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This paper addresses the problem of computing the minimal models of a given CNF 
propositional theory. We present two groups of algorithms. Algorithms in the first group 
are efficient when tile theory is almost Horn, that is, when there are few non-Horn clauses 
and/or when the set of all literals that appear positive in any non-Horn clause is small. 
Algorithms in tile other group are efficient when the theory can be represented as an 
acyclic network of low-arity relations. Our algorithms suggest several characterizations 
of tractable subsets for the problem of finding minimal models. 

1. Introduction 

One approach to attacking NP-hard problems is to identify islands oftractabilio, 
in the problem domain  and to use their associated algori thms as bui ld ing blocks for 
soiving hard instances,  often approximately.  A celebrated example  of  this approach is 
the t reatment  of the proposit ional satisfiability problem. 

In this paper, we would like to initiate a similar effort for the problem of f inding 
one, all, or  some of  the minimal models of  a proposit ional theory. Comput ing  min i -  
mal models  is an essential  task in many  reasoning systems in Artificial Intel l igence,  
including proposit ional  c ircumscript ion [24, 27, 28] and minimal  diagnosis  [10, 30], 
and in answer ing  queries posed on logic programs (under stable model  semant ics  [3, 
18]) and deduct ive  databases (under  the general ized closed-world assumpt ion  [29]). 
While  the ul t imate goal in these systems is not to compute  min imal  models  but rather 
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to produce plausible inferences, efficient algorithms for computing minimal models 
can substantially speed up inference in these systems. 

Special cases of  this problem have been studied in the diagnosis literature and, 
more recently, in the logic programming literature. Algorithms used in many diagnosis 
systems [I0, 11] are highly complex in the worst case: To find a minimal diagnosis, 
they first compute all prime implicates of a theory and then find a minimal cover 
of the prime implicates. The first task is output exponential, while the second is 
NP-hard, Therefore, in the diagnosis literature, researchers have often compromised 
completeness by using a heuristic approach. The work in the logic programming 
literature (e.g. [3]) focused on using efficient optimization techniques, such as linear 
programming, for computing minimal models. A limitation of this approach is that so 
far it did not address the issue of worst-case and average-case complexities. 

We want to complement these approaches by studying the task of finding all or 
some of the minimal models in general, independent of any specific domain. We will 
use the "tractable islands" methodology to provide more refined worst-case guarantees. 
The two primary "islands" that we use are Horn theories and acyclic theories. It is 
known that Horn theories have a unique minimal model that can be found in linear 
time [9, 21]. Our near-Horn algorithms try to associate an input theory with a "close" 
Horn theory, yielding algorithms whose complexity is a function of this "distance". 
For acyclic theories, we will show that while finding one or a subset of the minirnal 
models can be done in output-polynomial time, the task of finding all minimal models 
is more complex. We will set up necessary and sufficient conditions under which an 
acyclic theory has a unique minimal model. Testing the conditions fox" unique minimal 
model and generating this model (if it exists) can be done in time polynomial in the 
size of  the acyclic theory. We will also present a tree-algorithm that generates all the 
minimal models of  an acyclic theory. 

Once we have an efficient algorithm for generating rninimat models of tree-like 
theories, we can apply it to any arbitrary theory by first compiling the theory into 
a tree. The resulting complexity will often be dominated by the complexity of this 
compilation process and will be less demanding for "near-tree" theories, 

2. Preliminary definitions 

A clause is positive if it contains only positive literals and is negative if it 
contains only negative literals. We will sometimes refer to a clause as a set of literals. 
In this paper, a theop3, is a set of clauses. Given a theory ~ ,  size(~) will denote its 
length, that is, the number of syrnbols in the theory. Given a set A, [A I denotes its 
cardinality. A set of  literats covers a theory iff it contains at least one literal from 
each clause in the theory. A set of covers of  a theory is complete iff it is a superset 
of  all minimal covers of  the theory. 

A theory is called positive if it is composed of positive clauses only. Given a 
theory ¢b and a set of literals S, the operation ~ Q S performs unit p~vpagation on 
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q) U S. Unit propagation is the process where given a theory ~ ,  you do the following 
until • has no unit clauses: you pick a unit clause C from ~ ,  delete the negation of  
(7 from each clause and delete each clause that contains C. Itai and Makowsky [21] 
have shown that unit propagation can be done in time which is linear in the size of 
the theory I. For each theory ¢h n.f(q)) denotes qb Q ~. For each model 1"~,[, pos(M) 
denotes the set of atoms to which M assigns true. We will sometimes refer to a 
model as a set of literals, where a negative literal ~ P  in the model means that the 
model assigns false to P and a positive literal P in the model means that the model 
assigns t rue to P. 

Definition 2.1 (X-minimal model). Let qb be a theory over a set of atoms/2, X C_/2, 
and M a model for qb. _M is an X-minimal model for • iff there is no other model 
M '  for • such that pos(M ~) N X C pos(M) N X .  If M is an X-minimal model for 
X = / 2 ,  it will be called simply a minimal model. 

3. A general algorithm for computing a minimal model 

Cadoli [4] has shown that the problem of finding an X-minimal model for a 
theory is pNPlO(logn)l_hard. Roughly, this means that it is at least as hard as problems 
that can be solved by some deterministic polynomial algorithm that uses O(log r~,) calls 
to an NP oracle. In Fig. 1 we show an algorithm for computing X-minimal models 
that takes O(,n, 2) steps and uses O(r~) calls to an NP oracle (where n is the number 
of variables in the theory). In Fig. 2 we show a variation of this algorithm that uses 
a procedure for satisfiability called model-sat that also returns a model in case the 
theory is satisfiable. 

L e m m a  3.1. Algorithm Find-X-minimal is correct. 

Proof It is clear that the algorithm returns false iff qb is inconsistent, and true 
otherwise. It is left to show that when ¢) is satisfiable, at the end of the ex- 
ecution of the algorithm M is an X-minimal model. Assume by contradiction 
that M is not an X-minimal model. So there must be a model M t such that 
M '  n X C M N X. Let k be minimal such that M'(Pk) = false and M(Pk)  = true. 
Since k is minimal, and by the way the algorithm works (statement 4), it must be that 
{-~P~:} U • U {P~ [ M(P~) = true, 1 ~< i < h} U {~P/  I M(P/)  = false, 1 ~< 'i < k} is 
consistent and therefore it should be the case that M(P~,) = false, a contradiction. [] 

L e m m a  3.2. Algorithm Find-X-minimal2 is correct. 

I Itai and Makowsky worked with Horn theories but their method applies also to general theories. 
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Find-X-minimal(q~, X, M) 
Input: A theory qb and a subset X of the variables in q~. 
Output: true if do is satisfiable, false otherwise. In case qb is satisfiable, the output variable 
3,4 is an X-minimal  model for qb 

1. If ~sat(q~) return false; 

2. For "/:= I to 7~. do M[.i] := false; 

3. Let P ~ , . . . ,  P,~ be an ordering on the variables in op such that the first [.\'1 variables are all the 
variables IYom X.  

