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S O M M A R I O  : Si discute la soluzione incrementale dei problemi 
elastoplastici con incrudimento, tenendo conto di distorsioni distri- 
buite. Vengono dimostra/i due teoremi di estremo "duali" che 
trasformano il problema in ottimizzazioni di forme quadratiche 
convesse vincolate da equazioni e diseguaglianze lineari : il primo 
teorema concerne gli incrementi degli sforzi e dei moltiplicatori 

• plastici, il secondo gli incrementi degli spostamenti e dei mo/tipli- 
catori plastici, 

Si specializzano le condusioni raggiunte al caso dell'elasto- 
plasticith senza incrudimento. 

La /rattazione viene svolta sia nei termini tradizionali della 
meccanica dei continui, sia in notazione matrMale in base a di- 
scretizzazione per elementi finiti utilizzando i concerti di teoria 
della programmazione quadratica. 

Si effettua infine un confronto con i classici principi incrementali 
di minimo dell'elastoplastici/h (Prager-Hodge, Greenberg), che 
vengono dedotti dai teoremi qui proposti in una forma genera- 
lizzata alle distorsioni diffuse. 

S U M M A R Y :  The paper discusses the incremental boundary 
value problem for elastoplastic workhardening continua, allowing 
for distributed dislocations. A pair of "dua I'' extremum theorems 
reduces the problem to the optimization of convex quadratic forms 
subject to linear inequalities and equations: the first theorem takes 
as variables stress and plastic multiplier rates, the latter velocities 
and plastic multiplier rates. 

The conclusions reached are specialized to elastic perfectly 
plastic (nonhardening) cases. 

The problem is discussed both in the traditional terms of con- 
tinuum mechanics and in matrix notation on the basis of finite 
element discretization, using some quadratic programming con- 
cepts. Finally a comparison is made with the classical incremental 
minimum principles of plasticity (Prager-Hodge, Greenberg), 
which are deduced from the present theorems in a form generalized 
to the distributed dislocations. 

1. In troduct ion .  

The boundary value incremental problem is central to 
flow-law plastic analysis. 

For this problem two minimum principles have long 
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been known and are conceptually amenable, respectively, 
to the complementary and to the potential energy principle 
of elasticity: the statical theorem for stress rates (Prager- 
Hodge) and the kinematical theorem for velocities (Green- 
berg),  see e. g. [11, [21, [3]. However little use has yet 
been made of  either of  the above principles. 

One reason for this might be the mathematically involved 
nature of the functionals or functions to be minimized, 
when stress rates or velocities are assumed as variables. 

Minimization of  quadratic forms subject to linear inequal- 
ities and, possibly, linear equations (here referred to briefly 
as quadratic optimization ) is a fairly tractable problem, which 
becomes quite simple after some discretization, for differ- 
ential relations are replaced by algebraic linear relations and 
efficient quadratic programming methods may be applied 
to numerical solutions. 

A theorem which reduces the incremental elastoplastic 
problem to a quadratic optimization in the plastic multi- 
pliers was worked out by Ceradini [4]. The latter writer 
proved another extremum property of  this kind and pointed 
out the usefulness of quadratic programming concepts in 
plasticity theory [5], [6]. 

The former writer formulated the incremental problem 
as a quadratic optimization in terms of displacement and 
plastic multiplier rates [7]. 

In this paper, allowing for prescribed dislocations besides 
external forces, we reduce the incremental elastoplastic 
problem to a quadratic optimization in two complementary 
or dual ways: by means of  a minimum theorem for stress 
and plastic multiplier rates, and by means of a minimum 
theorem for displacement and plastic multiplier rates. 

Both theorems are related to the aforementioned pairs 
of  classical extremum principles, as pointed out in subsect- 
ion 4.2. In the absence of workhardening, they represent 
the incremental counterparts of the Haar-K~rm~n theorem 
generalized to dislocations and of  another statement, dual 
to it, in the deformation theory of ideal plasticity with 
piecewise linear yield surfaces: these "finite" theorems 
have been proved in [6] and generalized to the work- 
hardening behavior in [8]. 

In the absence of  dislocations, the latter theorem estab- 
lished herein specializes tothe one previously proved in [7]. 

Compared to the above mentioned extremum theorems 
in the plastic multiplier rates, [4], [5], the theorems pre- 
sented here deal with more numerous unknowns ot once, 
but do not require the preliminary linear calculation of the 
influence functions or coefficients for stresses due to dislo- 
cations. 

