
Annals of Mathematics and Artificial Intelligence 18 (1996) 3-27 3

On computing minimal models*

Rachel Ben-El iyahu

Mathematics and Computer Science Department, Ben-Gution University of the Negev,
Beer-Sheva 84105, Israel

E-mail: rachel@cs.bgu.ac.il

Rina Dechter

hlformation and Computer Science, Universi O, of California, h'vine, California 92717, USA
E-mail: dechter@ics.uci.edu

This paper addresses the problem of computing the minimal models of a given CNF
propositional theory. We present two groups of algorithms. Algorithms in the first group
are efficient when tile theory is almost Horn, that is, when there are few non-Horn clauses
and/or when the set of all literals that appear positive in any non-Horn clause is small.
Algorithms in tile other group are efficient when the theory can be represented as an
acyclic network of low-arity relations. Our algorithms suggest several characterizations
of tractable subsets for the problem of finding minimal models.

1. Introduction

One approach to attacking NP-hard problems is to identify islands oftractabilio,
in the problem domain and to use their associated algori thms as bui ld ing blocks for
soiving hard instances, often approximately. A celebrated example of this approach is
the t reatment of the proposit ional satisfiability problem.

In this paper, we would like to initiate a similar effort for the problem of f inding
one, all, or some of the minimal models of a proposit ional theory. Comput ing min i -
mal models is an essential task in many reasoning systems in Artificial Intel l igence,
including proposit ional c ircumscript ion [24, 27, 28] and minimal diagnosis [10, 30],
and in answer ing queries posed on logic programs (under stable model semant ics [3,
18]) and deduct ive databases (under the general ized closed-world assumpt ion [29]).
While the ul t imate goal in these systems is not to compute min imal models but rather

"This work was partially supported by an IBM graduate fellowship to the first author, by NSF grants
1RI-9157636 and IRI-9200918, by Air Force Office of Scientific Research grant AFOSR 900136, by a
grant l¥om Xerox Palo Alto research center, and by Toshiba of America. Part of this work was done
while the first author was a graduate student at the Cognitive Systems Laboratory, Computer Science
Department, University of California, Los Angeles, Calitbrnia, USA.

C) J.C. Baltzer AG, Science Publishers

4 R. Ben-Eliyahu, R, Dechtet: On computing minimal models

to produce plausible inferences, efficient algorithms for computing minimal models
can substantially speed up inference in these systems.

Special cases of this problem have been studied in the diagnosis literature and,
more recently, in the logic programming literature. Algorithms used in many diagnosis
systems [I0, 11] are highly complex in the worst case: To find a minimal diagnosis,
they first compute all prime implicates of a theory and then find a minimal cover
of the prime implicates. The first task is output exponential, while the second is
NP-hard, Therefore, in the diagnosis literature, researchers have often compromised
completeness by using a heuristic approach. The work in the logic programming
literature (e.g. [3]) focused on using efficient optimization techniques, such as linear
programming, for computing minimal models. A limitation of this approach is that so
far it did not address the issue of worst-case and average-case complexities.

We want to complement these approaches by studying the task of finding all or
some of the minimal models in general, independent of any specific domain. We will
use the "tractable islands" methodology to provide more refined worst-case guarantees.
The two primary "islands" that we use are Horn theories and acyclic theories. It is
known that Horn theories have a unique minimal model that can be found in linear
time [9, 21]. Our near-Horn algorithms try to associate an input theory with a "close"
Horn theory, yielding algorithms whose complexity is a function of this "distance".
For acyclic theories, we will show that while finding one or a subset of the minirnal
models can be done in output-polynomial time, the task of finding all minimal models
is more complex. We will set up necessary and sufficient conditions under which an
acyclic theory has a unique minimal model. Testing the conditions fox" unique minimal
model and generating this model (if it exists) can be done in time polynomial in the
size of the acyclic theory. We will also present a tree-algorithm that generates all the
minimal models of an acyclic theory.

Once we have an efficient algorithm for generating rninimat models of tree-like
theories, we can apply it to any arbitrary theory by first compiling the theory into
a tree. The resulting complexity will often be dominated by the complexity of this
compilation process and will be less demanding for "near-tree" theories,

2. Preliminary definitions

A clause is positive if it contains only positive literals and is negative if it
contains only negative literals. We will sometimes refer to a clause as a set of literals.
In this paper, a theop3, is a set of clauses. Given a theory ~ , size(~) will denote its
length, that is, the number of syrnbols in the theory. Given a set A, [A I denotes its
cardinality. A set of literats covers a theory iff it contains at least one literal from
each clause in the theory. A set of covers of a theory is complete iff it is a superset
of all minimal covers of the theory.

A theory is called positive if it is composed of positive clauses only. Given a
theory ¢b and a set of literals S, the operation ~ Q S performs unit p~vpagation on

R. Ben-Eliyahu, R. Dechtel; On computing minimal models 5

q) U S. Unit propagation is the process where given a theory ~ , you do the following
until • has no unit clauses: you pick a unit clause C from ~ , delete the negation of
(7 from each clause and delete each clause that contains C. Itai and Makowsky [21]
have shown that unit propagation can be done in time which is linear in the size of
the theory I. For each theory ¢h n.f(q)) denotes qb Q ~. For each model 1"~,[, pos(M)
denotes the set of atoms to which M assigns true. We will sometimes refer to a
model as a set of literals, where a negative literal ~ P in the model means that the
model assigns false to P and a positive literal P in the model means that the model
assigns t rue to P.

Definition 2.1 (X-minimal model). Let qb be a theory over a set of atoms/2, X C_/2,
and M a model for qb. _M is an X-minimal model for • iff there is no other model
M ' for • such that pos(M ~) N X C pos(M) N X . If M is an X-minimal model for
X = / 2 , it will be called simply a minimal model.

3. A general algorithm for computing a minimal model

Cadoli [4] has shown that the problem of finding an X-minimal model for a
theory is pNPlO(logn)l_hard. Roughly, this means that it is at least as hard as problems
that can be solved by some deterministic polynomial algorithm that uses O(log r~,) calls
to an NP oracle. In Fig. 1 we show an algorithm for computing X-minimal models
that takes O(,n, 2) steps and uses O(r~) calls to an NP oracle (where n is the number
of variables in the theory). In Fig. 2 we show a variation of this algorithm that uses
a procedure for satisfiability called model-sat that also returns a model in case the
theory is satisfiable.

L e m m a 3.1. Algorithm Find-X-minimal is correct.

Proof It is clear that the algorithm returns false iff qb is inconsistent, and true
otherwise. It is left to show that when ¢) is satisfiable, at the end of the ex-
ecution of the algorithm M is an X-minimal model. Assume by contradiction
that M is not an X-minimal model. So there must be a model M t such that
M ' n X C M N X. Let k be minimal such that M'(Pk) = false and M(Pk) = true.
Since k is minimal, and by the way the algorithm works (statement 4), it must be that
{-~P~:} U • U {P~ [M(P~) = true, 1 ~< i < h} U {~P/ I M(P/) = false, 1 ~< 'i < k} is
consistent and therefore it should be the case that M(P~,) = false, a contradiction. []

L e m m a 3.2. Algorithm Find-X-minimal2 is correct.

I Itai and Makowsky worked with Horn theories but their method applies also to general theories.

6 R. Ben-Eliyahu, R. Dechtet; On computing minimal models

Find-X-minimal(q~, X, M)
Input: A theory qb and a subset X of the variables in q~.
Output: true if do is satisfiable, false otherwise. In case qb is satisfiable, the output variable
3,4 is an X-minimal model for qb

1. If ~sat(q~) return false;

2. For "/:= I to 7~. do M[.i] := false;

3. Let P ~ , . . . , P,~ be an ordering on the variables in op such that the first [.\'1 variables are all the
variables IYom X.