4. F o r i : =  1 r o n d o  
If sat(O U {~Pi})  then • := O ©  {~Pi} 
else • :=  q~© {Pi}, M[i] :=  true; 

5. return true; 

Fig. 1. Algorithm Find-X-minimal. 

Find-X-minimal2(q~, X,  3,4) 
Input: A theory q) and a subset of the variables in q), X. 
Output: t rue if 4~ is satisfiable, false otherwise. In case qb is satisliable, the output variable 
M is an X-minimal model lbr 09. 

1. If ~model-sat(dO, M )  return false; 

2. negX :=  { P  I P E X, ~ P  E 3,4}; 
X := X - negX; 
~ : = q b U { ~ p  ] P EnegX}; 

3. While X # ~ do 

a. Let P E X;  
b. If -model-sat(qb tO { ~ P } ,  M") then * := op © {p}  

else ~ :=  dO © { ~ p } ,  3,,/ := 3,4'; 
c. X : =  X -  {P} ;  

4. return true; 

Fig. 2. Algorithm Find-X-minimal2. 

Proof. Similar to the proof of Lemma 3.1. [] 

Algorithm Find-X-minimal2 suggests the following theorem which will be used 
in proofs in the following sections: 

Theorem 3.3. Let C be a class of theories over a language £ having the following 
properties: 

1. There is an algorithm c~ such that for any theory • E C, c~ decides whether qb 
is satisfiable and produces a model for dO (if there is one) in time O(tc) .  
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2. C is closed under instantiation, that is, for every do E C and for every literal L 
in/2, do (3 {L} E C. 

Then for any theory do E C, an X-minimal model for do can be found in time 
o(Ixlt, c). 

Proof Follows from the correctness of Algorithm Find-X-minimal2. [] 

Since satisfiability of a 2-CNF theory can be checked in time linear in its size 
[14], we have the following corollary: 

Corollary 3.4. An X-minimal model for a 2-CNF theory do can be found in time 
O([X I * I), where l is the legth of the theory. 

However, using a straightforward reduction from VERTEX COVER [22], we 
can show that if we are interested in finding a minimum cardinality model for a 
2±CNF theory (namely, a model that assigns true to a minimum number of atoms), 
the situation is not so bright: 

Theorem 3.5. The following decision problem is NP-complete: Given a positive 
2-CNF theory dO and an integer K,  does do have a model of cardinality <~ K ?  

4. Algorithms for almost-Horn theories 

In this section, we present algorithms for computing minimal models of a propo- 
sitional theory which are efficient for almost Horn theories. The basic idea is to 
instantiate as few variables as possible so that the remaining theory will be a Horn 
theory and then find a minimal model for the remaining theory in linear time. 

4.1. Algorithm,for theories with only a few non-Horn clauses 

Algorithm MinSAT (Fig. 3) is efficient when most of the theory is Horn and 
there are only few non-Horn clauses. Given a theory, MinSAT works as follows: It first 
tries to solve satisfiability by unit propagation. If the empty clause was not generated 
and no positive clause is left, the theory is satisfiable, and the unique minimal model 
assigns false to the variables in the remaining theory. If a nonempty set of positive 
clauses is left, we compute a cover for the remaining set of positive clauses, replace 
them with the cover, and then call MinSAT recursively on the new theory. If the 
theory is not satisfiable, or if we are interested in all minimal models, we have to call 
MinSAT again with a different cover. 

Algorithm MinSAT is shown in Fig. 3. The procedure Unitlnst(do, I, Sat) takes 
as input a theory do and returns nf(do). I is an output variable which contains the set 
of unit clauses used for the instantiations. Sat is false iff the ernpty clause belongs to 
the normal form; otherwise Sat is true. The procedure combipw(I, M) takes as input 
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MinSAT(q~, M) 
Input: A theory qb. 
Output: true if (b is satisfiable, false otherwise. In case ,.b is satisfiable, the output variable 
AI will contain a set of models lot ¢I~ that is a superset of all the minimal models o1: (b. 

1. q):= Unitlnst(r.l), I, Sat); If not ,Sat return false; 

2. If • contains no positive clauses then 
hegill 
11,/ := {I tO {~P I P is a variable in ~}}; return true; 
(* Note that A{ is a set of sets *) 
~zd. 

3. M := (/); Let .4 be a complete set of covers lk~r the set of all the positive clauses in q~. 
For each S E A do: 

If MinSAT((I) u S, M') then 
M := /tl tO combine(I. AI'); 

4. If A'/ = q) then relurn false else return true; 

Fig. 3. Algorithm MinSAT. 

a set of  literals I and a set of sets of literals M and returns the set {S  I S = W U I ,  

We group all the proposit ional theories in classes qJ0, q J i , . . ,  as follows: 

• • E h°o iff 1[[[qb) has no posit ive clauses or contains  the empty clause. 

• qb E q"f,:+lC.'l iff for each A that is a complete  set of  covers for C, where (7 is 
the set of positive clauses in n f (~ ) ,  and for each S in A, qb O ,9 belongs to W/ 
for some j ~ k. 

O b s e r v a t i o n  4.1, If a theory has /,: non-Horn  clauses it belongs to the class q~a /or 
some j ~</c. Hence,  Horn theories belong to W0- 

We can show the fol lowing:  

Lemma 4.2. Algor i thm MinSAT is correct. 

Proo.fi The proof goes by induct ion on the minimal  k such that q) belongs to ~'~,. 

Case  k = 0, If/!/ '(@) contains  the empty clause then Unitlnst will return false, and so 
MinSAT will return false. Else if O0 has no positive clause then the model  that 
assigns false to all the atoms is the minimal  model of • and this is the model 
which the algori thm returns in Step 2. 

I n d u c t i o n  step.  Let @ belong to some Wh. such that k > 0. It is easy to see that each 
min imal  model  of  • can be represented as a un ion  of  two sets 13 and C,  where 
B is a min imal  cover  of  the positive clause of  qb and C is a minimal  model of  
the theory qb U { P  I P E B}.  Hence  the result follows. 
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Proposition 4.3. If 00 E Wk then MinSAT runs in time O(rLrn3), where -n. is the length 
of the input and 'm. the maximum number of positive Iiterals that appear in any clause. 

Proq/i By induction on k. Case/,: = 0 is easy. Suppose ~ E ~,;  for some A: > 0, and 
let C be the set of  positive clauses in ~ ,  Hence for every 5' which is a cover of C 
O U  S' is in ~k-lC.'l. So by the induction hypothesis each call to MinSAT(t~ U 5', M ' )  

takes O(',mz a:-Icl) steps. A complete set of covers for C can be found in O(m lal) 
steps and there are at most rn. It[ covers in this set, therefore the algorithm runs in 
O(r~,'nz ~:) steps. [] 

This is also the worst case complexity for deciding satisfiability using MinSAT. 
Since for every k the class ~I~ is closed under instantiation, we can use Theorem 3.3 
to prove that: 

Proposition 4.4. If a theory ~ belongs to the class ~a: for some k, then an X-minimal 
model for • can be found in time O(]X]'n:m,l':). 

