
Annals of Operations Research 53(1994)121-173 121 

Validation, verification, and testing techniques 
throughout the life cycle of a simulation study 

Osman Balci 

Department of Computer Science, Virginia Polytechnic Institute 
and State University, Blacksburg, VA 24061-0106, USA 

Life cycle validation, verification, and testing (VV&T) is extremely important for the 
success of a simulation study. This paper surveys current software VV&T techniques and 
current simulation model VV&T techniques and describes how they can all be applied 
throughout the life cycle of a simulation study. The processes and credibility assessment 
stages of the life cycle are described and the applicability of the VV&T techniques for 
each stage is stated. A glossary is provided to explicitly define important terms and 
VV&T techniques. 

1. Introduction 

Simulation is the process of constructing a model of a system which contains 
a problem and conducting experiments with the model on a computer for a specific 
purpose of experimentation to  solve the problem. Credibility of simulation results 
not only depends on model correctness, but also is significantly influenced by 
accurate formulation of the problem. Therefore, validation, verification, and testing 
(VV&T) techniques must be employed throughout the life cycle of a simulation 
study starting with problem formulation and culminating with presentation of simulation 
results. 

A model is a representation and an abstraction of anything such as a system, 
concept, problem, or phenomena.  It can have inputs, parameters, and outputs as 
illustrated in figure 1. The term "system" is used to refer to the entity that contains 
the problem to be solved. 

Model Validation is substantiating that the model, within its domain of 
applicability, behaves with satisfactory accuracy consistent with the study objectives. 
Model validation deals with building the right model. It is conducted by running 
the model under the "same" input conditions that drive the system and by comparing 
model behavior with the system behavior. The comparison of model  and system 
behaviors should not be made one output variable at a time, i.e., O[ n versus OF, O~ n 
versus O~, etc. A multivariate comparison should be carried out to incorporate the 
correlations among the output variables. 
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Model Verification is substantiating that the model is transformed from one 
form into another, as intended, with sufficient accuracy. Model verification deals 
with building the model right. The accuracy of transforming a problem formulation 
into a model specification or the accuracy of converting a model representation in 
micro flowchart into an executable computer program is evaluated in model verification. 

Model Testing is demonstrating that inaccuracies exist or revealing the existence 
of errors in the model. In model testing, we subject the model to test data or test 
cases to see if it functions properly. "Test failed" implies the failure of the model, 
not the test. Testing is conducted to perform validation and verification. Some tests 
are devised to evaluate the behavioral accuracy (i.e., validity) of the model, and 
some tests are intended to judge the accuracy of model transformation from one 
form into another (verification). Therefore, we commonly refer to the whole process 
as model VV&T. 

Model VV&T is employed to prevent the occurrence of three major types of 
errors in conducting simulation studies [8]: Type I Error is the error of rejecting the 
model credibility when in fact the model is sufficiently credible. Type 11 Error is the 
error of accepting the model credibility when in fact the model is not sufficiently 
credible. Type III Error is the error of solving the wrong problem. Probability of 
committing the Type I Error is called Model Builder's Risk and probability of committing 
the Type II Error is called Model User's Risk. Committing the Type I error increases 
the cost of model development. The consequences of committing the Type II and 
Type III errors may be catastrophic. Therefore, a cost risk analysis should be conducted 
in those cases where data can be collected from the system under study [12]. 

Significant differences exist between simulation software engineering and 
other types of software engineering. First, simulation software engineering corresponds 
to simulation modeling and as such the art of modeling should be applied. Second, 
the results are obtained by experimenting with the simulation program (experimental 
model) as opposed to just executing it once like other types of programs. Third, the 
results are descriptive and must be carefully interpreted to come up with a solution 
to the problem. Fourth, software requirements specification corresponds to problem 
(system) description. Validation is conducted by comparing the model (computer 
program) with the system description as opposed to with the requirements specification. 
In spite of these differences, all software VV&T techniques are directly applicable 
for simulation models. 

Every organization conducting a substantial simulation study should have a 
department or group called Simulation Quality Assurance (SQA). The SQA group 
is responsible for total quality management and closely works with the simulation 
project managers in planning, preparing test cases, and administering some of the 
VV&T activities throughout the simulation study. The SQA is a manage/'ial approach 
which is critically essential for the success of a simulation study. Oren [71-73] 
presents concepts, criteria, and paradigms which can be used in establishing an 
SQA program within an organization. 
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The purpose of this paper is to survey current software VV&T techniques and 
current model VV&T techniques and describe how they can all be applied throughout 
the life cycle of a simulation study. Section 2 presents the life cycle of a simulation 
study and provides guidelines for conducting its ten processes. The VV&T techniques 
are briefly described under a taxonomy in section 3. Section 4 describes the credibility 
assessment stages of the life cycle and shows the applicability of the VV&T techniques 
for each stage. Concluding remarks and research directions are given in section 5. 
A glossary is provided in section 6 to explicitly define important terms and VV&T 
techniques. 

2. The life cycle of a simulation study 

The life cycle of a simulation study is presented in figure 2 [8, 64]. The 
phases are shown by shaded oval symbols. The dashed arrows describe the processes 
which relate the phases to each other. The solid arrows refer to the credibility 
assessment stages. Banks et al. [18] and Knepell and Arangno [51] review other 
modeling processes for developing simulations. 

The life cycle should not be interpreted as strictly sequential. The sequential 
representation of the dashed arrows is intended to show the direction of development 
throughout the life cycle. The life cycle is iterative in nature and reverse transitions 
are expected. Every phase of the life cycle has an associated VV&T activity. 
Deficiencies identified by a VV&T activity may necessitate returning to an earlier 
process and starting all over again. 

The VV&T is not a phase or step in the life cycle, but a continuous activity 
throughout the entire life cycle. Conducting the VV&T for the first time in the life 
cycle when the experimental model is complete is analogous to the teacher who 
gives only a final examination [40]. No opportunity is provided throughout the 
semester to notify the student that he or she has serious deficiencies. Severe problems 
may go undetected until it is too late to do anything but fail the student. Frequent 
tests and homeworks throughout the semester are intended to inform the students 
about their deficiencies so that they can study more to improve their knowledge as 
the course progresses. 

The situation in the VV&T is exactly analogous. The VV&T activities throughout 
the entire life cycle are intended to reveal any quality deficiencies that might be 
present as the simulation study progresses from the communication of the problem 
until the implementation of the simulation results. This allows us to identify and 
rectify quality deficiencies during the life cycle phase in which they occur. 

The ten processes of the life cycle are shown by the dashed arrows in figure 2. 
Although each process is executed in the order indicated by the dashed arrows, an 
error identified may necessitate returning to an earlier process and starting all over 
again. Some guidelines are provided below for each of the ten processes. 
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Figure 2. The life cycle of a simulation study. 
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2.1. PROBLEM FORMULATION 

When a problem is recognized, a decision maker (a client or sponsor group) 
initiates a study by communicating the problem to aft analyst (a problem-solver, or 
a consultant/research group). The communicated problem is rarely clear, specific, 
or organized. Hence, an essential study to formulate the actual problem must follow. 
Problem Formulation (problem structuring or problem definition) is the process by 
which the initially communicated problem is translated into a formulated problem 
sufficiently well defined to enable specific research action [98]. 

Balci and Nance [10] present a high-level procedure that: (1) guides the 
analyst during problem formulation, (2) structures the formulated problem VV&T, 
and (3) seeks to increase the likelihood that the study results are utilized by decision 
makers. 

2.2. INVESTIGATION OF SOLUTION TECHNIQUES 

All alternative techniques that can be used in solving the formulated problem 
should be identified. A technique whose solution is estimated to be too costly or 
is judged to be not sufficiently beneficial with respect to the study objectives should 
be disregarded. Among the qualified ones, the technique with the highest expected 
benefits/cost ratio should be selected. 

The statement "when all else fails, use simulation" is misleading if not invalid. 
The question is not to bring a solution to the problem, but to bring a sufficiently 
credible one which will be accepted and used by the decision maker(s). A technique 
other than simulation may provide a less costly solution, but it may not be as useful. 

Sometimes, the communicated problem is formulated under the influence of 
a solution technique in mind. Occasionally, simulation is chosen without considering 
any other technique just because it is the only one the analyst(s) can handle. Skipping 
the investigation process may result in unnecessarily expensive solutions, sometimes 
to the wrong problems. 

As a result of the investigation process, we assume that simulation is chosen 
as the most appropriate solution technique. At this point, the simulation project 
team should be activated and be made responsible for the formulated problem 
VV&T and feasibility assessment of simulation before proceeding in the life cycle. 

2.3. SYSTEM INVESTIGATION 

Characteristics of the system that contains the formulated problem should be 
investigated for consideration in system definition and modeling. Shannon [87] 
identifies six major system characteristics: (1) change, (2) environment, (3) 
counterintuitive behavior, (4) drift to low performance, (5) interdependency, and (6) 
organization. Each characteristic should be examined with respect to the study 
objectives that are identified with the formulation of the problem. 
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In simulation, we mostly deal with stochastic and dynamic real systems that 
change over a period of time. How often and how much the system will change 
during the course of a simulation study should be estimated so that the model 
representation can be updated accordingly. Changes in the system may also change 
the study objectives. 

A system's environment consists of all input variables that can significantly 
affect its state. The input variables are identified by assessing the significance of 
their influence on the system's state with regard to the study objectives. For example, 
for a traffic intersection system, the interarrival time of vehicles can be identified 
as an input variable making up the environment, whereas pedestrian arrivals may 
be omitted due to their negligible effect on the system's state. Underestimating the 
influence of an input variable may result in inaccurate environment definition. 

Some complex systems may show counterintuitive behavior which we should 
try to identify for consideration in defining the system. However, this is not an easy 
task, especially for those systems containing many subjective elements (e.g., social 
systems). Cause and effect are often not closely related in time or space. Symptoms 
may appear long after the primary causes [87]. To be able to identify counterintuitive 
behavior, it is essential that the simulation project employs people who have expert 
knowledge about the system under study. 

A system may show a drift to low performance due to the deterioration of its 
components (e.g., machines in a manufacturing system) over a period of time. If 
this characteristic exists, it should be incorporated within the model representation 
especially if the model's intended use is forecasting. 

Before we start abstracting the real system for the purpose of modeling, we 
should examine the interdependency and organization characteristics of the system. 
In a complex stochastic system, many activities or events take place simultaneously 
and influence each other. The system complexity can be overcome by way of 
decomposing the system into subsystems and subsystems into other subsystems. 
This decomposition can be carried out by examining how system elements or 
components are organized. 

Once the system is decomposed into subsystems the complexity of which is 
manageable and the system characteristics are documented, model formulation process 
can be started following the system and objectives definition VV&T. 

2.4. MODEL FORMULATION 

Model formulation is the process by which a conceptual model is envisioned 
to represent the system under study. The Conceptual Model is the model which is 
formulated in the mind of the modeler [64]. Model formulation and model~representation 
constitute the process of model design. 

Input data analysis and modeling [54] is a subprocess of Model Formulation 
and is conducted with respect to the way the model is driven. Simulation models 
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are classified as self-driven or trace-driven. A self-driven (distribution-driven or 
probabilistic) simulation model is the one which is driven by input values obtained 
via sampling from probability distributions using ra0dom numbers. A trace-driven 
(or retrospective) simulation model, on the other hand, is driven by input sequences 
derived from trace data obtained through measurement of the real system. 

Under some study objectives (e.g., evaluation, comparison, determination of 
functional relations) and for model validation, input data model(s) are built to 
represent the system's input process. In a self-driven simulation (e.g., of a computer 
system), we collect data on an input random variable (e.g., interarrival time of jobs), 
identify the distribution, estimate its parameters, and conclude upon a probability 
distribution as the input data model to sample from in driving the simulation model 
[54]. In a trace-driven simulation, we trace the system (e.g., using hardware and 
software monitors) and utilize the refined trace data as the input data model to use 
in driving the simulation model. 

2.5. MODEL REPRESENTATION 

This is the process of translating the conceptual model into a communicative 
model. A Communicative Model is "a model representation which can be communicated 
to other humans, can be judged or compared against the system and the study 
objectives by more than one human" [64]. A communicative model (i.e., a simulation 
model design) may be represented in any of the following forms: (1) structured, 
computer-assisted graphs, (2) flowcharts, (3) structured English and pseudocode, 
(4) entity-cycle (or activity-cycle) diagrams, (5) condition specification [70], and 
(6) more than a dozen diagramming techniques described in [56]. 

