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SOMMARIO. Si deducono le equazioni di bilancio di massa, 
inerzia, quantit6 di moto e momento generalizzato della 
quantitgt di moto per materiali con struttura affine, come 
conseguenze dell'invarianza al cambiamento di osservatore 
di un conveniente principio di bilancio dell'energia. 

SUMMARY. The equations o f  balance o f  mass, inertia, 

momentum and generalized moment o f  momentum for  
materials with afJqne structure are derived as consequences 

o f  the invariance under change o f  observer o f  a postulated 
law o f  energy balance. 

1. INTRODUCTION 

Materials with affine structure are a special, although 

quite inclusive, class of materials with internal structure. 

A fundamental assumption of standard continuum mechanics 
is that detailed microscopic deformations are adequately 
modeled by the smooth deformation of the entire continuum; 
the theory of continua with internal structure is intended to 
treat cases in which this modeling is not adequate, by the 

introduction, at each point of the continuum, of additional 
kinematic descriptors and by adjusting balance equations to 
account for these. In the theory of materials with affme 
structure, the additional kinematic descriptor is a second 
order tensor, representing an affine microdeformation; an 
additional inertia tensor occurs naturally in the specification 
of the kinetic energy associated with this microdeformation. 

The form which the balance equations must take is the 
subject of a modest controversy. In [1] Capriz and Podio- 
Guidugli formulated the equations using as a model a finite 
system of mass points subject only to affine deformations 
and imagined to be attached, at its center of mass, to the 
material point in question. They elaborated the matter 
further in [2]. The balance equations which they advance are 
essentially the same as those previously presented by Toupin 
[3] and by Eringen [4]. Cowin and Leslie [5] suggest more 
far-ranging possibilities. 

Our purpose here is to derive the equations of balance of 
mass, inertia, momentum and (generalized) moment of 
momentum for materials with affine structure as consequences 
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of the invariance under change of observer of a postulated 
law of energy balance. 

Substantially, we use the method devised by Green and 
Rivlin [61, [7] and Noll [8] (cfr. also [9], [101, [11], [12]). 
In fact, Green and Rivlin considered a case which includes 

ours [7, 13]. However, they chose to regard, as did Noll, the 
inertial effects as included in the external forces and hence 
could not arrive at a form for the inertial terms in the 

balance equations. Since it is precisely these terms which 
are in greatest question, we here expand their technique by 

separating, in the energy balance, the kinetic energy and the 
expression for the working of the external forces. A similar 

line of reasoning is followed by Allen, de Silva and Kline 
[ 17 ] and by Cowin [ 14, 18 ], under more special assumptions 

on the kinetic energy and the time rate of the microinertia 
tensor. The crucial point in our argument is the description 

of the transformation properties of the external forces, which 
in any case are not frame-indifferent in the usual sense. We 
deduce these transformation properties from the form taken 
in classical mechanics. 

The equations which we derive in this way are exactly 
those of [2], that is, the usual equations of balance of mass 
and of linear momentum for the gross motion of the con- 
tinuum, an equation of evolution for the micro-inertia tensor 
and an equation for the generalized moment of momentum. 
The latter involves the non-symmetric part of the stress 
tensor, a hyperstress (third order) tensor and the symmetric 
tensor which describes the moment of the interaction of the 
fine and the gross structure. Finally, we present the reduced, 
and frame-indifferent, form of the energy equation. 