In Sec. 2 we approach the problem from the familiar 
angle of  continuum mechanics using Cartesian tensor 
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notation; in Sec. 3 we reach the same conclusions by the 
finite dement  approach in matrix notation, making use 
of  mathematical programming notions. 

A comparison between the two treatments is, in our 
opinion, instructive: it points out in particular some advan- 
tages of  the latter nontraditional approach, not only as 
a basis for solving structural problems numerically but 
also for developing theoretical considerations in a compact 
and simple manner. 

2. T h e  cont inuous  field approach.  

2.1• Formulation of the problem. 

Let et`~ and ~,1 represent the stress and strain symmetric 
tensor in rectangular Cartesian coordinates xt` (i = 1, 2, 3). 
Strains are conceived as the sum of  elastic ~,~, plastic 
evff and dislocations ,aff(i) components; hence strain 
rates may be expressed as (~) 

~,, = ~ + a,~ + ~,~. (1) 

The elastic stress-strain rate relationship reads: 

* e  • 

rt`j = Aw, A.~rhg (2) 

where the elastic tensor components A,jh,  (possibly dep- 
endent on the stress state at`j as in nonlinear elastic cases) 
are such that 

Aw,  k = A m ,  A. = A~,,kh = Ah,t`j (3) 

Aw,~bt`jbh~ > 0 for bt`j 4= O. (4) 

We assume the following flow-rules. Let the instanta- 
neous elastic range be defined by the inequalities: 

, ) . < o  (= 1 n) (5) f o , ( , , , j ,  ~ , j ,  = . . .  

where f~ are (regular) yield functions, k represents the 
workhardening parameter (which depends on the plastic 
deformation history). Let the yield functions play the role 
of  plastic potentials: this means that (normality rule): 

~vj = ~: Of~ ~,, (6) 

The plastic multipliers ap conform to the following 
rules: 

~= >.>- 0 if f= = 0 and i= = O, otherwise ~= = 0 (7) 

• . . * d  ° 

(0 E.g. :  for thermically lsotropm bodies rt`j=6uyT, 
ff ~tj is tlie Kronecker symbol, Y the thermal coefficient ot tinear 
expansion, T the temperature rate• 

(2) A superposed point indicates derivative with respect to 
any monotonous function t of time. When increments are 
referred to, the differential ~ will be omitted for brevity. 

where, ff h~ represents the positive, history dependent 
workhardening coefficient: 

f= = TG~. (8) 

The boundary value problem to be discussed can be 
formulated as follows. 

Starting from a known situation Y, consider as given 

the rates fir, of external body forces, ~a,j of  internal dislo- 

cations (both defined over the volume V), /~t` of  surface 

tractions on the part ST of  the boundary, u, of  prescribed 
displacements on the part S~. The stress and strain re_ 

sponse afj, ~t`j are to be determined in V. 
The governing equations express equilibrium: 

bt`lti °r" JCj = 0 in V 

aonL = 2vj on Sr  

(9) 

compatibility: 

• 1 - 

eo = ~ (Ut̀ l~ + ,'ljI,) in V 

" 7  

lit, ~ lit` 0 1 1  S u  ) 

(lO) 

conformity, i. e. fulfilment of  the constitutive Eqs. (1) 
(2) (6) (7) (8); the last two may be conveniently replaced by 

)= ~< 0 (11) 

~=>/ 0 in V2 ( a = l . . . n )  (12) 

)=~= = 0 (13) 

L = 0 in V - -  V~ (14) 

where V= denotes the region of V in which the a-th 
inequality (5) is satisfied in Y as an equality. 

2 . 2 .  A minimum theorem in the stress and plastic multiplier 
rates. 

Let us consider the quadratic functional 

1 At`s~,i,.a~.gV + ~ E= h'a==g V a(at`j, ~)  = T -  ,, ,, 
a 

+ f v  bt`J'~'ajdV--Is ;~'t̀ lnt̀ ~dS (15) 
tg 

(3) Relations (7) (8) are equivalent to the traditional ones: 

. 0J'~ . 1 0f~ a0 if f ~ = 0  and ~ m l ~  0 
h= &rlj 

otherwise 
~== 0.  
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and the linear relations 

bu~ + X~ = 0 

bum = 7Vj 
• Of= b u -  h=~.= ~< 0 

in V (9) 
on Sa. 

in V=(a = 1 .. n). (11) 

We shall prove here below that the solution ~ l j ,  ).=o 
is characterized by the absolute minimum of functional 
/2 within the class of  all stress rate and plastic multiplier 

rate fields, au ,  a=, which satisfy the constraints (9) and 
(11). Such fields might be called statically andplasfic potential 
admissible in view of the meaning of (9) and (11). 