Several communicative models may be developed; one in the form of Structured 
English intended for nontechnical people, another in the form of a micro flowchart 
intended for a programmer. Different representation forms may also be integrated 
in a stratified manner. 

The representation forms should be selected based upon: (1) their applicability 
for describing the system under study, (2) the technical background of the people 
to whom the model is to be communicated, (3) how much they lend themselves to 
formal analysis and verification, (4) their support for model documentation, (5) 
their maintainability, and (6) their automated translatability into a programmed model. 

2.6. PROGRAMMING 

Translation of the communicative model into a programmed model constitutes 
the process of programming. A Programmed Model is an executable simulation 
model representation in a simulation programming language (e.g., GPSS, SIMAN, 
SIMSCRIPT, SIMULA, SLAM, etc.) or in a high-level programming language 
(e.g., C, Fortran, Pascal, etc.) that do not incorporate an experiment design. There 
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is an abundance of literature on simulation programming languages. Balci [7] describes 
how to conduct the programming process in high-level languages. 

2.7. DESIGN OF EXPERIMENTS 

This is the process of formulating a plan to gather the desired information 
at minimal cost and to enable the analyst to draw valid inferences [87]. An Experimental 
Model is the programmed model incorporating an executable description of operations 
presented in such a plan. 

A variety of techniques are available for the design of experiments. Response- 
surface methodologies can be used to find the optimal combination of parameter 
values which maximize or minimize the value'of a response variable [54]. Factorial 
designs can be employed to determine the effect of various input variables on a 
response variable [32]. Variance reduction techniques can be implemented to obtain 
greater statistical accuracy for the same amount of simulation [54]. Ranking and 
selection techniques can be utilized for comparing alternative systems [54, 17]. 
Several methods (e.g., replication, batch means, regenerative) can be used for statistical 
analysis of simulation output data. 

2.8. EXPERIMENTATION 

This is the process of experimenting with the simulation model for a specific 
purpose. Some purposes of experimentation are [87]: (1) comparison of different 
operating policies, (2) evaluation of system behavior, (3) sensitivity analysis, (4) 
forecasting, (5) optimization, and (6) determination of functional relations. The 
process of experimentation produces the Simulation Results. 

2.9. R E D E ~ N I ~ O N  

This is the process of: (1) updating the experimental model so that it represents 
the current form of the system, (2) altering it for obtaining another set of results, (3) 
changing it for the purpose of maintenance, (4) modifying it for other use(s), or (5) 
redefining a new system to model for studying an alternative solution to the problem. 

2.10. PRESENTATION OF SIMULATION RESULTS 

In this process, simulation results are interpreted and presented to the decision 
makers for their acceptance and implementation. Since all simulation models are 
descriptive, concluding upon a solution to the problem requires rigorous analysis 
and interpretation of the results. 

The presentation should be made with respect to the intended use of the 
model. If the model is used in a "what i f '  environment, the results should be 
integrated to support the decision maker in the decision-making process. Complex 
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simulation results may also necessitate such an integration. The report documenting 
the study and its results together with its presentation also constitutes a form of 
supporting the decision maker. 

3. Validation, verification, and testing techniques 

Figure 3 shows a taxonomy which categorizes the VV&T techniques into six 
distinct credibility assessment perspectives: informal, static, dynamic, symbolic, 
constraint, and formal. The level of mathematical formality of each category increases 
from very informal on the far left to very formal on the far right. Likewise, the 
complexity also increases as the category becomes more formal [96]. 

It should be noted that some of the categories presented in figure 3 possess 
similar characteristics and in fact have techniques which overlap from one category 
to another. However, a distinct difference between each classification exists, as will 
be evident in the discussion of each in this section. 

3.1. INFORMAL VV&T TECHNIQUES 

Informal techniques are among the most commonly used ones. They are 
called informal because the tools and approaches used rely heavily on human reasoning 
and subjectivity without stringent mathematical formalism. The "informal" label 
does not imply any lack of structure or formal guidelines for the use of the techniques. 

3.1.1. Audit 

The audit is undertaken by a single person to investigate how adequately the 
simulation study is conducted with respect to established practices, standards, and 
guidelines. The audit also seeks to establish traceability within the simulation study. 
When an error is identified, it should be traceable to its source via its audit trail. 
Auditing is carried out on a periodic basis through a mixture of meetings, observations, 
and examinations [41]. 

3.1.2. Desk Checking 

Desk Checking is the process of thoroughly examining one's work to ensure 
correctness, completeness, consistency, and unambiguity. It is considered to be the 
very first step in VV&T and is particularly useful for the early stages of development. 
To be effective, Desk Checking should be conducted carefully and thoroughly, 
preferably by another person since it is usually difficult to see one's own errors [2]. 

3.1.3. Face Validation 

The project team members, potential users of the model, people knowledgeable 
about the system under study, based on their estimates and intuition, subjectively 
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compare model and system behaviors to judge whether the model and its results are 
reasonable. Face Validation is useful as a preliminary approach to validation [39]. 

3.1.4. Inspections 

Inspections are conducted by a team of four to six members. For example, 
in the case of a design inspection, the team consists of: (1) Moderator: manages the 
inspection team and provides leadership; (2) Reader: narrates the model design 
(communicative model) and leads the team through it; (3) Recorder: produces a 
written report of detected faults; (4) Designer: is the creator of the model design; 
(5) Implementer: translates the model design into code (programmed model); and 
(6) Tester: SQA group representative. 

An inspection goes through five distinct phases: overview, preparation, 
inspection, rework, and follow-up [82]. In phase I, the designer gives an overview 
of the (sub)model design to be inspected. The (sub)model characteristics such as 
purpose, logic, and interfaces are introduced and related documentation is distributed 
to all participants to study. In phase II, the team members prepare individually for 
the inspection by examining the documents in detail. The moderator arranges the 
inspection meeting with an established agenda and chairs it in phase III. The reader 
narrates the (sub)model design documentation and leads the team through it. The 
inspection team is aided by a checklist of queries during the fault finding process. 
The objective is to find and document the faults, not to correct them. The recorder 
prepares a report of detected faults immediately after the meeting. Phase IV is the 
rework in which the designer resolves all faults and problems specified in the 
written report. In the final phase, the moderator ensures that all faults and problems 
have been resolved satisfactorily. All changes must be examined carefully to ensure 
that no new errors have been introduced as a result of a fix. 

A disadvantage of the inspection technique is that, like the walkthrough, it 
might be used for performance appraisal of the development team. Major differences 
exist between inspections and walkthroughs. An inspection is a five-step process, 
but walkthroughs consist of only two steps. The inspection team uses the checklist 
approach for uncovering errors. The procedure used in each phase of the inspection 
technique is formalized. The inspection process takes much longer than a walkthrough; 
however, the extra time is justified because an inspection is a powerful and cost- 
effective way of detecting faults early in the model development life cycle [1, 26, 
52, 82]. 

3.1.5. Reviews 

The review is conducted in a similar manner as the inspection and walkthrough 
except in the way the team members are selected. The review team also involves 
managers. The review is intended to give management and study sponsors evidence 
that the development process is being carried out according to stated study objectives 
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and evaluate the model in light of development standards, guidelines, and specifications. 
As such, the review is a higher level technique than the inspection and walkthrough. 

Each review team member examines the model documentation prior to the 
review. The team then meets to evaluate the model relative to specifications and 
standards, recording defects and deficiencies. The review team may be given a set 
of indicators to measure such as: (1) appropriateness of the definition of system and 
study objectives, (2) adequacy of all underlying assumptions, (3) adherence to 
standards, (4) modeling methodology used, (5) model representation quality, (6) 
model structuredness, (7) model consistency, (8) model completeness, and (9) 
documentation. The result of the review is a document portraying the events of the 
meeting, deficiencies identified, and review team recommendations. Appropriate 
action may then be taken to correct any deficiencies. 

As opposed to inspections and walkthroughs, which concentrate on correctness 
assessment, reviews seek to ascertain that tolerable levels of quality are being attained. 
The review team is more concerned with model design deficiencies and deviations 
from stated model development policy than it is with the intricate line-by-line details 
of the implementation. This does not imply that the review team is not concerned 
with discovering technical flaws in the model, only that the review process is oriented 
towards the early stages of the model development life cycle [41, 96]. 

3.1.6. Turing Test 

Turing Test is based upon the expert knowledge of people about the system 
under study. These people are presented with two sets of output data obtained, one 
from the model and one from the system, under the same input conditions. Without 
identifying which one is which, the people are asked to differentiate between the 
two. If they succeed, they are asked how they were able to do it. Their response 
provides valuable feedback for correcting model representation. If they cannot 
differentiate, our confidence in model validity is increased [86, 91, 94]. 

3.1.7. Walkthroughs 

Walkthroughs are conducted by a team composed of a ~ coordinator, model 
developer, and three to six other members. Except the model developer, all other 
members should not be directly involved in the development effort. A typical 
structured walkthrough team consists of: (1) Coordinator: most often is the SQA 
group representative who organizes, moderates, and follows up the walkthrough 
activities; (2) Presenter: most often is the model developer; (3) Scribe: documents 
the events of the walkthrough meetings; (4) Maintenance Oracle: considers long- 
term implications; (5) Standards Bearer: concerned with adherence to standards; (6) 
Client Representative: reflects the needs and concerns of the client; and (7) Other 
reviewers such as simulation project manager and auditors. 
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The main thrust of the walkthrough technique is to detect and document faults; 
it is not performance appraisal of the development team. This point must be made 
clear to everyone involved so that full cooperation is achieved in discovering errors. 

The coordinator schedules the walkthrough meeting, distributes the walkthrough 
material to all participants well in advance of the meeting in order to allow for 
careful preparation, and chairs the meeting. During the meeting, the presenter walks 
the other members through the walkthrough documents. The coordinator encourages 
questions and discussion so as to uncover any faults [2, 23, 61, 62, 101]. 

3.2. STATIC VV&T TECHNIQUES 

Static VV&T techniques are concerned with accuracy assessment on the 
basis of characteristics of the static model source code. Static techniques do not 
require machine execution of the model, but mental execution may be used. The 
techniques are very popular and widely used, with many automated tools available 
to assist the VV&T. The simulation language compiler is itself a static VV&T tool. 

Static VV&T techniques can obtain a variety of information about the structure 
of the model, coding techniques and practices employed, data and control flow 
within the model, syntactical accuracy, and internal as well as global consistency 
and completeness of implementation [96]. 

3.2.1. Consistency checking 

Consistency checking deals with substantiating that: (a) the model represen- 
tation does not contain contradictions, (b) the cosmetic style with which language 
elements (e.g., naming conventions, use of upper, lower, and mixed case, etc.) are 
applied is used consistently, and (c) the data elements are manipulated uniformly 
(e.g., data assignment to variables, data use within computations, data passing 
among submodels, data representation and use during model input and output). 

3.2.2. Data flow analysis 

Data flow analysis is used to assess model accuracy with respect to the use 
of model variables. This assessment is classified according to the definition, referencing, 
and unreferencing of variables [2], i.e., when variable space is allocated, accessed, 
and deallocated. A data flow graph is constructed to aid in the data flow analysis. 
The nodes of the graph represent statements and corresponding variables. The edges 
represent control flow. 

Data flow analysis can be used to detect undefined or unreferenced variables 
(much as in static analysis) and, when aided by model instrumentation, can track 
minimum and maximum variable values, data dependencies, and data transformations 
during model execution. It is also useful in detecting inconsistencies in data structure 
declaration and improper linkages among submodels [4, 96]. 
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3.2.3. Graph-based analysis 

Data-flow and control-flow are both graph-based analysis techniques which 
are similar in many ways [2]. Data-flow analysis is described in section 3.2.2. In 
control-flow analysis, a node of the model graph usually represents a logical junction 
where the flow of control changes, while an edge represents towards which junction 
it changes. This technique examines sequences of control transfers and is useful for 
identifying incorrect or inefficient constructs within model representation. 