4. F o r i : = 1 r o n d o
If sat(O U {~Pi}) then • := O © {~Pi}
else • := q~© {Pi}, M[i] := true;

5. return true;

Fig. 1. Algorithm Find-X-minimal.

Find-X-minimal2(q~, X, 3,4)
Input: A theory q) and a subset of the variables in q), X.
Output: t rue if 4~ is satisfiable, false otherwise. In case qb is satisliable, the output variable
M is an X-minimal model lbr 09.

1. If ~model-sat(dO, M) return false;

2. negX := { P I P E X, ~ P E 3,4};
X := X - negX;
~ : = q b U { ~ p] P EnegX};

3. While X # ~ do

a. Let P E X;
b. If -model-sat(qb tO { ~ P } , M") then * := op © {p}

else ~ := dO © { ~ p } , 3,,/ := 3,4';
c. X : = X - {P} ;

4. return true;

Fig. 2. Algorithm Find-X-minimal2.

Proof. Similar to the proof of Lemma 3.1. []

Algorithm Find-X-minimal2 suggests the following theorem which will be used
in proofs in the following sections:

Theorem 3.3. Let C be a class of theories over a language £ having the following
properties:

1. There is an algorithm c~ such that for any theory • E C, c~ decides whether qb
is satisfiable and produces a model for dO (if there is one) in time O(tc) .

R. Ben-Eliyahu, R. Dechtep; On computing minimal models 7

2. C is closed under instantiation, that is, for every do E C and for every literal L
in/2, do (3 {L} E C.

Then for any theory do E C, an X-minimal model for do can be found in time
o(Ixlt, c).

Proof Follows from the correctness of Algorithm Find-X-minimal2. []

Since satisfiability of a 2-CNF theory can be checked in time linear in its size
[14], we have the following corollary:

Corollary 3.4. An X-minimal model for a 2-CNF theory do can be found in time
O([X I * I), where l is the legth of the theory.

However, using a straightforward reduction from VERTEX COVER [22], we
can show that if we are interested in finding a minimum cardinality model for a
2±CNF theory (namely, a model that assigns true to a minimum number of atoms),
the situation is not so bright:

Theorem 3.5. The following decision problem is NP-complete: Given a positive
2-CNF theory dO and an integer K, does do have a model of cardinality <~ K ?

4. Algorithms for almost-Horn theories

In this section, we present algorithms for computing minimal models of a propo-
sitional theory which are efficient for almost Horn theories. The basic idea is to
instantiate as few variables as possible so that the remaining theory will be a Horn
theory and then find a minimal model for the remaining theory in linear time.

4.1. Algorithm,for theories with only a few non-Horn clauses

Algorithm MinSAT (Fig. 3) is efficient when most of the theory is Horn and
there are only few non-Horn clauses. Given a theory, MinSAT works as follows: It first
tries to solve satisfiability by unit propagation. If the empty clause was not generated
and no positive clause is left, the theory is satisfiable, and the unique minimal model
assigns false to the variables in the remaining theory. If a nonempty set of positive
clauses is left, we compute a cover for the remaining set of positive clauses, replace
them with the cover, and then call MinSAT recursively on the new theory. If the
theory is not satisfiable, or if we are interested in all minimal models, we have to call
MinSAT again with a different cover.

Algorithm MinSAT is shown in Fig. 3. The procedure Unitlnst(do, I, Sat) takes
as input a theory do and returns nf(do). I is an output variable which contains the set
of unit clauses used for the instantiations. Sat is false iff the ernpty clause belongs to
the normal form; otherwise Sat is true. The procedure combipw(I, M) takes as input

8 R. Ben-Elivahu, R. Dechtet: On computing minimal models

MinSAT(q~, M)
Input: A theory qb.
Output: true if (b is satisfiable, false otherwise. In case ,.b is satisfiable, the output variable
AI will contain a set of models lot ¢I~ that is a superset of all the minimal models o1: (b.

1. q):= Unitlnst(r.l), I, Sat); If not ,Sat return false;

2. If • contains no positive clauses then
hegill
11,/ := {I tO {~P I P is a variable in ~}}; return true;
(* Note that A{ is a set of sets *)
~zd.

3. M := (/); Let .4 be a complete set of covers lk~r the set of all the positive clauses in q~.
For each S E A do:

If MinSAT((I) u S, M') then
M := /tl tO combine(I. AI');

4. If A'/ = q) then relurn false else return true;

Fig. 3. Algorithm MinSAT.

a set of literals I and a set of sets of literals M and returns the set {S I S = W U I ,

We group all the proposit ional theories in classes qJ0, q J i , . . , as follows:

• • E h°o iff 1[[[qb) has no posit ive clauses or contains the empty clause.

• qb E q"f,:+lC.'l iff for each A that is a complete set of covers for C, where (7 is
the set of positive clauses in n f (~) , and for each S in A, qb O ,9 belongs to W/
for some j ~ k.

O b s e r v a t i o n 4.1, If a theory has /,: non-Horn clauses it belongs to the class q~a /or
some j ~</c. Hence, Horn theories belong to W0-

We can show the fol lowing:

Lemma 4.2. Algor i thm MinSAT is correct.

Proo.fi The proof goes by induct ion on the minimal k such that q) belongs to ~'~,.

Case k = 0, If/!/ '(@) contains the empty clause then Unitlnst will return false, and so
MinSAT will return false. Else if O0 has no positive clause then the model that
assigns false to all the atoms is the minimal model of • and this is the model
which the algori thm returns in Step 2.

I n d u c t i o n step. Let @ belong to some Wh. such that k > 0. It is easy to see that each
min imal model of • can be represented as a un ion of two sets 13 and C, where
B is a min imal cover of the positive clause of qb and C is a minimal model of
the theory qb U { P I P E B}. Hence the result follows.

R. Ben-Eliyahu, R. Dechte~; On computing minimal models 9

Proposition 4.3. If 00 E Wk then MinSAT runs in time O(rLrn3), where -n. is the length
of the input and 'm. the maximum number of positive Iiterals that appear in any clause.

Proq/i By induction on k. Case/,: = 0 is easy. Suppose ~ E ~,; for some A: > 0, and
let C be the set of positive clauses in ~ , Hence for every 5' which is a cover of C
O U S' is in ~k-lC.'l. So by the induction hypothesis each call to MinSAT(t~ U 5', M ')

takes O(',mz a:-Icl) steps. A complete set of covers for C can be found in O(m lal)
steps and there are at most rn. It[covers in this set, therefore the algorithm runs in
O(r~,'nz ~:) steps. []

This is also the worst case complexity for deciding satisfiability using MinSAT.
Since for every k the class ~I~ is closed under instantiation, we can use Theorem 3.3
to prove that:

Proposition 4.4. If a theory ~ belongs to the class ~a: for some k, then an X-minimal
model for • can be found in time O(]X]'n:m,l':).

Algorithm MinSAT returns a superset of all the minimal models. To identify the set
of all minimal models, we need to compare all the models generated. Since there are
at most 'mJ': models generated by MinSAT, each of size at most 7~,, the complexity of
finding all minimal models for a theory in the class ~a: is O(7,m2k).

4.2. Algorithms that exploit the interaction between the positive literals o/'the
theory

In this section we will identify tractable subsets for satisfiabilit3, and for find-
ing all minimal models by using topological analysis of the interactions between the
positive literals of the theory. The positive graph of a theory, defined next, reflects on
these interactions.

Definition 4.5 (positive graph of a theory). Let • be a theory. The positive graph of
is an undirected graph (t7, E) defined as follows:

V = {P [P is a positive literal in some clause in cp},

/!? = {(P, Q) [P and Q appear positive in the same clause}.

Note that ¢I~ is a Horn theory iff its positive graph has no edges.

Definition 4.6 (vertex cover). Let G = (V, E) be a graph. A vertex cover of G is a
set V ~ C_ V such that for each e C E there is some v E V ~ such that ,~., E e.