Let us express any admissible field as: 

• 0 "0 A}I= (16) bo = ~r,s + A bu , ,~= = a= + 

and indicate by A O the difference O([ru, 2=) - -  O(a°~j, ~'=0). 
We may write: 

1 
A-Q = f v Ab'sA"n"b°~:dV + ~ f v Ab,,A,jn~Abn,dV + 

1 f~ ~=(2~Li ° + A b a v +  + - T E .  

+ f v  da"d'a'dV-- [ Aboni~dS (17) 
d 8 u 

whence, through Eqs. (1) (2): 

f • .o 1 f AbuA,,nA-AbhA.dV a o = ,, a, , , j (~ , j - -  ; ,~°)dv + T v 

--g-1 f ' '0  f - + 
V 8 u 

Taking account of Eqs. (6) (8), after some manipulations, 
we finally obtain: 

f 0 f A 12 = A (r u E J V  - -  A buna)jdS + 
V St ,  

I 

1 j. , a°ai=~aw. + T ~= (18) 

By the virtual work principle, the sum of the first two 
integrals in Eq. (18) vanishes. The third integral is non- 
negative because the solution complies with (11) (12), 
while any admissible field fulfils inequality (11). The sum 
of the last two integrals is nonnegative and zero if and only 

A b , , = b , , - - b ° l - O a n d  A;i= = i = - -  ~ ~ O. (19) 

When Eqs. (19) hold, the third integral of  Eq. (18) 
vanishes by virtue of  Eq. (8). Therefore we may conclude 
that 

a(a, ,  i=)>_, a(a,Oj, ~o) (20) 

where the equality sign holds only for the solution. Thus 
the theorem is proved. 

2.3. A minimum theorem in displacement and plastic multiplier 
rates. 

Let us now consider the quadratic functional: 

1 a,,~,j~,,dV + T y= h=i~'av-- 
z(~"a=) = T v 

where aoau is the elastic moduli tensor (the inverse of  Aun,)  
and 

• e 1 . 0f= ).= .a  (22)  
~'  = T ("'" + u . , ) - -  Y~ ~ ~ , .  

Moreover let us consider the linear relations 

~=/> 0 in v= ( .  = 1 ... ,) (23) 

"7" 
}~* = ul on S , .  (24)  

We shall now prove that the solution t~l °, ~0 is character- 
ized by the absolute minimum of functional E within 
the class of  all velocity and plastic multiplier rate fields, 

t~, ~=, which satisfy the constraints (23) (24) (and, hence, 
can be called kinematical~ and direction admissible (4)). 

Let us express any admissible field as: 

,;, = ~0+ a ; , ,  L = i: + z L .  (25) 

The difference 

z_= z(, ; , ,  ) ,=)--  - . o  
= _.(u,, L °) 

can be given the form: 

A E = Aeualjhk~n'kdV + -~- v auhkAeoAehkdV+ 
V 

1 " "o " 
d Va g 

- J" ÷,~,~ds. (26) 

By substituting in the first integral of (26) the elastic 
rate relationship and Eqs. (1) (22), and rearranging, we 
obtain: 

8 T 

- x L= 0O,l°:= hA).  Lev + 

1 r , , 1 r := 
+ T Jv a'la*A'euA'e'*dV + -2- ~= J v f  =A&dV" 

(4) "Direction admissible" refers to the outward normality 
rule expressed by (23) for the vector of the strain rate c o m p o -  
nents .  
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By means of Eqs. (8) and of the latter Eq. (25), we get: Since: 

* ' *  = f L f + .,'ST, 

1 
+ ~ ~ f v ,&A '2~dV.  (27) 

The principle of virtual work requires the sum of the 
first three integrals in Eq. (27) to vanish. 

The fourth integral is nonnegative since the solution 
satisfies relations (11) (13), and any admissible field fulfils 
inequality (12). The sum of  the two last terms of (27) is 
nonnegative and zero if and only if 

r ,  s - - :  0 (28-a) 

and 

a i ~ =  i = _  :° &, ~ O. (28-b) 

Eqs.(28) imply that ~o ~ ~°o, and, consequently, k, ~ hi ° 
(possibly to within an immaterial rigid body motion); 
it follows also, through Eq.(8), that, if Eqs.(28) are satis- 
fied, the fourth integral in Eq. (27) must vanish. In conclu- 
sion, we may affirm that 

-(1~,, ;~)>/ -~(~1 ° , ~o) (29) 

the equality sign holding only for the solution. 