Nance and Overstreet [67] proposed several diagnostics which are based on 
analysis of graphs constructed from a particular form of model specification called 
Condition Specification [60, 70]. The diagnostic assistance is categorized into three: 
(1) analytical- determination of the existence of a" property, (2) comparative- measures 
of differences among multiple model representations, and (3) informative-characteristics 
extracted or derived from model representations. Action cluster attribute graph, 
action cluster incidence graph, and run-time graph constitute the basis for the 
diagnosis. 

The analytical diagnosis is conducted by measuring the following indicators: 
attribute utilization, attribute initialization, action cluster completeness, attribute 
consistency, connectedness, accessibility, out-complete, and revision consistency. 
The comparative diagnosis is done by measuring attribute cohesion, action cluster 
cohesion, and complexity. The following indicators are measured for the informative 
diagnosis: attribute classification, precedence structure, decomposition, and run- 
time graph [67]. 

3.2.4. Semantic analysis 

Semantic analysis is conducted by the simulation programming language 
compiler and attempts to determine the modeler's intent in writing the code. The 
compiler informs the modeler about what is specified in the source code so that the 
modeler can verify that the true intent is accurately reflected. 

The compiler generates a wealth of information to help the modeler determine 
if the true intent is accurately translated into the executable code: (1) Symbol Tables 
which describe: the elements or symbols that are manipulated in the model, function 
declarations, type and variable declarations, scoping relationships, interfaces, 
dependencies, etc.; (2) Cross-reference Tables which describe: called versus calling 
submodels (where each data element is declared, referenced and altered), duplicate 
data declarations (how often and where occurring), and unreferenced source code; 
(3) Subroutine Interface Tables which describe the actual interfaces of the caller and 
the called; (4) Maps which relate the generated runtime code to the original source 
code; and (5) "Pretty Printers" or Source Code Formatters which provide: reformatted 
source listing on the basis of its syntax and semantics, clean pagination, highlighting 
of data elements, and marking of nested control structures. 
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3.2.5. Structural analysis 

Structural analysis is used to examine the model structure and to determine 
if it adheres to structured principles. It is conducted by constructing a control flow 
graph of the model structure and examining the graph for anomalies, such as multiple 
entry and exit points, excessive levels of nesting within a structure, and questionable 
practices such as the use of unconditional branches (i.e., GOTOs). 

YiJcesan and Jacobson [102] and Jacobson and Yiicesan [46] apply the theory 
of computational complexity and show that the problem of verifying structural 
properties of simulation models is intractable. They illustrate that modeling issues 
such as accessibility of states, ordering of events, ambiguity of model specifications, 
and execution stalling are NP-complete decision problems. 

3.2.6. Syntax analysis 

Syntax analysis is carried on by the simulation programming language compiler 
to assure that the mechanics of the language are applied correctly. 

3.3. DYNAMIC VV&T TECHNIQUES 

Dynamic VV&T techniques require model execution and are intended for 
evaluating the model based on its execution behavior. Most dynamic VV&T techniques 
require model instrumentation. 

The insertion of additional code (probes) into the executable model for the 
purpose of collecting information about model behavior during execution is called 
model instrumentation. Probe locations are determined manually or automatically 
based on static analysis of model structure. Automated instrumentation is accomplished 
by a preprocessor which analyzes the model static structure (usually via graph- 
based analysis) and inserts probes at appropriate places. 

The simplest probe type is a counter and is illustrated in figure 4. In this 
example, computer jobs arrive according to a Poisson process. A fundamental 
assumption underlying a Poisson arrival process is that the interarrival times must 
be nonzero. Therefore, to find out what percentage of time this assumption is 
violated, the model in figure 4 is instrumented by inserting Blocks 3-6. Running 
the model for 50,000 jobs reveals that the percentage of violation (100*COUNT/ 
Total number of entries into Block 4) is 18% (see [85, p. 165] for an explanation). 
To decrease this unacceptable frequency of violation, the time unit can be changed 
to 10 milliseconds; thus, changing 5 and 4 in the INITIAL Block to 50 and 40 
reduces the percentage of violation to 2%. If 100 milliseconds were chosen as the 
time unit, the frequency of violation would only be 0.19%. Consequently, the higher 
the value of MIAT the lower the frequency of violation. 

Dynamic VV&T techniques are usually applied using the following three 
steps. In step 1, the programmed or experimental model is instrumented. In step 2, 
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************************************************************************* 

* This is a GPSS/H programmed model of a single Central Processing Unit 
* (CPU) serving computer jobs arriving according to a Poisson process 
* with First-Come First-Served (FCFS) queue discipline. Job processing 
* times follow an exponential probability distribution. 

* MIAT = Mean InterArrival Time (1/arrival rate) 
* MPT = Mean Processing Time 
* NEWAT = New Arrival Time 
* OLDAT = Old Arrival Time 
* COUNT = Counter for zero interarrival times 
* Time Unit = Milliseconds 
************************************************************************* 

SIMULATE 

* Initializations 

INITIAL XHSMIAT, 5/XH$MPT,4 

* Function Definition 

XPDIS FUNCTION RNI,C24 Exponential Probability Distribution Function 
0,0/.I,.I04/.2,.222/.3,.355/.4,.509/.5,.69/.6,.915/.7,1.2/.75,1.38 
.8,1.6/.84,1.83/.88,2.12/.9,2.3/.92,2.52/~94,2.81/.95,2.99/.96,3.2 
.97,3.5/.98,3.9/.99,4.6/.995,5.3/.998,6.2/.999,7/.9998,8 

* Model Segment 

GENERATE XHSMIAT,FNSXPDIS,,,,IPF 
ASSIGN I,XHSMPT,XPDIS,PF 
SAVEVALUE NEWAT,ACI,XF 

TSTB TEST E XF$NEWAT,XF$OLDAT,OKAY 
SAVEVALUE COUNT+,I,XF 

OKAY SAVEVALUE OLDAT,XFSNEWAT,XF 
. 

QUEUE SYSTEM 
SEIZE CPU 
ADVANCE PFI 
RELEASE CPU 
DEPART SYSTEM 
TERMINATE 1 

* Control Statements 

START 50000 

END 

Job enters computer system 
Record job processing time 
Record new arrival time (AT) 
New AT = Old AT ? 
Count zero interarrival time 
Set old AT = new AT 

Collect statistics 
Job captures the CPU 
CPU processes the job 
Job frees the CPU 
Record statistics 
Job leaves computer system 

Run for 50,000 jobs 
End simulation 

Figure 4. An instrumented GPSS/H programmed model. 

the instrumented model is executed, and in step 3, the model output is analyzed and 
dynamic model behavior is evaluated. 

3.3.1. Black-box testing 

Black-box testing, also called functional testing, is used to assessthe accuracy 
of model input output transformation. It is applied by feeding inputs (test data) to 
the model and evaluating the corresponding outputs. The concern is how accurately 
the model transforms a given set of input data into a set of output data. 
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It is virtually impossible to test all input-output transformation paths for a 
reasonably large and complex simulation model since the number of those paths 
could be in millions. Therefore, the objective of black-box testing is to increase our 
confidence in model input-output transformation accuracy as much as possible 
rather than trying to claim absolute correctness. 

Generation of test data is a crucially important but a very difficult task. The 
law of large numbers does not apply here. Successfully testing the model under 
1,000 input values (test data) does not imply high confidence in model input-output 
transformation accuracy just because 1,000 is a large number. Instead, we should 
compare the 1,000 with the number of allowable input values and determine how 
much of the model input domain is covered in testing. The more the model input 
domain is covered in testing, the more confidence we gain in the accuracy of the 
model input-output transformation [43, 62]. 

3.3.2. Bottom-up testing 

Bottom-up testing is used in conjunction with bottom-up model development 
strategy. In bottom-up development, model construction starts with the submodels 
at the base level (i.e., the ones that are not decomposed further) and culminates with 
the submodels at the highest level. As each submodel is completed, it is thoroughly 
tested. When submodels belonging to the same parent have been developed and 
tested, the submodels are integrated and integration testing is performed. This 
process is repeated in a bottom-up manner until the whole model has been integrated 
and tested. The integration of completed submodels need not wait for all "same 
level" submodels to be completed. Submodel integration and testing can be, and 
often is, performed incrementally. 

Some of the advantages of bottom-up testing are: (1) it encourages extensive 
testing at the submodel level; (2) since most well-structured models consist of a 
hierarchy of submodels, there is much to be gained by bottom-up testing; (3) the 
smaller the submodel and more cohesion it has, the easier and more complete its 
testing will be; and (4) it is particularly attractive for testing distributed simulation 
models. 

Major disadvantages of bottom-up testing include: (1) individual submodel 
testing requires drivers, more commonly called test harnesses, which simulate the 
calling of the submodel and passing test data necessary to execute the submodel; 
(2) developing harnesses for every submodel can be quite complex and difficult; (3) 
the harnesses may themselves contain errors; and (4) faces the same cost and 
complexity problems as does top-down testing. 

3.3.3. Debugging 

Debugging is an iterative process the purpose of which is to uncover errors 
or misconceptions that cause the model 's failure and to define and carry out the 
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model changes that correct the errors. This iterative process consists of four steps. 
In step 1, the model is tested revealing the existence of errors (bugs). Given the 
detected errors, the cause of each error is determined in step 2. In step 3, the model 
changes believed to be required for correcting the detected errors are identified. The 
identified model changes are carried out in step 4. Step 1 is re-executed right after 
step 4 to ensure successful modification because a change correcting an error may 
create another one. This iterative process continues until no errors are identified in 
step 1 after sufficient testing [27]. 

3.3.4. Execution monitoring 

Execution monitoring is used to reveal errors by examining low-level information 
about activities and events which take place during model execution. It requires the 
instrumentation of a programmed or experimental model for the purpose of gathering 
data to provide activity-or event-oriented information about the model's dynamic 
behavior. For example, the instrumented model in figure 4 monitors the number of 
zero interarrival times which is important to know for judging the input model 
validity. The model can also be instrumented to provide other low-level information 
such as number of jobs with zero processing time, average arrival rate, and average 
processing time. 

3.3.5. Execution profiling 

Execution profiling is used to reveal errors by examining high-level information 
(profiles) about activities and events which take place during model execution. It 
requires the instrumentation of a programmed or experimental model for the purpose 
of gathering data to present profiles about the model's dynamic behavior. For 
example, the model in figure 4 can be instrumented to produce the following 
profiles to assist in model VV&T: (1) a histogram of job interarrival times, (2) a 
histogram of job processing times, and (3) a histogram of job waiting times in the 
queue. 

3.3.6. Execution tracing 

Execution tracing is used to reveal errors by "watching" the line-by-line 
execution of a simulation model. It requires the instrumentation of a programmed 
or experimental model for the purpose of tracing the model 's line-by-line dynamic 
behavior. For example, the model in figure 4 can be instrumented to record the 
values of NEWAT in a file during the model execution. Then, the interarrival times 
can be extracted from the trace data and can be statistically tested to see if they have 
an exponential probability distribution with mean MIAT as intended. 

The major disadvantage of the tracing technique is that execution of the 
instrumented model may produce a large volume of trace data that may be too 
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complex to analyze. To overcome this problem, the trace data can be stored in a 
database and the modeler can analyze it using a query language [30, 31]. 

3.3.7. Field Testing 

Field Testing places the model in an operational situation for the purpose of 
collecting as much information as possible for model validation. It is especially 
useful for validating models of military combat systems. Although it is usually 
difficult, expensive, and sometimes impossible to devise meaningful field tests for 
complex systems, their use wherever possible helps both the project team and 
decision makers to develop confidence in the model [87, 94]. 

3.3.8. Graphical Comparisons 

Graphical Comparisons is a subjective, inelegant, and heuristic, yet quite practical 
approach especially useful as a preliminary approach to model VV&T. The graphs 
of values of model variables over time are compared with the graphs of values of 
system variables to investigate characteristics such as similarities in periodicities, 
skewness, number and location of inflection points, logarithmic rise and linearity, 
phase shift, trend lines, and exponential growth constants [2I, 34, 57, 99]. 

3.3.9. Predictive Validation 

Predictive Validation requires past data. The model is driven by past system 
input data and its forecasts are compared with the corresponding past system output 
data to test the predictive ability of the model [29]. 

3.3.10. Regression testing 

Regression testing is used to substantiate that correcting errors and/or making 
changes in the model do not create other errors and adverse side-effects. It is 
usually accomplished by retesting the modified model with the previous test data 
sets used. Successful regression testing requires planning throughout the model 
development life cycle. Retaining and managing old test data sets are essential for 
the success of regression testing. 