We take "vertex cover of the theory" to mean "vertex cover of the positive
graph of the theory".

An algorithm that computes a superset of all minimal models based on a vertex
cover of a theory can consider all possible instantiations of the variables in the cover.

10 R. Ben-Eliyahu, R. Dechter On computing minimal models

Each such instantiation yields a Horn theory for which we can find a minimal model
(if there is one) in linear time, When we combine the model for the Horn theory with
the cover instantiation, a model of the original theory results. We can show that a
superset of all minimal models of a theory can be generated in this way, If we are
interested only in deciding satisfiability, we can stop once the first model is found.
Hence,

Theorem 4.7. If the positive graph of a theory • has a vertex cover of cardinality c,
then the satisfiability of • can be decided in tirne O('n,U), where ,n. is the size of the
theory, and an X-minimal model for • can be found in time O(IXl'n,2c). The set of
all minimal models of • can be found in time O(n,22c).

Proof Let qb be a theory and V a vertex cover of the positive graph of • such that
IV I = c. • is consistent iff there is an instantiation of the variables in V such that
the remaining Horn theory is consistent. Since there are 2 c instantiations of V, and
since deciding consistency of a Horn theory is linear, we get that satisfiability of •
can be decided in O(r7,2 c) steps. Since the set of all theories having a positive graph
with a vertex cover of size c for some c is closed under instantiation, by Theorem 3.3
we can find a minimal model for • in time O(IXl~,2c). For the rest we will first
show that every minimal model M of • can be represented as the union of I and
H where I = { P I P E I/, P was instantiated by some instantiation f to true} and
H is the minimal model of the Horn theory we get after the instantiation f . Let
I = {P I P E V, M (P) = true}. Since M is minimal, H = M - I must be a
minimal model of • U I.

So a super set S of all the minimal models of • can be found in time O('n,2C),
and we have also 15'[~ 2 c. We then have to compare each 2 models found to identify
the minimal ones, and so the whole process takes O(n22c) steps. []

In general, the problem of finding a minimum-cardinality vertex cover of a
graph is NP-hard. A greedy heuristic procedure for finding a vertex cover could
simply remove the node with maximum degree from the graph and continue with the
reduced graph until all nodes are disconnected. The set of all nodes removed is a
vertex cover.

Algorithm VC-minSAT (Fig. 4) integrates the above heuristic into a backtrack
algorithm for finding the minimal models. MaxDegree takes the positive graph as an
input and returns an atom (node) that has a maximum degree. If there is more than
one such atom, it chooses the one that appears in a maximum number of non-Horn
clauses in the theory. Update(O, G) returns the positive graph of O. We can show
that algorithm VC-minSAT produces a superset of all the minimal models.

Another approximation algorithm for finding a vertex cover is based on the
idea of "maximal matching" (see [17]). That approximation algorithm is guaranteed
to find a vertex cover that is at most twice as large as a minimum one, and it can be
also combined with a backtrack algorithm for finding the minimal models, similar to
the way we combine two heuristics in Algorithm VC-minSAT.

R. Ben-Eliyahu, R. Dechter, On computing minimal models 11

VC-minSAT(qL M, G)
Input: A theory q~ and a positive graph of q), G.
Output: true if qa is satisfiable, otherwise false. If • is satisfiable, M contains a superset of
all minimal models for q~.

1. qb := Unitbzst(O& I, Sat);

2. ff ~Sat return false; G := Update(qL G);

3. ff G has no arcs then
begin M := I tO {~P I P appears is a variable in qa}; return true; end.

4. P := MaxDe~ree(G); Sat := false; M = ~;

5. If VC-minSAT(q~ U {P}, M + , G) then
M := combhw(I, M+);

6. If VC-minSAT(~ tO { ~P}, A.I-, G') then
~4 := 114 tO combine(I, M-);

7. If M == ~ return false else return true.

Fig. 4. Algorithm VC-minSAT.

We should mention here that the idea of initializing variables in a theory until
the remaining theory is Horn has been suggested, in the context of solving the sat-
isfiability problem, by Gallo and Scutella [20] and was recently extended by Dalai
and Etherington [6]. The advantages of our approach are that we provide an intu-
itive criteria for how the variables to be instantiated are selected and we classify the
performance of the algorithm using a well-understood and largely explored graphical
property, vertex cover.

Also note that we could define the negative graph of a theory just as we defined
the positive graph. We could then write an algorithm that is analogous to VC-minSAT
and is efficient for deciding satisfiability of theories for which the negative graph has
a small vertex cover. Clearly, algorithm minSAT has also an analogous algorithm that
considers negative instead of positive clauses.

C o m m e n t 4.8. To clarify the difference between algorithm VC-minSAT and algorithm
MinSAT, consider the following classes of theories F) and F , . Class F) is the class
of all theories of the form

{AI V D,-~A~ v A2 V D, - ,A2 V A3 V D , . . . , - ~ A , , V An+l V D}

and class F2 is the class of all theories of the form

{Ai V B I , ~ D V AI V B 1 , . . . , ~ D V Am V Bin},

where r~ and m are arbitrary positive integers, and D and all Ai's and Bi's are atoms.
An arbitrary theory, in Fl has a positive graph with a vertex cover of size 1 (take {D}
as a vertex cover), but might belong to ~ k for some h /> 'n. On the other hand, an
arbitrary theory from F2 belongs to urq but might have a minimum vertex cover of
size m,. Therefore, in general algorithm MinSAT is better than algorithm VC-minSAT
for the class F~, but algorithm VC-minSAT is better than MinSAT for the class Fl .

12 R. Ben-Eliyahu, R, Dechtep; On computing minimal models

5. Computing minimal models on acyclic networks of relations

In this section we provide efficient algorithms for theories that can be repre-
sented as acyclic reIations of low arity. We next define the notions of constraint
nenvorks and relations and show how they can represent propositional theories and
their satisfying models. We chose to switch to the language of relations and coi1-
straint networks since the notions of acyclicity and topological-based tractability was
developed primarily within this framework [8, 26].

Definition 5.1 (relations, networks, schemes). Given a set of variables X = { X i , . . . ,
X,,}, each associated with a domain of discrete values D i , . . . , D,., respectively, a
relation (or, alternatively, a constraint) p = p (} ~ , . . . ,)'~,) is any subset

p C_ D I x D2 x . . . x Dt,:,

where k ~< n and for each I ~< i ~ /~:, }~ C X and Di is the domain of)~. The
projection of p onto a subset of variables R, denoted l~R(p) or PR, is the set of tuples
defined on the variables in R that can be extended to a tuple in p. A constraint
nem'ork N over X is a set Pl , . . . , Pt. of such relations. Each relation Pi is defined
on a subset of variables oei C_ X. We also denote by p(Si) the relation specified over
&. The set of subsets S = { S I , . . . , & } is called the scheme of N. Tile network
N represents a unique relation rel(N) defined over X, which stands for all consistent
assignments (or all solutions), namely,

,-~l(N) = {:,, = (: , ,~,. . . ,:,,,,) I v & E s , n.,. (.,,) ~ p~}.

A partial assignment T = t is a value assignment to a subset of variables T C_ X.
The operator N is the join operator in relational databases defined as follows. Let Pl
and p2 be two relations defined over the variable sets SI and $2, then PI N p2 is a
relation over SI O S?, and t E Pl N p2 iff t& E pj and t& E p:.

Any propositional theory can be viewed as a special kind of constraint network, where
the domain of each variable is {0, 1} (corresponding to {false, true}), and where each
clause specifies a constraint (in other words, a relation) on its propositional atoms.
The scheme of a propositional theopy is accordingly defined as the scheme of its
corresponding constraint network, and the set of all models of the theory is the set of
all solutions of its corresponding constraint network.

