker(s). A technique
other than simulation may provide a less costly solution, but it may not be as useful.

Sometimes, the communicated problem is formulated under the influence of
a solution technique in mind. Occasionally, simulation is chosen without considering
any other technique just because it is the only one the analyst(s) can handle. Skipping
the investigation process may result in unnecessarily expensive solutions, sometimes
to the wrong problems.

As a result of the investigation process, we assume that simulation is chosen
as the most appropriate solution technique. At this point, the simulation project
team should be activated and be made responsible for the formulated problem
VV&T and feasibility assessment of simulation before proceeding in the life cycle.

2.3. SYSTEM INVESTIGATION

Characteristics of the system that contains the formulated problem should be
investigated for consideration in system definition and modeling. Shannon [87]
identifies six major system characteristics: (1) change, (2) environment, (3)
counterintuitive behavior, (4) drift to low performance, (5) interdependency, and (6)
organization. Each characteristic should be examined with respect to the study
objectives that are identified with the formulation of the problem.

O. Balci, Validation, verification, and testing techniques 127

In simulation, we mostly deal with stochastic and dynamic real systems that
change over a period of time. How often and how much the system will change
during the course of a simulation study should be estimated so that the model
representation can be updated accordingly. Changes in the system may also change
the study objectives.

A system's environment consists of all input variables that can significantly
affect its state. The input variables are identified by assessing the significance of
their influence on the system's state with regard to the study objectives. For example,
for a traffic intersection system, the interarrival time of vehicles can be identified
as an input variable making up the environment, whereas pedestrian arrivals may
be omitted due to their negligible effect on the system's state. Underestimating the
influence of an input variable may result in inaccurate environment definition.

Some complex systems may show counterintuitive behavior which we should
try to identify for consideration in defining the system. However, this is not an easy
task, especially for those systems containing many subjective elements (e.g., social
systems). Cause and effect are often not closely related in time or space. Symptoms
may appear long after the primary causes [87]. To be able to identify counterintuitive
behavior, it is essential that the simulation project employs people who have expert
knowledge about the system under study.

A system may show a drift to low performance due to the deterioration of its
components (e.g., machines in a manufacturing system) over a period of time. If
this characteristic exists, it should be incorporated within the model representation
especially if the model's intended use is forecasting.

Before we start abstracting the real system for the purpose of modeling, we
should examine the interdependency and organization characteristics of the system.
In a complex stochastic system, many activities or events take place simultaneously
and influence each other. The system complexity can be overcome by way of
decomposing the system into subsystems and subsystems into other subsystems.
This decomposition can be carried out by examining how system elements or
components are organized.

Once the system is decomposed into subsystems the complexity of which is
manageable and the system characteristics are documented, model formulation process
can be started following the system and objectives definition VV&T.

2.4. MODEL FORMULATION

Model formulation is the process by which a conceptual model is envisioned
to represent the system under study. The Conceptual Model is the model which is
formulated in the mind of the modeler [64]. Model formulation and model~representation
constitute the process of model design.

Input data analysis and modeling [54] is a subprocess of Model Formulation
and is conducted with respect to the way the model is driven. Simulation models

128 O. Balci, Validation, verification, and testing techniques

are classified as self-driven or trace-driven. A self-driven (distribution-driven or
probabilistic) simulation model is the one which is driven by input values obtained
via sampling from probability distributions using ra0dom numbers. A trace-driven
(or retrospective) simulation model, on the other hand, is driven by input sequences
derived from trace data obtained through measurement of the real system.

Under some study objectives (e.g., evaluation, comparison, determination of
functional relations) and for model validation, input data model(s) are built to
represent the system's input process. In a self-driven simulation (e.g., of a computer
system), we collect data on an input random variable (e.g., interarrival time of jobs),
identify the distribution, estimate its parameters, and conclude upon a probability
distribution as the input data model to sample from in driving the simulation model
[54]. In a trace-driven simulation, we trace the system (e.g., using hardware and
software monitors) and utilize the refined trace data as the input data model to use
in driving the simulation model.

2.5. MODEL REPRESENTATION

This is the process of translating the conceptual model into a communicative
model. A Communicative Model is "a model representation which can be communicated
to other humans, can be judged or compared against the system and the study
objectives by more than one human" [64]. A communicative model (i.e., a simulation
model design) may be represented in any of the following forms: (1) structured,
computer-assisted graphs, (2) flowcharts, (3) structured English and pseudocode,
(4) entity-cycle (or activity-cycle) diagrams, (5) condition specification [70], and
(6) more than a dozen diagramming techniques described in [56].

Several communicative models may be developed; one in the form of Structured
English intended for nontechnical people, another in the form of a micro flowchart
intended for a programmer. Different representation forms may also be integrated
in a stratified manner.

The representation forms should be selected based upon: (1) their applicability
for describing the system under study, (2) the technical background of the people
to whom the model is to be communicated, (3) how much they lend themselves to
formal analysis and verification, (4) their support for model documentation, (5)
their maintainability, and (6) their automated translatability into a programmed model.

2.6. PROGRAMMING

Translation of the communicative model into a programmed model constitutes
the process of programming. A Programmed Model is an executable simulation
model representation in a simulation programming language (e.g., GPSS, SIMAN,
SIMSCRIPT, SIMULA, SLAM, etc.) or in a high-level programming language
(e.g., C, Fortran, Pascal, etc.) that do not incorporate an experiment design. There

O. Balci, Validation, verification, and testing techniques 129

is an abundance of literature on simulation programming languages. Balci [7] describes
how to conduct the programming process in high-level languages.

2.7. DESIGN OF EXPERIMENTS

This is the process of formulating a plan to gather the desired information
at minimal cost and to enable the analyst to draw valid inferences [87]. An Experimental
Model is the programmed model incorporating an executable description of operations
presented in such a plan.

A variety of techniques are available for the design of experiments. Response-
surface methodologies can be used to find the optimal combination of parameter
values which maximize or minimize the value'of a response variable [54]. Factorial
designs can be employed to determine the effect of various input variables on a
response variable [32]. Variance reduction techniques can be implemented to obtain
greater statistical accuracy for the same amount of simulation [54]. Ranking and
selection techniques can be utilized for comparing alternative systems [54, 17].
Several methods (e.g., replication, batch means, regenerative) can be used for statistical
analysis of simulation output data.

2.8. EXPERIMENTATION

This is the process of experimenting with the simulation model for a specific
purpose. Some purposes of experimentation are [87]: (1) comparison of different
operating policies, (2) evaluation of system behavior, (3) sensitivity analysis, (4)
forecasting, (5) optimization, and (6) determination of functional relations. The
process of experimentation produces the Simulation Results.

2.9. R E D E ~ N I ~ O N

This is the process of: (1) updating the experimental model so that it represents
the current form of the system, (2) altering it for obtaining another set of results, (3)
changing it for the purpose of maintenance, (4) modifying it for other use(s), or (5)
redefining a new system to model for studying an alternative solution to the problem.

2.10. PRESENTATION OF SIMULATION RESULTS

In this process, simulation results are interpreted and presented to the decision
makers for their acceptance and implementation. Since all simulation models are
descriptive, concluding upon a solution to the problem requires rigorous analysis
and interpretation of the results.

The presentation should be made with respect to the intended use of the
model. If the model is used in a "what i f ' environment, the results should be
integrated to support the decision maker in the decision-making process. Complex

130 O. Balci, Validation, verification, and testing techniques

simulation results may also necessitate such an integration. The report documenting
the study and its results together with its presentation also constitutes a form of
supporting the decision maker.

3. Validation, verification, and testing techniques

Figure 3 shows a taxonomy which categorizes the VV&T techniques into six
distinct credibility assessment perspectives: informal, static, dynamic, symbolic,
constraint, and formal. The level of mathematical formality of each category increases
from very informal on the far left to very formal on the far right. Likewise, the
complexity also increases as the category becomes more formal [96].

It should be noted that some of the categories presented in figure 3 possess
similar characteristics and in fact have techniques which overlap from one category
to another. However, a distinct difference between each classification exists, as will
be evident in the discussion of each in this section.

3.1. INFORMAL VV&T TECHNIQUES

Informal techniques are among the most commonly used ones. They are
called informal because the tools and approaches used rely heavily on human reasoning
and subjectivity without stringent mathematical formalism. The "informal" label
does not imply any lack of structure or formal guidelines for the use of the techniques.

3.1.1. Audit

The audit is undertaken by a single person to investigate how adequately the
simulation study is conducted with respect to established practices, standards, and
guidelines. The audit also seeks to establish traceability within the simulation study.
When an error is identified, it should be traceable to its source via its audit trail.
Auditing is carried out on a periodic basis through a mixture of meetings, observations,
and examinations [41].

3.1.2. Desk Checking

Desk Checking is the process of thoroughly examining one's work to ensure
correctness, completeness, consistency, and unambiguity. It is considered to be the
very first step in VV&T and is particularly useful for the early stages of development.
To be effective, Desk Checking should be conducted carefully and thoroughly,
preferably by another person since it is usually difficult to see one's own errors [2].

3.1.3. Face Validation

The project team members, potential users of the model, people knowledgeable
about the system under study, based on their estimates and intuition, subjectively

V
al

id
at

io
n,

 V
er

ifi
ca

tio
n,

 a
nd

 T
es

tin
g

T
ec

hn
iq

ue
s

In
fo

rm
al

St

at
ic

D

yn
am

ic

Sy
m

bo
lic

C

on
st

ra
in

t

C
on

si
st

en
cy

 C
he

ck
in

g
D

at
a

Fl
ow

 A
na

ly
si

s
G

ra
ph

-B
as

ed
 A

na
ly

si
s

Se
m

an
tic

 A
na

ly
si

s
St

ru
ct

ur
al

 A
na

ly
si

s
Sy

nt
ax

 A
na

ly
si

s

A
ud

it
D

es
k

C
he

ck
in

g
Fa

ce
 V

al
id

at
io

n
In

sp
ec

tio
ns

R

ev
ie

w
s

T
ur

in
g

T
es

t
W

al
kt

hr
ou

gh
s

I
B

la
ck

-B
ox

 T
es

tin
g

B
ot

to
m

- U
p

T
es

tin
g

D
eb

ug
gi

ng

E
xe

cu
tio

n M
on

ito
ri

ng

E
xe

cu
tio

n
Pr

of
ili

ng

E
xe

cu
tio

n T
ra

ci
ng

Fi

el
d

T
es

tin
g

G
ra

ph
ic

al
 C

om
pa

ris
on

s
Pr

ed
ic

tiv
e V

al
id

at
io

n
R

eg
re

ss
io

n T
es

tin
g

Se
ns

iti
vi

ty
 A

na
ly

si
s

St
at

is
tic

al
 T

ec
hn

iq
ue

s
St

re
ss

 T
es

tin
g

Su
bm

od
el

 T
es

tin
g

Sy
m

bo
lic

 D
eb

ug
gi

ng

T
op

-D
ow

n T
es

tin
g

V
is

ua
liz

at
io

n
W

hi
te

-B
ox

 T
es

tin
g

C
au

se
-E

ff
ec

t G
ra

ph
in

g
Pa

rti
tio

n
A

na
ly

si
s

Pa
th

 A
na

ly
si

s
Sy

m
bo

lic
 E

xe
cu

tio
n

A
ss

er
tio

n C
he

ck
in

g
B

ou
nd

ar
y A

na
ly

si
s

In
du

ct
iv

e A
ss

er
tio

ns

Fo
rm

al

I
In

du
ct

io
n

In
fe

re
nc

e
L

am
da

 C
al

cu
lu

s
L

og
ic

al
 D

ed
uc

tio
n

Pr
ed

ic
at

e C
al

cu
lu

s
Pr

ed
ic

at
e T

ra
ns

fo
rm

at
io

n
Pr

oo
f o

f C
or

re
ct

ne
ss

t~

Fi
gu

re
 3

.
A

 t
ax

on
om

y
of

 v
al

id
at

io
n,

 v
er

if
ic

at
io

n,
 an

d
te

st
in

g
te

ch
ni

qu
es

.

132 O. Balci, Validation, verification, and testing techniques

compare model and system behaviors to judge whether the model and its results are
reasonable. Face Validation is useful as a preliminary approach to validation [39].

3.1.4. Inspections

Inspections are conducted by a team of four to six members. For example,
in the case of a design inspection, the team consists of: (1) Moderator: manages the
inspection team and provides leadership; (2) Reader: narrates the model design
(communicative model) and leads the team through it; (3) Recorder: produces a
written report of detected faults; (4) Designer: is the creator of the model design;
(5) Implementer: translates the model design into code (programmed model); and
(6) Tester: SQA group representative.

An inspection goes through five distinct phases: overview, preparation,
inspection, rework, and follow-up [82]. In phase I, the designer gives an overview
of the (sub)model design to be inspected. The (sub)model characteristics such as
purpose, logic, and interfaces are introduced and related documentation is distributed
to all participants to study. In phase II, the team members prepare individually for
the inspection by examining the documents in detail. The moderator arranges the
inspection meeting with an established agenda and chairs it in phase III. The reader
narrates the (sub)model design documentation and leads the team through it. The
inspection team is aided by a checklist of queries during the fault finding process.
The objective is to find and document the faults, not to correct them. The recorder
prepares a report of detected faults immediately after the meeting. Phase IV is the
rework in which the designer resolves all faults and problems specified in the
written report. In the final phase, the moderator ensures that all faults and problems
have been resolved satisfactorily. All changes must be examined carefully to ensure
that no new errors have been introduced as a result of a fix.