3.3.11. Sensitivity analysis 

Sensitivity Analysis is performed by systematically changing the values of 
model input variables and parameters over some range of interest and observing the 
effect upon model behavior [87]. Unexpected effects may reveal invalidity. The 
input values can also be changed to induce errors to determine the sensitivity of 
model behavior to such errors. Sensitivity analysis can identify those input variables 
and parameters to the values of which model behavior is very sensitive. Then, 
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model  validity can be enhanced by assuring that those values are specified with 
sufficient accuracy [39, 58, 59, 94]. 

3.3.12. Statistical techniques 

Much research has been conducted in applying statistical techniques for model  
validation. Table 1 presents the statistical techniques proposed for model  validation 
and lists related references. 

The statistical techniques listed in table 1 require that the system being 
modeled is completely  observable, i.e., all data required for model  validation can 
be collected f rom the system. Model  validation.is conducted by using the statistical 

Table 1 

Statistical techniques proposed for validation. 

Analysis of variance 

Confidence intervals/regions 

Factor analysis 

Hotelling's T 2 tests 

Multivariate analysis of variance 
-Standard MANOVA 
-Permutation methods 
-Nonparametric ranking methods 

Nonparametric goodness-of-fit tests 
-Kolmogorov-Smirnov test 
-Cramer-Von Mises test 
-Chi-square test 

Nonparametric tests of means 
-Mann-Whitney-Wilcoxon test 
-Analysis of paired observations 

Regression analysis 

TheWs inequality coefficient 

Time series analysis 
-Spectral analysis 
-Correlation analysis 
-Error analysis 

t-test 

[68] 

[16, 54, 87] 

[21] 

[12-15, 87] 

[37] 

[35, 68] 

[87] 

[3, 21,441 

[48, 79, 90] 

[33, 36, 44, 45, 94, 95] 
[95] 

[22, 92] 

[87, 89] 

techniques to compare  the model  output data with the corresponding system output  
data when the model  is run with the "same" input data that derive the real system. 
Due to the mult iple  response problem [87], the comparison of model  and system 
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outputs must  be carried out by using a multivariate statistical technique to incorporate 
the correlations among the output  variables. 

A validation procedure based on the use of s imultaneous conf idence intervals 
is presented below. 

3.3.12.1. A validation procedure using simultaneous confidence intervals 

The behavioral accuracy (validity) of  a simulation model  with mult iple outputs 
can be expressed in terms of  the differences between the corresponding model  and 
system output  variables when the model  is run with the "same" input data and 
operational  condi t ions that drive the real system. The range of  accuracy of  the j th 
model  output  variable can be represented by the j t h  conf idence interval (c.i.) for 
the differences between the means of  the j t h  model  and system output  variables. 
The s imultaneous conf idence intervals (s.c.i.) formed by these c.i . 's  are called the 
model  range of  accuracy (m.r.a.) [16]. 

Assume  that there are k output  variables f rom the model  and k output  variables 
f rom the system as shown in figure 1. Let  (#m),  = [#~,, #[, . . . .  ,/.t~] and (#s ) ,  = 
[#I,  #~ . . . . .  #]d be the k-dimensional  vectors of  the populat ion means  of  the model  
and system output  variables, respectively. Basically,  there are three approaches  for 
const ruct ing the s.c.i, to express the m.r.a, for the mean behavior.  

In approach I, the m.r.a, is de termined by the 100(1 - 7)% s.c.i, f o r / t  m - / t "  

as [6, lr],  (1) 

where  6 '  = [~51, 82 . . . .  , ~i k] represent ing lower bounds  and 'r '  = [~l, 72 . . . . .  "rk] 
represent ing upperbounds  of the s.c.i. We can be 100(1 - 7)% conf ident  that the 
true differences between the populat ion means o f  the mode l  and sys tem output  
variables are s imul taneously  contained within (1). 

In approach II, the 100(1 - 7 " ) %  s.c.i, are first constructed for #m as 

[~m ~-m], (2) 

where (t~m) ' = [&~, S~ . . . .  , &if'] and (~m), = [,r~n, "r~' . . . . .  "r~n]. Then, the 100(1 - 7s)% 
s.c.i, are constructed for #s as 

where (t~') '  = [t~, t~ . . . .  , &It] and ( ' r ' ) '  = [~ ,  "r~ . . . . .  "rid. Finally, using the Bonferroni  
inequality, the m.r.a, is determined by the following s.c.i, for jtgm _ ~,£s with a confidence 
level o f  at least (1 - 7 m - Y') when the model  and sys tem outputs  are dependen t  and 
with a level o f  at least (1 - 7 m - ),s + 7m ~ )  when the outputs  are independen t  [50]: 

[sm_ ,rs, .rm_ &s]. (4) 
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In approach III, the model and system output variables are observed in pairs 
and the m.r.a, is determined by the 100(1 - ?')% s.c.i, for ga, the population means 
of the differences of paired observations, as 

[6 d, C ], (5) 

where (tsd) ' =  [8 d, 8d2 . . . . .  8k d] and ('rd)' = D "(, "r2 d . . . . .  "rff]. 
The approach for constructing the m.r.a, should be chosen with respect to the 

way the model is driven. The m.r.a, is constructed by using the observations collected 
from the model and system output variables by running the model with the "same" 
input data and operational conditions that drive the real system. If the simulation 
model is self-driven, then the "same" indicates'that the model input data are coming 
independently from the same populations or stochastic process of the system input 
data. Since the model and system input data are independent of each other, but 
coming from the same populations, the model and system output data are expected 
to be independent and identically distributed. Hence, approach I or II can be used, 
The use of approach III in this case would be less efficient. If the simulation model 
is trace-driven, the "same" indicates that the model input data are exactly the same 
as the system input data. In this case, the model and system output data are expected 
to be dependent and identical. Therefore, approach II or III should be used. 

Sometimes, the model sponsor, model user, or a third party may specify an 
acceptable range of accuracy for a specific simulation study. This specification can 
be made for the mean behavior of a stochastic simulation model as 

L <_12 m - I t  s <_ U, (6) 

where L ' =  ILl, L2 . . . .  , L k] and U ' =  [U l, U 2 . . . .  , U k] are the lower and upper 
bounds of the acceptable differences between the population means of the model 
and system output variables. In this case, the m.r.a, should be compared against (6) 
to evaluate model validity. 

The shorter the lengths of the m.r.a., the more meaningful is the information 
they provide. The lengths can be decreased by increasing the sample sizes or by 
decreasing the confidence level. However, such increases in sample sizes may 
increase the cost of data collection. Thus, a trade-off analysis may be necessary 
among the sample sizes, confidence levels, half length estimates of the m.r.a, data 
collection method, and cost of data collection. For details of performing the trade- 
off analysis see [16]. 

The confidence interval validation procedure is presented in figure 5. 

3.3.13. Stress testing 

Stress testing is intended to test the model validity under extreme workload 
conditions. This is usually accomplished by increasing the congestion in the model. 
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( START ) 

[ Determine the set of"experimental conditions under which the validity of the simulation model is to be tested. [ 

] Choose approach I or II. i-~l'l self-driven trace-driven "lh"l Choose approach II or IlL ] 

[ J Determine an appropriate statistical pr°cedure f°r c°nstructing l-d I 
" l ,  the model range of accuracy with respect to the approach chosen. 1~ 

[ Select the sample sizes L,j No ~ . ~  
and confidence levels. 1 ~ ~ , ~ 1 ~  "t 

~, v~ 

I E,amine the trad offs aod makejodgment decisions tosolect the samp'os'z  w'th appropriato I 
data collection method and budget, and an overall confidence level to produce 

satisfactory estimated lenghts for the model range of accuracy. 

Collect data for validation from the system and from the model. I 
L a .  

I ~ I11 ~J Determine the model range 
of accuracy by constructing 

the 100(I-'/)% s.c.i. 
t~d.~dl 

Determine the model range of I Determine the model range of accuracy by construct- 
accuracy by constructing the I ~v 

100(1-)')% s'c'i" ' ing the at least 100(I-)')% s'c'i" [ ~m -'cs' 'ira - ~s] I [ 
[ J~, x ] ...... j Set ~i = j~m _,is and ' i='t  m _~s. Set J~ =~d and'(: = f d 

Set "t "-- ),m + Ts Set "/= ~m + -/s _ ~/m,ys 

¢ , 
~ Not given ~ . ~  Not satisfactory 

We are (at least) 100(1-7)% confident that the model ~ ] No 
is valid under the set of experimental conditions. I " 

[ Revise the model bY c°nsidering the resp°nse variables I 
( TERMINATE ) whose ranges of accuracy are not satisfactory. ....... 

Figure 5. A validation procedure using simultaneous confidence intervals. 
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For example, the model in figure 4 can be stress tested by decreasing the mean 
interarrival time (MIAT), i.e., bringing in more jobs per unit time. Such increase 
in workload may create high congestion and result in an unacceptably high number 
of zero interarrival times causing incorrect representation of the input Poisson 
arrival process. Under stress testing, the model may exhibit invalid behavior; however, 
such behavior should be as expected and meaningfully documented. Without the 
instrumentation, the model in figure 4 could produce inaccurate results under such 
stress testing [27, 62]. 

3.3.14. Submodel testing 

Submodel testing requires a top-down model decomposition in terms of 
submodels. The experimental model is instrumented to collect data on all input and 
output variables of a submodel. The system is similarly instrumented (if possible) 
to collect similar data. Then, each submodel behavior is compared with corresponding 
subsystem behavior to judge submodel validity. If a subsystem can be modeled 
analytically (e.g., as an M/M/1 model), its exact solution can be compared against 
the simulation solution to assess validity quantitatively. 

Validating each submodel individually does not imply sufficient validity for 
the whole model, because each submodel validity is passed with some error tolerance 
and the allowable errors can accumulate to make the whole model invalid. Therefore, 
after individually validating each submodel, the whole model itself must be subjected 
to testing. 

3.3.15. Symbolic debugging 

Symbolic debugging assists in model VV&T by employing a debugging tool 
that allows the modeler to manipulate model execution while viewing the model at 
the source code level. By setting "breakpoints", the modeler can interact with the 
entire model one step at a time, at predetermined locations, or under specified 
conditions. While using a symbolic debugger, the modeler may alter model data 
values or cause a portion of the model to be "replayed", i.e., executed again under 
the same conditions (if possible). Typically, the modeler utilizes the information 
from execution history generation techniques, such as tracing, monitoring, and 
profiling, to isolate a problem or its proximity. He then proceeds with the debugger 
to understand how and why the error occurs. 

Current state-of-the-art debuggers allow viewing the runtime code as it appears 
in the source listing, setting "watch" variables to monitor data flow, viewing complex 
data structures, and even communicating with asynchronous I/O channels. The use 
of symbolic debugging can greatly reduce the debugging effort while increasing its 
effectiveness. Symbolic debugging allows the modeler to locate errors and check 
numerous circumstances which lead up to the errors [96]. 
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3.3.16. Top-down testing 

Top-down testing is used in conjtmction with top-down model development strategy. 
In top-down development, model construction starts with the submodels at the highest 
level and culminates with the submodels at the base level (i.e., the ones that are not 
decomposed further). As each submodel is completed, it is thoroughly tested. When 
submodels belonging to the same parent have been developed and tested, the submodels 
are integrated and integration testing is performed. This process is repeated in a top- 
down manner until the whole model has been integrated and tested. The integration of 
completed submodels need not wait for all "same level" submodels to be completed. 
Submodel integration and testing can be, and often is, performed incrementally. 

Top-down testing begins with testing the global model at the highest level. When 
testing a given level, calls to submodels at lower levels are simulated using submodel 
"stubs". A stub is a dummy submodel which has no other function than to let its caller 
complete the call. Fairley [31] lists the following advantages of top-down testing: (I) 
model integration testing is minimized, (2) early existence of a working model results, 
(3) higher level interfaces are tested first, (4) a natural environment for testing lower 
levels is provided, and (5) errors are localized to new submodels and interfaces. 

Some of the disadvantages of top-down testing are: (1) thorough submodel 
testing is discouraged (the entire model must be executed to perform testing), (2) 
testing can be expensive (since the whole model must be executed for each test), 
(3) adequate input data is difficult to obtain (because of the complexity of the data 
paths and control predicates), and (4) integration testing is hampered (again, because 
of the size and complexity induced by testing the whole model) [31]. 