Example 5.2. Consider the theory (P = {~A V ~/3', ~ B V ~C, C V D}. This theory
can be viewed as a constraint network over the variables {A,/3, C, D}, where the cor-
responding relations are the truth tables of each clause, that is, p(AB) = {00,01,10},
p(BC) = {00,01,10}, and p(CD) = {01,10, 11}. The scheme of the theory • is
{AB, BC, GD}. The set of all solutions to this network (and hence the set of models
of ~) is

p(ABCD) = {0001,0010,0011,0101,1001, 1010, 1011}.

Note that • has two minimal models: {000I, 0010}.

R. Ben-Eliyahu. R. Dechtet; On computing minimal models 13

The scheme of a theory can be associated with a constraint graph (also called
a dual constraint graph [13] or an intersection graph [26]) where each relation in the
scheme is a node in the graph and two nodes are connected iff the corresponding
relations have variables in common. The arcs are labeled by the common variables.
For example, the constraint graph of the theory • of Example 5.2 is as follows:

BC
/ , ,

BI \ c
/ ',

AB CD

In general, theories that correspond to a constraint graph that is a tree are called
acvclic theories, and their corresponding tree-like constraint graph is called a join tree.
In the following we make these notions more precise.

Sometimes a constraint network looks cyclic while, by removing some of its
redundant arcs it will become acyclic. Removing redundant arcs does not change
the problem, and identifying such arcs can be done in linear time in the size of the
network [26].

If by eliminating some redundant arcs from its intersection graph the constraint
graph becomes a tree, then we say that the network is acyclic, and call the resulting
tree a join-tree. An acyclic network may have more than one join-tree. Here is a
formal definition.

Definition 5.3 [26]. Given a set of relations P l , . . . , & , having the scheme { S] , . . . ,
St, }, a join-graph is an arc-subgraph 2 of the constraint graph over & , . . . , 5'1, (called
intersection graph in [26]), satisfying that if X E & N 5~i then there exist a path
between Si and Sj whose all labeled arcs contain X. A join tree is a join graph that
is a tree. A network of relations is acyclic if it has a join-tree.

We next define the concept of pair-wise consistency.

Definition 5.4 (pair-wise consistency [26]). A pair of relations Pl, P2 are pair-wise
consistent iff every tuple m pj can be consistently extended by a tuple m P2 and
vice-versa. Formally, iff

Pl =FI&(Pl N p2), and P2=FI&(PL N p2).

It was shown that testing or enforcing pair-wise consistency can be done in
polynomial time [26]. Pair-wise consistency parallels the notion of arc-consistency
developed in the context of binary constraint networks.

2 An arc-subgraph of a graph is a graph that contains a subset of the arcs and all the nodes.

14 R. Ben-Eliyahu, R. Dechtel; On computing minimal models

We next present two algorithms for computing minimal models for acyclic
theories. These algorithms will be extended to arbitrary theories via a procedure
known as tree-clustering [13], which compiles any theory into a join tree of relations.
The tree-clustering algorithm is reviewed in Appendix A.

Consequently, given a general theory, the algorithms presented next work in
two steps: First, a join-tree is computed by tree-clustering, and then a specialized
tree-algorithm for computing the minimal models is applied. The complexity of tree-
clustering is exponential in the size of the maximal arity of the generated relations,
and hence our algorithms are efficient for theories that can be compiled into networks
of low-arity relations. We should note, however, that even in the cases where tree-
clustering is time expensive, it might still be useful since it offers a systematic way of
representing the models of the theory in a hierarchical structure capable of supporting
information retrieval without backtracking. We say that an ordering of a variables is
backtrack fi'ee relative to a given set of relations iff the variables can be instantiated
to a solution of the network with no dead ends, while at each step consulting those
constraints defined over the relevant variables, The notion of backtrack-fi'ee search is
identical to monotonicitv o f join plans [26].

5.1. Finding a subset o f all minimal models

For the rest of section 5, we will assume that we are dealing with constraint
networks that conespond to propositional theories, and hence the domain of each
variable is {0, 1} and we have the ordering 1 >- 0. We will also assume that we are
looking for models that are minimal over all the atoms in the language of the theory,
namely, X-minimal models where X is the set of all atoms in the theory.

Definition 5.5. Given a relation p defined on a set of variables X, and given two
tuples r and t in p, we say that I >-- r, iff for some Xo in X, /,x,-~ >- 'c\-, and, for all
Xi E X, ~x~ >- rx', or t x , = "rx,. We say that/, and t agree on a subset of variables
S c_ X iff r s = t,s.

Definition 5.6 (conditional minimal models) Given a relation p over X and a subset
of variables S C_ X, a tuple t E p is conditionally minimal w.r.t. S iff there does
not exist 'r E p such that r agrees with t on ,5' and t x - s >- ' r x - s . The set of all
conditional minimal models (tuples) of p w.r.t. S = s is denoted by min(p I 5' = s).
The set of all conditional minimal models (tuples) of p w.r.t. S is denoted min(p I S)
and is defined as the union over all possible assignments s to S of min(p I S = 3).
min(p I (0) is abbreviated to rain(p).

Example 5.7. Consider the relation

p (A B C D) = {0111, t011,1010,0101,0001 },

In this case, we have min(p) = { 1010, 000I }, min(p I {C, D}) = {0111, I011, I010,
0001}, and min(p I {A}) -- {0001, t010}.

R. Ben-Eliyahu, R. Dechte#; On computing minimal models 15

One can verify that: (1) any minimal tuple of a projection l-Is(p) can be extended
to a minimal tuple of p, but not vice versa, namely a minimal models of p may not
be minimal model of I-Is(p); (2) a conditionally minimal tuple is not necessarily a
minimal tuple; and (3) a minimaI tuple is a conditional minimal tuple w.r.t, to all
subsets. The following lemma justify our forthcoming algorithms.

L e m m a 5.8. Let p}- and Pz be two relations over Y and Z, respectively, let X =
Y U Z a n d l e t T = Y A Z . L e t p = p y N p z . Then,

1. For every t E PT, min(p t T = t) = min(pr i T = t) N min(pz i T = t);

2. min(p) c_- min(py] T) N min(pz t T);

3. If T = t is minimal over PT then rain(p) _D min(p I T = t). Consequently,

rain(p) D min(p-~, I T = f,) N min(pz tT = t).

Proof 1. It is clear that min(p I T = t) D min(py I T = t) N min(pz t T = t).
We will show the other direction. Let t' E min(p I T = t). By definition, t!r = t.
Clearly, t~,- E min(py I T = t) or else, there is an extension of t~ to variables in Y
that is smaller than t ~, contradicting its conditional minimality. The argument for Z
is identical.

2. Follows immediately from the fact that a minimal model is always a con-
ditional minimal model relative to any subset. Thus, min(p) C min(p I T = t) and
from part 1 the claim follows.

3. Assume t is a minimal model of pT and let t ~ be a conditional minimal model
relative to t, namely t' E min(p t T = t). We claim that t' E rain(p). Else, there is
another tuple t ° that is smaller than l, t in p. It cannot be the case that t~, is smaller
than t since f, is minimal relative to T. Consequently, t~ = t T t. The extension of
t!], to Y cannot be smaller than t"s since t ~ is conditionally minimal relative to T = t,
yielding a contradiction. []

We are now ready to show that given a join-tree, a subset of all minimal
models can be computed in output linear time. The idea is as follows: Once we
have a rooted join-tree which is pair-wise consistent we can take all the minimal
tuples in the relation of the root node and extend them (via the join operation) with
the matching conditional minimal tuples of the child node, conditioned on variables
common to both. This can be continued until we reach the leaves. It can be shown
that all the models computed in this way are minimal and that they are generated in a
backtrack-free manner; however, not all minimal models will be generated. In order
to enlarge the set of minimal models captured, we can re-apply the procedure where
each node serves as a root. The following notations will be used in the rest of the
sections:

N is an input network of constraints,
p is the relation associated with N.