2.4. A continued inequality. 

For the solution we may write the following virtual 
work equation 

:.o.o : . , , . ,av-  f T,u, d S - -  eOEt s d V - -  "..o " • 

V I r J S  T 

f .0 "7 - -  o~snaodS = 0 (30) 
8 u 

in which by means of Eqs. (1) and (6), the first integral 
becomes: 

Making use of Eqs. (8) and (13) we finally obtain: 

h "02 .0 .dO- 

f s . , : d v - f  - f ,o- - -  ~ronaodS = 0 .  
I r S T S u 

1 

2 
f . .0 .o 'V  1 f .~o.e0 v mf~heafSah~a + ~ v als~e~S e n k d V =  

f .0 .cO 
= ooE~jdY 

V 

it readily follows, through Eqs. (15) and (21), that: 

--~2(b~,, io )=  Z(~0, ]o). (31) 

Therefore, the minimum properties (20) and (29) of the 
solution may be compressed into the continued inequality: 

- a ( a , , ,  ]~) .< - o ( g , ,  ?)= z ( , ;  ° , ?) .< z ( , ; , ,  ]~). 

(32) 

2.5. Specialization to nonhardening behaviour. 

In ideal plasticity the plastic potentials are independent 
from the yielding history;thisbehaviouris described simply 
by assuming throughout: 

b ~ = 0  ( a =  1 ... n). (33) 

The former of the above extremum properties reduces to: 

,; +; o gj(  ) = - . g -  ,, ,, 

- f g,,.,gds 

• 0 ,d  
a o 6 t j d V - -  

= m  in (34) 

within the class defined by the relations: 

him + .:Vj = 0 in V 

btjnt = }'j on ST (35) 

]= = Of= b , j .<0  in V = ( a = l  n). 

In fact the proof given in subsec. 2.2 still holds even on 
the assumption (33), which rules out the plastic multiplier 
rates from the quadratic optimization. Clearly constraints 
(35) may now not be compatible and, hence, no solution 
exists. This means that the starting situation Y represents 
a plastic collapse state and the external force increments 
,Xt, 2~t are inadmissible with such state. 

Analogously, the latter minimum property specializes, 
for Eq. (33), to the form: 

f f "" 
.o 1 ~ ;g, d v -  X , u , ° d v  - z ( u , .  io)  = - Y  a , . , ~ , j  

ir 

f " .0 - -  TraMS = mJn 
.S T 

(36) 
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within the class defined by the relations: 

2~>--0 in V~ (a = 1 ... n) 

)tl = ul on S,, 

(37) 

if ~u is still expressed in the form (22). 
We note that, since the last integral in Eq. (27) vanishes, 

the latter of Eq. (28) is no longer required in order that 
(29) be satified as an equality. However, the nonegativity 
of  the fourth integral in Eq. (27) implies that: 

• " 0  . " 0  
i ~ = 0  if f ; <  O, ~ >  0 f f f ~ = 0 .  (38) 

The former of  (28) combined with (38) shows that the 

equality sign in Eq. (29) holds also for fields u~, 2- different 

from the hypothesized comparison solution u~ 0, ~0, prov- 
ided that the difference consists of a compatible plastic 
strain distribution. Such fields too represent solutions of 
the problem which are thus all characterized by the mini- 
mum properties. Clearly functional (36) may turn out to 
be unbounded from below in the feasible class defined by 
(37). This means again that situation Y represents a collapse 
state and that the given external force increments exceed the 
carrying capacity of  the continuum. 

3. The  finite element, matrix approach. 

3.1. Formula/ion of/be problem. 

Let us now consider an assemblage of  a discrete num- 
ber IV of  structural elements interconnected in a finite 
number of  points (nodes). Let the actual or the admitted 
deformation patterns and stress fields in any element (say 
in the i-th element) be governed by the generalized strain 
vector q¢ and by the corresponding generalized stress vector 
Ql: the element mechanical behaviour is pictured by a 
relation between q and Q (constitutive law) to be formulated 
later. As a consequence, the strain and stress state through- 
out the assemblage is defined by the vectors: 

---Ia:... ; 6 Ih' ... h q .  e) 

A distribution of  imposed dislocations (e. g. thermal 
strains) shall be described by the vector: S ~ [gl ... ~,v]. 