3.3.17. Visualization 

Visualization (animation) of a simulation model greatly assists in model 
VV&T [80]. Displaying graphical images of internal and external dynamic behavior 
of a model during execution enables us to discover errors by seeing. For example, 
in visual simulation of a traffic intersection, we can observe the arrivals of vehicles 
in different lanes and their movements through the intersection as the traffic light 
changes. Seeing the visualization of the model as it executes and comparing it with 
the operations of the real traffic intersection can help us identify discrepancies 
between the model and the system. 

Seeing the model in action is very useful for uncovering errors; however, 
seeing is not believing here [74]. Seeing model behavior during execution does not 
guarantee model correctness. Therefore, visualization should be used with caution 
in model VV&T. 

3.3.18. White-box testing 

White-box testing is used to evaluate the model based on its internal structure 
(how it is built) whereas black-box testing is intended for assessing the input-output 
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transformation accuracy of the model. White-box testing employs data flow and 
control flow diagrams to assess the accuracy of intemal model structure by examining 
model elements such as internal logic, internal data representations, submodel interfaces, 
and model execution paths. White-box testing is quite effective for detecting redundant 
code, faulty model structure, and special case errors. 

3.4. SYMBOLIC VV&T TECHNIQUES 

Symbolic VV&T techniques, like dynamic VV&T techniques, are used to 
evaluate the dynamic behavior of the model during execution. 

3.4.1. Cause-effect graphing 

Cause-effect graphing assists model VV&T by addressing the question of 
"what causes what in the model representation?" It is performed by first identifying 
causes and effects in the system being modeled and by examining if they are 
accurately reflected in the model specification. For example, in the simulation of 
a traffic intersection, the following causes and effects may be identified: (1) the 
change of lane 1 light to red immediately causes the vehicles in lane 1 to stop, (2) 
an increase in the duration of lane 1 green light causes a decrease in the average 
waiting time of vehicles in lane 1, and (3) an increase in the arrival rate of lane 1 
vehicles causes an increase in the average number of vehicles at the intersection. 

As many causes and effects as possible are listed, and the semantics are 
expressed in a cause-effect  graph. The graph is annotated to describe special 
conditions or impossible situations. Once the cause-effect graph has been constructed, 
a decision table is created by tracing back through the graph to determine combinations 
of causes which result in each effect. The decision table is then converted into test 
cases with which the model is tested [62, 96]. 

3.4.2. Partition analysis 

Partition analysis is used for testing the model with the test data generated 
by analyzing the model 's functional representatives (partitions). It is accomplished 
by: (1) decomposing both model specification and implementation into functional 
representatives (partitions), (2) comparing the elements and prescribed functionality 
of each partition specification with the elements and actual functionality of 
corresponding partition implementation, (3) deriving test data to extensively test the 
functional behavior of each partition, and (4) testing the model by using the generated 
test data. 

The model decomposition into functional representatives (partitions) is derived 
through the use of symbolic evaluation techniques which maintain algebraic expressions 
of model elements and show model execution paths. These functional representations 
are the model computations. Two computations are equivalent if they are defined 
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for the same subset of the input domain which causes a set of model paths to be 
executed, and if the result of the computations is the same for each element within 
the subset of the input domain [42]. Standard proof techniques are used to show 
equivalence over a domain. When equivalence canrCot be shown, partition testing 
is performed to locate errors, or as Richardson and Clarke [78] state, to increase 
confidence in the equality of the computations due to the lack of error manifestation. 
By involving both model specification and implementation, partition analysis is 
capable of providing more comprehensive test data coverage than other test data 
generation techniques. 

3.4.3. Path analysis 

Path analysis [42] attempts to assess model correctness on the basis of complete 
testing of all model control paths. It is performed in three steps. In step 1, the model 
control structure (e.g., through structural analysis) is determined and represented in 
a control flow diagram. In step 2, test data is generated to cause selected model 
logical paths to be executed. Symbolic execution can be used to identify and group 
together classes of input data based on the symbolic representation of the model. 
The test data is generated in such a way as to: (1) cover all statements in the path, 
(2) encounter all nodes in the path, (3) cover all branches from a node in the path, 
(4) achieve all decision combinations at each branch point in the path, and (5) 
traverse all paths [75]. In step 3, by using the generated test data, the model is 
forced to proceed through each path in its execution structure, thereby providing 
comprehensive testing. 

In practice, only a subset of all possible model paths are selected for testing 
due to the budgetary constraints. Recent work has sought to increase the amount 
of coverage per test case or to improve the effectiveness of the testing by selecting 
the most critical areas to test. The path prefix strategy is an "adaptive" strategy that 
uses previous paths tested as a guide in the selection of subsequent test paths. 
Prather and Myers [75] prove that the path prefix strategy achieves total branch 
coverage. 

The identification of essential paths is a strategy which reduces the path 
coverage required by nearly 40 percent [20]. The basis for the reduction is the 
elimination of non-essential paths. Paths which are overlapped by other paths are 
non-essential. The model control flow graph is transformed into a directed graph 
whose arcs (called primitive arcs) correspond to the essential paths of the model. 
Non-essential arcs are called inheritor arcs because they inherit information from 
the primitive arcs. The graph produced during the transformation is called an inheritor- 
reduced graph. Chusho [20] presents algorithms for efficiently identifying non- 
essential paths and reducing the control graph into an inheritor-reduced graph, and 
for applying the concept of essential paths to the selection of effective test data. 
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3.4.4. Symbolic execution 

Symbolic execution is used to assess model accuracy by executing the model 
using symbolic values rather than actual data values for input. It is performed by 
feeding symbolic inputs into the (sub)model and producing expressions for the 
output which are derived from the transformation of the symbolic data along model 
execution paths. Consider, for example, the following function: 

function jobArr ivalTime(arr ivalRate,currentCIock,randomNumber) 

lag = - 1 0  

Y = lag * currentCIock 

Z = 3 * Y  

if Z < 0 then 

arr ivalTime = currentCIock - Iog(randomNumber) / arr ivalRate 

else 

arr ivalTime = Z - Iog ( randomNumber )  / arr ivalRate 

end if 

return arr ivalTime 

end jobArr ivalTime 

In symbolic execution, lag is substituted in Y resulting in Y = -10.currentClock. 
Substituting again, we find z = -30*eurrentCIock. Since currentCIock is always zero 
or positive, an error is detected that z will never be greater than zero. 

When unresolved conditional branches are encountered, a decision must be 
made which path to traverse. Once a path is selected, execution continues down the 
new path. At some point in time, the execution evaluation will return to the branch 
point and the previously unselected branch will be traversed. All paths eventually 
are taken. 

The result of the execution can be represented graphically as a symbolic 
execution tree [2, 49]. The branches of the tree correspond to the paths of the model. 
Each node of the tree represents a decision point in the model and is labeled with 
the symbolic values of data at that juncture. The leaves of the tree are complete 
paths through the model and depict the symbolic output produced. 

Symbolic execution assists in showing path correctness for all computations 
regardless of test data and is also a great source of documentation. However, it has 
the following disadvantages: (1) the execution tree can explode in size and become 
too complex as the model grows, (2) loops cause difficulties although inductive 
reasoning and constraint analysis may help, (3) loops make thorough execution 
impossible since all paths must be traversed, and (4) complex data structures may 
have to be excluded because of difficulties in symbolically representing particular 
data elements within the structure [25,49, 76]. 
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3.5. CONSTRAINT VV&T TECHNIQUES 

Constraint VV&T techniques are employed to assess model correctness using 
assertion checking, boundary analysis, and inductivg assertions. 

3.5.1. Asser t ion checking 

An assertion is a statement that should hold true as the simulation model 
executes. Assertion checking is a verification technique used to check what is 

happening against what the modeler assumes is happening so as to guard model 
execution against potential errors. The assertions are placed in various parts of the 
model to monitor model execution. They can be inserted to hold true global ly  - or 
the whole model; regional ly  - for some submodels; locally - within a submodel; or 
at entry and exit of a submodel. The assertions are similar in structure and the 
general format for a local assertion is [88]: 

ASSERT LOCAL (extended-logical-expression) [optional-qualifiers] 
[control-options] 

The "optional-qualifiers" may be chosen as all, some, after jth job, before time t, 
etc. The "control-options" may have the following example syntax [88]: 

I-f HALT [VIAl proc - n a m e } l  • .-LIMIT n tVIOLATIONS] HE-- l T --- 

For example, the programmed model in figure 4 can be instrumented by 
inserting the following local assertion right after the 5th Block to stop the simulation 
if the frequency of violation exceeds an allowable value of 1%: 

ASSERT LOCAL((100*XF$COUNT/N$TSTB) 'LE' I )  LIMIT 1 

where N$TSTB is a GPSS/H Standard Numerical Attribute giving the total number 
of entries into the Block labeled as TSTB. 

Consider, for example, the following pseudo-code [96]: 

Base := Hours * PayRate; 
Gross := Base * (1 + BonusRate); 

In just these two simple statements, several assumptions are being made. It is 
assumed that Hours, PayRate, Base, BonusRate, and Gross are all non-negative. 
The following asserted code can be used to prevent execution errors due to incorrect 
values inputted by the user: 

Assert Local (Hours > 0 and PayRate > 0 and BonusRate > 0); 
Base := Hours * PayRate; 
Gross := Base * (1 + BonusRate); 

Clearly, the assertion checking serves two important needs: (1) it verifies that 
the model is functioning within its acceptable domain, and (2) the assertion statement 
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documents the intentions of the modeler. However, the assertion checking degrades 
the model execution performance. If the execution performance is critical, the 
assertions should be labeled as comments and should be kept permanently to provide 
both documentation and means for maintenance testing [2]. 

Usually, a language should be defined for assertion specification [43] and a 
preprocessor is needed to translate assertions into the simulation programming 
language. Unfortunately, most of the current simulation programming languages 
do not provide assertion checking although this notion is not at all new, dating 
back to 1972 when Satterthwaite included an ASSERT statement in his version of 
Algol W [81]. 

3.5.2. Boundary analysis 

Boundary analysis is employed to test model accuracy by using test cases on 
the boundaries of input equivalence classes. A model's input domain can usually 
be divided into classes of input data (known as equivalence classes) which cause 
the model to function the same way. For example, a traffic intersection model might 
specify the probability of left turn in a three-way turning lane as 0.2, the probability 
of right turn as 0.35, and the probability of travelling straight as 0.45. This probabilistic 
branching can be implemented by using a uniform random number generator that 
produces numbers in the range 0 < rn < 1. Thus, three equivalence classes are identified: 
0 < rn < 0.2, 0.2 < rn < 0.55, and 0.55 < rn < 1. Each test case from within a given 
equivalence class has the same effect on the model behavior, i.e., produces the same 
direction of turn. 

In boundary analysis, test cases are generated just within, on top of, and just 
outside of the equivalence classes [62]. In the example above, the following test 
cases are selected for the left turn: 0.0, + 0.000001, 0.199999, 0.2, and 0.200001. 
In addition to generating test data on the basis of input equivalence classes, it is 
also useful to generate test data which will cause the model to produce values on 
the boundaries of output equivalence classes [62]. The underlying rationale for this 
technique as a whole is that the most error-prone test cases lie along the boundaries 
[69]. Notice that invalid test cases used in the example above will cause the model 
execution to fail; however, this failure should be as expected and meaningfully 
documented. 

3.5.3. Induct ive assert ions 

Inductive assertions are used to assess model correctness based on an approach 
that is very close to formal proof of model correctness. It is conducted in three 
steps. In step 1, input-to-output relations for all model variables are identified. In 
step 2, these relations are converted into assertion statements and are placed along 
the model execution paths in such a way as to divide the model into a finite number 
of "assertion-bound" paths, i.e., an assertion statement lies at the beginning and end 
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of each model execution path. In step 3, verification is achieved by proving that for 
each path: if the assertion at the beginning of the path is true, and all statements 
along the path are executed, then the assertion at the end of the path is true. If all 
paths plus model termination can be proved, by induction, the model is proved to 
be correct [55, 77]. 