16 R. Ben-Eliyahu, R. Dechtet: On computing minimal models

TN is a compiled join-tree of N,
X is the set of variables X I , . . •, Xn, of N.
d is the maximal size of a variable domain.
S = {& , &.} is the scheme of the join-tree.
pi is the relation associated with Si.
~, is the number of variables in N.
r is the number of relations in the join-tree, TN (r ~< 'n.).
p is the maximal arity of each relation in the join-tree.
1,: is the maximal number of tuples in each relation of TN; (1`: ~< dl').
t is the overall number of tuples in the join-tree (~, <~ 't". 1`:).

Definition 5.9 (parents of S). Given a scheme S = { S o , . . . , S,.} of a rooted join-
tree, TN, Sp(i) will denote the parent subset of Si in the tree. We call an ordering
d = So, . . . , S,. a tree-ordering iff a parent node always precedes its child nodes.

Definit ion 5.10. Let T be a rooted join-tree with SO at the root. Let Pi be the relation
associated with ,5'i and let So, S t , . . . , S,. be a tree-ordering. We define

[°(T) = Ni=0..,,. (min (Pi I S / i))) .

T he o re m 5.11. Let T be a rooted join-tree with a tree-ordering SO, $1,. - . , St , then
1. p°(T) is a subset of alI the minimal models of T, and
2. p°(T) can be computed in O(l . k . r + r .p - 1,: 2) steps where 1 is the number

of minimal models in the output.

Proof I. By induction on r. For r = 0 the claim clearly holds. Suppose r > 0.
Let T* be join-tree rooted at So that includes all the subsets S o , . . . , S r - l . By the
induction hypothesis,

/ ' (r *) = N,=o ,_, (rain (p, I

is a subset of all minimal models of the rooted join tree T*. Let S" = U~_-J s i .
Assume t is in p° (T) but it is not minimal. So, there must be a tuple t,' in the relation
described by T such that/, >- t,'. It cannot be the case that/,s- >'- tls'- because this will
be a contradiction to the induction hypothesis, hence, it must be the case that

t.v- = t } , , (1)

therefore, in order for ~' to be smaller it must obey t.% >- ~' However, from
" S r •

= t/ Consequently, since ts,. >- t.' it must be that (1) it follows that tgv(,.) '&,(r)" ".%'

ts,. ft min(pr t Sp(,.)), a contradiction to the way ff~(T) is defined.
To show that pi(T) is polynomially computable observe that a join tree can be

made backtrack-free by enforcing pair-wise consistency between adjacent relations.
This operation can be accomplished in 0(1`:. logk) comparisons steps between the

R. Ben-Eliyahu, R. Dechtep; On computing minimal models 17

minl (d))
Input: A theory q~.
Output: A subset of all the minimal models of q~.

I. Apply tree-clustering to (b. If the theory is not satisliable, stop and exit. Else, generate join-tree
T. Apply pair-wise consistency to T.

2. For each node R in T and for the join tree T' rooted at R compute p{~(T').
3. Output the union of all models computed.

Fig. 5. Algorithm minl.

tuples of the two relations. Each comparison is O(p), yielding O (p . k . log/,:) steps,
overall.

The conditional minimal subsets can be computed in O(p- k 2) steps. After that,
the resulting relation can be computed in a backtrack-free manner from root to leaves,
yielding an overall bound of O(./- .p~;2+l. k. r) , where l is the number of the minimal
models in the output. []

Exa m pl e 5.12, Consider the join-tree of the theory ~ in Example 5.2. A s s u m i n g / 3 C
is the root, we can use the tree-ordering d = BC, AB, CD. Since tuple (BC = 00)
is the only minimal model of p(BC), it is selected. This tupte can be extended
by A = 0 and by D = 1, resulting in one minimal model of p, namely the tuple
(At3CD = 0001). If AB plays the role of a root, we will still be computing the same
minimal model. However, when CD plays the role of a root, we will compute the
tuple (AI?CD = 0010), which is also a minimal model of p.

From Theorem 5.11, it follows that, given an acyclic network or any general
backtrack-free network relative to an ordering d, one minimal model can be computed
in time that is linear in the size of the network, and the total subset of minimal models
p°(T) can be computed in time proportional to the size of the set. We summarize
this in algorithm m i n l , given in Fig. 5. By adding the complexity of generating a
join-tree (see Appendix A) to that of generating the minimal models we get:

T h e o r e m 5.13 (complexity of m i n l) . The complexity of m i n l is O('r • d I' + r "2 . p -
/:2 + .i. 2 . l - k), where / is the number of minimal models in the output. For near-tree
networks that can be embedded in trees whose relation's arity p satisfies p = O(log</n)
m i n l ' s complexity is O(n 4 - log n + n 3 - l).

Proof 1. We obtain this bound by adding together the cost of tree clustering (O(r' .dS'))
and the cost of computing p°(T) multiplied by r', since the process is restarted from
any node in the tree as a root.

2. Clearly, since p = O(log d n), k = O(n) and since r" ~< n we can substitute n
for 'r, 'n, for k, and log d n for p, yielding an overall complexity of O (l . n 3 + n 4. log n). []

Algori thm m i n l does not necessarily produce all minimal models as the fol-
lowing example shows.

18 R. Ben-Eliyahu, R. Dechtep: On computing minimal models

Example 5.14. Consider the join-tree where the variables are {A,/3, C, D, E, F, G},
the scheme is a tree {ABC, BCDEF, EFG}, and the corresponding relations are
p(A/3C) = {011,110,000}, p(13CDEF) = { I 1011, t 0100, 00010}, and p(EFG) =
{110,000, I01}. The reader can verify that the tuple {0110110} is a minimal model
for this network, but its projection relative to any of the relations is not minimal.

We can characterize the rnodels generated by m i n l as follows:

Proposi t ion 5.15. A minimal model t ¢ T will be generated by algorithm m i n i iff
there is a tree ordering {S l , - . . , 5 ' , . } of T such that for each 0 ~< .i ~< r, t& E
min(p(Si)] Sp(i)).

Proof The proof follows irnmediately from the definition of p°(T) . []

Clearly, if all minimal models of a network have the property specified m
Proposition 5.15, all will be generated by min i . This condition has a limited use in
general since it is not identifiable from the network's input. Since m i n l returns at least
one model (if the network is consistent), it returns all minimal models of networks
having just one unique minimal model. The following theorem shows that networks
having unique minimal models can be identified in linear time.

T he o re m 5.16. A tree-network has a unique minimal model iff every relation in the
network has a unique minimal tuple. In this case the minimal model can be generated
by joining all the minimal tuples of all the relations. 3

Proofi Clearly, if t is a unique rninimal model of the tree network, its proiection on
each relation in the tree is a unique rninimal model in that relation.

The other direction is proved by induction oil the number of relations in the
tree p(Si) , . . . , p(&,) (assume this is a tree ordering). Suppose each relation Si has a
unique rninimal tuple. By induction, p (5 ' l) , . . . , p(S',~_ l) has a unique minimal model
'in obtained by joining those tuples. Take t to be the projection of 'm. on oe,,_l, and
P = &,,-i A S',,. By induction, t is the minimal tuple of p(5',,_ i), and so there is no
mple in 5'~. which is smaller than { when both are projected on P. Let t ' be the unique
minimal tuple of p(5',,.). Since the network is pair-wise consistent and t ' is unique,

/
it must be the case that ~,p = /,p. Moreover, since t' is a unique minimal model in
p(Sn), t,' rnust be the only tuple that extends ¢, to get a minimal model. So the whole
tree has a unique minimal model. []

5.2. Listing all minimal models

As we noted above, algorithm m i n l does not necessarily produce all minimal
models. We now present a second algorithm, min2, that computes all the minimal

3 Remember that we assume pair-wise consistency all along.

R. Ben-Eliyahu, R. Dechter On computing minimal models 19

models. More accurately, the algorithm computes all conditional minimal models of
tile network, when conditioning is with respect to the variables that are common to
each node and its neighbors in the tree. Once all conditional minimal models of the
root node are available the set of all minimal models can be generated by minimizing
over their union. We will show that the algorithm is output polynomial w.r.t, the
set of all conditional minimal models, but may not be optimal relative to the overall
set of minimal models. The reason is that the set of all conditional minimal models
associated with the root node might be quite large and may not be included in the final
set of minimal models. It seems that the source of complexity for this task even for
trees is that the notion of minimal models cannot be captured by a simple numerical
function. In contrast, it was shown that finding the minimal cardinalit3, models, can
be computed in linear time for acyclic theories (see [5, 15]).