A disadvantage of the inspection technique is that, like the walkthrough, it
might be used for performance appraisal of the development team. Major differences
exist between inspections and walkthroughs. An inspection is a five-step process,
but walkthroughs consist of only two steps. The inspection team uses the checklist
approach for uncovering errors. The procedure used in each phase of the inspection
technique is formalized. The inspection process takes much longer than a walkthrough;
however, the extra time is justified because an inspection is a powerful and cost-
effective way of detecting faults early in the model development life cycle [1, 26,
52, 82].

3.1.5. Reviews

The review is conducted in a similar manner as the inspection and walkthrough
except in the way the team members are selected. The review team also involves
managers. The review is intended to give management and study sponsors evidence
that the development process is being carried out according to stated study objectives

O. Balci, Validation, verification, and testing techniques t33

and evaluate the model in light of development standards, guidelines, and specifications.
As such, the review is a higher level technique than the inspection and walkthrough.

Each review team member examines the model documentation prior to the
review. The team then meets to evaluate the model relative to specifications and
standards, recording defects and deficiencies. The review team may be given a set
of indicators to measure such as: (1) appropriateness of the definition of system and
study objectives, (2) adequacy of all underlying assumptions, (3) adherence to
standards, (4) modeling methodology used, (5) model representation quality, (6)
model structuredness, (7) model consistency, (8) model completeness, and (9)
documentation. The result of the review is a document portraying the events of the
meeting, deficiencies identified, and review team recommendations. Appropriate
action may then be taken to correct any deficiencies.

As opposed to inspections and walkthroughs, which concentrate on correctness
assessment, reviews seek to ascertain that tolerable levels of quality are being attained.
The review team is more concerned with model design deficiencies and deviations
from stated model development policy than it is with the intricate line-by-line details
of the implementation. This does not imply that the review team is not concerned
with discovering technical flaws in the model, only that the review process is oriented
towards the early stages of the model development life cycle [41, 96].

3.1.6. Turing Test

Turing Test is based upon the expert knowledge of people about the system
under study. These people are presented with two sets of output data obtained, one
from the model and one from the system, under the same input conditions. Without
identifying which one is which, the people are asked to differentiate between the
two. If they succeed, they are asked how they were able to do it. Their response
provides valuable feedback for correcting model representation. If they cannot
differentiate, our confidence in model validity is increased [86, 91, 94].

3.1.7. Walkthroughs

Walkthroughs are conducted by a team composed of a ~ coordinator, model
developer, and three to six other members. Except the model developer, all other
members should not be directly involved in the development effort. A typical
structured walkthrough team consists of: (1) Coordinator: most often is the SQA
group representative who organizes, moderates, and follows up the walkthrough
activities; (2) Presenter: most often is the model developer; (3) Scribe: documents
the events of the walkthrough meetings; (4) Maintenance Oracle: considers long-
term implications; (5) Standards Bearer: concerned with adherence to standards; (6)
Client Representative: reflects the needs and concerns of the client; and (7) Other
reviewers such as simulation project manager and auditors.

134 O. Balci, Validation, verification, and testing techniques

The main thrust of the walkthrough technique is to detect and document faults;
it is not performance appraisal of the development team. This point must be made
clear to everyone involved so that full cooperation is achieved in discovering errors.

The coordinator schedules the walkthrough meeting, distributes the walkthrough
material to all participants well in advance of the meeting in order to allow for
careful preparation, and chairs the meeting. During the meeting, the presenter walks
the other members through the walkthrough documents. The coordinator encourages
questions and discussion so as to uncover any faults [2, 23, 61, 62, 101].

3.2. STATIC VV&T TECHNIQUES

Static VV&T techniques are concerned with accuracy assessment on the
basis of characteristics of the static model source code. Static techniques do not
require machine execution of the model, but mental execution may be used. The
techniques are very popular and widely used, with many automated tools available
to assist the VV&T. The simulation language compiler is itself a static VV&T tool.

Static VV&T techniques can obtain a variety of information about the structure
of the model, coding techniques and practices employed, data and control flow
within the model, syntactical accuracy, and internal as well as global consistency
and completeness of implementation [96].

3.2.1. Consistency checking

Consistency checking deals with substantiating that: (a) the model represen-
tation does not contain contradictions, (b) the cosmetic style with which language
elements (e.g., naming conventions, use of upper, lower, and mixed case, etc.) are
applied is used consistently, and (c) the data elements are manipulated uniformly
(e.g., data assignment to variables, data use within computations, data passing
among submodels, data representation and use during model input and output).

3.2.2. Data flow analysis

Data flow analysis is used to assess model accuracy with respect to the use
of model variables. This assessment is classified according to the definition, referencing,
and unreferencing of variables [2], i.e., when variable space is allocated, accessed,
and deallocated. A data flow graph is constructed to aid in the data flow analysis.
The nodes of the graph represent statements and corresponding variables. The edges
represent control flow.

Data flow analysis can be used to detect undefined or unreferenced variables
(much as in static analysis) and, when aided by model instrumentation, can track
minimum and maximum variable values, data dependencies, and data transformations
during model execution. It is also useful in detecting inconsistencies in data structure
declaration and improper linkages among submodels [4, 96].

O. Balci, Validation, verification, and testing techniques 135

3.2.3. Graph-based analysis

Data-flow and control-flow are both graph-based analysis techniques which
are similar in many ways [2]. Data-flow analysis is described in section 3.2.2. In
control-flow analysis, a node of the model graph usually represents a logical junction
where the flow of control changes, while an edge represents towards which junction
it changes. This technique examines sequences of control transfers and is useful for
identifying incorrect or inefficient constructs within model representation.

Nance and Overstreet [67] proposed several diagnostics which are based on
analysis of graphs constructed from a particular form of model specification called
Condition Specification [60, 70]. The diagnostic assistance is categorized into three:
(1) analytical- determination of the existence of a" property, (2) comparative- measures
of differences among multiple model representations, and (3) informative-characteristics
extracted or derived from model representations. Action cluster attribute graph,
action cluster incidence graph, and run-time graph constitute the basis for the
diagnosis.

The analytical diagnosis is conducted by measuring the following indicators:
attribute utilization, attribute initialization, action cluster completeness, attribute
consistency, connectedness, accessibility, out-complete, and revision consistency.
The comparative diagnosis is done by measuring attribute cohesion, action cluster
cohesion, and complexity. The following indicators are measured for the informative
diagnosis: attribute classification, precedence structure, decomposition, and run-
time graph [67].

3.2.4. Semantic analysis

Semantic analysis is conducted by the simulation programming language
compiler and attempts to determine the modeler's intent in writing the code. The
compiler informs the modeler about what is specified in the source code so that the
modeler can verify that the true intent is accurately reflected.

The compiler generates a wealth of information to help the modeler determine
if the true intent is accurately translated into the executable code: (1) Symbol Tables
which describe: the elements or symbols that are manipulated in the model, function
declarations, type and variable declarations, scoping relationships, interfaces,
dependencies, etc.; (2) Cross-reference Tables which describe: called versus calling
submodels (where each data element is declared, referenced and altered), duplicate
data declarations (how often and where occurring), and unreferenced source code;
(3) Subroutine Interface Tables which describe the actual interfaces of the caller and
the called; (4) Maps which relate the generated runtime code to the original source
code; and (5) "Pretty Printers" or Source Code Formatters which provide: reformatted
source listing on the basis of its syntax and semantics, clean pagination, highlighting
of data elements, and marking of nested control structures.

136 O. Balci, Validation, verification, and testing techniques

3.2.5. Structural analysis

Structural analysis is used to examine the model structure and to determine
if it adheres to structured principles. It is conducted by constructing a control flow
graph of the model structure and examining the graph for anomalies, such as multiple
entry and exit points, excessive levels of nesting within a structure, and questionable
practices such as the use of unconditional branches (i.e., GOTOs).

YiJcesan and Jacobson [102] and Jacobson and Yiicesan [46] apply the theory
of computational complexity and show that the problem of verifying structural
properties of simulation models is intractable. They illustrate that modeling issues
such as accessibility of states, ordering of events, ambiguity of model specifications,
and execution stalling are NP-complete decision problems.

3.2.6. Syntax analysis

Syntax analysis is carried on by the simulation programming language compiler
to assure that the mechanics of the language are applied correctly.

3.3. DYNAMIC VV&T TECHNIQUES

Dynamic VV&T techniques require model execution and are intended for
evaluating the model based on its execution behavior. Most dynamic VV&T techniques
require model instrumentation.

The insertion of additional code (probes) into the executable model for the
purpose of collecting information about model behavior during execution is called
model instrumentation. Probe locations are determined manually or automatically
based on static analysis of model structure. Automated instrumentation is accomplished
by a preprocessor which analyzes the model static structure (usually via graph-
based analysis) and inserts probes at appropriate places.

The simplest probe type is a counter and is illustrated in figure 4. In this
example, computer jobs arrive according to a Poisson process. A fundamental
assumption underlying a Poisson arrival process is that the interarrival times must
be nonzero. Therefore, to find out what percentage of time this assumption is
violated, the model in figure 4 is instrumented by inserting Blocks 3-6. Running
the model for 50,000 jobs reveals that the percentage of violation (100*COUNT/
Total number of entries into Block 4) is 18% (see [85, p. 165] for an explanation).
To decrease this unacceptable frequency of violation, the time unit can be changed
to 10 milliseconds; thus, changing 5 and 4 in the INITIAL Block to 50 and 40
reduces the percentage of violation to 2%. If 100 milliseconds were chosen as the
time unit, the frequency of violation would only be 0.19%. Consequently, the higher
the value of MIAT the lower the frequency of violation.

Dynamic VV&T techniques are usually applied using the following three
steps. In step 1, the programmed or experimental model is instrumented. In step 2,

O. Balci, Validation, verification, and testing techniques 137

1
2
3
4
5
6

7
8
9

i0
ii
12

* This is a GPSS/H programmed model of a single Central Processing Unit
* (CPU) serving computer jobs arriving according to a Poisson process
* with First-Come First-Served (FCFS) queue discipline. Job processing
* times follow an exponential probability distribution.

* MIAT = Mean InterArrival Time (1/arrival rate)
* MPT = Mean Processing Time
* NEWAT = New Arrival Time
* OLDAT = Old Arrival Time
* COUNT = Counter for zero interarrival times
* Time Unit = Milliseconds

SIMULATE

* Initializations

INITIAL XHSMIAT, 5/XH$MPT,4

* Function Definition

XPDIS FUNCTION RNI,C24 Exponential Probability Distribution Function
0,0/.I,.I04/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38
.8,1.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/~94,2.81/.95,2.99/.96,3.2
.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8

* Model Segment

GENERATE XHSMIAT,FNSXPDIS,,,,IPF
ASSIGN I,XHSMPT,XPDIS,PF
SAVEVALUE NEWAT,ACI,XF

TSTB TEST E XF$NEWAT,XF$OLDAT,OKAY
SAVEVALUE COUNT+,I,XF

OKAY SAVEVALUE OLDAT,XFSNEWAT,XF
.

QUEUE SYSTEM
SEIZE CPU
ADVANCE PFI
RELEASE CPU
DEPART SYSTEM
TERMINATE 1

* Control Statements

START 50000

END

Job enters computer system
Record job processing time
Record new arrival time (AT)
New AT = Old AT ?
Count zero interarrival time
Set old AT = new AT

Collect statistics
Job captures the CPU
CPU processes the job
Job frees the CPU
Record statistics
Job leaves computer system

Run for 50,000 jobs
End simulation

Figure 4. An instrumented GPSS/H programmed model.

the instrumented model is executed, and in step 3, the model output is analyzed and
dynamic model behavior is evaluated.

3.3.1. Black-box testing

Black-box testing, also called functional testing, is used to assessthe accuracy
of model input output transformation. It is applied by feeding inputs (test data) to
the model and evaluating the corresponding outputs. The concern is how accurately
the model transforms a given set of input data into a set of output data.

138 O. Balci, Validation, verification, and testing techniques

It is virtually impossible to test all input-output transformation paths for a
reasonably large and complex simulation model since the number of those paths
could be in millions. Therefore, the objective of black-box testing is to increase our
confidence in model input-output transformation accuracy as much as possible
rather than trying to claim absolute correctness.

Generation of test data is a crucially important but a very difficult task. The
law of large numbers does not apply here. Successfully testing the model under
1,000 input values (test data) does not imply high confidence in model input-output
transformation accuracy just because 1,000 is a large number. Instead, we should
compare the 1,000 with the number of allowable input values and determine how
much of the model input domain is covered in testing. The more the model input
domain is covered in testing, the more confidence we gain in the accuracy of the
model input-output transformation [43, 62].

3.3.2. Bottom-up testing

Bottom-up testing is used in conjunction with bottom-up model development
strategy. In bottom-up development, model construction starts with the submodels
at the base level (i.e., the ones that are not decomposed further) and culminates with
the submodels at the highest level. As each submodel is completed, it is thoroughly
tested. When submodels belonging to the same parent have been developed and
tested, the submodels are integrated and integration testing is performed. This
process is repeated in a bottom-up manner until the whole model has been integrated
and tested. The integration of completed submodels need not wait for all "same
level" submodels to be completed. Submodel integration and testing can be, and
often is, performed incrementally.

Some of the advantages of bottom-up testing are: (1) it encourages extensive
testing at the submodel level; (2) since most well-structured models consist of a
hierarchy of submodels, there is much to be gained by bottom-up testing; (3) the
smaller the submodel and more cohesion it has, the easier and more complete its
testing will be; and (4) it is particularly attractive for testing distributed simulation
models.

Major disadvantages of bottom-up testing include: (1) individual submodel
testing requires drivers, more commonly called test harnesses, which simulate the
calling of the submodel and passing test data necessary to execute the submodel;
(2) developing harnesses for every submodel can be quite complex and difficult; (3)
the harnesses may themselves contain errors; and (4) faces the same cost and
complexity problems as does top-down testing.