3.6. FORMAL VV&T TECHNIQUES 

Formal VV&T techniques are based on formal mathematical proof of correctness. 
If attainable, formal proof of correctness is the most effective means of model 
VV&T. Unfortunately, "if attainable" is the overriding point with regard to formal 
VV&T techniques. Current state-of-the-art formal proof of correctness techniques 
are simply not capable of being applied to even a reasonably complex simulation 
model. However, formal techniques serve as the foundation for other VV&T techniques 
and the most commonly known seven techniques are covered below: (1) induction, 
(2) inference, (3) X-calculus, (4) logical deduction, (5) predicate calculus, (6) predicate 
transformation, and (7) proof of correctness [47, 96]. 

Induction, inference, and logical deduction are simply acts of justifying 
conclusions on the basis of premises given. An argument is valid if the steps used 
to progress from the premises to the conclusion conform to established rules of 
inference. Inductive reasoning is based on invariant properties of a set of observations 
(assertions are invariants since their value is defined to be true). A typical inductive 
argument would be one similar to the one given in section 3.5.3 for inductive 
assertions: given that the initial model assertion is correct, it stands to reason that 
if each path progressing from that assertion can be shown to be correct, and subsequently 
each path progressing from the previous assertion is correct, etc., then the model 
must be correct if it terminates. Formal induction proof techniques exist for the 
intuitive explanation just given. 

The X-calculus [19] is a system for transforming the model into formal expressions. 
It is a string-rewriting system and the model itself can be considered as a large string. 
The ~.-calculus specifies rules for rewriting strings, i.e., transforming the model into 
X-calculus expressions. Using the X-calculus, the modeler can formally express the 
model so that mathematical proof of correctness techniques can be applied. 

The predicate calculus provides rules for manipulating predicates. A predicate 
is a combination of simple relations, such as completed_jobs > steady_state length. 
A predicate will either be true or false. The model can be defined in terms of 
predicates and manipulated using the rules of the predicate calculus. The predicate 
calculus forms the basis of all formal specification languageS [86]. Predicate 
transformation [24, 100] provides a basis for verifying model correctness by formally 
defining the semantics of the model with a mapping which transforms model output 
states to all possible model input states. This representation provides the basis for 
proving model correctness. 
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Formal proof of  correctness corresponds to expressing the model in a precise 
notation and then mathematically proving that the executed model terminates and 
it satisfies the requirements specification with sufficient accuracy [5]. Attaining 
proof of correctness in a realistic sense is not possible under the current state of 
the art. However, the advantage of realizing proof of correctness is so great that 
when the capability is realized, it will revolutionize the model VV&T. 

4. Credibility assessment stages 

It is very important to understand the principles of simulation model VV&T 
when applying the VV&T techniques throughout the entire life cycle of a simulation 
study. Balci [9] presents 15 principles that help the researchers, practitioners and 
managers better understand what model VV&T is all about. These principles serve 
to provide the underpinnings for the VV&T techniques described in section 3. 
Understanding and applying these principles is crucially important for the success 
of a simulation study. 

Table 2 marks the VV&T techniques that are applicable for each of the ten 
credibility assessment stages described below. The more of these techniques we 
apply the more confidence we gain in the credibility of a life cycle phase. The 
VV&T activities should continue until a sufficient level of confidence is achieved. 

4.1. FORMULATED PROBLEM VV&T 

When a problem is recognized, a decision maker (a client or sponsor group) 
initiates a study by communicating the problem to an analyst (a problem-solver or 
a consultant/research group). The communicated problem is rarely clear, specific, 
or organized. Consequently, an essential study to formulate the actual problem 
usually follows. Problem Formulation (problem structuring or problem definition) 
is the process by which the initially communicated problem is translated into a 
formulated problem sufficiently well defined to enable specific research action [98]. 

Formulated problem VV&T deals with substantiating that the formulated 
problem contains the actual problem in its entirety and is sufficiently well structured 
to permit the derivation of a sufficiently credible solution [10]. Failure to formulate 
the actual problem results in the Type III error. Once the Type III error is committed, 
regardless of how well the problem is solved, the simulation study will either end 
unsuccessfully or with the Type II error. Therefore, the accuracy of the formulated 
problem greatly affects the credibility and acceptability of simulation results. 

Audit, cause-effect graphing, consistency checking, desk checking, face 
validation, inspections, reviews, structural analysis, and walkthroughs can be applied 
for conducting formulated problem VV&T. In applying cause-effect graphing, a 
causality network is created to analyze the potential root causes of the communicated 
problem [10]. The questionnaire developed by Balci and Nance [10] with 38 indicators 
can be used in applying audit, inspections, reviews, and walkthroughs. 
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Table 2 

Applicability of the VV&T techniques for the credibility assessment stages. 

Assertion checking 
Audit 
Black-box testing 
Bottom-up testing 
Boundary analysis 
Cause-effect graphing 
Consistency checking 
Data flow analysis 
Debugging 
Desk Checking 
Execution Monitoring 
Execution Profiling 
Execution Tracing 
Face Validation 
Field Testing 
Graph-based analysis 
Graphical comparisons 
Induction 
Inductive assertions 
Inference 
Inspections 
Lambda calculus 
Logical deduction 
Partition analysis 
Path analysis 
Predicate calculus 
Predicate transf. 
Predictive validation 
Proof of correctness 
Regression testing 
Reviews 
Semantic analysis 
Sensitive analysis 
Statistical techniques 
Stress testing 
Structural analysis 
Submodel testing 
Symbolic debugging 
Symbolic execution 
Syntax analysis 
lop-down testing 
luring test 
Visualization 
Walkthroughs 
White-box testing 
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4.2. FEASIBILITY ASSESSMENT OF SIMULATION 

All alternative techniques that can be used in solving the formulated problem 
should be identified. A technique whose solution is estimated to be too costly or 
is judged to be not sufficiently beneficial with respect to the study objectives should 
be disregarded. Among the qualified ones, the technique with the highest expected 
benefits/cost ratio should be selected. 

The statement "when all else fails, use simulation" is misleading if not invalid. 
The question is not to bring a solution to the problem, but to bring a sufficiently 
credible one which will be accepted and used by the decision maker(s). A technique 
other than simulation may provide a less costly solution, but it may not be as useful. 

Sometimes, the communicated problem is .formulated under the influence of 
a solution technique in mind. Occasionally, simulation is chosen without considering 
any other technique just because it is the only one the analyst(s) can use. Skipping 
the investigation of solution techniques process may result in unnecessarily expensive 
solutions, sometimes to the wrong problems. 

As a result of the investigation of solution techniques process, we assume 
that simulation is chosen as the most appropriate solution technique. At this point, 
the simulation project team should be activated and be made responsible for the 
formulated problem VV&T and feasibility assessment of simulation before proceeding 
in the life cycle. 

Audit, face validation, inspections, reviews, and walkthroughs can be applied 
for assessing the feasibility of simulation with the use of indicators such as: (1) Are 
the benefits and cost of simulation solution estimated correctly?; (2) Do the potential 
benefits of simulation solution justify the estimated cost of obtaining it?; (3) Is it 
possible to solve the problem using simulation within the time limit specified?; (4) 
Can all of the resources required by the simulation project be secured?; and (5) Can 
all of the specific requirements (e.g., access to pertinent classified information) of 
the simulation project be satisfied? 

4.3. SYSTEM AND OBJECTIVES DEFINITION VV&T 

For the purpose of generality, the term "system" is used to refer to the entity 
that contains the formulated problem. System and objectives definition VV&T deals 
with assessing the credibility of the system investigation process in which system 
characteristics are explored for consideration in system definition and modeling. 
Shannon [87] identifies six major system characteristics: (1) change, (2) environment, 
(3) counterintuitive behavior, (4) drift to low performance, (5) interdependency, and 
(6) organization. Each characteristic should be examined with respect to the study 
objectives that are identified with the formulation of the problem. 

In simulation, we mostly deal with stochastic and dynamic real systems that 
change over a period of time. How often and how much the system will change 
during the course of a simulation study should be estimated so that the model 
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representation can be updated accordingly. Changes in the system may also change 
the study objectives. 

A system's environment consists of all input variables that can significantly 
affect its state. The input variables are identified by assessing the significance of 
their influence on the system's state with regard to the study objectives. For example, 
for a traffic intersection system, the interarrival time of vehicles can be identified 
as an input variable making up the environment, whereas pedestrian arrivals may 
be omitted due to their negligible effect on the system's behavior of interest (e.g., 
average waiting time of vehicles). Underestimating the influence of an input variable 
may result in inaccurate environment definition. 

Some complex systems may show counterintuitive behavior which we should 
try to identify for consideration in defining the system. However, this is not an easy 
task, especially for those systems containing many subjective elements (e.g., social 
systems). Cause and effect are often not closely related in time or space. Symptoms 
may appear long after the primary causes [87]. To be able to identify counterintuitive 
behavior, it is essential that the simulation project employs people who have expert 
knowledge about the system under study. 

A system may show a drift to low performance due to the deterioration of its 
components (e.g., machines in a manufacturing system) over a period of time. If 
this characteristic exists, it should be incorporated within the model representation 
especially if the model's intended use is forecasting. 

Before we start abstracting the real system for the purpose of modeling, we 
should examine the interdependency and organization characteristics of the system. 
In a complex stochastic system, many activities or events take place simultaneously 
and influence each other. The system complexity can be overcome by way of 
decomposing the system into subsystems and subsystems into other subsystems. 
This decomposition can be carried out by examining how system elements or 
components are organized. 

Audit, consistency checking, desk checking, face validation, inspections, reviews, 
structural analysis, and walkthroughs can be applied for conducting system and 
objectives definition VV&T by using indicators such as: (1) Since systems and 
objectives may change over a period of time, will we have the same system and 
objectives definition at the conclusion of the simulation study (which may last from 
six months to several years)?; (2) Is the system's environment (boundary) identified 
correctly?; (3) What counterintuitive behavior may be caused within the system and 
its environment?; (4) Will the system significantly drift to low performance requiring 
a periodic update of the system definition?; and (5) Are the interdependency and 
organization of the system characterized accurately? The objective here is to substantiate 
that the system characteristics are identified and the study objectives are explicitly 
defined with sufficient accuracy. An error made here may not be caught until very 
late in the life cycle resulting in a high cost of correction or an error of Type II 
or III. 
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4.4.  MODEL QUALIFICATION 

Model qualification is intended for assessing the credibility of the model 
formulation process. Model formulation is the process by which a conceptual model 
is envisioned to represent the system under study. The Conceptual Model is the 
model which is formulated in the mind of the modeler [64]. Model formulation and 
model representation constitute the process of model design. Input data analysis and 
modeling [54] is a subprocess of model formulation process and is conducted with 
respect to the way the model is driven, self- or trace-driven. 

Under some study objectives (e.g., evaluation, comparison, determination of 
functional relations) and for model validation, input data model is built to represent 
the system's input process. In a self-driven simulation (e.g., of a computer system), 
we collect data on an input random variable (e.g., interarrival time of jobs), identify 
the distribution, estimate its parameters, and conclude upon a probability distribution 
as the input data model to sample from in driving the simulation model [54]. In a 
trace-driven simulation, we trace the system (e.g., using hardware or software monitors) 
and utilize the refined trace data as the input data model to use in driving the 
simulation model. 

A model should be conceptualized under the guidance of a structured approach 
such as the Conical Methodology [64-66]. One key idea behind the use of a 
structured approach is to control the model complexity so that we can successfully 
verify and validate the model. The use of a structured approach is an important 
factor determining the success of a simulation project, especially for large-scale and 
complex models. During the conceptualization of the model, one makes many 
assumptions in abstracting the reality. Each assumption should be explicitly specified. 

Model Qualification deals with the justification that all assumptions made are 
appropriate and the conceptual model provides an adequate representation of the 
system with respect to the study objectives. Audit, consistency checking, desk 
checking, face validation, inspections, reviews, and walkthroughs can be applied for 
conducting model qualification. 

4.5. COMMUNICATIVE MODEL VV&T 

Communicative model VV&T is concerned with substantiating the sufficient 
accuracy of the model representation process which is the process of translating 
the conceptual model into a communicative model. A Communicative Model is 
"a model representation which can be communicated to other humans, can be 
judged or compared against the system and the study objectives by more than one 
human" [64]. Several communicative models may be developed; one in the form 
of Structured English intended for nontechnical people, another in the form of a 
micro flowchart intended for a programmer. 