In contrast to min l , algorithm rain2 computes partial conditional minimal
models recursively while traversing the join-tree bottom up. When it visits a node &,
and for each of its conditional minimal tuple si (conditioned on the variables common
to the node and its neighbors), the algorithm prunes partial models in the subtree
rooted at ,9i that agree with si and which cannot be extended to a minimal model
since they are not conditionally minimal. Let T,: be the network rooted at node S/,
let Ii be the set of all variables that Si shares with its parent node, and let Fi be the
set of all variables that Si shares with its neighbors (i.e., children and parents). We
associate each node S'i with two relations, Oi, and Oi. The relation 0i denotes the set
of all minimal models in Ti conditioned on F/. Namely,

O, = rain(tel(T,.) I VJ.

The relation ®i denotes all minimal models conditioned on Ii. Namely,

Oi = min(,el(r ,) t li).

Since Ii C_ Fi, Oi can be computed from Oi using:

Oi = min(0i] I j . (2)

Note that for the root node, So, 00 is the set of all conditional minimal models relative
to the set of variables in So that appear in the children of SO, while Oo is the set of
all minimal models (conditioning is on the empty set).

L e m m a 5.17. The relation Oi can be expressed recursively as a function of
Oi,, • . . , Oil, where & , , . . . , Si~, are Si's children in the tree:

0i = min(p(&) [F/) N Oi, - .- N O~,. (3)

Proof Assume Si is the root node and Si,, . , , , Si~, are its children. By definition, for
each I ~< j ~< b

Oi;. = min(rel(T/y)] Iij). (4)

20 R. Ben-Et(yahu, R. Dechter On computing minimal models

min2(r)
Input : A pair-wise consistent join tree TN, and a tree ordering 5'~,..., S,..
Output : All minimal models of N, and all conditional minimal models. 0~.

I. For i = 7~ to 1 traverse the tree bottom up. Let &~,..., &~, be the child nodes of &.

Oi = min(p(S ,) { Fi) ~' NM~= I Oi.~ (5)

O, = min(0i I I i)

2. Output: O{~, the set of all minimal models.

(6)

Fig, 6. Algorithm rain2.

Suppose
t E min(p(S~)]F/) N Of f . . . N Oit,,

and we will show that t G 0i = min(7~(T/) [F/), Suppose by contradiction that there
exist t' E rel(T~) such that /,' = tl;,, and t ~ ,& -< t. Since t and t' agree on Ft. either
,& -< t,&, which is impossible because 0~ was computed by joining min(p(Si)] Fi),
or there must be a relation tel(T) where T is among {Tf l , . . . , Ti~} such that t'.s -< ts,
where S' is the set of variables in the subtree T. Since t and t ' agree on Fi and
Ii C Fi, it must be the case that/ / - 's-*~ -< t s -&, but that's a contradiction to (4).

To prove the other direction, suppose t E min(rel(Ti) I Fi), we want to show
that t E rain(p(&) I Fi) M 0~ , . . . N Oib. It is clear that

t,& E min(p(&) I F i),

and it is also clear that for each ~ in {Ti~,... ,T~k}

t,s'~ E min(rel(Tij)] I~j)

where S/j is the set of variables in the subtree T/j. Hence t, is in OK, and hence in 0i
as defined in (3). []

Lemma 5.17 above allows a bottom-up computation of ®i starting at the leaf
nodes.

Algorithm rain2 is summarized in Fig. 6.

Example 5.18. Consider again the tree-network of Example 5.12. Algorithm rain2
will perform the following computations:

OAB ~- O A B = min(p(AB) I {B}) = {00, 01 },

OC'D = ®CD = min(p(CD) I {C}) = {01,10},

OBc = min(p(BC)] {BC}) N 0At3 N O c o

= { (A B C D) = 0001,0010, 0101 },

OBc' --- min({0001,0010, 0101 }) = {0010, 0001 }.

R. Ben-Eliyahu, R. Dechtel; On computing minimal models 21

We see that although the theory has seven models, only three intermediate models
were generated, each conditional minimal relative to one consistent tuple of BC.

Example 5.19. Consider the following network having five variables Xi , • • •, Xs, with
the relations:

p(XjX3) = {01,10, 11},

p(.,3~_'223) = {00,01, II},

. (x 3 x s) = {Ol, lo, l 1},

p (X 4 X s) = {00, Ol,]l}.

The network is clearly acyclic and we consider the join-tree in which X4X5 is the
parent of X3Xs, and X3X5 is the parent of both XIX3 and X2X3. The tree is rooted
at node X4Xs. For the leaf nodes XIX3 and X2X3 we have that (for abbreviation
we use Oij for Ox~xj):

013 = O13 = min(p(XiX3) [{X3}) = {01,00}.

023 = 0 2 3 = min(p(X2X3] {X3}) = {00, O1 }.

035 = min(p(X3Xs) I {X3, Xs}) M ®13 M O23 = p(X3X5) M (~13 NI 023

= { (x ~ x 2 x 3 x s) = (0ol0, Ioo l ,oo l 1}}.

O35 = min(035 I {X5}) = {(XIX2X3X5) = {0010, 1001,0011}}.

045 = min(p(X4Xs) l{X5}) N O35 = (N1X2X3X4Xs) = {00100, 10001,00101}.

O45 = min(045) = {00100, 10001 }.

We see that during computation we had at most three conditional minimal
models associated with each node, while this network has totally nineteen models.

Theorem 5.20. Algorithm rain2 computes all and only the minimal models of its input
theory.

Proof We have shown that the algorithm compute the conditional minimal models of
the root relation. Since this is a superset of all the minimal models, the minimization
operation at the root ensure that all minimal models be returned. []

We will bound the complexity of rain2 (without the tree-clustering preprocess-
ing step). First note that for each node Si there is a subset of tuples of that node
whose conditional minimal models will definitely be part of the final set; those that
are conditioned on minimal models within their own relation.

Consider now those conditional minimal models that are conditioned on non-
rninimal models in their own relations. Some of them will end up to be globally
minimal while others will be pruned. Can we bound the number of these conditional
minimal models that will be pruned? We conjecture that the size of the pruned set can
be bounded as a polynomial function of the output. We summarize with the following
theorem:

22 R. Ben-Eliyahu, R. Dechtet: On computing minimal models

Theorem 5.21. Let m be a bound on the number of conditional minimal models
associated with any tuple in any node in the join-tree. Let s denotes the amount of
space used by min2. Then, the time complexity of the algorithm is O(s 2) and its
space complexity is s = O(rz. rn,-log m),

Proof The time complexity of the algorithm can be bounded as follows. Before
computing a relation 0i, pair-wise consistency is applied implicitly between & and
each child node, requiring at most O(s . logs) steps 4 (each relation size is bounded
by s). Afterwards, the join operation is applied starting from the parent relation pi and
then joining with the @ij of the child node. This order of the join operations guarantees
an output linear performance. Thus, relation Oi is computed in linear time in its input
and output. The minimization operation applied when computing ®i (equation (5))
can be implemented in O(s 2) when s bounds the size 0i.

The space complexity of the algorithm is determined by the sizes of the relations
Oi and ®i in each node. Since for each Si Oi D ®i, the space complexity is bounded
by the space of 0i's which is O(n • m). The parameter m bounds the size of Oi, the
set of all conditional minimal models of Si. []

Corollary 5.22. If for every node 5', the ratio between the number of minimal models,
®i, and the number of conditional minimal models, Oi, is bounded by constant c, then
the algorithm complexity is output polynomial.