3.3.3. Debugging

Debugging is an iterative process the purpose of which is to uncover errors
or misconceptions that cause the model 's failure and to define and carry out the

O. Balci, Validation, verification, and testing techniques 139

model changes that correct the errors. This iterative process consists of four steps.
In step 1, the model is tested revealing the existence of errors (bugs). Given the
detected errors, the cause of each error is determined in step 2. In step 3, the model
changes believed to be required for correcting the detected errors are identified. The
identified model changes are carried out in step 4. Step 1 is re-executed right after
step 4 to ensure successful modification because a change correcting an error may
create another one. This iterative process continues until no errors are identified in
step 1 after sufficient testing [27].

3.3.4. Execution monitoring

Execution monitoring is used to reveal errors by examining low-level information
about activities and events which take place during model execution. It requires the
instrumentation of a programmed or experimental model for the purpose of gathering
data to provide activity-or event-oriented information about the model's dynamic
behavior. For example, the instrumented model in figure 4 monitors the number of
zero interarrival times which is important to know for judging the input model
validity. The model can also be instrumented to provide other low-level information
such as number of jobs with zero processing time, average arrival rate, and average
processing time.

3.3.5. Execution profiling

Execution profiling is used to reveal errors by examining high-level information
(profiles) about activities and events which take place during model execution. It
requires the instrumentation of a programmed or experimental model for the purpose
of gathering data to present profiles about the model's dynamic behavior. For
example, the model in figure 4 can be instrumented to produce the following
profiles to assist in model VV&T: (1) a histogram of job interarrival times, (2) a
histogram of job processing times, and (3) a histogram of job waiting times in the
queue.

3.3.6. Execution tracing

Execution tracing is used to reveal errors by "watching" the line-by-line
execution of a simulation model. It requires the instrumentation of a programmed
or experimental model for the purpose of tracing the model 's line-by-line dynamic
behavior. For example, the model in figure 4 can be instrumented to record the
values of NEWAT in a file during the model execution. Then, the interarrival times
can be extracted from the trace data and can be statistically tested to see if they have
an exponential probability distribution with mean MIAT as intended.

The major disadvantage of the tracing technique is that execution of the
instrumented model may produce a large volume of trace data that may be too

140 O. Balci, Validation, verification, and testing techniques

complex to analyze. To overcome this problem, the trace data can be stored in a
database and the modeler can analyze it using a query language [30, 31].

3.3.7. Field Testing

Field Testing places the model in an operational situation for the purpose of
collecting as much information as possible for model validation. It is especially
useful for validating models of military combat systems. Although it is usually
difficult, expensive, and sometimes impossible to devise meaningful field tests for
complex systems, their use wherever possible helps both the project team and
decision makers to develop confidence in the model [87, 94].

3.3.8. Graphical Comparisons

Graphical Comparisons is a subjective, inelegant, and heuristic, yet quite practical
approach especially useful as a preliminary approach to model VV&T. The graphs
of values of model variables over time are compared with the graphs of values of
system variables to investigate characteristics such as similarities in periodicities,
skewness, number and location of inflection points, logarithmic rise and linearity,
phase shift, trend lines, and exponential growth constants [2I, 34, 57, 99].

3.3.9. Predictive Validation

Predictive Validation requires past data. The model is driven by past system
input data and its forecasts are compared with the corresponding past system output
data to test the predictive ability of the model [29].

3.3.10. Regression testing

Regression testing is used to substantiate that correcting errors and/or making
changes in the model do not create other errors and adverse side-effects. It is
usually accomplished by retesting the modified model with the previous test data
sets used. Successful regression testing requires planning throughout the model
development life cycle. Retaining and managing old test data sets are essential for
the success of regression testing.

3.3.11. Sensitivity analysis

Sensitivity Analysis is performed by systematically changing the values of
model input variables and parameters over some range of interest and observing the
effect upon model behavior [87]. Unexpected effects may reveal invalidity. The
input values can also be changed to induce errors to determine the sensitivity of
model behavior to such errors. Sensitivity analysis can identify those input variables
and parameters to the values of which model behavior is very sensitive. Then,

O. Balci, Validation, verification, and testing techniques 141

model validity can be enhanced by assuring that those values are specified with
sufficient accuracy [39, 58, 59, 94].

3.3.12. Statistical techniques

Much research has been conducted in applying statistical techniques for model
validation. Table 1 presents the statistical techniques proposed for model validation
and lists related references.

The statistical techniques listed in table 1 require that the system being
modeled is completely observable, i.e., all data required for model validation can
be collected f rom the system. Model validation.is conducted by using the statistical

Table 1

Statistical techniques proposed for validation.

Analysis of variance

Confidence intervals/regions

Factor analysis

Hotelling's T 2 tests

Multivariate analysis of variance
-Standard MANOVA
-Permutation methods
-Nonparametric ranking methods

Nonparametric goodness-of-fit tests
-Kolmogorov-Smirnov test
-Cramer-Von Mises test
-Chi-square test

Nonparametric tests of means
-Mann-Whitney-Wilcoxon test
-Analysis of paired observations

Regression analysis

TheWs inequality coefficient

Time series analysis
-Spectral analysis
-Correlation analysis
-Error analysis

t-test

[68]

[16, 54, 87]

[21]

[12-15, 87]

[37]

[35, 68]

[87]

[3, 21,441

[48, 79, 90]

[33, 36, 44, 45, 94, 95]
[95]

[22, 92]

[87, 89]

techniques to compare the model output data with the corresponding system output
data when the model is run with the "same" input data that derive the real system.
Due to the mult iple response problem [87], the comparison of model and system

142 O. Balci, Validation, verification, and testing techniques

outputs must be carried out by using a multivariate statistical technique to incorporate
the correlations among the output variables.

A validation procedure based on the use of s imultaneous conf idence intervals
is presented below.

3.3.12.1. A validation procedure using simultaneous confidence intervals

The behavioral accuracy (validity) of a simulation model with mult iple outputs
can be expressed in terms of the differences between the corresponding model and
system output variables when the model is run with the "same" input data and
operational condi t ions that drive the real system. The range of accuracy of the j th
model output variable can be represented by the j t h conf idence interval (c.i.) for
the differences between the means of the j t h model and system output variables.
The s imultaneous conf idence intervals (s.c.i.) formed by these c.i . 's are called the
model range of accuracy (m.r.a.) [16].

Assume that there are k output variables f rom the model and k output variables
f rom the system as shown in figure 1. Let (#m), = [#~,, #[, ,/.t~] and (#s) , =
[#I, #~ #]d be the k-dimensional vectors of the populat ion means of the model
and system output variables, respectively. Basically, there are three approaches for
const ruct ing the s.c.i, to express the m.r.a, for the mean behavior.

In approach I, the m.r.a, is de termined by the 100(1 - 7)% s.c.i, f o r / t m - / t "

as [6, lr], (1)

where 6 ' = [~51, 82 , ~i k] represent ing lower bounds and 'r ' = [~l, 72 "rk]
represent ing upperbounds of the s.c.i. We can be 100(1 - 7)% conf ident that the
true differences between the populat ion means o f the mode l and sys tem output
variables are s imul taneously contained within (1).

In approach II, the 100(1 - 7 ") % s.c.i, are first constructed for #m as

[~m ~-m], (2)

where (t~m) ' = [&~, S~ , &if'] and (~m), = [,r~n, "r~' "r~n]. Then, the 100(1 - 7s)%
s.c.i, are constructed for #s as

where (t~') ' = [t~, t~ , &It] and (' r ') ' = [~ , "r~ "rid. Finally, using the Bonferroni
inequality, the m.r.a, is determined by the following s.c.i, for jtgm _ ~,£s with a confidence
level o f at least (1 - 7 m - Y') when the model and sys tem outputs are dependen t and
with a level o f at least (1 - 7 m -),s + 7m ~) when the outputs are independen t [50]:

[sm_ ,rs, .rm_ &s]. (4)

O. Balci, Validation, verification, and testing techniques 143

In approach III, the model and system output variables are observed in pairs
and the m.r.a, is determined by the 100(1 - ?')% s.c.i, for ga, the population means
of the differences of paired observations, as

[6 d, C], (5)

where (tsd) ' = [8 d, 8d2 8k d] and ('rd)' = D "(, "r2 d "rff].
The approach for constructing the m.r.a, should be chosen with respect to the

way the model is driven. The m.r.a, is constructed by using the observations collected
from the model and system output variables by running the model with the "same"
input data and operational conditions that drive the real system. If the simulation
model is self-driven, then the "same" indicates'that the model input data are coming
independently from the same populations or stochastic process of the system input
data. Since the model and system input data are independent of each other, but
coming from the same populations, the model and system output data are expected
to be independent and identically distributed. Hence, approach I or II can be used,
The use of approach III in this case would be less efficient. If the simulation model
is trace-driven, the "same" indicates that the model input data are exactly the same
as the system input data. In this case, the model and system output data are expected
to be dependent and identical. Therefore, approach II or III should be used.

Sometimes, the model sponsor, model user, or a third party may specify an
acceptable range of accuracy for a specific simulation study. This specification can
be made for the mean behavior of a stochastic simulation model as

L <_12 m - I t s <_ U, (6)

where L ' = ILl, L2 , L k] and U ' = [U l, U 2 , U k] are the lower and upper
bounds of the acceptable differences between the population means of the model
and system output variables. In this case, the m.r.a, should be compared against (6)
to evaluate model validity.

The shorter the lengths of the m.r.a., the more meaningful is the information
they provide. The lengths can be decreased by increasing the sample sizes or by
decreasing the confidence level. However, such increases in sample sizes may
increase the cost of data collection. Thus, a trade-off analysis may be necessary
among the sample sizes, confidence levels, half length estimates of the m.r.a, data
collection method, and cost of data collection. For details of performing the trade-
off analysis see [16].

The confidence interval validation procedure is presented in figure 5.

3.3.13. Stress testing

Stress testing is intended to test the model validity under extreme workload
conditions. This is usually accomplished by increasing the congestion in the model.

144 O. Balci, Validation, verification, and testing techniques

(START)

[Determine the set of"experimental conditions under which the validity of the simulation model is to be tested. [

] Choose approach I or II. i-~l'l self-driven trace-driven "lh"l Choose approach II or IlL]

[J Determine an appropriate statistical pr°cedure f°r c°nstructing l-d I
" l , the model range of accuracy with respect to the approach chosen. 1~

[Select the sample sizes L,j No ~ . ~
and confidence levels. 1 ~ ~ , ~ 1 ~ "t

~, v~

I E,amine the trad offs aod makejodgment decisions tosolect the samp'os'z w'th appropriato I
data collection method and budget, and an overall confidence level to produce

satisfactory estimated lenghts for the model range of accuracy.

Collect data for validation from the system and from the model. I
L a .

I ~ I11 ~J Determine the model range
of accuracy by constructing

the 100(I-'/)% s.c.i.
t~d.~dl

Determine the model range of I Determine the model range of accuracy by construct-
accuracy by constructing the I ~v

100(1-)')% s'c'i" ' ing the at least 100(I-)')% s'c'i" [~m -'cs' 'ira - ~s] I [
[J~, x] j Set ~i = j~m _,is and ' i='t m _~s. Set J~ =~d and'(: = f d

Set "t "--),m + Ts Set "/= ~m + -/s _ ~/m,ys

¢ ,
~ Not given ~ . ~ Not satisfactory

We are (at least) 100(1-7)% confident that the model ~] No
is valid under the set of experimental conditions. I "

[Revise the model bY c°nsidering the resp°nse variables I
(TERMINATE) whose ranges of accuracy are not satisfactory.

Figure 5. A validation procedure using simultaneous confidence intervals.

O. Balci, Validation, verification, and testing techniques 145

For example, the model in figure 4 can be stress tested by decreasing the mean
interarrival time (MIAT), i.e., bringing in more jobs per unit time. Such increase
in workload may create high congestion and result in an unacceptably high number
of zero interarrival times causing incorrect representation of the input Poisson
arrival process. Under stress testing, the model may exhibit invalid behavior; however,
such behavior should be as expected and meaningfully documented. Without the
instrumentation, the model in figure 4 could produce inaccurate results under such
stress testing [27, 62].

3.3.14. Submodel testing

Submodel testing requires a top-down model decomposition in terms of
submodels. The experimental model is instrumented to collect data on all input and
output variables of a submodel. The system is similarly instrumented (if possible)
to collect similar data. Then, each submodel behavior is compared with corresponding
subsystem behavior to judge submodel validity. If a subsystem can be modeled
analytically (e.g., as an M/M/1 model), its exact solution can be compared against
the simulation solution to assess validity quantitatively.

Validating each submodel individually does not imply sufficient validity for
the whole model, because each submodel validity is passed with some error tolerance
and the allowable errors can accumulate to make the whole model invalid. Therefore,
after individually validating each submodel, the whole model itself must be subjected
to testing.

3.3.15. Symbolic debugging

Symbolic debugging assists in model VV&T by employing a debugging tool
that allows the modeler to manipulate model execution while viewing the model at
the source code level. By setting "breakpoints", the modeler can interact with the
entire model one step at a time, at predetermined locations, or under specified
conditions. While using a symbolic debugger, the modeler may alter model data
values or cause a portion of the model to be "replayed", i.e., executed again under
the same conditions (if possible). Typically, the modeler utilizes the information
from execution history generation techniques, such as tracing, monitoring, and
profiling, to isolate a problem or its proximity. He then proceeds with the debugger
to understand how and why the error occurs.