Algorithm MinSAT returns a superset of all the minimal models. To identify the set 
of all minimal models, we need to compare all the models generated. Since there are 
at most 'mJ': models generated by MinSAT, each of size at most 7~,, the complexity of 
finding all minimal models for a theory in the class ~a: is O(7,m2k). 

4.2. Algorithms that exploit the interaction between the positive literals o/'the 
theory 

In this section we will identify tractable subsets for satisfiabilit3, and for find- 
ing all minimal models by using topological analysis of the interactions between the 
positive literals of  the theory. The positive graph of a theory, defined next, reflects on 
these interactions. 

Definition 4.5 (positive graph of a theory). Let • be a theory. The positive graph of 
is an undirected graph (t7, E)  defined as follows: 

V = {P  [ P is a positive literal in some clause in cp}, 

/!? = {(P, Q) [ P and Q appear positive in the same clause}. 

Note that ¢I~ is a Horn theory iff its positive graph has no edges. 

Definition 4.6 (vertex cover). Let G = (V, E) be a graph. A vertex cover of G is a 
set V ~ C_ V such that for each e C E there is some v E V ~ such that ,~., E e. 

We take "vertex cover of the theory" to mean "vertex cover of the positive 
graph of the theory". 

An algorithm that computes a superset of all minimal models based on a vertex 
cover of a theory can consider all possible instantiations of the variables in the cover. 
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Each such instantiation yields a Horn theory for which we can find a minimal model 
(if there is one) in linear time, When we combine the model for the Horn theory with 
the cover instantiation, a model of  the original theory results. We can show that a 
superset of  all minimal models of  a theory can be generated in this way, If we are 
interested only in deciding satisfiability, we can stop once the first model is found. 
Hence, 

Theorem 4.7. If the positive graph of a theory • has a vertex cover of cardinality c, 
then the satisfiability of • can be decided in tirne O('n,U), where ,n. is the size of the 
theory, and an X-minimal model for • can be found in time O(IXl'n,2c). The set of 
all minimal models of  • can be found in time O(n,22c). 

Proof Let qb be a theory and V a vertex cover of the positive graph of • such that 
IV I = c. • is consistent iff there is an instantiation of the variables in V such that 
the remaining Horn theory is consistent. Since there are 2 c instantiations of  V, and 
since deciding consistency of  a Horn theory is linear, we get that satisfiability of • 
can be decided in O(r7,2 c) steps. Since the set of all theories having a positive graph 
with a vertex cover of size c for some c is closed under instantiation, by Theorem 3.3 
we can find a minimal model for • in time O(IXl~,2c). For the rest we will first 
show that every minimal model M of • can be represented as the union of  I and 
H where I = { P  I P E I/, P was instantiated by some instantiation f to true} and 
H is the minimal model of  the Horn theory we get after the instantiation f .  Let 
I = {P  I P E V, M ( P )  = true}. Since M is minimal, H = M - I  must be a 
minimal model of • U I.  

So a super set S of all the minimal models of • can be found in time O('n,2C), 
and we have also 15'[ ~ 2 c. We then have to compare each 2 models found to identify 
the minimal ones, and so the whole process takes O(n22c) steps. [] 

In general, the problem of finding a minimum-cardinality vertex cover of a 
graph is NP-hard. A greedy heuristic procedure for finding a vertex cover could 
simply remove the node with maximum degree from the graph and continue with the 
reduced graph until all nodes are disconnected. The set of all nodes removed is a 
vertex cover. 

Algorithm VC-minSAT (Fig. 4) integrates the above heuristic into a backtrack 
algorithm for finding the minimal models. MaxDegree takes the positive graph as an 
input and returns an atom (node) that has a maximum degree. If there is more than 
one such atom, it chooses the one that appears in a maximum number of  non-Horn 
clauses in the theory. Update( O, G) returns the positive graph of O. We can show 
that algorithm VC-minSAT produces a superset of all the minimal models. 

Another approximation algorithm for finding a vertex cover is based on the 
idea of "maximal matching" (see [17]). That approximation algorithm is guaranteed 
to find a vertex cover that is at most twice as large as a minimum one, and it can be 
also combined with a backtrack algorithm for finding the minimal models, similar to 
the way we combine two heuristics in Algorithm VC-minSAT. 
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VC-minSAT(qL M, G) 
Input: A theory q~ and a positive graph of q), G. 
Output: true if qa is satisfiable, otherwise false. If • is satisfiable, M contains a superset of 
all minimal models for q~. 

1. qb := Unitbzst(O& I, Sat); 

2. ff ~Sat return false; G := Update(qL G); 

3. ff G has no arcs then 
begin M := I tO {~P I P appears is a variable in qa}; return true; end. 

4. P := MaxDe~ree(G); Sat := false; M = ~; 

5. If VC-minSAT(q~ U {P}, M + , G) then 
M := combhw(I, M+); 

6. If VC-minSAT(~ tO { ~P}, A.I-, G') then 
~4 := 114 tO combine(I, M-  ); 

7. If M ==  ~ return false else return true. 

Fig. 4. Algorithm VC-minSAT. 

We should mention here that the idea of initializing variables in a theory until 
the remaining theory is Horn has been suggested, in the context of solving the sat- 
isfiability problem, by Gallo and Scutella [20] and was recently extended by Dalai 
and Etherington [6]. The advantages of our approach are that we provide an intu- 
itive criteria for how the variables to be instantiated are selected and we classify the 
performance of the algorithm using a well-understood and largely explored graphical 
property, vertex cover. 

Also note that we could define the negative graph of a theory just as we defined 
the positive graph. We could then write an algorithm that is analogous to VC-minSAT 
and is efficient for deciding satisfiability of theories for which the negative graph has 
a small vertex cover. Clearly, algorithm minSAT has also an analogous algorithm that 
considers negative instead of  positive clauses. 

C o m m e n t  4.8. To clarify the difference between algorithm VC-minSAT and algorithm 
MinSAT, consider the following classes of  theories F) and F , .  Class F) is the class 
of all theories of the form 

{AI V D,-~A~ v A2 V D, - ,A2  V A3 V D , . . . , - ~ A , ,  V An+l V D} 

and class F2 is the class of all theories of the form 

{Ai V B I , ~ D  V AI V B 1 , . . . , ~ D  V Am V Bin}, 

where r~ and m are arbitrary positive integers, and D and all Ai's and Bi's are atoms. 
An arbitrary theory, in Fl has a positive graph with a vertex cover of  size 1 (take {D} 
as a vertex cover), but might belong to ~ k  for some h /> 'n. On the other hand, an 
arbitrary theory from F2 belongs to urq but might have a minimum vertex cover of 
size m,. Therefore, in general algorithm MinSAT is better than algorithm VC-minSAT 
for the class F~, but algorithm VC-minSAT is better than MinSAT for the class Fl .  
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5. Computing minimal models on acyclic networks of relations 

In this section we provide efficient algorithms for theories that can be repre- 
sented as acyclic reIations of  low arity. We next define the notions of  constraint 
nenvorks and relations and show how they can represent propositional theories and 
their satisfying models. We chose to switch to the language of  relations and coi1- 
straint networks since the notions of  acyclicity and topological-based tractability was 
developed primarily within this framework [8, 26]. 