2. THE ENERGY PRINCIPLE 

We identify a continuous material body ~ with a region 
~R of Euclidean space ~,  and denote by X a generic point 

of h R . If ~ has afj~ne structure, a motion of ~ is a pair of 
smooth mappings on ~R x I1, 

(X, ¢) ~ x ( X ,  r)  E ~,  (X, r)  ~ G(X, r)  E ~r, (2.1) 

where ~" is the set of second order tensors with positive 
determinant. We require that for each r, x(., r) is a bijection 

and that 

F(X, ¢) = Dxx(X ,  ¢) E ~q~'. (2.2) 

We let X(-, r) denote the inverse of x(., r) and a superposed 
dot denote the material time derivative. We define the 
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following fields over ~ r  = x(  "~R' r):  

the velocity 

o(x, r )  : = x'(X(x, r ) ,  r ) ,  (2.3) 

the velocity gradient 

V(x, r) : = F'(X(x, r), r )F-I (X(x ,  r ) ,  r )  (2.4) 

and the whorl, i.e., the tensor I4/such that 

WT(x, r) : =  G'(X(x, r ) ,  r )G -1 (X(x, r ) ,  r) .  (1) (2.5) 

+ - - o - o + - - I W . W  d o =  p (b .u+B .W+a)do  d 4P( e 2 2 
(2.9) 

+ ; I ~ ( T n ' u + ¢ n "  W + h ' n )  da' 

which must hold for each time and each part ~ of  the body. 

G(X, r), which describes the microdeformation at X, may be 

any element of  ~ ,  as in director theories, where it can be 

used to describe the location of  the directors. For  rigid 

granular materials, G is orthogonal, while for materials with 

voids it is isotropic. Similarly, W is unrestricted in general, 

but is restricted in form in those special cases. 

To construct the energy equation we assume the following 

fields as given: a scalar heat supply o, a vector heat flux h, 
a vector body force b, a second-order tensor body moment  (2) 

B, a Cauchy (second-order) stress tensor T, and a hyperstress 

(third-order) tensor g ,  and we take the energy source and 

flux into a part ~ of  ~3  to have the standard form (cfr. [7], 
[13]) 

f/ p ( b , v + B .  W +o) do+ I ( T n . o +  T n .  W +h.n)da ,  

• .J~ (2 .6 )  

where n is the outward normal and p is the mass density. 

Likewise the internal energy is simply modeled as 

3.  C H A N G E  IN O B S E R V E R  

Two motions ~ + ,  G + ) and (~. G) o f  a body ~ with affine 

structure are related by a change in observer if, for any 

(X, r) ~ ~ × a, 

x + (X, r )  = q(r) + QCr)x(X, r )  (3.1) 

and 

G + (.7(, r) = Q(r)G(X, r), (3.2) 

where q(r)  is a vector and Q(r) is a proper orthogonal tensor. 

As a consequence, the kinematic quantities introduced in 

Section 2 transform as follows under a change in observer: 

F + = QF; 
(3.3) 

o + = Q o + q ' + Q ' p ,  

where p: = x - o is the position vector of  a point x EB  r with 

respect to a fixed origin o E 8 ;  

V + = QVQI" + Q.Qr; W+ = QWQT _Q.QT.  (3.4) 

/ p e  do, (2.7) 

where the density e is a scalar field. 

Finally, for the kinetic energy we shall assume a density 

1 1 
K : = - - v . v + ~ I W .  W. (2.8) 

2 2 

The first term is standard and represents the kinetic energy 

(per unit mass) of  the gross motion. The second term in- 

troduces the inertia due to the affme structure through a 

micro-inertia tensor field I, supposed symmetric and positive 

semi-definite. The form of  this term can be motivated from 

particle mechanics (cfr. [1,2]) ,  but in any case it corresponds 

to the simplest assumption which meets the requirements o f  

positivity and quadratic form and which includes the classical 
director theories. 

Balance of  energy for the body is then expressed by 

Moreover, the transformation laws for the acceleration 

v" and the rate of  whorl W" are 

v "+ = Qv" + 2Q'v + Q"p + q", 
(3.5) 

W.+ = QW.Q7 + Q.WQT + QWQ.T _Q. .QT _ Q  .Q.T. 

The body force and body moment must transform in a 

rather complicated way for a non-Galilean transformation. 