Current state-of-the-art debuggers allow viewing the runtime code as it appears
in the source listing, setting "watch" variables to monitor data flow, viewing complex
data structures, and even communicating with asynchronous I/O channels. The use
of symbolic debugging can greatly reduce the debugging effort while increasing its
effectiveness. Symbolic debugging allows the modeler to locate errors and check
numerous circumstances which lead up to the errors [96].

146 O. Balci, Validation, verification, and testing techniques

3.3.16. Top-down testing

Top-down testing is used in conjtmction with top-down model development strategy.
In top-down development, model construction starts with the submodels at the highest
level and culminates with the submodels at the base level (i.e., the ones that are not
decomposed further). As each submodel is completed, it is thoroughly tested. When
submodels belonging to the same parent have been developed and tested, the submodels
are integrated and integration testing is performed. This process is repeated in a top-
down manner until the whole model has been integrated and tested. The integration of
completed submodels need not wait for all "same level" submodels to be completed.
Submodel integration and testing can be, and often is, performed incrementally.

Top-down testing begins with testing the global model at the highest level. When
testing a given level, calls to submodels at lower levels are simulated using submodel
"stubs". A stub is a dummy submodel which has no other function than to let its caller
complete the call. Fairley [31] lists the following advantages of top-down testing: (I)
model integration testing is minimized, (2) early existence of a working model results,
(3) higher level interfaces are tested first, (4) a natural environment for testing lower
levels is provided, and (5) errors are localized to new submodels and interfaces.

Some of the disadvantages of top-down testing are: (1) thorough submodel
testing is discouraged (the entire model must be executed to perform testing), (2)
testing can be expensive (since the whole model must be executed for each test),
(3) adequate input data is difficult to obtain (because of the complexity of the data
paths and control predicates), and (4) integration testing is hampered (again, because
of the size and complexity induced by testing the whole model) [31].

3.3.17. Visualization

Visualization (animation) of a simulation model greatly assists in model
VV&T [80]. Displaying graphical images of internal and external dynamic behavior
of a model during execution enables us to discover errors by seeing. For example,
in visual simulation of a traffic intersection, we can observe the arrivals of vehicles
in different lanes and their movements through the intersection as the traffic light
changes. Seeing the visualization of the model as it executes and comparing it with
the operations of the real traffic intersection can help us identify discrepancies
between the model and the system.

Seeing the model in action is very useful for uncovering errors; however,
seeing is not believing here [74]. Seeing model behavior during execution does not
guarantee model correctness. Therefore, visualization should be used with caution
in model VV&T.

3.3.18. White-box testing

White-box testing is used to evaluate the model based on its internal structure
(how it is built) whereas black-box testing is intended for assessing the input-output

O. Balci, Validation, verification, and testing techniques 147

transformation accuracy of the model. White-box testing employs data flow and
control flow diagrams to assess the accuracy of intemal model structure by examining
model elements such as internal logic, internal data representations, submodel interfaces,
and model execution paths. White-box testing is quite effective for detecting redundant
code, faulty model structure, and special case errors.

3.4. SYMBOLIC VV&T TECHNIQUES

Symbolic VV&T techniques, like dynamic VV&T techniques, are used to
evaluate the dynamic behavior of the model during execution.

3.4.1. Cause-effect graphing

Cause-effect graphing assists model VV&T by addressing the question of
"what causes what in the model representation?" It is performed by first identifying
causes and effects in the system being modeled and by examining if they are
accurately reflected in the model specification. For example, in the simulation of
a traffic intersection, the following causes and effects may be identified: (1) the
change of lane 1 light to red immediately causes the vehicles in lane 1 to stop, (2)
an increase in the duration of lane 1 green light causes a decrease in the average
waiting time of vehicles in lane 1, and (3) an increase in the arrival rate of lane 1
vehicles causes an increase in the average number of vehicles at the intersection.

As many causes and effects as possible are listed, and the semantics are
expressed in a cause-effect graph. The graph is annotated to describe special
conditions or impossible situations. Once the cause-effect graph has been constructed,
a decision table is created by tracing back through the graph to determine combinations
of causes which result in each effect. The decision table is then converted into test
cases with which the model is tested [62, 96].

3.4.2. Partition analysis

Partition analysis is used for testing the model with the test data generated
by analyzing the model 's functional representatives (partitions). It is accomplished
by: (1) decomposing both model specification and implementation into functional
representatives (partitions), (2) comparing the elements and prescribed functionality
of each partition specification with the elements and actual functionality of
corresponding partition implementation, (3) deriving test data to extensively test the
functional behavior of each partition, and (4) testing the model by using the generated
test data.

The model decomposition into functional representatives (partitions) is derived
through the use of symbolic evaluation techniques which maintain algebraic expressions
of model elements and show model execution paths. These functional representations
are the model computations. Two computations are equivalent if they are defined

148 O. Balci, Validation, verification, and testing techniques

for the same subset of the input domain which causes a set of model paths to be
executed, and if the result of the computations is the same for each element within
the subset of the input domain [42]. Standard proof techniques are used to show
equivalence over a domain. When equivalence canrCot be shown, partition testing
is performed to locate errors, or as Richardson and Clarke [78] state, to increase
confidence in the equality of the computations due to the lack of error manifestation.
By involving both model specification and implementation, partition analysis is
capable of providing more comprehensive test data coverage than other test data
generation techniques.

3.4.3. Path analysis

Path analysis [42] attempts to assess model correctness on the basis of complete
testing of all model control paths. It is performed in three steps. In step 1, the model
control structure (e.g., through structural analysis) is determined and represented in
a control flow diagram. In step 2, test data is generated to cause selected model
logical paths to be executed. Symbolic execution can be used to identify and group
together classes of input data based on the symbolic representation of the model.
The test data is generated in such a way as to: (1) cover all statements in the path,
(2) encounter all nodes in the path, (3) cover all branches from a node in the path,
(4) achieve all decision combinations at each branch point in the path, and (5)
traverse all paths [75]. In step 3, by using the generated test data, the model is
forced to proceed through each path in its execution structure, thereby providing
comprehensive testing.

In practice, only a subset of all possible model paths are selected for testing
due to the budgetary constraints. Recent work has sought to increase the amount
of coverage per test case or to improve the effectiveness of the testing by selecting
the most critical areas to test. The path prefix strategy is an "adaptive" strategy that
uses previous paths tested as a guide in the selection of subsequent test paths.
Prather and Myers [75] prove that the path prefix strategy achieves total branch
coverage.

The identification of essential paths is a strategy which reduces the path
coverage required by nearly 40 percent [20]. The basis for the reduction is the
elimination of non-essential paths. Paths which are overlapped by other paths are
non-essential. The model control flow graph is transformed into a directed graph
whose arcs (called primitive arcs) correspond to the essential paths of the model.
Non-essential arcs are called inheritor arcs because they inherit information from
the primitive arcs. The graph produced during the transformation is called an inheritor-
reduced graph. Chusho [20] presents algorithms for efficiently identifying non-
essential paths and reducing the control graph into an inheritor-reduced graph, and
for applying the concept of essential paths to the selection of effective test data.

O. Balci, Validation, verification, and testing techniques 149

3.4.4. Symbolic execution

Symbolic execution is used to assess model accuracy by executing the model
using symbolic values rather than actual data values for input. It is performed by
feeding symbolic inputs into the (sub)model and producing expressions for the
output which are derived from the transformation of the symbolic data along model
execution paths. Consider, for example, the following function:

function jobArr ivalTime(arr ivalRate,currentCIock,randomNumber)

lag = - 1 0

Y = lag * currentCIock

Z = 3 * Y

if Z < 0 then

arr ivalTime = currentCIock - Iog(randomNumber) / arr ivalRate

else

arr ivalTime = Z - Iog (randomNumber) / arr ivalRate

end if

return arr ivalTime

end jobArr ivalTime

In symbolic execution, lag is substituted in Y resulting in Y = -10.currentClock.
Substituting again, we find z = -30*eurrentCIock. Since currentCIock is always zero
or positive, an error is detected that z will never be greater than zero.

When unresolved conditional branches are encountered, a decision must be
made which path to traverse. Once a path is selected, execution continues down the
new path. At some point in time, the execution evaluation will return to the branch
point and the previously unselected branch will be traversed. All paths eventually
are taken.

The result of the execution can be represented graphically as a symbolic
execution tree [2, 49]. The branches of the tree correspond to the paths of the model.
Each node of the tree represents a decision point in the model and is labeled with
the symbolic values of data at that juncture. The leaves of the tree are complete
paths through the model and depict the symbolic output produced.

Symbolic execution assists in showing path correctness for all computations
regardless of test data and is also a great source of documentation. However, it has
the following disadvantages: (1) the execution tree can explode in size and become
too complex as the model grows, (2) loops cause difficulties although inductive
reasoning and constraint analysis may help, (3) loops make thorough execution
impossible since all paths must be traversed, and (4) complex data structures may
have to be excluded because of difficulties in symbolically representing particular
data elements within the structure [25,49, 76].

150 O. Balci, Validation, verification, and testing techniques

3.5. CONSTRAINT VV&T TECHNIQUES

Constraint VV&T techniques are employed to assess model correctness using
assertion checking, boundary analysis, and inductivg assertions.

3.5.1. Asser t ion checking

An assertion is a statement that should hold true as the simulation model
executes. Assertion checking is a verification technique used to check what is

happening against what the modeler assumes is happening so as to guard model
execution against potential errors. The assertions are placed in various parts of the
model to monitor model execution. They can be inserted to hold true global ly - or
the whole model; regional ly - for some submodels; locally - within a submodel; or
at entry and exit of a submodel. The assertions are similar in structure and the
general format for a local assertion is [88]:

ASSERT LOCAL (extended-logical-expression) [optional-qualifiers]
[control-options]

The "optional-qualifiers" may be chosen as all, some, after jth job, before time t,
etc. The "control-options" may have the following example syntax [88]:

I-f HALT [VIAl proc - n a m e } l • .-LIMIT n tVIOLATIONS] HE-- l T ---

For example, the programmed model in figure 4 can be instrumented by
inserting the following local assertion right after the 5th Block to stop the simulation
if the frequency of violation exceeds an allowable value of 1%:

ASSERT LOCAL((100*XF$COUNT/N$TSTB) 'LE' I) LIMIT 1

where N$TSTB is a GPSS/H Standard Numerical Attribute giving the total number
of entries into the Block labeled as TSTB.

Consider, for example, the following pseudo-code [96]:

Base := Hours * PayRate;
Gross := Base * (1 + BonusRate);

In just these two simple statements, several assumptions are being made. It is
assumed that Hours, PayRate, Base, BonusRate, and Gross are all non-negative.
The following asserted code can be used to prevent execution errors due to incorrect
values inputted by the user:

Assert Local (Hours > 0 and PayRate > 0 and BonusRate > 0);
Base := Hours * PayRate;
Gross := Base * (1 + BonusRate);

Clearly, the assertion checking serves two important needs: (1) it verifies that
the model is functioning within its acceptable domain, and (2) the assertion statement

O. Balci, Validation, verification, and testing techniques 151

documents the intentions of the modeler. However, the assertion checking degrades
the model execution performance. If the execution performance is critical, the
assertions should be labeled as comments and should be kept permanently to provide
both documentation and means for maintenance testing [2].

Usually, a language should be defined for assertion specification [43] and a
preprocessor is needed to translate assertions into the simulation programming
language. Unfortunately, most of the current simulation programming languages
do not provide assertion checking although this notion is not at all new, dating
back to 1972 when Satterthwaite included an ASSERT statement in his version of
Algol W [81].

3.5.2. Boundary analysis

Boundary analysis is employed to test model accuracy by using test cases on
the boundaries of input equivalence classes. A model's input domain can usually
be divided into classes of input data (known as equivalence classes) which cause
the model to function the same way. For example, a traffic intersection model might
specify the probability of left turn in a three-way turning lane as 0.2, the probability
of right turn as 0.35, and the probability of travelling straight as 0.45. This probabilistic
branching can be implemented by using a uniform random number generator that
produces numbers in the range 0 < rn < 1. Thus, three equivalence classes are identified:
0 < rn < 0.2, 0.2 < rn < 0.55, and 0.55 < rn < 1. Each test case from within a given
equivalence class has the same effect on the model behavior, i.e., produces the same
direction of turn.

In boundary analysis, test cases are generated just within, on top of, and just
outside of the equivalence classes [62]. In the example above, the following test
cases are selected for the left turn: 0.0, + 0.000001, 0.199999, 0.2, and 0.200001.
In addition to generating test data on the basis of input equivalence classes, it is
also useful to generate test data which will cause the model to produce values on
the boundaries of output equivalence classes [62]. The underlying rationale for this
technique as a whole is that the most error-prone test cases lie along the boundaries
[69]. Notice that invalid test cases used in the example above will cause the model
execution to fail; however, this failure should be as expected and meaningfully
documented.

3.5.3. Induct ive assert ions

Inductive assertions are used to assess model correctness based on an approach
that is very close to formal proof of model correctness. It is conducted in three
steps. In step 1, input-to-output relations for all model variables are identified. In
step 2, these relations are converted into assertion statements and are placed along
the model execution paths in such a way as to divide the model into a finite number
of "assertion-bound" paths, i.e., an assertion statement lies at the beginning and end

152 O. Balci, Validation, verification, and testing techniques

of each model execution path. In step 3, verification is achieved by proving that for
each path: if the assertion at the beginning of the path is true, and all statements
along the path are executed, then the assertion at the end of the path is true. If all
paths plus model termination can be proved, by induction, the model is proved to
be correct [55, 77].