Definition 5.1 (relations, networks, schemes). Given a set of variables X = { X i , . . . ,  
X,,}, each associated with a domain of discrete values D i , . . . ,  D,., respectively, a 
relation (or, alternatively, a constraint) p = p ( } ~ , . . . ,  )'~,) is any subset 

p C_ D I x D2 x . . .  x Dt,:, 

where k ~< n and for each I ~< i ~ /~:, }~ C X and Di is the domain of )~. The 
projection of p onto a subset of variables R, denoted l~R(p) or PR, is the set of tuples 
defined on the variables in R that can be extended to a tuple in p. A constraint 
nem'ork N over X is a set Pl , . . . ,  Pt. of such relations. Each relation Pi is defined 
on a subset of  variables oei C_ X. We also denote by p(Si) the relation specified over 
&. The set of  subsets S = { S I , . . . , & }  is called the scheme of N.  Tile network 
N represents a unique relation rel(N) defined over X,  which stands for all consistent 
assignments (or all solutions), namely, 

,-~l(N) = {:,, = (: , ,~,. . .  ,:,,,,) I v &  E s ,  n.,. (.,,) ~ p~}. 

A partial assignment T = t is a value assignment to a subset of variables T C_ X. 
The operator N is the join operator in relational databases defined as follows. Let Pl 
and p2 be two relations defined over the variable sets SI and $2, then PI N p2 is a 
relation over SI O S?, and t E Pl N p2 iff t& E pj and t& E p:. 

Any propositional theory can be viewed as a special kind of constraint network, where 
the domain of  each variable is {0, 1} (corresponding to {false, true}), and where each 
clause specifies a constraint (in other words, a relation) on its propositional atoms. 
The scheme of a propositional theopy is accordingly defined as the scheme of its 
corresponding constraint network, and the set of all models of the theory is the set of 
all solutions of its corresponding constraint network. 

Example 5.2. Consider the theory (P = {~A V ~/3', ~ B  V ~C, C V D}. This theory 
can be viewed as a constraint network over the variables {A,/3, C, D}, where the cor- 
responding relations are the truth tables of each clause, that is, p(AB) = {00,01,10},  
p(BC) = {00,01,10},  and p(CD) = {01,10, 11}. The scheme of the theory • is 
{AB,  BC,  GD}.  The set of  all solutions to this network (and hence the set of models 
of ~ )  is 

p(ABCD) = {0001,0010,0011,0101,1001,  1010, 1011}. 

Note that • has two minimal models: {000I, 0010}. 
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The scheme of a theory can be associated with a constraint graph (also called 
a dual constraint graph [13] or an intersection graph [26]) where each relation in the 
scheme is a node in the graph and two nodes are connected iff the corresponding 
relations have variables in common. The arcs are labeled by the common variables. 
For example, the constraint graph of the theory • of Example 5.2 is as follows: 

BC 
/ , ,  

BI \ c  
/ ', 

AB CD 

In general, theories that correspond to a constraint graph that is a tree are called 
acvclic theories, and their corresponding tree-like constraint graph is called a join tree. 
In the following we make these notions more precise. 

Sometimes a constraint network looks cyclic while, by removing some of its 
redundant arcs it will become acyclic. Removing redundant arcs does not change 
the problem, and identifying such arcs can be done in linear time in the size of  the 
network [26]. 

If by eliminating some redundant arcs from its intersection graph the constraint 
graph becomes a tree, then we say that the network is acyclic, and call the resulting 
tree a join-tree. An acyclic network may have more than one join-tree. Here is a 
formal definition. 

Definition 5.3 [26]. Given a set of relations P l , . . . , & ,  having the scheme { S ] , . . . ,  
St, }, a join-graph is an arc-subgraph 2 of the constraint graph over & , . . . ,  5'1, (called 
intersection graph in [26]), satisfying that if X E & N 5~i then there exist a path 
between Si and Sj whose all labeled arcs contain X.  A join tree is a join graph that 
is a tree. A network of relations is acyclic if it has a join-tree. 

We next define the concept of pair-wise consistency. 

Definition 5.4 (pair-wise consistency [26]). A pair of relations Pl, P2 are pair-wise 
consistent iff every tuple m pj can be consistently extended by a tuple m P2 and 
vice-versa. Formally, iff 

Pl =FI&(Pl N p2), and P2=FI&(PL N p2). 

It was shown that testing or enforcing pair-wise consistency can be done in 
polynomial time [26]. Pair-wise consistency parallels the notion of arc-consistency 
developed in the context of binary constraint networks. 

2 An arc-subgraph of a graph is a graph that contains a subset of the arcs and all the nodes. 
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We next present two algorithms for computing minimal models for acyclic 
theories. These algorithms will be extended to arbitrary theories via a procedure 
known as tree-clustering [13], which compiles any theory into a join tree of relations. 
The tree-clustering algorithm is reviewed in Appendix A. 

Consequently, given a general theory, the algorithms presented next work in 
two steps: First, a join-tree is computed by tree-clustering, and then a specialized 
tree-algorithm for computing the minimal models is applied. The complexity of tree- 
clustering is exponential in the size of the maximal arity of the generated relations, 
and hence our algorithms are efficient for theories that can be compiled into networks 
of low-arity relations. We should note, however, that even in the cases where tree- 
clustering is time expensive, it might still be useful since it offers a systematic way of 
representing the models of the theory in a hierarchical structure capable of supporting 
information retrieval without backtracking. We say that an ordering of a variables is 
backtrack fi'ee relative to a given set of relations iff the variables can be instantiated 
to a solution of the network with no dead ends, while at each step consulting those 
constraints defined over the relevant variables, The notion of backtrack-fi'ee search is 
identical to monotonicitv o f  join plans [26]. 

5.1. Finding a subset o f  all minimal models 

For the rest of  section 5, we will assume that we are dealing with constraint 
networks that conespond to propositional theories, and hence the domain of each 
variable is {0, 1} and we have the ordering 1 >- 0. We will also assume that we are 
looking for models that are minimal over all the atoms in the language of the theory, 
namely, X-minimal models where X is the set of all atoms in the theory. 

Definition 5.5. Given a relation p defined on a set of variables X,  and given two 
tuples r and t in p, we say that I >-- r, iff for some Xo in X, /,x,-~ >- 'c\-, and, for all 
Xi E X, ~x~ >- rx', or t x ,  = "rx,. We say that/, and t agree on a subset of  variables 
S c_ X iff r s  = t,s. 

Definition 5.6 (conditional minimal models)  Given a relation p over X and a subset 
of variables S C_ X, a tuple t E p is conditionally minimal w.r.t. S iff there does 
not exist 'r E p such that r agrees with t on ,5' and t x - s  >- ' r x - s .  The set of all 
conditional minimal models (tuples) of p w.r.t. S = s is denoted by min(p I 5' = s). 
The set of all conditional minimal models (tuples) of p w.r.t. S is denoted min(p I S) 
and is defined as the union over all possible assignments s to S of min(p I S = 3). 
min(p I (0) is abbreviated to rain(p). 