Communicative model VV&T deals with confirming the adequacy of the 
communicative model to provide an acceptable level of agreement for the domain 



158 O. Balci, Validation, verification, and testing techniques 

of intended application. Domain of Intended Application [83] is the prescribed 
conditions for which the model is intended to match the system under study. Level 
of Agreement [83] is the required correspondence between the model and the system, 
consistent with the domain of intended application and the study objectives. 

Audit, cause-effect graphing, consistency checking, data flow analysis, desk 
checking, face validation, graph-based analysis, inspections, reviews, structural analysis, 
and walkthroughs can be applied for conducting communicative model VV&T. 

4.6. PROGRAMMED MODEL VV&T 

Programmed model VV&T deals with the assessment of the process of 
programming which is the process of translating the communicative model into a 
programmed model. A Programmed Model is an executable simulation model 
representation in a simulation programming language such as GPSS, SIMAN, 
SIMSCRIPT, SIMULA, and SLAM or in a high-level programming language such 
as C++, Fortran, and Pascal. The programmed model does not incorporate an experiment 
design. 

The techniques applicable for conducting communicative model VV&T are 
marked in table 2. 

4.7. EXPERIMENT DESIGN VV&T 

Experiment design VV&T deals with substantiating the sufficient accuracy 
of the process of design of experiments which is the process of formulating a plan 
to gather the desired information at minimal cost and to enable the analyst to draw 
valid inferences [87]. An Experimental Model is the programmed model incorporating 
an executable description of operations presented in such a plan. 

A variety of techniques are available for the design of experiments. Response- 
surface methodologies can be used to find the optimal combination of parameter 
values which maximize or minimize the value of a response variable [54]. Factorial 
designs can be employed to determine the effect of various input variables on a 
response variable [32]. Variance reduction techniques can be implemented to obtain 
greater statistical accuracy for the same amount of simulation [54]. Ranking and 
selection techniques can be utilized for comparing alternative systems [54, 17]. 
Several methods (e.g., replication, batch means, regenerative) can be used for statistical 
analysis of simulation output data. 

The techniques marked in table 2 can be applied for conducting experiment 
design VV&T with the use of indicators such as: (1) Are the algorithms used for 
random variate generation theoretically accurate?; (2) Are the random variate generation 
algorithms translated into executable code accurately? (Error may be induced by 
computer arithmetic or by truncation due to machine accuracy, especially with order 
statistics (e.g., X = -loge(1 - U)) [84].); (3) How well is the random number generator 
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tested? (Using a generator which is not rigorously shown to produce uniformly 
distributed independent numbers with sufficiently large period may invalidate the 
whole experiment design.); (4) Are appropriate statistical techniques implemented 
to design and analyze the simulation experiments? How well are the underlying 
assumptions satisfied? (See [53] for several reasons why output data analyses have 
not been conducted in an appropriate manner.); (5) Is the problem of the initial 
transient (or the start-up problem) [97] appropriately addressed?; and (6) For comparison 
studies, are identical experimental conditions replicated correctly for each of the 
alternative operating policies compared? 

4.8. DATA VV&T 

Data VV&T involves input data model VV&T and deals with substantiating 
that all data used throughout the model development phases of the life cycle in 
figure 2 are accurate, complete, unbiased, and appropriate in their original and 
transformed forms. An input data model is the characterization of an input process 
(e.g., characterization of an arrival process by Poisson probability distribution). 
U.S. GAO [93] emphasizes the importance of input data model validation in credibility 
assessment of simulations. 

In those cases where data cannot be collected, data values may be determined 
through calibration. Calibration is an iterative process in which a probabilistic 
characterization for an input variable or a fixed value for a parameter is tried until 
the model is found to be sufficiently valid. 

Assertion checking, audit, consistency checking, data flow analysis, desk 
checking, face validation, inspections, reviews, statistical techniques, and walkthroughs 
can be applied for conducting data VV&T with the use of indicators such as: (1) 
Does each input data model possess a sufficiently accurate representation?; (2) Are 
the parameter values identified, measured, or estimated with sufficient accuracy?; 
(3) How reliable are the instruments used for data collection and measurement?; (4) 
Are all data transformations done accurately? (e.g., are all data transformed correctly 
into the same time unit of the model?); (5) Is the dependence between the input 
variables, if any, represented by the input data model(s) with sufficient accuracy? 
(Blindly modeling bivariate relationships using only correlation to measure dependency 
is cited as a common error by Schmeiser [84].); and (6) Are all data up-to-date? 

4.9. EXPERIMENTAL MODEL VV&T 

Experimental Model VV&T deals with substantiating that the experimental 
model has sufficient accuracy in representing the system as defined under the study 
objectives. All of the 45 techniques listed in table 2 can be applied for conducting 
model VV&T. The applicability of the 45 techniques depends upon the following 
cases where the system being modeled is: (1) completely observable - all data required 
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for model VV&T can be collected from the system, (2) partially observable - some 
required data can be collected, or (3) nonexistent or completely unobservable. The 
statistical techniques in table 1 are applicable only for case 1. 

4. I 0. PRESENTATION VV&T 

Presentation VV&T deals with justifying that the simulation results are 
interpreted, documented, and communicated with sufficient accuracy. 

Since all simulation models are descriptive, simulation results must be interpreted. 
(A descriptive model describes the behavior of a system without any value judgment 
on the "goodness" or "badness" of such behavior [28].) In the simulation of an 
interactive computer system, for example, the model may produce a value of 20 
seconds for the average response time; but, it does not indicate whether the value 
20 is a "good" result or a "bad" one. Such a judgment is made by the simulation 
analyst depending upon the study objectives. Under one set of study objectives the 
value 20 may be too high; under another, it may be reasonable. The project team 
should review the way the results are interpreted in every detail to evaluate interpretation 
accuracy. Errors may be induced due to the complexity of simulation results, especially 
for large scale and complex models. 

Gass [38] points out that "we do not know of any model assessment or 
modeling project review that indicated satisfaction with the available documentation." 
Nance [63] advocates the use of standards in simulation documentation. The 
documentation problem should be attributed to the lack of automated support 
for documentation generation integrated with model development continuously 
throughout the entire life cycle. The model development environment [6, 11] 
provides such computer-aided assistance for documenting a simulation study with 
respect to the phases, processes, and credibility assessment stages of the life cycle 
in figure 2. 

The simulation project team must devote sufficient effort in communicating 
technical simulation results to decision makers in a language they will understand. 
They must pay more attention to translating from the specialized jargon of the 
discipline into a form that is meaningful to the nonsimulationist and nonmodeler. 
Simulation results may be presented to the decision makers as integrated within a 
Decision Support System (DSS). With the help of a DSS, a decision maker can 
understand and utilize the results much better. The integration accuracy of simulation 
results within the DSS must be verified. If results are directly presented to the 
decision makers, the presentation technique (e.g., overheads, slides, films, etc.) 
must be ensured to be effective enough. The project management must make sure 
that the team members are trained and possess sufficient presentation skills. 

Audit, consistency checking, desk checking, face validation, inspections, reviews, 
structural analysis, and walkthroughs can be applied for conducting presentation 
VV&T. 
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5. Concluding remarks and research directions 

The life cycle application of VV&T is extremely important for successful 
completion of complex and large-scale simulation studies. This point must be clearly 
understood by the sponsor of the simulation study and the organization conducting 
the simulation study. The sponsor must furnish funds under the contractual agreement 
and require the contractor to apply VV&T throughout the entire life cycle. 

Assessing credibility throughout the life cycle of a simulation study is an 
onerous task. Applying the VV&T techniques throughout the life cycle is time 
consuming and costly. In practice, under time pressure to complete a simulation 
study, the VV&T and documentation are sacrificed first. Computer-aided assistance 
for the VV&T is required to alleviate these problems. More research is needed to 
bring automation to the application of the VV&T techniques. 

Integration of VV&T with model development is crucial. This integration is 
best achieved within a computer-aided simulation software engineering environment 
[6, 11]. More research is needed for this integration. 

How much to test or when to stop testing depends on the study objectives. 
The testing should continue until we achieve sufficient confidence in credibility and 
acceptability of simulation results. The sufficiency of the confidence is dictated by 
the study objectives. 

Establishing a simulation quality assurance (SQA) program within the 
organization conducting the simulation study is extremely important for successful 
credibility assessment. The SQA management structure goes beyond VV&T and is 
also responsible for assessing other model quality characteristics such as maintainability, 
reusability, and usability (human-computer interface). The management of the SQA 
program and the management of the simulation project must be independent of each 
other and neither should be able to overrule the other [82]. 

Subjectivity is and will always be part of the credibility assessment for a 
reasonably complex simulation study. The reason for subjectivity is two-fold: modeling 
is an art and credibility assessment is situation dependent. A unifying approach 
based on the use of indicators measuring qualitative as well as quantitative aspects 
of a simulation study should be developed. 

6. Glossary 

Assertion Checking: A technique for examining what is happening against what the 
modeler a s s u m e s  is happening so as to guard model execution against potential 
errors, 

Audit: A technique for investigating how adequately the simulation study is conducted 
with respect to established practices, standards, and guidelines and for establishing 
traceability within the simulation study. 
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Black-Box Testing: A technique for assessing the accuracy of model input-output 
transformation. It is applied by feeding inputs (test data) to the model and evaluating 
the corresponding outputs. The concern is how accurately the model transforms a 
given set of input data into a set of output data. 

Bottom-Up Testing: A technique, used in conjunction with bottom-up model 
development strategy, in which testing starts with the submodels at the base level 
(i.e., the ones that are not decomposed further) and culminates with the submodels 
at the highest level. As each submodel is completed, it is thoroughly tested. When 
submodels belonging to the same parent have been developed and tested, the submodels 
are integrated and integration testing is performed. This process is repeated in a 
bottom-up manner until the whole model has been integrated and tested. 

Boundary Analysis: A technique for assessing model accuracy by using test cases 
on the boundaries of input equivalence classes which are classes of input data that 
cause the model to function the same way. 

Calibration: An iterative process in which a probabilistic characterization for an 
input variable or a fixed value for a parameter is tried until the model is found to 
be sufficiently valid. 

Cause-Effect  Graphing: A technique conducted by addressing the question of 
"what causes what in the model representation?" It is performed by first identifying 
causes and effects in the system being modeled and by examining if they are 
accurately reflected in the model specification. Then, the semantics are expressed 
in a cause-effect graph. A decision table is created by tracing back through the 
graph to determine combinations of causes which result in each effect. The decision 
table is then converted into test cases with which the model is tested. 

Communicat ive Model: A model representation which can be communicated to 
other humans and can be judged or compared against the system and the study 
objectives by more than one human [64]. 

Communicat ive Model VV&T: Confirming the adequacy of the communicative 
model to provide an acceptable level of agreement for the domain of intended 
application. 

Conceptual Model: The model which is formulated in the mind of the modeler [64]. 

Consistency Checking: A technique which deals with substantiating that: (a) the 
model representation does not contain contradictions, (b) the cosmetic style with 
which language elements (e.g., naming conventions, use of upper, lower, and mixed 
case, etc.) are applied is used consistently, and (c) the data elements are manipulated 
uniformly (e.g., data assignment to variables, data use within computations, data 
passing among submodels, data representation and use during model input and 
output). 
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Data Flow Analysis: A technique for assessing model accuracy with respect to the 
use of model variables. A data flow graph is constructed to aid in the data flow 
analysis. The nodes of the graph represent statements and corresponding variables. 
The edges represent control flow. 

Data VV&T: Substantiating that each input data model has sufficient accuracy in 
representing the simulation model's input process (e.g., assessing the accuracy of 
characterizing an arrival process by Poisson probability distribution) and that all 
data used throughout the model development phases are accurate, complete, unbiased, 
and appropriate in their original and transformed forms. 

Debugging: An iterative process the purpose of which is to uncover errors or 
misconceptions that cause the model's failure and to define and carry out the model 
changes that correct the errors. 

Design of Experiments: The process of formulating a plan to gather the desired 
information at minimal cost and to enable the analyst to draw valid inferences [87]. 

Desk Checking: A technique for thoroughly examining one's work to ensure correctness, 
completeness, consistency, and unambiguity. 

Domain of Applicability: The set of prescribed conditions for which the experimental 
model has been tested, compared against the system to the extent possible, and 
judged suitable for use [83]. 