3.6. FORMAL VV&T TECHNIQUES

Formal VV&T techniques are based on formal mathematical proof of correctness.
If attainable, formal proof of correctness is the most effective means of model
VV&T. Unfortunately, "if attainable" is the overriding point with regard to formal
VV&T techniques. Current state-of-the-art formal proof of correctness techniques
are simply not capable of being applied to even a reasonably complex simulation
model. However, formal techniques serve as the foundation for other VV&T techniques
and the most commonly known seven techniques are covered below: (1) induction,
(2) inference, (3) X-calculus, (4) logical deduction, (5) predicate calculus, (6) predicate
transformation, and (7) proof of correctness [47, 96].

Induction, inference, and logical deduction are simply acts of justifying
conclusions on the basis of premises given. An argument is valid if the steps used
to progress from the premises to the conclusion conform to established rules of
inference. Inductive reasoning is based on invariant properties of a set of observations
(assertions are invariants since their value is defined to be true). A typical inductive
argument would be one similar to the one given in section 3.5.3 for inductive
assertions: given that the initial model assertion is correct, it stands to reason that
if each path progressing from that assertion can be shown to be correct, and subsequently
each path progressing from the previous assertion is correct, etc., then the model
must be correct if it terminates. Formal induction proof techniques exist for the
intuitive explanation just given.

The X-calculus [19] is a system for transforming the model into formal expressions.
It is a string-rewriting system and the model itself can be considered as a large string.
The ~.-calculus specifies rules for rewriting strings, i.e., transforming the model into
X-calculus expressions. Using the X-calculus, the modeler can formally express the
model so that mathematical proof of correctness techniques can be applied.

The predicate calculus provides rules for manipulating predicates. A predicate
is a combination of simple relations, such as completed_jobs > steady_state length.
A predicate will either be true or false. The model can be defined in terms of
predicates and manipulated using the rules of the predicate calculus. The predicate
calculus forms the basis of all formal specification languageS [86]. Predicate
transformation [24, 100] provides a basis for verifying model correctness by formally
defining the semantics of the model with a mapping which transforms model output
states to all possible model input states. This representation provides the basis for
proving model correctness.

O. Balci, Validation, verification, and testing techniques 153

Formal proof of correctness corresponds to expressing the model in a precise
notation and then mathematically proving that the executed model terminates and
it satisfies the requirements specification with sufficient accuracy [5]. Attaining
proof of correctness in a realistic sense is not possible under the current state of
the art. However, the advantage of realizing proof of correctness is so great that
when the capability is realized, it will revolutionize the model VV&T.

4. Credibility assessment stages

It is very important to understand the principles of simulation model VV&T
when applying the VV&T techniques throughout the entire life cycle of a simulation
study. Balci [9] presents 15 principles that help the researchers, practitioners and
managers better understand what model VV&T is all about. These principles serve
to provide the underpinnings for the VV&T techniques described in section 3.
Understanding and applying these principles is crucially important for the success
of a simulation study.

Table 2 marks the VV&T techniques that are applicable for each of the ten
credibility assessment stages described below. The more of these techniques we
apply the more confidence we gain in the credibility of a life cycle phase. The
VV&T activities should continue until a sufficient level of confidence is achieved.

4.1. FORMULATED PROBLEM VV&T

When a problem is recognized, a decision maker (a client or sponsor group)
initiates a study by communicating the problem to an analyst (a problem-solver or
a consultant/research group). The communicated problem is rarely clear, specific,
or organized. Consequently, an essential study to formulate the actual problem
usually follows. Problem Formulation (problem structuring or problem definition)
is the process by which the initially communicated problem is translated into a
formulated problem sufficiently well defined to enable specific research action [98].

Formulated problem VV&T deals with substantiating that the formulated
problem contains the actual problem in its entirety and is sufficiently well structured
to permit the derivation of a sufficiently credible solution [10]. Failure to formulate
the actual problem results in the Type III error. Once the Type III error is committed,
regardless of how well the problem is solved, the simulation study will either end
unsuccessfully or with the Type II error. Therefore, the accuracy of the formulated
problem greatly affects the credibility and acceptability of simulation results.

Audit, cause-effect graphing, consistency checking, desk checking, face
validation, inspections, reviews, structural analysis, and walkthroughs can be applied
for conducting formulated problem VV&T. In applying cause-effect graphing, a
causality network is created to analyze the potential root causes of the communicated
problem [10]. The questionnaire developed by Balci and Nance [10] with 38 indicators
can be used in applying audit, inspections, reviews, and walkthroughs.

154 O. Balci. Validation. verification, and testing techniques

Table 2

Applicability of the VV&T techniques for the credibility assessment stages.

Assertion checking
Audit
Black-box testing
Bottom-up testing
Boundary analysis
Cause-effect graphing
Consistency checking
Data flow analysis
Debugging
Desk Checking
Execution Monitoring
Execution Profiling
Execution Tracing
Face Validation
Field Testing
Graph-based analysis
Graphical comparisons
Induction
Inductive assertions
Inference
Inspections
Lambda calculus
Logical deduction
Partition analysis
Path analysis
Predicate calculus
Predicate transf.
Predictive validation
Proof of correctness
Regression testing
Reviews
Semantic analysis
Sensitive analysis
Statistical techniques
Stress testing
Structural analysis
Submodel testing
Symbolic debugging
Symbolic execution
Syntax analysis
lop-down testing
luring test
Visualization
Walkthroughs
White-box testing

FP FA of~S&OD Model
VV&T Sim. VV&T Qual.

CM PM ED Data EM Pres.
VV&T VV&T VV&T VV&T VV&T VV&'I"

¢
./. ¢" ,/ . / ¢" . /

¢.

J
¢-

I/ ¢" ¢.
./ , / 4" . / ,/

./ . /
¢-

. / , / ¢" . / ¢"
./
. /
. /

, / ,/ ,/ , / ¢" . /

¢-

. / ¢. ¢. ¢r i/

,/ e" , / ¢ ¢

¢' , / ¢"

, / ¢" , / ~/ i/

e"
./
. /
, /
. /
I/
¢-
, /
. /
¢.

J
, /

. /

./

. /
¢-

, /

¢.
, /
. /
. /
¢.
¢.

. /

,/

4
¢-

./ ¢ . /

,I ¢" J , /
j ¢r

J
J
./

J , / ¢" ,/
, / , / J
J ¢
./ , / ¢" ¢.
, / ¢
¢ ¢
¢" ¢

./ ,/ ,I , /
¢.

, / , /
¢ ¢

J
J
J

¢ J J ¢

J
, /

¢ J
, /
¢
, /

¢
, / , / , / ¢'

, / , /

, / J
¢.

¢ , / J
¢

¢" J
¢ ¢

¢ J
¢
, /
¢,

¢r , / j e"
¢

O. Balci, Validation, verification, and testing techniques 155

4.2. FEASIBILITY ASSESSMENT OF SIMULATION

All alternative techniques that can be used in solving the formulated problem
should be identified. A technique whose solution is estimated to be too costly or
is judged to be not sufficiently beneficial with respect to the study objectives should
be disregarded. Among the qualified ones, the technique with the highest expected
benefits/cost ratio should be selected.

The statement "when all else fails, use simulation" is misleading if not invalid.
The question is not to bring a solution to the problem, but to bring a sufficiently
credible one which will be accepted and used by the decision maker(s). A technique
other than simulation may provide a less costly solution, but it may not be as useful.

Sometimes, the communicated problem is .formulated under the influence of
a solution technique in mind. Occasionally, simulation is chosen without considering
any other technique just because it is the only one the analyst(s) can use. Skipping
the investigation of solution techniques process may result in unnecessarily expensive
solutions, sometimes to the wrong problems.

As a result of the investigation of solution techniques process, we assume
that simulation is chosen as the most appropriate solution technique. At this point,
the simulation project team should be activated and be made responsible for the
formulated problem VV&T and feasibility assessment of simulation before proceeding
in the life cycle.

Audit, face validation, inspections, reviews, and walkthroughs can be applied
for assessing the feasibility of simulation with the use of indicators such as: (1) Are
the benefits and cost of simulation solution estimated correctly?; (2) Do the potential
benefits of simulation solution justify the estimated cost of obtaining it?; (3) Is it
possible to solve the problem using simulation within the time limit specified?; (4)
Can all of the resources required by the simulation project be secured?; and (5) Can
all of the specific requirements (e.g., access to pertinent classified information) of
the simulation project be satisfied?

4.3. SYSTEM AND OBJECTIVES DEFINITION VV&T

For the purpose of generality, the term "system" is used to refer to the entity
that contains the formulated problem. System and objectives definition VV&T deals
with assessing the credibility of the system investigation process in which system
characteristics are explored for consideration in system definition and modeling.
Shannon [87] identifies six major system characteristics: (1) change, (2) environment,
(3) counterintuitive behavior, (4) drift to low performance, (5) interdependency, and
(6) organization. Each characteristic should be examined with respect to the study
objectives that are identified with the formulation of the problem.

In simulation, we mostly deal with stochastic and dynamic real systems that
change over a period of time. How often and how much the system will change
during the course of a simulation study should be estimated so that the model

156 O. Balci, Validation, verification, and testing techniques

representation can be updated accordingly. Changes in the system may also change
the study objectives.

A system's environment consists of all input variables that can significantly
affect its state. The input variables are identified by assessing the significance of
their influence on the system's state with regard to the study objectives. For example,
for a traffic intersection system, the interarrival time of vehicles can be identified
as an input variable making up the environment, whereas pedestrian arrivals may
be omitted due to their negligible effect on the system's behavior of interest (e.g.,
average waiting time of vehicles). Underestimating the influence of an input variable
may result in inaccurate environment definition.

Some complex systems may show counterintuitive behavior which we should
try to identify for consideration in defining the system. However, this is not an easy
task, especially for those systems containing many subjective elements (e.g., social
systems). Cause and effect are often not closely related in time or space. Symptoms
may appear long after the primary causes [87]. To be able to identify counterintuitive
behavior, it is essential that the simulation project employs people who have expert
knowledge about the system under study.

A system may show a drift to low performance due to the deterioration of its
components (e.g., machines in a manufacturing system) over a period of time. If
this characteristic exists, it should be incorporated within the model representation
especially if the model's intended use is forecasting.

Before we start abstracting the real system for the purpose of modeling, we
should examine the interdependency and organization characteristics of the system.
In a complex stochastic system, many activities or events take place simultaneously
and influence each other. The system complexity can be overcome by way of
decomposing the system into subsystems and subsystems into other subsystems.
This decomposition can be carried out by examining how system elements or
components are organized.

Audit, consistency checking, desk checking, face validation, inspections, reviews,
structural analysis, and walkthroughs can be applied for conducting system and
objectives definition VV&T by using indicators such as: (1) Since systems and
objectives may change over a period of time, will we have the same system and
objectives definition at the conclusion of the simulation study (which may last from
six months to several years)?; (2) Is the system's environment (boundary) identified
correctly?; (3) What counterintuitive behavior may be caused within the system and
its environment?; (4) Will the system significantly drift to low performance requiring
a periodic update of the system definition?; and (5) Are the interdependency and
organization of the system characterized accurately? The objective here is to substantiate
that the system characteristics are identified and the study objectives are explicitly
defined with sufficient accuracy. An error made here may not be caught until very
late in the life cycle resulting in a high cost of correction or an error of Type II
or III.

O. Balci, Validation, verification, and testing techniques 157

4.4. MODEL QUALIFICATION

Model qualification is intended for assessing the credibility of the model
formulation process. Model formulation is the process by which a conceptual model
is envisioned to represent the system under study. The Conceptual Model is the
model which is formulated in the mind of the modeler [64]. Model formulation and
model representation constitute the process of model design. Input data analysis and
modeling [54] is a subprocess of model formulation process and is conducted with
respect to the way the model is driven, self- or trace-driven.

Under some study objectives (e.g., evaluation, comparison, determination of
functional relations) and for model validation, input data model is built to represent
the system's input process. In a self-driven simulation (e.g., of a computer system),
we collect data on an input random variable (e.g., interarrival time of jobs), identify
the distribution, estimate its parameters, and conclude upon a probability distribution
as the input data model to sample from in driving the simulation model [54]. In a
trace-driven simulation, we trace the system (e.g., using hardware or software monitors)
and utilize the refined trace data as the input data model to use in driving the
simulation model.

A model should be conceptualized under the guidance of a structured approach
such as the Conical Methodology [64-66]. One key idea behind the use of a
structured approach is to control the model complexity so that we can successfully
verify and validate the model. The use of a structured approach is an important
factor determining the success of a simulation project, especially for large-scale and
complex models. During the conceptualization of the model, one makes many
assumptions in abstracting the reality. Each assumption should be explicitly specified.

Model Qualification deals with the justification that all assumptions made are
appropriate and the conceptual model provides an adequate representation of the
system with respect to the study objectives. Audit, consistency checking, desk
checking, face validation, inspections, reviews, and walkthroughs can be applied for
conducting model qualification.

4.5. COMMUNICATIVE MODEL VV&T

Communicative model VV&T is concerned with substantiating the sufficient
accuracy of the model representation process which is the process of translating
the conceptual model into a communicative model. A Communicative Model is
"a model representation which can be communicated to other humans, can be
judged or compared against the system and the study objectives by more than one
human" [64]. Several communicative models may be developed; one in the form
of Structured English intended for nontechnical people, another in the form of a
micro flowchart intended for a programmer.

Communicative model VV&T deals with confirming the adequacy of the
communicative model to provide an acceptable level of agreement for the domain

158 O. Balci, Validation, verification, and testing techniques

of intended application. Domain of Intended Application [83] is the prescribed
conditions for which the model is intended to match the system under study. Level
of Agreement [83] is the required correspondence between the model and the system,
consistent with the domain of intended application and the study objectives.