Example 5.7. Consider the relation 

p ( A B C D )  = {0111, t011,1010,0101,0001 }, 

In this case, we have min(p) = { 1010, 000I }, min(p I {C, D}) = {0111, I011, I010, 
0001}, and min(p I {A}) -- {0001, t010}. 
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One can verify that: (1) any minimal tuple of  a projection l-Is(p) can be extended 
to a minimal tuple of  p, but not vice versa, namely a minimal models of  p may not 
be minimal model of I-Is(p); (2) a conditionally minimal tuple is not necessarily a 
minimal tuple; and (3) a minimaI tuple is a conditional minimal tuple w.r.t, to all 
subsets. The following lemma justify our forthcoming algorithms. 

L e m m a  5.8. Let p}- and Pz be two relations over Y and Z, respectively, let X = 
Y U Z a n d l e t T = Y A Z .  L e t p = p y N p z .  Then, 

1. For every t E PT, min(p t T = t) = min(pr  i T = t) N min(pz i T = t); 

2. min(p) c_- min(py ] T) N min(pz t T); 

3. If T = t is minimal over PT then rain(p) _D min(p I T = t). Consequently, 

rain(p) D min(p-~, I T  = f,) N min(pz tT = t). 

Proof  1. It is clear that min(p I T = t) D min(py I T =  t) N min(pz t T = t). 
We will show the other direction. Let t' E min(p I T = t). By definition, t!r = t. 
Clearly, t~,- E min(py I T = t) or else, there is an extension of t~ to variables in Y 
that is smaller than t ~, contradicting its conditional minimality. The argument for Z 
is identical. 

2. Follows immediately from the fact that a minimal model is always a con- 
ditional minimal model relative to any subset. Thus, min(p) C min(p I T = t) and 
from part 1 the claim follows. 

3. Assume t is a minimal model of pT and let t ~ be a conditional minimal model 
relative to t, namely t' E min(p t T = t). We claim that t' E rain(p). Else, there is 
another tuple t ° that is smaller than l, t in p. It cannot be the case that t~, is smaller 
than t since f, is minimal relative to T. Consequently, t~ = t T t. The extension of 
t!], to Y cannot be smaller than t"s since t ~ is conditionally minimal relative to T = t, 
yielding a contradiction. [] 

We are now ready to show that given a join-tree, a subset of all minimal 
models can be computed in output linear time. The idea is as follows: Once we 
have a rooted join-tree which is pair-wise consistent we can take all the minimal 
tuples in the relation of the root node and extend them (via the join operation) with 
the matching conditional minimal tuples of the child node, conditioned on variables 
common to both. This can be continued until we reach the leaves. It can be shown 
that all the models computed in this way are minimal and that they are generated in a 
backtrack-free manner; however, not all minimal models will be generated. In order 
to enlarge the set of minimal models captured, we can re-apply the procedure where 
each node serves as a root. The following notations will be used in the rest of the 
sections: 

N is an input network of  constraints, 
p is the relation associated with N.  
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TN is a compiled join-tree of  N,  
X is the set of  variables X I , . .  •, Xn,  of N.  
d is the maximal size of  a variable domain. 
S = {& . . . .  , &.} is the scheme of the join-tree. 
pi is the relation associated with Si. 
~, is the number of variables in N. 
r is the number of relations in the join-tree, TN (r ~< 'n.). 
p is the maximal arity of each relation in the join-tree. 
1,: is the maximal number of tuples in each relation of TN; (1`: ~< dl'). 
t is the overall number of tuples in the join-tree (~, <~ 't". 1`:). 

Definition 5.9 (parents of  S). Given a scheme S = { S o , . . . ,  S,.} of  a rooted join- 
tree, TN, Sp(i) will denote the parent subset of Si in the tree. We call an ordering 
d = So, . . . ,  S,. a tree-ordering iff a parent node always precedes its child nodes. 

Definit ion 5.10. Let T be a rooted join-tree with SO at the root. Let Pi be the relation 
associated with ,5'i and let So, S t , . . . ,  S,. be a tree-ordering. We define 

[°(T)  = Ni=0..,,. (min (Pi I S / i ) ) ) .  

T he o re m 5.11. Let T be a rooted join-tree with a tree-ordering SO, $1,. - . ,  St ,  then 
1. p°(T) is a subset of  alI the minimal models of  T, and 
2. p°(T) can be computed in O( l .  k .  r + r .p -  1,: 2) steps where 1 is the number 

of minimal models in the output. 

Proof I. By induction on r. For r = 0 the claim clearly holds. Suppose r > 0. 
Let T* be join-tree rooted at So that includes all the subsets S o , . . . , S r - l .  By the 
induction hypothesis, 

/ ' ( r * ) =  N,=o ,_, (rain (p, I 

is a subset of  all minimal models of  the rooted join tree T*. Let S" = U~_-J s i .  
Assume t is in p° (T)  but it is not minimal. So, there must be a tuple t,' in the relation 
described by T such that/, >- t,'. It cannot be the case that/,s- >'- tls'- because this will 
be a contradiction to the induction hypothesis, hence, it must be the case that 

t.v- = t } , ,  (1) 

therefore, in order for ~' to be smaller it must obey t.% >- ~' However, from 
" S r  • 

= t/ Consequently, since ts,. >- t.' it must be that (1) it follows that tgv(,.) '&,(r)" ".%' 

ts,. ft min(pr t Sp(,.)), a contradiction to the way ff~(T) is defined. 
To show that pi(T) is polynomially computable observe that a join tree can be 

made backtrack-free by enforcing pair-wise consistency between adjacent relations. 
This operation can be accomplished in 0(1`:. logk)  comparisons steps between the 
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minl (d)) 
Input: A theory q~. 
Output: A subset of all the minimal models of q~. 

I. Apply tree-clustering to (b. If the theory is not satisliable, stop and exit. Else, generate join-tree 
T. Apply pair-wise consistency to T. 

2. For each node R in T and for the join tree T' rooted at R compute p{~(T'). 
3. Output the union of all models computed. 

Fig. 5. Algorithm minl. 

tuples of the two relations. Each comparison is O(p), yielding O ( p .  k .  log/,:) steps, 
overall. 

The conditional minimal subsets can be computed in O(p- k 2) steps. After that, 
the resulting relation can be computed in a backtrack-free manner from root to leaves, 
yielding an overall bound of O(./- .p~;2+l.  k. r ) ,  where l is the number of the minimal 
models in the output. []  

Exa m pl e  5.12, Consider the join-tree of the theory ~ in Example 5.2. A s s u m i n g / 3 C  
is the root, we can use the tree-ordering d = BC, AB, CD. Since tuple (BC = 00) 
is the only minimal model of p(BC), it is selected. This tupte can be extended 
by A = 0 and by D = 1, resulting in one minimal model of  p, namely the tuple 
(At3CD = 0001 ). If AB plays the role of a root, we will still be computing the same 
minimal model. However, when CD plays the role of a root, we will compute the 
tuple (AI?CD = 0010), which is also a minimal model of p. 