The homologous vectors F ~- [F~ ... F,,], f --= [fl  ...f,~] 
will define any set of external (nodal) forces and any set 
of kinematically free nodal displacements (both referred 
to the coordinate system chosen for the whole structure). 

The matrix theory of structures, see e. g. [9], [10], 
shows that any continuum may be discretized as an ap- 
proximation, into the above assemblage of finite segments: 
provided that appropriate criteria are followed in evaluating 
element properties and in reducing volume and surface 
forces to nodal loads, the finite element idealization sup- 

plies the basis for an algebraic description of  the structural 
behaviour, which is fully analogous to the traditional 
continuous field description. 

For the sake of  simplicity but without loss of  generality, 
we shall refer here to homogeneous stress and deformation 
patterns in all elements and simulate the prescribed displace- 
ments by means of  some components of  6 attributed 
to suitable additional boundary elements [10]. The former 
assumption ensures full compatibility at the elements 
boundaries and implies an obvious strict correspondence 
between the mechanical properties of  the material and the 
element• The latter assumption avoids introducing into 
the analysis a separate term for explicit reference to the 
work performed by reactions at movable supports or 
constraints. 

On the basis of the above structural idealization, let us 
now write the basic relationships governing the elastic- 

plastic response to given external action rates 1~, ii (or 
to within a common factor 64 increments), added to a 
known situation Y. 

Compatibility and equilibrium can be expressed by the 
matrix equations: 

q = Bf (1) 

where B is a matrix built up only from the geometrical 
properties of the undeformed structure. 

The strain rates are considered as a superposition of 
elastic e, plastic p and dislocation components: 

q = e + p + h .  (3) 

By assembling all the element elastic stiffness matrices 
S ~ (symmetric positive definite) in a matrix Da = diag. IS1... 
Ss'], we may write: 

= D " e  o r  e = D ~ Q  ( 4 )  

where D~ = (DO -t is the internal elastic flexibility matrix 
of the structure (as in Sec. 2, I~  and D '  might vary with 
the stress state, i. e. the elastic behavior is not required to 
be linear). 

The plastic flow rules according to Koiter's generalized 
plastic potential theory [1], which were adopted for the 
material behavior in the preceding Section, will hold again 
for the element behavior. It is useful for the sequel to for- 
mulate these laws in a fully formal way and for the whole 
structure simultaneously (see also [5])• In the given starting 
situation let n r elements be at the yield limit: namely the 
corresponding stress point VQi, for i = l ... n r, lies on 
the intersection of s~ v instantaneous regular yield surfaces 
9u(Q0 = 0 ( j  = 1 ... sl v) defined in the Q~-space. We 
shall indicate by: 

Y 
NO = (grad/pll)v0~ and 21~ 

(s) Notation: Bold face letters indicate matrices or column- 
vectors; a superposed tilde means transpose; vector inequa- 
lities apply to each component separately. 

the outward normal vectors and the plastic multipliers 
which define the plastic strain rates p~ generated in any 
possible yielding process starting from rQL 
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Let us assemble all vectors Ntj for j =  1 ... ~Y as co- 
lumns in a matrix N~, all matrices Nf for i----1 ... nr 
as diagonal elements in a matrix v~D2V~diag [Nxr... 

NV,  v], all scalars ~tj for i =  1 ... st r, i =  1 ... nV, as compo- 

nents of  a vector ~,. By means of  these symbols we may 
express the plastic strain rate vector according to the 
outward normality rule as follows: 

(5), where N =--[ ,--[D~- ] (5') p = N X  

i i> 0 (6) 

Finally let us assemble for j =  1 ...st r, i =  1 ...n r, all 

plastic potential rates 9u in a vector q~, all strainhardening 
coefficients H o r  (history dependent, calculated at Y) in 
a diagonal matrix D n. With these new symbols we can 
complete the description of  the plastic flow rules as follows: 

+ ~< 0 (8) 

+x = o. (9) 

The set of  equations and inequalities (1) to (9), all linear 
except the last one, represents a first mathematical model 
for the mechanical phenomenon under consideration. 

We shall now construct alternative formulations in terms 
of quadratic programs, which represent the algebraic 
counterparts of the extremum properties established in 
Sec. 2 in the continuous description. In order to emphasize 
the constructive character of  the elastoplastic matrix theory 
founded on mathematical programming, instead of  stating 
first and then proving the desired minimum properties, 
we shall follow a path which automatically leads to them 
in the end. 