Audit, cause-effect graphing, consistency checking, data flow analysis, desk
checking, face validation, graph-based analysis, inspections, reviews, structural analysis,
and walkthroughs can be applied for conducting communicative model VV&T.

4.6. PROGRAMMED MODEL VV&T

Programmed model VV&T deals with the assessment of the process of
programming which is the process of translating the communicative model into a
programmed model. A Programmed Model is an executable simulation model
representation in a simulation programming language such as GPSS, SIMAN,
SIMSCRIPT, SIMULA, and SLAM or in a high-level programming language such
as C++, Fortran, and Pascal. The programmed model does not incorporate an experiment
design.

The techniques applicable for conducting communicative model VV&T are
marked in table 2.

4.7. EXPERIMENT DESIGN VV&T

Experiment design VV&T deals with substantiating the sufficient accuracy
of the process of design of experiments which is the process of formulating a plan
to gather the desired information at minimal cost and to enable the analyst to draw
valid inferences [87]. An Experimental Model is the programmed model incorporating
an executable description of operations presented in such a plan.

A variety of techniques are available for the design of experiments. Response-
surface methodologies can be used to find the optimal combination of parameter
values which maximize or minimize the value of a response variable [54]. Factorial
designs can be employed to determine the effect of various input variables on a
response variable [32]. Variance reduction techniques can be implemented to obtain
greater statistical accuracy for the same amount of simulation [54]. Ranking and
selection techniques can be utilized for comparing alternative systems [54, 17].
Several methods (e.g., replication, batch means, regenerative) can be used for statistical
analysis of simulation output data.

The techniques marked in table 2 can be applied for conducting experiment
design VV&T with the use of indicators such as: (1) Are the algorithms used for
random variate generation theoretically accurate?; (2) Are the random variate generation
algorithms translated into executable code accurately? (Error may be induced by
computer arithmetic or by truncation due to machine accuracy, especially with order
statistics (e.g., X = -loge(1 - U)) [84].); (3) How well is the random number generator

O. Balci, Validation, verification, and testing techniques 159

tested? (Using a generator which is not rigorously shown to produce uniformly
distributed independent numbers with sufficiently large period may invalidate the
whole experiment design.); (4) Are appropriate statistical techniques implemented
to design and analyze the simulation experiments? How well are the underlying
assumptions satisfied? (See [53] for several reasons why output data analyses have
not been conducted in an appropriate manner.); (5) Is the problem of the initial
transient (or the start-up problem) [97] appropriately addressed?; and (6) For comparison
studies, are identical experimental conditions replicated correctly for each of the
alternative operating policies compared?

4.8. DATA VV&T

Data VV&T involves input data model VV&T and deals with substantiating
that all data used throughout the model development phases of the life cycle in
figure 2 are accurate, complete, unbiased, and appropriate in their original and
transformed forms. An input data model is the characterization of an input process
(e.g., characterization of an arrival process by Poisson probability distribution).
U.S. GAO [93] emphasizes the importance of input data model validation in credibility
assessment of simulations.

In those cases where data cannot be collected, data values may be determined
through calibration. Calibration is an iterative process in which a probabilistic
characterization for an input variable or a fixed value for a parameter is tried until
the model is found to be sufficiently valid.

Assertion checking, audit, consistency checking, data flow analysis, desk
checking, face validation, inspections, reviews, statistical techniques, and walkthroughs
can be applied for conducting data VV&T with the use of indicators such as: (1)
Does each input data model possess a sufficiently accurate representation?; (2) Are
the parameter values identified, measured, or estimated with sufficient accuracy?;
(3) How reliable are the instruments used for data collection and measurement?; (4)
Are all data transformations done accurately? (e.g., are all data transformed correctly
into the same time unit of the model?); (5) Is the dependence between the input
variables, if any, represented by the input data model(s) with sufficient accuracy?
(Blindly modeling bivariate relationships using only correlation to measure dependency
is cited as a common error by Schmeiser [84].); and (6) Are all data up-to-date?

4.9. EXPERIMENTAL MODEL VV&T

Experimental Model VV&T deals with substantiating that the experimental
model has sufficient accuracy in representing the system as defined under the study
objectives. All of the 45 techniques listed in table 2 can be applied for conducting
model VV&T. The applicability of the 45 techniques depends upon the following
cases where the system being modeled is: (1) completely observable - all data required

160 O. Balci, Validation, verification, and testing techniques

for model VV&T can be collected from the system, (2) partially observable - some
required data can be collected, or (3) nonexistent or completely unobservable. The
statistical techniques in table 1 are applicable only for case 1.

4. I 0. PRESENTATION VV&T

Presentation VV&T deals with justifying that the simulation results are
interpreted, documented, and communicated with sufficient accuracy.

Since all simulation models are descriptive, simulation results must be interpreted.
(A descriptive model describes the behavior of a system without any value judgment
on the "goodness" or "badness" of such behavior [28].) In the simulation of an
interactive computer system, for example, the model may produce a value of 20
seconds for the average response time; but, it does not indicate whether the value
20 is a "good" result or a "bad" one. Such a judgment is made by the simulation
analyst depending upon the study objectives. Under one set of study objectives the
value 20 may be too high; under another, it may be reasonable. The project team
should review the way the results are interpreted in every detail to evaluate interpretation
accuracy. Errors may be induced due to the complexity of simulation results, especially
for large scale and complex models.

Gass [38] points out that "we do not know of any model assessment or
modeling project review that indicated satisfaction with the available documentation."
Nance [63] advocates the use of standards in simulation documentation. The
documentation problem should be attributed to the lack of automated support
for documentation generation integrated with model development continuously
throughout the entire life cycle. The model development environment [6, 11]
provides such computer-aided assistance for documenting a simulation study with
respect to the phases, processes, and credibility assessment stages of the life cycle
in figure 2.

The simulation project team must devote sufficient effort in communicating
technical simulation results to decision makers in a language they will understand.
They must pay more attention to translating from the specialized jargon of the
discipline into a form that is meaningful to the nonsimulationist and nonmodeler.
Simulation results may be presented to the decision makers as integrated within a
Decision Support System (DSS). With the help of a DSS, a decision maker can
understand and utilize the results much better. The integration accuracy of simulation
results within the DSS must be verified. If results are directly presented to the
decision makers, the presentation technique (e.g., overheads, slides, films, etc.)
must be ensured to be effective enough. The project management must make sure
that the team members are trained and possess sufficient presentation skills.

Audit, consistency checking, desk checking, face validation, inspections, reviews,
structural analysis, and walkthroughs can be applied for conducting presentation
VV&T.

O. Balci, Validation, verification, and testing techniques 161

5. Concluding remarks and research directions

The life cycle application of VV&T is extremely important for successful
completion of complex and large-scale simulation studies. This point must be clearly
understood by the sponsor of the simulation study and the organization conducting
the simulation study. The sponsor must furnish funds under the contractual agreement
and require the contractor to apply VV&T throughout the entire life cycle.

Assessing credibility throughout the life cycle of a simulation study is an
onerous task. Applying the VV&T techniques throughout the life cycle is time
consuming and costly. In practice, under time pressure to complete a simulation
study, the VV&T and documentation are sacrificed first. Computer-aided assistance
for the VV&T is required to alleviate these problems. More research is needed to
bring automation to the application of the VV&T techniques.

Integration of VV&T with model development is crucial. This integration is
best achieved within a computer-aided simulation software engineering environment
[6, 11]. More research is needed for this integration.

How much to test or when to stop testing depends on the study objectives.
The testing should continue until we achieve sufficient confidence in credibility and
acceptability of simulation results. The sufficiency of the confidence is dictated by
the study objectives.

Establishing a simulation quality assurance (SQA) program within the
organization conducting the simulation study is extremely important for successful
credibility assessment. The SQA management structure goes beyond VV&T and is
also responsible for assessing other model quality characteristics such as maintainability,
reusability, and usability (human-computer interface). The management of the SQA
program and the management of the simulation project must be independent of each
other and neither should be able to overrule the other [82].

Subjectivity is and will always be part of the credibility assessment for a
reasonably complex simulation study. The reason for subjectivity is two-fold: modeling
is an art and credibility assessment is situation dependent. A unifying approach
based on the use of indicators measuring qualitative as well as quantitative aspects
of a simulation study should be developed.

6. Glossary

Assertion Checking: A technique for examining what is happening against what the
modeler a s s u m e s is happening so as to guard model execution against potential
errors,

Audit: A technique for investigating how adequately the simulation study is conducted
with respect to established practices, standards, and guidelines and for establishing
traceability within the simulation study.

162 O. Balci, Validation, verification, and testing techniques

Black-Box Testing: A technique for assessing the accuracy of model input-output
transformation. It is applied by feeding inputs (test data) to the model and evaluating
the corresponding outputs. The concern is how accurately the model transforms a
given set of input data into a set of output data.

Bottom-Up Testing: A technique, used in conjunction with bottom-up model
development strategy, in which testing starts with the submodels at the base level
(i.e., the ones that are not decomposed further) and culminates with the submodels
at the highest level. As each submodel is completed, it is thoroughly tested. When
submodels belonging to the same parent have been developed and tested, the submodels
are integrated and integration testing is performed. This process is repeated in a
bottom-up manner until the whole model has been integrated and tested.

Boundary Analysis: A technique for assessing model accuracy by using test cases
on the boundaries of input equivalence classes which are classes of input data that
cause the model to function the same way.

Calibration: An iterative process in which a probabilistic characterization for an
input variable or a fixed value for a parameter is tried until the model is found to
be sufficiently valid.

Cause-Effect Graphing: A technique conducted by addressing the question of
"what causes what in the model representation?" It is performed by first identifying
causes and effects in the system being modeled and by examining if they are
accurately reflected in the model specification. Then, the semantics are expressed
in a cause-effect graph. A decision table is created by tracing back through the
graph to determine combinations of causes which result in each effect. The decision
table is then converted into test cases with which the model is tested.

Communicat ive Model: A model representation which can be communicated to
other humans and can be judged or compared against the system and the study
objectives by more than one human [64].

Communicat ive Model VV&T: Confirming the adequacy of the communicative
model to provide an acceptable level of agreement for the domain of intended
application.

Conceptual Model: The model which is formulated in the mind of the modeler [64].

Consistency Checking: A technique which deals with substantiating that: (a) the
model representation does not contain contradictions, (b) the cosmetic style with
which language elements (e.g., naming conventions, use of upper, lower, and mixed
case, etc.) are applied is used consistently, and (c) the data elements are manipulated
uniformly (e.g., data assignment to variables, data use within computations, data
passing among submodels, data representation and use during model input and
output).

0. Balci, Validation, verification, and testing techniques 163

Data Flow Analysis: A technique for assessing model accuracy with respect to the
use of model variables. A data flow graph is constructed to aid in the data flow
analysis. The nodes of the graph represent statements and corresponding variables.
The edges represent control flow.

Data VV&T: Substantiating that each input data model has sufficient accuracy in
representing the simulation model's input process (e.g., assessing the accuracy of
characterizing an arrival process by Poisson probability distribution) and that all
data used throughout the model development phases are accurate, complete, unbiased,
and appropriate in their original and transformed forms.

Debugging: An iterative process the purpose of which is to uncover errors or
misconceptions that cause the model's failure and to define and carry out the model
changes that correct the errors.

Design of Experiments: The process of formulating a plan to gather the desired
information at minimal cost and to enable the analyst to draw valid inferences [87].

Desk Checking: A technique for thoroughly examining one's work to ensure correctness,
completeness, consistency, and unambiguity.

Domain of Applicability: The set of prescribed conditions for which the experimental
model has been tested, compared against the system to the extent possible, and
judged suitable for use [83].

Domain of Intended Application: The prescribed conditions for which the model
is intended to match the system under study [83].

Execution Monitoring: A technique for revealing errors by examining low-level
information about activities and events which take place during model execution.
It requires model instrumentation.

Execution Profiling: A technique for revealing errors by examining high-level
information (profiles) about activities and events which take place during model
execution. It requires model instrumentation.

Execution Tracing: A technique for revealing errors by "watching" the line-by-line
execution of a simulation model. It requires model instrumentation.

Experiment Design VV&T: Substantiating that the experiments are designed and
implemented with sufficient accuracy.

Experimental Model: The programmed model incorporating an executable description
of an experiment design.

Face Validation: A technique in which the project team members, potential users
of the model, people knowledgeable about the system under study, based on their
estimates and intuition, subjectively compare model and system behaviors to judge
whether the model and its results are reasonable.

164 O. Balci, Validation, verification, and testing techniques

Field Testing: A technique in which the model is placed in an operational situation
for the purpose of collecting as much information as possible for model validation.
It is especially useful for validating models of military combat systems.

Formulated Problem VV&T: Substantiating that the formulated problem contains
the actual problem in its entirety and is sufficiently well structured to permit the
derivation of a sufficiently credible solution.

Functional Testing: See Black-Box Testing.

Graph-Based Analysis: A tct.hniquc for a~c~in/~ mudcl t;lctJlbility ba~ed trrl t ~
use of a graphical representation of the model (e.g., data flow graph, control flow
graph).

Graphical Comparisons: A technique by which the graphs of values of model
variables over time are compared with the graphs of values of system variables to
investigate characteristics such as similarities in periodicities, skewness, number
and location of inflection points, logarithmic rise and linearity, phase shift, trend
lines, and exponential growth constants.

Indicator: An indirect measure of a concept which is decomposed into other indicators
until the ones at the base level (i.e., the ones that are not decomposed further) are
directly measurable.

Induction: A formal proof of correctness technique for estimating the validity of
the whole set of observations based on the validity of a subset of observations as
evidence.