From Theorem 5.11, it follows that, given an acyclic network or any general 
backtrack-free network relative to an ordering d, one minimal model can be computed 
in time that is linear in the size of  the network, and the total subset of  minimal models 
p°(T) can be computed in time proportional to the size of  the set. We summarize 
this in algorithm m i n l ,  given in Fig. 5. By adding the complexity of generating a 
join-tree (see Appendix A) to that of generating the minimal models we get: 

T h e o r e m  5.13 (complexity of m i n l ) .  The complexity of m i n l  is O('r • d I' + r "2 . p - 
/:2 + .i. 2 . l - k), where / is the number of minimal models in the output. For near-tree 
networks that can be embedded in trees whose relation's arity p satisfies p = O(log</n) 
m i n l ' s  complexity is O(n  4 - log n + n 3 - l). 

Proof 1. We obtain this bound by adding together the cost of tree clustering (O(r' .dS')) 
and the cost of  computing p°(T) multiplied by r', since the process is restarted from 
any node in the tree as a root. 

2. Clearly, since p = O(log d n), k = O(n) and since r" ~< n we can substitute n 
for 'r, 'n, for k, and log d n for p, yielding an overall complexity of O ( l . n  3 + n  4. log n). [] 

Algori thm m i n l  does not necessarily produce all minimal models as the fol- 
lowing example shows. 
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Example  5.14. Consider the join-tree where the variables are {A,/3, C, D, E, F, G}, 
the scheme is a tree {ABC, BCDEF, EFG}, and the corresponding relations are 
p(A/3C) = {011,110,000},  p(13CDEF) = { I 1011, t 0100, 00010}, and p(EFG) = 
{110,000, I01}. The reader can verify that the tuple {0110110} is a minimal model 
for this network, but its projection relative to any of the relations is not minimal. 

We can characterize the rnodels generated by m i n l  as follows: 

Proposi t ion 5.15. A minimal model t ¢ T will be generated by algorithm m i n i  iff 
there is a tree ordering {S l , - . . , 5 ' , . }  of  T such that for each 0 ~< .i ~< r, t& E 
min(p(Si)  ] Sp(i)). 

Proof The proof follows irnmediately from the definition of p°(T) .  [] 

Clearly, if all minimal models of  a network have the property specified m 
Proposition 5.15, all will be generated by min i .  This condition has a limited use in 
general since it is not identifiable from the network's input. Since m i n l  returns at least 
one model (if the network is consistent), it returns all minimal models of networks 
having just one unique minimal model. The following theorem shows that networks 
having unique minimal models can be identified in linear time. 

T he o re m 5.16. A tree-network has a unique minimal model iff every relation in the 
network has a unique minimal tuple. In this case the minimal model can be generated 
by joining all the minimal tuples of all the relations. 3 

Proofi Clearly, if t is a unique rninimal model of the tree network, its proiection on 
each relation in the tree is a unique rninimal model in that relation. 

The other direction is proved by induction oil the number of relations in the 
tree p(Si ) , . . . ,  p(&,) (assume this is a tree ordering). Suppose each relation Si has a 
unique rninimal tuple. By induction, p ( 5 ' l ) , . . . ,  p(S',~_ l) has a unique minimal model 
'in obtained by joining those tuples. Take t to be the projection of 'm. on oe,,_l, and 
P = &,,-i A S',,. By induction, t is the minimal tuple of p(5',,_ i), and so there is no 
mple in 5'~. which is smaller than { when both are projected on P.  Let t '  be the unique 
minimal tuple of  p(5',,.). Since the network is pair-wise consistent and t '  is unique, 

/ 
it must be the case that ~,p = /,p. Moreover, since t' is a unique minimal model in 
p(Sn), t,' rnust be the only tuple that extends ¢, to get a minimal model. So the whole 
tree has a unique minimal model. [] 

5.2. Listing all minimal models 

As we noted above, algorithm m i n l  does not necessarily produce all minimal 
models. We now present a second algorithm, min2, that computes all the minimal 

3 Remember that we assume pair-wise consistency all along. 
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models. More accurately, the algorithm computes all conditional minimal models of 
tile network, when conditioning is with respect to the variables that are common to 
each node and its neighbors in the tree. Once all conditional minimal models of the 
root node are available the set of all minimal models can be generated by minimizing 
over their union. We will show that the algorithm is output polynomial w.r.t, the 
set of all conditional minimal models, but may not be optimal relative to the overall 
set of minimal models. The reason is that the set of all conditional minimal models 
associated with the root node might be quite large and may not be included in the final 
set of minimal models. It seems that the source of complexity for this task even for 
trees is that the notion of minimal models cannot be captured by a simple numerical 
function. In contrast, it was shown that finding the minimal cardinalit3, models, can 
be computed in linear time for acyclic theories (see [5, 15]). 

In contrast to min l ,  algorithm rain2 computes partial conditional minimal 
models recursively while traversing the join-tree bottom up. When it visits a node &, 
and for each of its conditional minimal tuple si (conditioned on the variables common 
to the node and its neighbors), the algorithm prunes partial models in the subtree 
rooted at ,9i that agree with si and which cannot be extended to a minimal model 
since they are not conditionally minimal. Let T,: be the network rooted at node S/, 
let Ii be the set of all variables that Si shares with its parent node, and let Fi be the 
set of  all variables that Si shares with its neighbors (i.e., children and parents). We 
associate each node S'i with two relations, Oi, and Oi. The relation 0i denotes the set 
of all minimal models in Ti conditioned on F/. Namely, 

O, = rain(tel(T,.) I VJ.  

The relation ®i denotes all minimal models conditioned on Ii. Namely, 

Oi = min( ,el(r , )  t li). 

Since Ii C_ Fi, Oi can be computed from Oi using: 

Oi = min(0i ] I j .  (2) 

Note that for the root node, So, 00 is the set of all conditional minimal models relative 
to the set of variables in So that appear in the children of SO, while Oo is the set of 
all minimal models (conditioning is on the empty set). 

L e m m a  5.17. The relation Oi can be expressed recursively as a function of 
Oi,, • . . ,  Oil, where & , , . . . ,  Si~, are Si's children in the tree: 

0i = min(p(&)  [ F/) N Oi, - .-  N O~,. (3) 

Proof Assume Si is the root node and Si,, . , , ,  Si~, are its children. By definition, for 
each I ~< j ~< b 

Oi;. = min(rel(T/y) ] Iij). (4) 
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min2(r) 
Input :  A pair-wise consistent join tree TN, and a tree ordering 5'~,..., S,.. 
Output :  All minimal models of N, and all conditional minimal models. 0~. 

I. For i = 7~ to 1 traverse the tree bottom up. Let &~,..., &~, be the child nodes of &. 

Oi = min(p(S , )  { Fi) ~' NM~= I Oi.~ (5) 

O, = min(0i I I i )  

2. Output: O{~, the set of all minimal models. 

(6) 

Fig, 6. Algorithm rain2. 