First, the standard form for b (cfr. [15]) is 

b + = Qb + 2Q'v + Q"p + q". (3.6) 

The interpretation, o f  course, is that if  Newton's  laws are 

to be valid in each frame, then in non-inertial frames b must 

be regarded as including <<inertial forces>>. To determine the 

corresponding results for B we again turn to particle mecha- 

nics. Thus for a system of  particles, i f  Pa is the location o f  

the ¢~th particle relative to  the mass center; v,, its velocity; 

#a its mass, with/a: = Z / a ;  a n d / a  b,, the external force acting 

on it, with b a obeying (6), we have 

#B = Zp~@/aab = , (3.7) 

(n) Here we call <<whorb> the transpose of the tensor G'G-I; the 
latter was called <<wrench~ in [l ] and <<wrenching>~ in [2], and denoted 
by IV in both those papers. Admittedly, none of these names is especially 
appealing; however, our present choice is motivated by some slight 
notational advantages. 

(2) By moment we always mean generalized rnomeq,t, that is, con- 
structs of the form x®f, as opposed to the corresponding skew product 
x ^ f .  

so that  

~S + =Z(Qp~®Quob~ +Qp~ ® 2u~Q'u +Qp ®~Q"p~ + 

+ Qpc, ® ira g l) = laQBQT + 2Q~bt pa ® oa Q.T + (3.8) 

+QZ#ap,~ ® p~Q..T 

since Z / ~ p  a = 0. Now, in our system, we have 
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/~I = ~/aop = ® p .  (3.9) 

Moreover, when the motion is affine, 

v¢, = W r p , .  (3.10) 

Therefore we finally obtain 

B + = QBQ r + 2QIWQ "r + QIQ "'r, (3.11) 

a transformation law for the body moment that we assume 
valid in general. 

Scalar, vector and (second-order) tensor quantities 8, d, 

and D, respectively, are said to be indifferent to changes in 
observer or, briefly, frame-indifferent, if 

8 + = 8, d + =Qd, D + = QDQ r,  (3.12) 

while a third,order tensor D we call frame-indifferent if 

D +d + = QgdQ r (3.13) 

for any frame-indifferent vector d. In the case of quantities 

not frame-indifferant we designate their nonconformant 

part as 

118]] =/~+ - -&  (3.14) 

Notice that the external non-inertial body force b -- o" and 
body moment B -  ( ( IW) ' - -wr /w)  are indeed frame-indif- 

ferent quantities. We now stipulate that all of the remaining 

fields introduced in Section 2 are frame-indifferent. In 
particular, 

I + = QIQ r (3.15) 

implies that 

1 .+ = QI'Q r + Q'IQ r + QIQ "r. (3.16) 

Finally, we require that the equation o f  balance of  energy 
(2.7) be indifferent to changes in observer. The consequences 
of this requirement form the contents of the next Section. 

4. BALANCE EQUATIONS 

For our present purposes, there is no loss of generality 
if we choose in (3.1) and (3.2) 

q(r)  = ~q0' Q(r) = e r r=, (4.1) 

where q0 is a fixed vector and ~ a fixed skew-symmetric 
tensor. 

Firstly, we exploit the requirement that (2.9) be indif- 
ferent to changes of observer of the form (I)  with f i  = 0. In 
view of the invariance of the volume measure and the various 
assumptions listed in Section 3, 

I(f P(e+~)d°)'l=%'f~R(p(detF)°)'d°,+ 
(4.2) 

' I + "~" (qo " qo) (p det F)" du R . 
~R 

On the other hand, 

I~ p(b.  v + B .  W + o) do + 

+ f ( T n . v + ¢ n . W + h . n ) d a l =  (4.3) 

= qo "f~ (pb + div /3 do 

Since q0 and ~ are arbitrary, under the usual blanket 

assumption of regularity of the integrands, it follows from 
(2) and (3) that the energy balance is invariant under such a 

change of frame if and only if 

(p det F)" = 0 (4.4) 

and 

pu" = pb + div T. (4.5) 

(5) is the familiar balance equation of linear momentum, 

which retains its form for structured bodies. Since 

(det F)" = (det F) trace (F 'F - ]  ) = (det F) div u, (4.6) 