Domain of Intended Application: The prescribed conditions for which the model 
is intended to match the system under study [83]. 

Execution Monitoring: A technique for revealing errors by examining low-level 
information about activities and events which take place during model execution. 
It requires model instrumentation. 

Execution Profiling: A technique for revealing errors by examining high-level 
information (profiles) about activities and events which take place during model 
execution. It requires model instrumentation. 

Execution Tracing: A technique for revealing errors by "watching" the line-by-line 
execution of a simulation model. It requires model instrumentation. 

Experiment Design VV&T: Substantiating that the experiments are designed and 
implemented with sufficient accuracy. 

Experimental Model: The programmed model incorporating an executable description 
of an experiment design. 

Face Validation: A technique in which the project team members, potential users 
of the model, people knowledgeable about the system under study, based on their 
estimates and intuition, subjectively compare model and system behaviors to judge 
whether the model and its results are reasonable. 
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Field Testing: A technique in which the model is placed in an operational situation 
for the purpose of collecting as much information as possible for model validation. 
It is especially useful for validating models of military combat systems. 

Formulated Problem VV&T: Substantiating that the formulated problem contains 
the actual problem in its entirety and is sufficiently well structured to permit the 
derivation of a sufficiently credible solution. 

Functional Testing: See Black-Box Testing. 

Graph-Based Analysis: A tct.hniquc for a~c~in/~ mudcl t;lctJlbility ba~ed trrl t ~  
use of a graphical representation of the model (e.g., data flow graph, control flow 
graph). 

Graphical Comparisons: A technique by which the graphs of values of model 
variables over time are compared with the graphs of values of system variables to 
investigate characteristics such as similarities in periodicities, skewness, number 
and location of inflection points, logarithmic rise and linearity, phase shift, trend 
lines, and exponential growth constants. 

Indicator: An indirect measure of a concept which is decomposed into other indicators 
until the ones at the base level (i.e., the ones that are not decomposed further) are 
directly measurable. 

Induction: A formal proof of correctness technique for estimating the validity of 
the whole set of observations based on the validity of a subset of observations as 
evidence. 

Inductive Assertions: A technique for assessing model correctness based on an 
approach that is very close to formal proof of model correctness. It is conducted 
in three steps: (1) input-to-output relations for all model variables are identified; (2) 
these relations are converted into assertion statements and are placed along the 
model execution paths in such a way as to divide the model into a finite number 
of "assertion-bound" paths, i.e., an assertion statement lies at the beginning and end 
of each model execution path; and (3) verification is achieved by proving that for 
each path: if the assertion at the beginning of the path is true, and all statements 
along the path are executed, then the assertion at the end of the path is true. If all 
paths plus model termination can be proved, by induction, the model is proved to 
be correct. 

Inference: A formal proof of correctness technique for deriving logical conclusions 
from the premises given. 

Input  Data Model VV&T: Substantiating that the input data model has sufficient 
accuracy in representing the simulation model 's input process (e.g., assessing the 
accuracy of characterizing an arrival process by Poisson probability distribution). 

Inspections: A technique conducted by a team of four to six members with the 
objective of finding and documenting faults. It consists of five distinct phases: 
overview, preparation, inspection, rework, and follow-up. 
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Lambda Calculus: A technique for transforming the model into formal expressions 
by which mathematical proof of correctness techniques can be applied for the 
purpose of VV&T. 

Level of Agreement: The required correspondence between the model and the system, 
consistent with the domain of intended application and the study objectives [83]. 

Logical Deduction: A formal proof of correctness technique for reasoning in which 
a conclusion follows necessarily from the premises given. 

Model: Representation and abstraction of anything such as a system, concept, problem, 
or phenomena. 

Model Builder's Risk: The probability of committing Type I error. 

Model Certification: Confirmation (usually by a third party) that a simulation 
model, within its domain of applicability, can produce results which are sufficiently 
credible with respect to the study objectives. 

Model Instrumentation: The insertion of additional code (probes) into the executable 
model for the purpose of collecting information about model behavior during execution. 
Probe locations are determined manually or automatically based on static analysis 
of model structure. Automated instrumentation is accomplished by a preprocessor 
which analyzes the model static structure (usually via graph-based analysis) and 
inserts probes at appropriate places. 

Model Qualification: Justifying that all assumptions underlying the conceptual 
model are appropriate and the conceptual model provides an adequate representation 
of the system under study with respect to the study objectives. 

Model Range of Accuracy: Simultaneous confidence intervals for the differences 
between the means of corresponding model and system output variables obtained 
by running the model with the "same" input data that drives the real system. 

Model Testing: Demonstrating that inaccuracies exist or revealing the existence of 
errors in the model. In model testing, we subject the model to test data or test cases to 
see if it functions properly. 'Test failed" implies the failure of the model, not the test. 

Model User's Risk: The probability of committing Type II error. 

Model Validation: Substantiating that the model, within its domain of applicability, 
behaves with satisfactory accuracy consistent with the study objectives. Model 
validation deals with building the right model. It is conducted by running the model 
under the "same" input conditions that drive the system and by comparing model 
behavior with the system behavior. 

Model Verification: Substantiating that the model is transformed from one form 
into another, as intended, with sufficient accuracy. Model verification deals with 
building the model right. The accuracy of transforming a problem formulation into 
a model specification or the accuracy of converting a model representation in micro 
flowchart into an executable computer program is evaluated in model verification. 
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Model W & T :  Model testing is conducted to perform model validation and verification. 
Some tests are devised to evaluate the behavioral accuracy (i.e., validity) of the 
model, and some tests are intended to judge the accm-acy of model transformation 
from one form into another (verification). Therefore, we commonly refer to the 
whole process as model VV&T. 

Partition Analysis: A technique for testing the model with the test data generated 
by analyzing the model's functional representatives (partitions). It is accomplished 
by: (1) decomposing both model specification and implementation into functional 
representatives (partitions), (2) comparing the elements and prescribed functionality 
of each partition specification with the elements and actual functionality of 
corresponding partition implementation, (3) deriving test data to extensively test the 
functional behavior of each partition, and (4) testing the model by using the generated 
test data. 

Path Analysis: A technique for assessing model correctness on the basis of complete 
testing of all model control paths. It is performed in three steps: (1) the model 
control structure is determined and represented in a control flow diagram, (2) test 
data is generated to cause selected model logical paths to be executed, and (3) by 
using the generated test data, the model is forced to proceed through each path in 
its execution structure, thereby providing comprehensive testing. 

Predicate Calculus: A technique that provides rules for manipulating predicates. A 
predicate is a combination of simple relations which will either be true or false. The 
model can be defined in terms of predicates and manipulated using the rules of the 
predicate calculus for the purpose of VV&T. 

Predicate Transformation: A technique that provides a basis for verifying model 
correctness by formally defining the semantics of the model with a mapping which 
transforms model output states to all possible model input states. This representation 
provides the basis for proving model correctness. 

Predictive Validation: A technique by which model validation is conducted using 
past system data. The model is driven by past system input data and its forecasts 
are compared with the corresponding past system output data to test the predictive 
ability of the model. 

Presentation VV&T: Substantiating that the simulation results are interpreted, 
documented, and communicated with sufficient accuracy. 

P rogrammed Model: A model representation that admits execution by a computer 
to produce results [64]. 

Programmed Model VV&T: Substantiating that the programmed model possesses 
sufficient accuracy in representing the system under study. 

Proof  of Correctness: A technique for expressing the model in a precise notation 
and then mathematically proving that the executed model terminates and it satisfies 
the requirements specification with sufficient accuracy. 
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Regression Testing: A technique for substantiating that correcting errors and/or 
making changes in the model do not create other errors and adverse side-effects. 
It is usually accomplished by retesting the modified model with the previous test 
data sets used. 

Reviews: A technique conducted by a team of experts and managers with the 
objective of finding and documenting faults. 

Self-Driven Simulation Model: A model driven by input values obtained via sampling 
from probability distributions using random numbers. 

Semantic Analysis: A technique by which the simulation programming language 
compiler generates a wealth of information to help the modeler determine if the true 
intent is accurately translated into the executable code. 

Sensitivity Analysis: A technique for systematically changing the values of model 
input variables and parameters over some range of interest and observing the effect 
upon model behavior [87]. Unexpected effects may reveal invalidity. 

Simulation: The process of constructing a model of a system which contains a 
problem and conducting experiments with the model on a computer for a specific 
purpose of experimentation to solve the problem. 

Simulation Quality Assurance: Refers to the management structure responsible for 
planning, preparing test cases, and administering VV&T activities throughout the 
life cycle of a simulation study to assure sufficient credibility of simulation study 
results. 

Stress Testing: A technique for assessing model validity under extreme workload 
conditions. This is usually accomplished by increasing the congestion in the model. 

Structural Analysis: A technique for examining the model structure and determining 
if it adheres to structured principles. It is conducted by constructing a control flow 
graph of the model structure and examining the graph for anomalies, such as multiple 
entry and exit points, excessive levels of nesting within a structure, and questionable 
practices such as the use of unconditional branches (i.e., GOTOs). 

Submodel Testing: The experimental model is instrumented to collect data on all 
input and output variables of a submodel. The system is similarly instrumented (if 
possible) to collect similar data. Then, each submodel behavior is compared with 
corresponding subsystem behavior to judge submodel validity. If a subsystem can 
be modeled analytically (e.g., as an M/M/I model), its exact solution can be compared 
against the simulation solution to assess validity quantitatively. 

Symbolic Debugging: A technique which allows the modeler to locate errors and 
check numerous circumstances which lead up to the errors by employing a debugging 
tool that allows the modeler to manipulate model execution while viewing the 
model at the source code level. By setting "breakpoints", the modeler can interact 
with the entire model one step at a time, at predetermined locations, or under 
specified conditions. 
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Symbolic Execution: A technique for assessing model accuracy by executing the 
model using symbolic values rather than actual data values for input. It is performed 
by feeding symbolic inputs into the (sub)model and producing expressions for the 
output which are derived from the transformation of the symbolic data along model 
execution paths. 

Syntax Analysis: A technique carried on by the simulation programming language 
compiler to assure that the mechanics of the language are applied correctly. 

System and Objectives Definition W&T:  Substantiating that the system characteristics 
are identified and the study objectives are explicitly defined with sufficient accuracy. 

Top-Down Testing: A technique, used in conjunction with top-down model 
development strategy, in which testing starts with the submodels at the highest level 
and culminates with the submodels at the base level (i.e., the ones that are not 
decomposed further). As each submodel is completed, it is thoroughly tested. When 
submodels belonging to the same parent have been developed and tested, the submodels 
are integrated and integration testing is performed. This process is repeated in a top- 
down manner until the whole model has been integrated and tested. 

Trace-Driven Simulation Model: A model driven by input sequences extracted 
from trace data obtained through measurement of the real system. 

Turing Test: A technique in which people with expert knowledge about the system 
under study are presented with two sets of output data obtained, one from the model 
and one from the system, under the same input conditions. Without identifying 
which one is which, the people are asked to differentiate between the two. If they 
succeed, they are asked how they were able to do it. Their response provides 
valuable feedback for correcting model representation. If they cannot differentiate, 
our confidence in model validity is increased. 

Type I Error: The error of rejecting the model credibility when in fact the model 
is sufficiently credible. Occurrence of Type I error may increase the cost of model 
development or may cause the simulation study to end unsuccessfully. 

Type II Error: The error of accepting the model credibility when in fact the model 
is not sufficiently credible. Consequences of committing Type II error can be 
catastrophic. 

Type I l l  Error: The error of solving the wrong problem. Once the Type III error 
is committed, regardless of how well the problem is solved, the simulation study 
will either end unsuccessfully or with the Type II error. 

Visualization: Displaying graphical images of internal and external dynamic behavior 
of a simulation model during execution. 

Walkthroughs: A technique conducted by a team composed of a coordinator, model 
developer, and three to six other members with the objective of discovering and 
documenting faults. 
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Whi t e -Box  Test ing:  A technique which employs  data  f low and control f low diagrams 
to assess the accuracy  of  internal model  structure by examin ing  model  e lements  
such as internal  logic,  internal  data  representat ions,  submodel  interfaces,  and model  
execut ion  paths.  Whi te -box  testing is quite e f fec t ive  for detect ing redundan t  code,  
faul ty model  structure,  and special case errors. 
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