Suppose 
t E min(p(S~)]F/) N Of f . . .  N Oit,, 

and we will show that t G 0i = min(7~(T/) [ F/), Suppose by contradiction that there 
exist t' E rel(T~) such that /,' = tl;,, and t ~ ,& -< t. Since t and t' agree on Ft. either 
,& -< t,&, which is impossible because 0~ was computed by joining min(p(Si) ] Fi), 
or there must be a relation tel(T) where T is among {Tf l , . . . ,  Ti~} such that t'.s -< ts, 
where S' is the set of  variables in the subtree T. Since t and t '  agree on Fi and 
Ii C Fi, it must be the case that/ /  - 's-*~ -< t s -&,  but that's a contradiction to (4). 

To prove the other direction, suppose t E min(rel(Ti) I Fi), we want to show 
that t E rain(p(&) I Fi) M 0~ , . . .  N Oib. It is clear that 

t,& E min(p(&) I F i), 

and it is also clear that for each ~ in {Ti~,... ,T~k} 

t,s'~ E min(rel(Tij) ] I~j) 

where S/j is the set of variables in the subtree T/j. Hence t, is in OK, and hence in 0i 
as defined in (3). []  

Lemma 5.17 above allows a bottom-up computation of ®i starting at the leaf 
nodes. 

Algorithm rain2 is summarized in Fig. 6. 

Example  5.18. Consider again the tree-network of Example 5.12. Algorithm rain2 
will perform the following computations: 

OAB ~- O A B  = min(p(AB)  I {B})  = {00, 01 }, 

OC'D = ®CD = min(p(CD) I {C}) = {01,10}, 

OBc = min(p(BC) ] {BC} )  N 0At3 N O c o  

= { ( A B C D )  = 0001,0010, 0101 }, 

OBc' --- min({0001,0010, 0101 }) = {0010, 0001 }. 
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We see that although the theory has seven models, only three intermediate models 
were generated, each conditional minimal relative to one consistent tuple of BC. 

Example 5.19. Consider the following network having five variables Xi ,  • • •, Xs, with 
the relations: 

p(XjX3)  = {01,10, 11}, 

p(.,3~_'223) = {00,01, II}, 

. ( x 3 x s )  = {Ol, lo, l 1}, 

p ( X 4 X s )  = {00, Ol, ]l}. 

The network is clearly acyclic and we consider the join-tree in which X4X5 is the 
parent of X3Xs, and X3X5 is the parent of both XIX3 and X2X3. The tree is rooted 
at node X4Xs. For the leaf nodes XIX3 and X2X3 we have that (for abbreviation 
we use Oij for Ox~xj): 

013 = O13 = min(p(XiX3) [ {X3}) = {01,00}. 

023 = 0 2 3  = min(p(X2X3 ] {X3}) = {00, O1 }. 

035 = min(p(X3Xs) I {X3, Xs}) M ®13 M O23 = p(X3X5) M (~13 NI 023 

= { ( x ~ x 2 x 3 x s )  = (0ol0,  Ioo l ,oo l  1}}. 

O35 = min(035 I {X5}) = {(XIX2X3X5) = {0010, 1001,0011}}. 

045 = min(p(X4Xs) l{X5}) N O35 = (N1X2X3X4Xs) = {00100, 10001,00101}. 

O45 = min(045) = {00100, 10001 }. 

We see that during computation we had at most three conditional minimal 
models associated with each node, while this network has totally nineteen models. 

Theorem 5.20. Algorithm rain2 computes all and only the minimal models of its input 
theory. 

Proof We have shown that the algorithm compute the conditional minimal models of 
the root relation. Since this is a superset of all the minimal models, the minimization 
operation at the root ensure that all minimal models be returned. [] 

We will bound the complexity of  rain2 (without the tree-clustering preprocess- 
ing step). First note that for each node Si there is a subset of  tuples of  that node 
whose conditional minimal models will definitely be part of  the final set; those that 
are conditioned on minimal models within their own relation. 

Consider now those conditional minimal models that are conditioned on non- 
rninimal models in their own relations. Some of them will end up to be globally 
minimal while others will be pruned. Can we bound the number of these conditional 
minimal models that will be pruned? We conjecture that the size of the pruned set can 
be bounded as a polynomial function of the output. We summarize with the following 
theorem: 
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Theorem 5.21. Let m be a bound on the number of conditional minimal models 
associated with any tuple in any node in the join-tree. Let s denotes the amount of 
space used by min2. Then, the time complexity of the algorithm is O(s 2) and its 
space complexity is s = O(rz. rn,-log m), 

Proof The time complexity of the algorithm can be bounded as follows. Before 
computing a relation 0i, pair-wise consistency is applied implicitly between & and 
each child node, requiring at most O(s .  logs) steps 4 (each relation size is bounded 
by s). Afterwards, the join operation is applied starting from the parent relation pi and 
then joining with the @ij of the child node. This order of the join operations guarantees 
an output linear performance. Thus, relation Oi is computed in linear time in its input 
and output. The minimization operation applied when computing ®i (equation (5)) 
can be implemented in O(s 2) when s bounds the size 0i. 

The space complexity of the algorithm is determined by the sizes of the relations 
Oi and ®i in each node. Since for each Si Oi D ®i, the space complexity is bounded 
by the space of 0i's which is O(n • m). The parameter m bounds the size of Oi, the 
set of all conditional minimal models of Si. [] 

Corollary 5.22. If for every node 5', the ratio between the number of minimal models, 
®i, and the number of conditional minimal models, Oi, is bounded by constant c, then 
the algorithm complexity is output polynomial. 

Unfortunately, we do not have a way of determining in advance when this 
condition will be satisfied. One possibility is to compute the number of solutions 
associated with each tuple (which can be done in linear time for trees) and use those 
numbers as bounds on the conditional minimal models. 

We would like to argue at this point that the task of computing the conditional 
minimal models as a primary task, is important for its own right. When working in 
a distributed and dynamically changing environment, one wishes to keep around all 
conditional minimal models. Adding just one relation to the join-tree or changing an 
existing one may make a complete set of conditional minimal models, that were not 
globally minimal before, globally minimal in the updated network. 

6. Other  related work 

The idea of exploiting algorithms for Horn theories for doing inference was 
already suggested in [25] where it was shown how SLD resolution for first-order 
Horn theories can be modified to be efficient for near-Horn theories. The virtue of 
our approach (relative to satisfiability solving) is that it identifies parameters of the 
theories by which the worst-case complexity can be bounded in advance. In [4] there 

4 Pair-wise consistency can be enforced in 0(7". k. logk), when k bounds the size of each relation. 
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is a different partition of the set of propositional theories into classes for which the 
problem of finding one minirnal model is tractable or NP-hard. 

The properties of acyclic theories were also investigated in the past, primarily 
in relational databases [2] and in constraint networks [13]. It was shown that such 
theories are tractable for satisfiability and also for the task of finding models with 
minimum number of positive Iiterals [15]. A new tractable class for finding one 
minimal model, based on certain dependencies between positive and negative literals 
in each clause, was recently introduced in [1]. 