Inductive Assertions: A technique for assessing model correctness based on an
approach that is very close to formal proof of model correctness. It is conducted
in three steps: (1) input-to-output relations for all model variables are identified; (2)
these relations are converted into assertion statements and are placed along the
model execution paths in such a way as to divide the model into a finite number
of "assertion-bound" paths, i.e., an assertion statement lies at the beginning and end
of each model execution path; and (3) verification is achieved by proving that for
each path: if the assertion at the beginning of the path is true, and all statements
along the path are executed, then the assertion at the end of the path is true. If all
paths plus model termination can be proved, by induction, the model is proved to
be correct.

Inference: A formal proof of correctness technique for deriving logical conclusions
from the premises given.

Input Data Model VV&T: Substantiating that the input data model has sufficient
accuracy in representing the simulation model 's input process (e.g., assessing the
accuracy of characterizing an arrival process by Poisson probability distribution).

Inspections: A technique conducted by a team of four to six members with the
objective of finding and documenting faults. It consists of five distinct phases:
overview, preparation, inspection, rework, and follow-up.

O. Balci, Validation, verification, and testing techniques 165

Lambda Calculus: A technique for transforming the model into formal expressions
by which mathematical proof of correctness techniques can be applied for the
purpose of VV&T.

Level of Agreement: The required correspondence between the model and the system,
consistent with the domain of intended application and the study objectives [83].

Logical Deduction: A formal proof of correctness technique for reasoning in which
a conclusion follows necessarily from the premises given.

Model: Representation and abstraction of anything such as a system, concept, problem,
or phenomena.

Model Builder's Risk: The probability of committing Type I error.

Model Certification: Confirmation (usually by a third party) that a simulation
model, within its domain of applicability, can produce results which are sufficiently
credible with respect to the study objectives.

Model Instrumentation: The insertion of additional code (probes) into the executable
model for the purpose of collecting information about model behavior during execution.
Probe locations are determined manually or automatically based on static analysis
of model structure. Automated instrumentation is accomplished by a preprocessor
which analyzes the model static structure (usually via graph-based analysis) and
inserts probes at appropriate places.

Model Qualification: Justifying that all assumptions underlying the conceptual
model are appropriate and the conceptual model provides an adequate representation
of the system under study with respect to the study objectives.

Model Range of Accuracy: Simultaneous confidence intervals for the differences
between the means of corresponding model and system output variables obtained
by running the model with the "same" input data that drives the real system.

Model Testing: Demonstrating that inaccuracies exist or revealing the existence of
errors in the model. In model testing, we subject the model to test data or test cases to
see if it functions properly. 'Test failed" implies the failure of the model, not the test.

Model User's Risk: The probability of committing Type II error.

Model Validation: Substantiating that the model, within its domain of applicability,
behaves with satisfactory accuracy consistent with the study objectives. Model
validation deals with building the right model. It is conducted by running the model
under the "same" input conditions that drive the system and by comparing model
behavior with the system behavior.

Model Verification: Substantiating that the model is transformed from one form
into another, as intended, with sufficient accuracy. Model verification deals with
building the model right. The accuracy of transforming a problem formulation into
a model specification or the accuracy of converting a model representation in micro
flowchart into an executable computer program is evaluated in model verification.

166 O. Balci, Validation, verification, and testing techniques

Model W & T : Model testing is conducted to perform model validation and verification.
Some tests are devised to evaluate the behavioral accuracy (i.e., validity) of the
model, and some tests are intended to judge the accm-acy of model transformation
from one form into another (verification). Therefore, we commonly refer to the
whole process as model VV&T.

Partition Analysis: A technique for testing the model with the test data generated
by analyzing the model's functional representatives (partitions). It is accomplished
by: (1) decomposing both model specification and implementation into functional
representatives (partitions), (2) comparing the elements and prescribed functionality
of each partition specification with the elements and actual functionality of
corresponding partition implementation, (3) deriving test data to extensively test the
functional behavior of each partition, and (4) testing the model by using the generated
test data.

Path Analysis: A technique for assessing model correctness on the basis of complete
testing of all model control paths. It is performed in three steps: (1) the model
control structure is determined and represented in a control flow diagram, (2) test
data is generated to cause selected model logical paths to be executed, and (3) by
using the generated test data, the model is forced to proceed through each path in
its execution structure, thereby providing comprehensive testing.

Predicate Calculus: A technique that provides rules for manipulating predicates. A
predicate is a combination of simple relations which will either be true or false. The
model can be defined in terms of predicates and manipulated using the rules of the
predicate calculus for the purpose of VV&T.

Predicate Transformation: A technique that provides a basis for verifying model
correctness by formally defining the semantics of the model with a mapping which
transforms model output states to all possible model input states. This representation
provides the basis for proving model correctness.

Predictive Validation: A technique by which model validation is conducted using
past system data. The model is driven by past system input data and its forecasts
are compared with the corresponding past system output data to test the predictive
ability of the model.

Presentation VV&T: Substantiating that the simulation results are interpreted,
documented, and communicated with sufficient accuracy.

P rogrammed Model: A model representation that admits execution by a computer
to produce results [64].

Programmed Model VV&T: Substantiating that the programmed model possesses
sufficient accuracy in representing the system under study.

Proof of Correctness: A technique for expressing the model in a precise notation
and then mathematically proving that the executed model terminates and it satisfies
the requirements specification with sufficient accuracy.

O. Balci, Validation, verification, and testing techniques 167

Regression Testing: A technique for substantiating that correcting errors and/or
making changes in the model do not create other errors and adverse side-effects.
It is usually accomplished by retesting the modified model with the previous test
data sets used.

Reviews: A technique conducted by a team of experts and managers with the
objective of finding and documenting faults.

Self-Driven Simulation Model: A model driven by input values obtained via sampling
from probability distributions using random numbers.

Semantic Analysis: A technique by which the simulation programming language
compiler generates a wealth of information to help the modeler determine if the true
intent is accurately translated into the executable code.

Sensitivity Analysis: A technique for systematically changing the values of model
input variables and parameters over some range of interest and observing the effect
upon model behavior [87]. Unexpected effects may reveal invalidity.

Simulation: The process of constructing a model of a system which contains a
problem and conducting experiments with the model on a computer for a specific
purpose of experimentation to solve the problem.

Simulation Quality Assurance: Refers to the management structure responsible for
planning, preparing test cases, and administering VV&T activities throughout the
life cycle of a simulation study to assure sufficient credibility of simulation study
results.

Stress Testing: A technique for assessing model validity under extreme workload
conditions. This is usually accomplished by increasing the congestion in the model.

Structural Analysis: A technique for examining the model structure and determining
if it adheres to structured principles. It is conducted by constructing a control flow
graph of the model structure and examining the graph for anomalies, such as multiple
entry and exit points, excessive levels of nesting within a structure, and questionable
practices such as the use of unconditional branches (i.e., GOTOs).

Submodel Testing: The experimental model is instrumented to collect data on all
input and output variables of a submodel. The system is similarly instrumented (if
possible) to collect similar data. Then, each submodel behavior is compared with
corresponding subsystem behavior to judge submodel validity. If a subsystem can
be modeled analytically (e.g., as an M/M/I model), its exact solution can be compared
against the simulation solution to assess validity quantitatively.

Symbolic Debugging: A technique which allows the modeler to locate errors and
check numerous circumstances which lead up to the errors by employing a debugging
tool that allows the modeler to manipulate model execution while viewing the
model at the source code level. By setting "breakpoints", the modeler can interact
with the entire model one step at a time, at predetermined locations, or under
specified conditions.

168 O. Balci, Validation, verification, and testing techniques

Symbolic Execution: A technique for assessing model accuracy by executing the
model using symbolic values rather than actual data values for input. It is performed
by feeding symbolic inputs into the (sub)model and producing expressions for the
output which are derived from the transformation of the symbolic data along model
execution paths.

Syntax Analysis: A technique carried on by the simulation programming language
compiler to assure that the mechanics of the language are applied correctly.

System and Objectives Definition W&T: Substantiating that the system characteristics
are identified and the study objectives are explicitly defined with sufficient accuracy.

Top-Down Testing: A technique, used in conjunction with top-down model
development strategy, in which testing starts with the submodels at the highest level
and culminates with the submodels at the base level (i.e., the ones that are not
decomposed further). As each submodel is completed, it is thoroughly tested. When
submodels belonging to the same parent have been developed and tested, the submodels
are integrated and integration testing is performed. This process is repeated in a top-
down manner until the whole model has been integrated and tested.

Trace-Driven Simulation Model: A model driven by input sequences extracted
from trace data obtained through measurement of the real system.

Turing Test: A technique in which people with expert knowledge about the system
under study are presented with two sets of output data obtained, one from the model
and one from the system, under the same input conditions. Without identifying
which one is which, the people are asked to differentiate between the two. If they
succeed, they are asked how they were able to do it. Their response provides
valuable feedback for correcting model representation. If they cannot differentiate,
our confidence in model validity is increased.

Type I Error: The error of rejecting the model credibility when in fact the model
is sufficiently credible. Occurrence of Type I error may increase the cost of model
development or may cause the simulation study to end unsuccessfully.

Type II Error: The error of accepting the model credibility when in fact the model
is not sufficiently credible. Consequences of committing Type II error can be
catastrophic.

Type I l l Error: The error of solving the wrong problem. Once the Type III error
is committed, regardless of how well the problem is solved, the simulation study
will either end unsuccessfully or with the Type II error.

Visualization: Displaying graphical images of internal and external dynamic behavior
of a simulation model during execution.

Walkthroughs: A technique conducted by a team composed of a coordinator, model
developer, and three to six other members with the objective of discovering and
documenting faults.

O. Balci, Validation, verification, and testing techniques 169

Whi t e -Box Test ing: A technique which employs data f low and control f low diagrams
to assess the accuracy of internal model structure by examin ing model e lements
such as internal logic, internal data representat ions, submodel interfaces, and model
execut ion paths. Whi te -box testing is quite e f fec t ive for detect ing redundan t code,
faul ty model structure, and special case errors.

References

[1] A.F. Ackerman, P.J. Fowler and R.G. Ebenau, Software inspections and the industrial production
of software, in: Software Validation: Inspection, Testing, Verification, Alternatives, Proc. Symp. on
Software Validation, Darmstadt, Germany, ed. H.-L. Hausen (1983) pp. 13-40.

[2] W.R. Adrion, M.A. Branstad and J.C. Cherniavsky, Validation, verification, and testing of computer
software, Comp. Surveys 14(1982)159-192.

[3] D.J. Aigner, A note on verification of computer simulation models, Manag. Sci. 18(1972)615-619.
[4] F.E. Allen and J. Cooke, A program data flow analysis procedure, Commun. ACM 19(1976)

137-147.
[5] R.C. Backhouse, Program Construction and Verification (Prentice-Hall, London, 1986).
[6] O. Balci, Requirements for model development environments, Comp. Oper. Res. 13(1986)53-67.
[7] O. Balci, The implementation of four conceptual frameworks for simulation modeling in high-level

languages, in: Proc. 1988 Winter Simulation Conf., ed. M.A. Abrams, P.L. Haigh, and J.C. Comfort
(IEEE, Piscataway, NJ, 1988) pp. 287-295.

[8] O. Balci, Guidelines for successful simulation studies, in: Proc. 1990 Winter Simulation Conf., ed.
O. Balci, R.P. Sadowski, and R.E. Nance (IEEE, Piscataway, NJ, 1990) pp. 25-32.

[9] O. Batci, Principles of simulation model validation, verification, and testing, Technical Report TR-
94-24 Department of Computer Science. Virginia Tech, Blacksburg, VA (1994).

[10] O. Balci and R.E. Nance, Formulated problem verification as an explicit requirement of model
credibility, Simulation 45(1985)76-86.

[I 1] O. Balci and R.E. Nance, Simulation model development environments: A research prototype,
J. Oper. Res. Soc. 38(1987)753-763.

[12] O. Balci and R.G. Sargent, A methodology for cost-risk analysis in the statistical validation of
simulation models, Commun. ACM 24(1981)190-197.

[13] O. Balci and R.G. Sargent, Some examples of simulation model validation using hypothesis testing,
in: Proc. 1982 Winter Simulation Conf., ed. H.J. Highland, Y.W. Chao and O.S. Madrigal (IEEE,
Piscataway, NJ, 1982) pp. 620-629.

[14] O. Balci and R.G. Sargent, Validation of multivariate response models using Hotelling's two-sample
T 2 test, Simulation 39(1982)185-192.

[15] O. Balci and R.G. Sargent, Validation of multivariate response trace-driven simulation models,
in: Performance '83, ed. A. K. Agrawala and S.K. Tripathi (North-Holland, Amsterdam, 1983)
309-323.

[16] O. Balci and R.G. Sargent, Validation of simulation models via simultaneous confidence intervals,
Amer. J. Math. Manag. Sci. 4(1984)375-406.

[17] J. Banks and J.S. Carson, Discrete-Event System Simulation (Prentice-Hall, Englewood Cliffs, NJ,
1984).

[18] J. Banks, D. Gerstein and S.P. Searles, Modeling processes, validation, and verification of complex
simulations: A survey, in: Methodology and Validation, ed. 0. Balci (SCS, San Diego, CA, 1987)
pp. 13-18.

[19] H.P. Barendregt, The Lambda Calculus: Its Syntax and Semantics (North-Holland, New York,
198t).

170 O. Balci, Validation, verification, and testing techniques

[20] T. Chusho, Test data selection and quality estimation based on the concept of essential branches for
path testing, IEEE Trans. Software Eng. SE-13(1987)509-517.