Unfortunately, we do not have a way of determining in advance when this
condition will be satisfied. One possibility is to compute the number of solutions
associated with each tuple (which can be done in linear time for trees) and use those
numbers as bounds on the conditional minimal models.

We would like to argue at this point that the task of computing the conditional
minimal models as a primary task, is important for its own right. When working in
a distributed and dynamically changing environment, one wishes to keep around all
conditional minimal models. Adding just one relation to the join-tree or changing an
existing one may make a complete set of conditional minimal models, that were not
globally minimal before, globally minimal in the updated network.

6. Other related work

The idea of exploiting algorithms for Horn theories for doing inference was
already suggested in [25] where it was shown how SLD resolution for first-order
Horn theories can be modified to be efficient for near-Horn theories. The virtue of
our approach (relative to satisfiability solving) is that it identifies parameters of the
theories by which the worst-case complexity can be bounded in advance. In [4] there

4 Pair-wise consistency can be enforced in 0(7". k. logk), when k bounds the size of each relation.

R. Ben-Eliyahu, R. Dechtet; On computing minimal models 23

is a different partition of the set of propositional theories into classes for which the
problem of finding one minirnal model is tractable or NP-hard.

The properties of acyclic theories were also investigated in the past, primarily
in relational databases [2] and in constraint networks [13]. It was shown that such
theories are tractable for satisfiability and also for the task of finding models with
minimum number of positive Iiterals [15]. A new tractable class for finding one
minimal model, based on certain dependencies between positive and negative literals
in each clause, was recently introduced in [1].

7. Conclusion

The task of finding all or some of the minimal models of a theory is at the heart
of many knowledge representation systems. This paper presents several algorithms for
this task and identifies new tractable classes. In particular, it presents new algorithms
for finding minimal models of a propositional theory. The first group is effective
for almost-Horn theories. In this group, we have presented algorithm MinSAT which
is efficient for theories with only few non-Horn clauses, and algorithm VC-minSAT,
which is efficient when clauses in the theory are almost Horn - that is, have very
few positive literals. The second group of the algorithms is effective for theories that
can be represented as trees of small-arity relations. Algorithm mini is capable of
generating a subset of the minimal models, while algorithm rain2 generates all the
minimal models.

Horn theories are used extensively in deductive databases and logic programs
(for surveys, see [19, 23]). In disjunctive deductive databases, we use rules of the
form

A I A ' " A A ~ ~ B t V ' " V B m , (7)

where the A's and the B's are atoms in some first-order language. Disjunctive
databases permits disjunctive information and nondeterministic choices in queries in
a natural way (for examples, see [1]). By most semantics it is agreed that the set of
all minimal models of a disjunctive database of the form (7) above is the set of its
intended models, and hence, for example, a clause is entailed by a deductive database
if it is true in all the minimal models of the database [29]. Consequently, our almost
Horn algorithms can be used for query answering in deductive databases. Specifically,
algorithm MinSAT presented in section 4.1, will be effective for deductive database
having only few disjunctive rules. Indeed, it is likely that only a small fraction of the
database will consist of disjunctive rules, since these rules are quite expressive and
are saved for rare occasions (see also [31]).

Acyclic networks and almost tree networks are likely to appear when the knowl-
edge is relatively sparse or specially structured. Areas like model-based circuit diagno-
sis or knowledge-bases involving temporal information like planning and scheduling,
are likely candidates. For instance, it was shown that a theory describing an r>bit

24 R. Ben-Eliyahu, R. Dechtel: On computing minimal models

adder can be represented by a chain-tree where each relation has arity at most 5. For
more information, see [I 5].

The algorithms outlined here and elsewhere provide the theoretical foundation
for computing minimal models. The ultimate value of these algorithms should be
empirically, on a set of real-world problems (e.g., in diagnosis or logic programming).

Appendix A. Tree-clustering

Constraint-based reasoning is a paradigm for formulating knowledge m terms
of a set of constraints otl some entities, without specifying methods for satisfying such
constraints. Some techniques for testing the satisfiability of such constraints, and for
finding a setting that will satisfy all the constraints specified, exploit the strncture of
the problem through the notion of a constraint graph.

The problem of the satisfiability of a propositional theory can be also forrnulated
as a constraint satisfaction problem (CSP). For a propositional theory, the constraint
graph associates a node with each propositional letter and connects any two nodes
whose associated letters appear in the sarne propositional sentence.

Various parameters of constraints graph were shown as crucially related to the
complexity of solving CSP and hence to solving the satisfiabitity problem. These
include the induced width, w*, the size of the cycle-cutset, the depth of a depth-first-
search spanning tree of this graph, and the size of the non-separable components
[7, 12, 16]. It can be shown that the worst-case complexity of deciding consistency
is polynomially bounded by any one of these parameters. Since these parameters
can be bounded easily by a simple processing of the graph, they can be used for
assessing complexity ahead of time. For instance, when the constraint graph is a tree,
satisfiability can be answered in linear time.

The tree-clustering scheme has a tree-building phase and a quez7-processing
phase. The complexity of the former is exponentially dependent on the sparseness
of the constraint graph, while the complexity of the latter is always linear in the size
of the database generated by the tree-building preprocessing phase. Consequently,
even when building the tree is computationally expensive, it may be justified when
the size of the resulting tree is manageable and many queries on the same theory are
expected. The algorithm is summarized in Fig. 7. It uses the triangulation algorithm,
which transforms any graph into a chordal5 graph by adding edges to it [32]. The
triangulation algorithm consists of two steps:

1. Select an ordering for the nodes (various heuristics for good orderings are
available).

2. Fill in edges recursively between any two nonadjacent nodes that are connected
via nodes higher up in the ordering.

5 A graph is chordal if every cycle of lenglh at least four has a chord.

R. Ben-Eliyahu, R. Dechtel; On computing minimal models 25

Tree building(T, G)
input: A propositional theory T and its constraint graph G.
output: A tree representation of all the models of T.

1. Use the n'iangulation algorithm to generate a chordal constraint graph.

2. Identify all the maximal cliques in the graph. Let C'~,..., Ct be all such cliques indexed by
the rank of their highest nodes.

3. Connect each Ci to an ancestor C' 3 (j < i) with whom it shams the largest set of letters. The
resulting graph is called a join tree.

4. Compute ./v/i, the set of models over C~ that satisfy the set of all sentences from T composed
only of letters in C,.

5. For each C~ and for each Cj adjacent to C~ in the join tree, delete from A.4~ every model M
that has no model in .Adj that agrees with it on the set of tlleir common letters (this amounts
to performing m'c consisten O, on the join tree). []

Fig. 7. Propositional-tree-clustering: Tree-building phase,

Since the most costly operation within the tree-building algori thm is generat ing

all the submodels o f each c l ique (Step 5), the t ime and space complex i ty of this

prel iminary phase is O(ITJ * '~ * 21of), where JC[is the size of the largest cl ique, [T[

the size o f the theory and rT, is the number o f letters used in T . It can be shown

that [C I = w* + l, where w* is the width 6 of the ordered chordal graph (also cal led

induced width). As a result, for classes having a bounded induced width, this method

is tractable.

Once the tree is built it always allows an efficient query-answer ing process,

that is, the cost o f answer ing many types of queries is l inear in the size o f the tree

generated. The query-process ing phase is described below ('m. bounds the number of

submodels for each cl ique):

Propositional Tree-Clustering - Queo' Processing

.