7. Conclusion 

The task of finding all or some of the minimal models of a theory is at the heart 
of many knowledge representation systems. This paper presents several algorithms for 
this task and identifies new tractable classes. In particular, it presents new algorithms 
for finding minimal models of a propositional theory. The first group is effective 
for almost-Horn theories. In this group, we have presented algorithm MinSAT which 
is efficient for theories with only few non-Horn clauses, and algorithm VC-minSAT, 
which is efficient when clauses in the theory are almost Horn - that is, have very 
few positive literals. The second group of the algorithms is effective for theories that 
can be represented as trees of small-arity relations. Algorithm mini is capable of 
generating a subset of the minimal models, while algorithm rain2 generates all the 
minimal models. 

Horn theories are used extensively in deductive databases and logic programs 
(for surveys, see [19, 23]). In disjunctive deductive databases, we use rules of the 
form 

A I A ' " A A ~  ~ B t V ' " V B m ,  (7) 

where the A's and the B's are atoms in some first-order language. Disjunctive 
databases permits disjunctive information and nondeterministic choices in queries in 
a natural way (for examples, see [1]). By most semantics it is agreed that the set of 
all minimal models of a disjunctive database of the form (7) above is the set of its 
intended models, and hence, for example, a clause is entailed by a deductive database 
if it is true in all the minimal models of the database [29]. Consequently, our almost 
Horn algorithms can be used for query answering in deductive databases. Specifically, 
algorithm MinSAT presented in section 4.1, will be effective for deductive database 
having only few disjunctive rules. Indeed, it is likely that only a small fraction of the 
database will consist of disjunctive rules, since these rules are quite expressive and 
are saved for rare occasions (see also [31]). 

Acyclic networks and almost tree networks are likely to appear when the knowl- 
edge is relatively sparse or specially structured. Areas like model-based circuit diagno- 
sis or knowledge-bases involving temporal information like planning and scheduling, 
are likely candidates. For instance, it was shown that a theory describing an r>bit 
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adder can be represented by a chain-tree where each relation has arity at most 5. For 
more information, see [I 5]. 

The algorithms outlined here and elsewhere provide the theoretical foundation 
for computing minimal models. The ultimate value of these algorithms should be 
empirically, on a set of real-world problems (e.g., in diagnosis or logic programming). 

Appendix A. Tree-clustering 

Constraint-based reasoning is a paradigm for formulating knowledge m terms 
of a set of constraints otl some entities, without specifying methods for satisfying such 
constraints. Some techniques for testing the satisfiability of such constraints, and for 
finding a setting that will satisfy all the constraints specified, exploit the strncture of 
the problem through the notion of a constraint graph. 

The problem of the satisfiability of a propositional theory can be also forrnulated 
as a constraint satisfaction problem (CSP). For a propositional theory, the constraint 
graph associates a node with each propositional letter and connects any two nodes 
whose associated letters appear in the sarne propositional sentence. 

Various parameters of constraints graph were shown as crucially related to the 
complexity of solving CSP and hence to solving the satisfiabitity problem. These 
include the induced width, w*, the size of the cycle-cutset, the depth of a depth-first- 
search spanning tree of this graph, and the size of the non-separable components 
[7, 12, 16]. It can be shown that the worst-case complexity of deciding consistency 
is polynomially bounded by any one of these parameters. Since these parameters 
can be bounded easily by a simple processing of the graph, they can be used for 
assessing complexity ahead of time. For instance, when the constraint graph is a tree, 
satisfiability can be answered in linear time. 

The tree-clustering scheme has a tree-building phase and a quez7-processing 
phase. The complexity of the former is exponentially dependent on the sparseness 
of the constraint graph, while the complexity of the latter is always linear in the size 
of the database generated by the tree-building preprocessing phase. Consequently, 
even when building the tree is computationally expensive, it may be justified when 
the size of the resulting tree is manageable and many queries on the same theory are 
expected. The algorithm is summarized in Fig. 7. It uses the triangulation algorithm, 
which transforms any graph into a chordal5 graph by adding edges to it [32]. The 
triangulation algorithm consists of two steps: 

1. Select an ordering for the nodes (various heuristics for good orderings are 
available). 

2. Fill in edges recursively between any two nonadjacent nodes that are connected 
via nodes higher up in the ordering. 

5 A graph is chordal if every cycle of lenglh at least four has a chord. 



R. Ben-Eliyahu, R. Dechtel; On computing minimal models 25 

Tree building(T, G) 
input: A propositional theory T and its constraint graph G. 
output: A tree representation of all the models of T. 

1. Use the n'iangulation algorithm to generate a chordal constraint graph. 

2. Identify all the maximal cliques in the graph. Let C'~,..., Ct be all such cliques indexed by 
the rank of their highest nodes. 

3. Connect each Ci to an ancestor C' 3 (j < i) with whom it shams the largest set of letters. The 
resulting graph is called a join tree. 

4. Compute ./v/i, the set of models over C~ that satisfy the set of all sentences from T composed 
only of letters in C,. 

5. For each C~ and for each Cj adjacent to C~ in the join tree, delete from A.4~ every model M 
that has no model in .Adj that agrees with it on the set of tlleir common letters (this amounts 
to performing m'c consisten O, on the join tree). []  

Fig. 7. Propositional-tree-clustering: Tree-building phase, 

Since  the most  costly operation within the tree-building algori thm is generat ing 

all the submodels  o f  each c l ique (Step 5), the t ime and space complex i ty  of  this 

prel iminary phase is O(ITJ * '~ * 21of), where JC[ is the size of  the largest cl ique,  [T[ 

the size o f  the theory and rT, is the number  o f  letters used in T .  It can be shown 

that [C I = w* + l, where w* is the width 6 of  the ordered chordal  graph (also cal led 

induced width). As a result, for  classes having a bounded induced width, this method  

is tractable. 

Once  the tree is built it always allows an efficient query-answer ing  process,  

that is, the cost o f  answer ing  many types of  queries is l inear in the size o f  the tree 

generated.  The  query-process ing  phase is described below ('m. bounds the number  of  

submodels  for each cl ique):  

Propositional Tree-Clustering - Queo'  Processing 

. 

T is satisfiable if  none of  its JUl'is is empty, a property that can be checked  in 

To see whether there is a model in which some letter 2 ) is true (false), we 
arbitrari ly select a clique containing P and test whether one of  its models 
satisfies (does not satisfy) P. This amounts to scanning a column in a table, 
and thus w i l l  be l inear in 'm,. To check whether a set o f  letters A is satisfied by 
sorne cormnon rnodel, we test whether all the letters belong to one cluster Ci. I f  
so, we check whether there is a model in .M i  that satisfies A. Otherwise, i f  the 

:' The width of a node in an ordered graph is the number of edges connecting it to nodes lower in the 
ordering. Tile width of an ordering is the maximum width of nodes in that ordering, and the width of 
a graph is the minimal width of all its orderings. 
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letters are scattered ove r  several  cl iques,  we temporari ly e l iminate  from each 
such c l ique all models  that disagree with A, and then re-apply arc consistency.  

A model  sat isfying A exists iff none of  the resttltln= Adi s becomes  empty. The  
complex i ty  of  tiffs step is O(n, * 'm. * l o g m ) .  [] 
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