[21] K.J. Cohen and R.M. Cyert, Computer models in dynamic economics, Quarterly J. Econ. 75(1961)
112-127.

[22] M.J. Damborg and L.F. Fuller, Model validation using time and frequency domain error measures,
ERDA Report 76-152, NTIS, Springfield, VA (1976).

[23] M.S. Deutsch, Software Verification and Validation: Realistic Project Approaches (Prentice-Hall,
Englewood Cliffs, NJ, 1982).

[24] E.W. Dijkstra, Guarded commands, non-determinacy and a calculus for the derivation of programs,
Commun. ACM 18(1975)453-457.

[25] L.K. Dillon, Using symbolic execution for verification of Ada tasking programs, ACM Trans. Progr.
Languages Syst. 12(1990)643-669.

[26] J.H. Dobbins, Inspections as an up-front quality technique, in: Handbook of Software Quality
"Assurance, ed. G.G. Schulmeyer and J.I. McManus (Van Nostrand-Reinhold, New York, NY, 1987)
pp. 137-177.

[27] R.H. Dunn, The quest for software reliability, in: Handbook of Software Quality Assurance, ed.
G.G. Schulmeyer and J.I. McManus (Van Nostrand-Reinhold, New York, NY, 1987) pp. 342-384.
S.E. Elmaghraby, The role of modeling in IE design, Ind. Eng. 19(1968)292-305.
J.R. Emshoff and R.L. Sisson, Design and Use of Computer Simulation Models (MacMillan, New
York, NY, 1970).
R.E. Fairley, An experimental program-testing facility, IEEE Trans. Software Eng. SE-1(1975)
350-357.
R.E. Fairley, Dynamic testing of simulation software, in: Proc. 1976 Summer Computer Simulation
Conf., Washington, DC (Simulation Councils, La Jolla, CA, 1976) pp. 708-710.
G.S. Fishman, Principles of Discrete Event Simulation (Wiley-Interscience, New York, NY, 1978).
G.S. Fishman and P.J. Kiviat, The analysis of simulation generated time series, Manag. Sci. 13(1967)
525-557.
J.W. Forrester, Industrial Dynamics (MIT Press, Cambridge, MA, 1961).
A.V. Gafarian and J.E. Walsh, Statistical approach for validating simulation models by comparison
with operational systems, in: Proc. 4th Int. Conf. on Operations Research (Wiley, New York, NY,
1969) pp. 702-705.
A.R. Gallant, T.M. Gerig and J.W. Evans, Time series realizations obtained according to an experimental
design, J. Amer. Statist. Assoc. 69(1974)639-645.
M. Garratt, Statistical validation of simulation models, in: Proc. 1974 Summer Computer Simulation
Conf, Houston, TX (Simulation Councils, La Jolla, CA, 1974) pp. 915-926,
S.I. Gass, Decision-aiding models: Validation, assessment, and related issues for policy analysis,
Oper. Res. 31(1983)603-631.
C.F. Hermann, Validation problems in games and simulations with special reference to models of
international politics, Behav. Sci. 12(1967)216--231.
W. Hetzel, The Complete Guide to Software Testing (QED Information Sciences, Wellesley, MA,
1984).
C.P. Hollocker, The standardization of software reviews and audits, in: Handbook of Software
Quality Assurance, ed. G.G. Schulmeyer and J.I. McManus (Van Nostrand-Reinhold, New York,
NY, 1987) pp. 21t-266.
W.E. Howden, Reliability of the path analysis testing strategy, IEEE Trans. Software Eng. SE-
2(1976)208- 214.
W.E. Howden, Functional program testing, IEEE Trans. Software Eng. SE-6(1980)162-169.
P. Howrey and H.H. Kelejian, Simulation versus analytical solutions, in: The Design of Computer
Simulation Experiments, ed. T.H. Naylor (Duke University Press, Durham, NC, 1969) pp. 207-231.
A.W. Hunt, Statistical evaluation and verification of digital simulation models through spectral
analysis, Ph.D. Dissertation, University of Texas at Austin, Austin, TX (1970).

[28]
[29]

[30]

[31]

[32]
[33]

[34]
[351

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]
[44]

[45]

O. Balci, Validation, verification, and testing techniques 171

[46] S.H. Jacobson and E. Yticesan, On the NP-completeness of verifying structural properties of discrete
event simulation models, Technical Report, Department of Industrial and Systems Engineering,
Virginia Tech, Blacksburg, VA (1993).

[47] S. Khanna, Logic programming for software verification and testing, Comp. J. 34(1991)350-357.
[48] NIA. Kheir and W.M. Holmes, On validating simulation models of missile systems, Simulation

30(1978)I 17-128.
[49] J.C. King, Symbolic execution and program testing, Commun. ACM 19(1976)385-394.
[50] J.P.C. Kleijnen, Statistical Techniques in Simulation, Vol. 2 (Marcel Dekker, New York, NY, 1975).
[51] P.L. Knepell and D.C. Arangno, Simulation Validation: A Confidence Assessment Methodology,

Monograph 3512-04 (IEEE Computer Society Press, Los Alamitos, CA, 1993).
[52] J.C. Knight and E.A. Myers, An improved inspection technique, Commun. ACM 36(1993)51-61.
[53] A.M. Law, Statistical analysis of simulation output data, Oper. Res. 31(1983)983-1029.
[54] A.M. Law and W.D. Kelton, Simulation Modeling and Analysis, 2nd ed. (McGraw-Hill, New York,

NY, 1991).
[55] Z. Manna, S. Ness and J. Vuillemin, Inductive methods for proving properties of programs, Commun.

ACM 16(1973)491-502.
[56] J. Martin and C. McClure, Diagramming Techniques for Analysts and Programmers (Prentice-Hall,

Englewood Cliffs, NJ, 1985).
[57] D.K. Miller, Validation of computer simulations in the social sciences, in: Proc. 6th Annual Conf.

on Modeling and Simulation (Pittsburg, PA, 1975) pp. 743-746.
[58] D.R. Miller, Model validation through sensitivity analysis, in: Proc. 1974 Summer Computer Simula-

tion Conf., Houston, TX (Simulation Councils, La Jolla, CA, 1974) pp. 911-914.
[59] D.R. Miller, Sensitivity analysis and validation of simulation models, J. Theor. Biol. 48(1974)345-360.
[60] R.L. Moose and R.E. Nance, The design and development of an analyzer for discrete event model

specifications, in: Impacts of Recent Computer Advances on Operations Research, ed. R. Sharda,
B.L. Golden, E. Wasil, O. Balci and W. Stewart (Elsevier, New York, NY, 1989) pp. 407-42t.

[61] G.J. Myers, A controlled experiment in program testing and code walkthroughs/inspections, Commun.
ACM 21(1978)760-768.

[62] G.J. Myers, The Art of Software Testing (Wiley, New York, NY, 1979).
[63] R.E. Nance, The feasibility of and methodology for developing federal documentation standards for

simulation models: Final report to the National Bureau of Standards, Department of Computer
Science, VPI&SU, Blacksburg, VA (1977).

[64] R.E. Nance, Model representation in discrete event simulation: The conical methodology, Technical
Report CS81003-R, Department of Computer Science, VPI&SU, Blacksburg, VA (1981).

[65] R.E. Nance, The conical methodology: A framework for simulation model development, in: Methodology
and Validation, ed. O. Balci, (SCS, San Diego, CA, 1987) pp. 38-43.

[66] R.E. Nance, Conical methodology: An evolutionary convergence of systems and software engineering,
Ann. Oper. Res. 53(1994), this volume.

[67] R.E. Nance and C.M. Overstreet, Diagnostic assistance using digraph representations of discrete
event simulation model specifications. Trans. SCS 4(1987)33-57.

[68] T.H. Naylor and J.M. Finger, Verification of computer simulation models, Manag. Sci. 14(1967)
B92-B10t.

[69] M.A. Ould and C. Unwin, Testing in Software Development (Cambridge University Press, Cambridge,
1986).

[70] C.M. Overstreet and R.E. Nance, A specification language to assist in analysis of discrete event
simulation models, Commun. ACM 28(1985)190-201.

[71] T.I. Oren, Concepts and criteria to assess acceptability of simulation studies: A frame of reference,
Commun. ACM 24(1981)180-189.

[72] T.I. Oren, Artificial intelligence in quality assurance of simulation studies, in: Modelling and Simulatior
Methodology in the Artificial Intelligence Era, ed. M.S. Elzas, T.I. 0ren and B.P. Zeigler (North.
Holland, Amsterdam, 1986) pp. 267-278.

172 O. Balci, Validation, verification, and testing techniques

[73] T.I. Oren, Quality assurance paradigms for artificial intelligence in modelling and simulation, Simula-
tion 48(1987)149-151.

[74] R.J. Paul, Visual simulation: Seeing is believing?, in: Impaqts of Recent ComputerAdvances on
Operations Research, ed. R. Sharda, B.L. Golden, E. Wasil, O. Balci, and W. Stewart (Elsevier, New
York, NY, 1989) pp. 422-432.

[75] R.E. Prather and J.P. Myers, Jr., The path prefix software testing strategy, IEEE Trans. Software Eng.
SE- 13 (1987)761- 766.

[76] C.V. Ramamoorthy, S.F. Ho and W.T. Chen, On the automated generation of program test data,
IEEE Trans. Software Eng. SE-2(1976)293-300.

[77] C. Reynolds and R.T. Yeh, Induction as the basis for program verification, IEEE Trans. Software
Eng. SE-2(1976)244- 252.

[78] D.J. Richardson and L.A. Clarke, Partition analysis: A method combining testing and verification,
IEEE Trans. Software Eng. SE-11(1985)1477-1490.

[79] J.R. Rowland and W.M. Holmes, Simulation validation with sparse random data, Comp. Elect. Eng.
5(1978)37- 49.

[80] R.G. Sargent, Validation and verification of simulation models, in: Proc. 1992 Winter Simulation
Conf., ed. J.J. Swain, D. Goldsman, R.C. Crain, and J.R. Wilson (IEEE, Piscataway, NJ, 1992) pp.
104-114.

[81] E. Satterthwaite, Debugging tools for high level languages, Software-Practice and Experience
2(1972)197-217.

[82] S.R. Schach, Software Engineering, 2nd ed. (Irwin, Homewood, IL 1993).
[83] S. Schlesinger et al., Terminology for model credibility, Simulation 32(1979)103-104.
[84] B. Schmeiser, Random variate generation, in: Proc. 1981 Winter Simulation Conf., ed. T.I. Oren,

C.M. Delfosse and C.M. Shub (IEEE, Piscataway, NJ, 1981) pp. 227-242.
[85] T.J. Schriber, Simulation Using GPSS (Wiley, New York, NY, 1974).
[86] L.W. Schruben, Establishing the credibility of simulations, Simulation 34(1980)101-105.
[87] R.E. Shannon, Systems Simulation: The Art and Science (Prentice-Hall, Englewood Cliffs, NJ, 1975).
[88] L.G. Stucki, New directions in automated tools for improving software quality, in: Current Trends

in Programming Methodology, Vol. 2, ed. R. Yeh (Prentice-Hall, Englewood Cliffs, NJ, 1977) pp.
80-111.

[89] T.J. Teorey, Validation criteria for computer system simulations, Simuletter 6(1975)9-20.
[90] H. Theil, Economic Forecasts and Policy (North-Holland, Amsterdam, 1961).
[91] A.M. Turing, Computing machinery and intelligence, in: Computers and Thought, ed. E.A. Feigenbaum

and J. Feldman (McGraw-Hill, New York, NY, 1963) pp. 11-15.
[92] T.P. Tytula, A method for validating missile system simulation models, Technical Report E-78-11,

U.S. Army Missile R&D Command, Redstone Arsenal, AL (1978).
[93] U.S. GAO, DOD Simulations: Improved Assessment Procedures Would Increase the Credibility of

Results, U.S. General Accounting Office GAO/PEMD-88-3, Washington, DC (1987).
[94] R.L. Van Horn, Validation of simulation results, Manag. Sci. 17(1971)247-258.
[95] D. Watts, Time series analysis, in: The Design of Computer Simulation Experiments, ed. T.H. Naylor

(Duke University Press, Durham, NC, I969) pp. 165-179.
[96] R.B. Whitner and O. Balci, Guidelines for selecting and using simulation model verification techniques,

in: Proc. 1989 Winter Simulation Conf., ed. E.A. MacNair, K.J. Musselman and P. Heidelberger
(IEEE, Piscataway, NJ, 1989) pp. 559-568.

[97] J.R. Wilson and A.A.B. Pritsker, A survey of research on the simulation startup problem, Simulation
31(1978)55-58.

[98] R.N. Woolley and M. Pidd, Problem structuring- A literature review, J. Oper. Res. Soc. 32(1981)
197- 206.

[99] R.D. Wright, Validating dynamic models: An evaluation of tests of predictive power, in: Proc. 1972
Summer Computer Simulation Conf., San Diego, CA, (Simulation Councils, La Jolta, CA, 1972) pp.
1286-1296.

O. Balci, Validation, verification, and testing techniques 173

[100] R.T. Yeh, Verification of programs by predicate transformation, in: Current Trends in Programming
Methodology, Vol. 2, ed. R. Yeh (Prentice-Hall, Engtewood Cliffs, NJ, 1977) pp. 228-247.

[101] E. Yourdon, Structured Walkthroughs, 3rd ed. (Yourdon Press, New York, NY, 1985).
[102] E. Yiicesan and S.H. Jacobson, Building correct simulation models is difficult, in: Proc. 1992

Winter Simulation Conf., ed. J.J. Swain, D. Goldsman, R.C. Crain, and J.R. Wilson (IEEE, Piscataway,
NJ, 1992) pp. 783-790.