T is satisfiable if none of its JUl'is is empty, a property that can be checked in

To see whether there is a model in which some letter 2) is true (false), we
arbitrari ly select a clique containing P and test whether one of its models
satisfies (does not satisfy) P. This amounts to scanning a column in a table,
and thus w i l l be l inear in 'm,. To check whether a set o f letters A is satisfied by
sorne cormnon rnodel, we test whether all the letters belong to one cluster Ci. I f
so, we check whether there is a model in .M i that satisfies A. Otherwise, i f the

:' The width of a node in an ordered graph is the number of edges connecting it to nodes lower in the
ordering. Tile width of an ordering is the maximum width of nodes in that ordering, and the width of
a graph is the minimal width of all its orderings.

26 R, Ben-Eliyahu, R. Dechtet; On computing minimal models

letters are scattered ove r several cl iques, we temporari ly e l iminate from each
such c l ique all models that disagree with A, and then re-apply arc consistency.

A model sat isfying A exists iff none of the resttltln= Adi s becomes empty. The
complex i ty of tiffs step is O(n, * 'm. * l o g m) . []

Acknowledgements

We thank Vousri E1 Fattah, Itay Meiri, and Judea Pearl for useful discussions and

helpful commen t s on earl ier drafts of this paper. We have benefited from discussions
with A d a m Grove and Daphne Koller, Thanks also to Michel le Bonnice for editing,
and to one anonymous referee for detailed and helpful comments . In particular, the

example in c o m m e n t 4.8 is due to that referee. The first author also wishes to thank
the Compu te r Sc ience D e p a m n e n t at Te l -Aviv Universi ty, Israel for a l lowing her to

use its resources whi le staying in Tel-Arty.

References

[I] R. Ben-Eliyahu and L. Palopoli, Reasoning with nlinimal models: Efficient algorithms and applica-
tions, in: KR-94: Proceedings of the Fourth International Cm!ferem'e on Principles of Kmm'le~Oe
Representation and Reasoning, eds. J. Doyle, E. Sandewall and P. Torasso (Morgan-Kaufmann,
San Francisco, CA, I994) pp. 39-50.

[2] C. Beeri, R. Fagin, D. Mater and M Yannakakis, On the desirability of acyclic database schemes,
J. ACM 30(3) (1983) 479-513.

[3] C. Bell, A. Nerode, R.T. Ng and V.S. Subrahmanian, Computation and implementation of non-
monotonic deductive databases, Technical Report CS-TR-2801, University o1 Maryland (1991).

[4] M. Cadoli, On the complexity of model finding for nonmonotonic propositional logics, in: Pro-
ceedings of the 4th Italian Cm~ference on Theoretical Computer Science, eds. A.M. Spaccamela,
E Mentrasti and M. Venturini Zilli (World Scientific Publishing Co., October 1992) pp. 125-139.

[5] R. Dechter and A, Dechter, Structure-driven algorithms for truth maintenance, Technical Report R-
I82. Cognitive Systems Laboratory, Computer Science Department, UCLA (August 1994). A pre-
linlinary version in: AAAI-88: Ptvceedings qf 7th National ConJi'rence on Artificial Intelli,wnce,
under the title "Belief maintenance in dynamics constraint networks".

[6] M. Dalai and DW. Etherington, A hierarchy of tractable satisfiability problems, InJ?Jrmation Ppw-
cessing Letters "44 (1992) 173-180.

[7] R. Dechter, Enhancement schemes for constraint processing: Backjumping, learning, and cutset
decomposition, Artificial Intelligence 4l (1990) 273-312.

[8] R. Dechter, Constraint networks, in: Enewclopedia of Artificial h~tettigence, ed. S>C. Shapiro (John
Wiley, 2rid edition, 1992) pp. 276-285.

19] W.F. Dowling and J.H. Gallier, Linear time algorithms for testing the satisfiability of propositional
Horn formulae, Journal of Logic Programming 3 (1984) 267-284.

[10] J. de Kleer, A.K Mackworth and R. Reiter, Characterizing diagnosis and systems, Art{ficial Intel-
ligence 56 (1992) 197-222.

[I I] J. de Kleer and B.C. Williams, Diagnosis multiple faults, ArttJicial huettigenee 32 (I987) 97-t30.
II2] R. Dechter and J. Pearl, Network-based heuristics for constraint satisfaction problems, Art{liciat

Intelligence 34 (1988) 1-38.
{131 R. Dechter and J. Pearl, Tree clustering for constraint networks, Artificial Imelligenee 38 (1989)

353-366.

R. Ben-Eliyahu, R. Dechtel: On computing minimal models 27

[14] S. Even. A. Itai and A. Shamir, On the complexity of timetable and multi-commodity flow, SlAM
Journal of Computing 5 (1976) 691-703.

115] Y. El Fattah and R. Dechter, Diagnosing tree-decomposable circuits, Technical Report 94-t8,
University of California, lrvine (April 1994). A preliminary version in: DX-92: Proceedings r~[
Workshop on Principles of Diagnosis (October t 992).

[t61 E.C. Freudcr, A sufficient condition for backtrack-bounded search. Journal ~/" the A CM 32(4)
(1985) 755-761.

117] F. Gavril, in: Comptaers and Intractability A Guide to the Them 3' ¢?[" NP-completeness, eds.
MR. Garey and D.S. Johnson (W.H. Freeman, 1979) p, 134,

[t8] M. Gelfond and V. Lifschitz, Classical negation in logic programs and disjunctive databases, New
Generation Conllmting 9 (1991) 365-385,

[191 J. Grant and J. Minker, Deductive database systems, m: Enc3'clopedia H/'Art!/icial Intelligence,
ed. S.C. Shapiro (Jobn Wiley, 2nd edition, 1992) pp. 320-328,

[20] G. Gallo and M, Grazia Scutella, Polynomially solvable satistiability problems, h(l~rmation Pro-
cessing Letters 29 (1988) 221-227.

[21] A. Itai and J.A. Makowsky, Unitication as a complexity measure for logic programming, Journal
of Logic Programming 4 (1987) 105-117.

1221 R.M. Karp, Reducibility among combinatorial problems, in: Complexity of Computer Computa-
tions, eds. R.E. Miller and J,W. Thatcher (Plenum Press, New York, 1972).

[231 R.A. Kowalski and C.J. Hogger, Logic programming, in: Encyclolwdia of Artificial lntell@ence.
ed. S.C. Shapiro (Jolm Wiley, 2nd edition, 1992) pp. 873-891.

[24] V. Lifshitz, Computing circumscription, in: IJCAI-85." Proceedings ~[" the International Joint
Col{felz~nce on A 1 ~ 1985) pp. 121 - 127,

I251 D.W. Loveland, Near-Horn prolog and beyond. Journal ~f Automated Reasoning 7 (I991) 1-26.
[26] D. Maier. The Theo O" (~l'Relational Datcd~ases (Computer Science Press, Rockville, MD, 1983),
[271 J. McCarthy. Circunascription - a liwm of non-n'tonotonic reasoning, Artificial Intelligence 13

(1980) 27-39.
[28] J. McCarthy, Application of circumscription to lormalizing common-sense knowledge, Artificial

Intelligence 28 (1986) 89-116.
[29] J. Minker, On indefinite databases and the closed world assumption, in: Proceedings of 6th Con-

ference on Automated De~h~ction, Lecture Notes in Computer Science, Vol. 138 (Springer-Verlag,
1982) pp, 292-308.

[30J R. Reiter, A theory of diagnosis from first principles, Artificial Intelligence 32 (1987) 57-95.
1311 D.W. Reed, D.W. Loveland and B.q2 Smith, The near-Horn approach to distunctive Ic, gic program-

ming, in: Prvceedings (~[2rid Wf,,rkshop on E'~tensions of Logic Programmbzg, Leclulv Notes in
Art([icial Intelligence, Vol. 596 (Sprmgcr-Verlag, 1992).

I321 R.E. Tarjan and M. Yannakakis, Simple linear-time algorithms to test chordaiity of graphs, test
acyclicity of hypergraphs and selectively reduce acyclic hypergraphs, SIAM Journal on Computing
t3(3) (1984) 566-579.