(4) becomes 

p" + p div o = 0, (4.7) 

which is an equally familiar form of the conservation law 
for mass. By use of (5) and (7) the energy balance equation 

(2.9) may be reduced to 

0(e + ~ / W -  W)'dv= ( p ( B . W + e ) + T . V ) d v +  
2 

(4.8) 

+ f (tTn. W + h . n ) d a .  
,agJ 

Secondly, we complete, and exhaust, the exploitation of 

the assumed invariance of (2.9) by requiring that (8) be 
invariant under a change in observer of the form (1), with 
q0 = 0. Again, in view of various assumptions stated in 

Section 3, we have 

p(e + -  I-W. I4/)" d = 
2 

(4.9) 

= F ~ .  - -  p ( I W ) ' d v  + - - ~ 2  . _ M" dv 
2 

and 

~ I ( P ( B ' W + t r ) + T ' V ) d u + i S e n ' W + h ' n ) d a ~ =  

(4.10) 
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Therefore, (8) is invariant under such a change of  observer 

if and only if 

A : = p((1W)" - - B )  + T - - d i v  ¢ = a symmetric tensor (4.11) 

and 

1 =IIV + w T I .  (3) (4.12) 

We recognize in Equation (11 )2 the classical balance law o f  

angular momentum,  extended as to apply to bodies with 

affine structure; in Equation (12), the conservation law o f  

microinertia (4). The latter law is also obtained through an 

invariance argument by Kaloni and De Silva [ 16]. 
To rephrase our invariance argument, the energy principle 

is indifferent to changes in observer ff and only if each of 

Equations (5), (7), (l  l) 2 and (12) is satisfied. 
We now introduce ( l l )  2 and (12) into the equation of 

balance of energy (8). Using (l 2) 

(/W- IV)' = 2((IW)" --  WT/W) • W, (4.13) 

and thus we find 

p) (11)2 foUows from (9) and (10) because of the well-known 
orthogonality of the spaces of symmetric and skew-symmetric tensors. 
Less trivially, one obtains (12) because 

(~2 2 • D = 0 for any skew-symmetric tensor ~2) 

¢* (The symmetric part of D vanishes). 

(4) It is easy to give (12) a form analogous to (4). One begins by 
writing (12) as 

f _ IG-1TG'T_G'G-1I=O,  

or, equivalently, 
_G- I  G.G-IIG-1 T+ G-11.G-I T_G-I IG-I  TG.TG-I T = O. 

But, if a tensor D is invertible, 

(D-l) • = _D-ID'D -1" 

Thus, the last expression of(12)can be east into the form 

(G--~IG-~ r).= 0, 
which parallels (4) very much as (12) does (7). 

~ ( p ~  4- (([W)" --  IVT]-w) • IV) do --- L (pB .  IV 4- 4- T .  V 
f 

pa  

(4.14) 
+ d i v  T - W +  ~- l l l  + d i v h )  do, 

where 111 : = D x W. Using (11 ) and taking the localization, we 
fmd 

p e = p o + d i v q + T .  V +  T.III 4- 
(4.15) 

+ ( T  + p W r l W  - - A )  • W. 

To obtain a more compact form and to distinguish the 

several effects more clearly, we replace A by the symmetric 

tensor 

Z: = sym T + pWT1W - -A ,  (4.16) 

in terms of which the energy equation takes the form 

pd = po + div q + T .  V +  ig . lll + 
(4.17) 

+ skw T.  skw IV + Z-  sym W, 

while the balance of  moment  of  momentum becomes 

p((1W)" -- IVT1-W) = pB + div E --skw T - -Z.  (4.18) 

Thus Z is identified as being the symmetric analogue of  

skw T, representing the symmetric part of  the moment  of 
the interaction of the microstructure and the gross motion,  
and being therefore the object of  a constitutive prescription 
(in particular, in the case of rigid structure, with W skew, it 
would appear as a constraint variable, as is pointed out  by 

Allen, de Silva and Kline [17]). 
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