3.2. A quadratic program in the stress attd plastic mMtiplier 
rates, /he relevant miniomm principle. 

Let us combine the unknown vectors Q , ' x  in a single 
T T 

vector [Qix] ~ x. Making use of  nonnegative slack var- 
iable vectors y+, y-,  we may express the equilibrium 
Eq. (2) in the equivalent form: 

13Q+ y+=l ~ y+>_-o 
(10) 

--13(~ + y- = F y->_-O. 

(11) 

In this way the three basic relations (2), (7) and (8) 
(equilibrium and conformity) can be condensed into the 
following two matrix relations involving vector x: 

.. + = (12) 

i[!i[ I> o. 
(13) 

In more compact notation (the meaning of  the new 
symbols is defined by comparison): 

Ax + y = a (12') y />  0 .  (13') 

The basic Eqs. (1) (4) (5) and (3) (compatibility and 
conformity), the first three being introduced into the 
last one, allow us to elirninate vectors el, e, 1 ~, and reduce 
to the equation: 

- -  B f +  DeQ + N i  = - -  S .  (14) 

Let us express the free variables f as the difference of  
two sign-restricted variables: 

f - - - - - - f - + f +  (15); f -~>0 ,  f+>_-0 (16) 

and associate to Eq. (14) the identity 

- - D n x  + DnX = 0 . (17) 

Through the above artifices we may write, in lieu of  Eqs. 
(14) (15) (17): 

B 

O 

(18) 

I!IF jL lie N DoI o i 6 -  --8- 
I + 

O { - - D  n_ _ O DU _ _ _ 

or with more compact symbols, defined by comparison 
with Eq. (18): 

Av + Sx---- b .  (18') 

The two remaining basic relationships (6) and (9) may 
be incorporated in the following one: 

>1 0 (19) [ i - I f  +i~.] = 0  (20) 

or~ 

v 1> 0 (19') vy = 0.  (20') 

In fact, the former, (19), includes (I6) and (6); the latter, 
(20), covers (9) and does not further restrict vector f ,  
since both y -  and y+ must vanish because of  (10) (11). 

The set of  five relations (12) (13) (18) (19) (20) is fully 
equivalent to the original set of  basic relations (1) to (9). 
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On the other hand, as matrix 

is symmetric positive definite, the former set exhibits the 
typical structure of the Kuhn-Tucker conditions of  a 

quadratic program in the vector [QIX]. That is to say, 

a vector [hiX] belongs to the solution of either above 
relation sets, and, hence, to the solution of the problem 
in hand, if and only if, it solves the following quadratic 
programming problem: 

minimize ~ _~ ~ xSx - -  bx (21') 

subject to Ax ~< a .  (22') 

In order to prove the above assertions, let us consider 
the generalized Lagrange function of this inequality- 
constrained, convex optimization: 

To  within an immaterial additive constant, we may 
also take as energy function the expression: 

1 - 1 :" • 
¢ - - T  (~ + ~)v~(~ + ~) + -5-  x V - x .  (27) 

3.3. A quadratic program in the displacement and plastic 
multiplier rates; /be relevant maximum principle. 

We shall now dualize the quadratic program (21') (22') 
according to a well-known procedure of  programming 
theory, see [13] p. 106. Referring to Lagrange function 
(23) with w =  v it can be proved [11][12] that the following 
problem is dual to (21') (22') in the sense clarified later: 

maximize A(x, v) 

subject to: v >i 0 

8A 
and to - - = S x ~ b + . ~ v = 0 .  

~x 
(28) 

Since matrix S is not singular, we can make use of  the 
equality constraints (28) and eliminate vector x from the 
above problem, which thus becomes (formulated as a 
minimum problem): 

1 ;,Sx - ~,x + 4 ( A x - -  .) A(~, w) = T (23) rain l +  ( v A - -  b)S-l(Av - b) + va  I v  >1 01 . (29) 

where w is the vector of  Lagrange multipliers. The Kuhn- 
Tucker theorem (12) (13) ensures the equivalence between 
the minimization (21') (22') and the following minimax 
problem: 

find vectors x°w ° such that 

Taking account of Eqs. (18') and (4), we may write 

e 

. ~ v -  b . . . . .  (30) 

A(x °, w) ~< A(x °, w °) ~< /l(x, w °) (24) 

subject to w >t 0. 
The necessary and sufficient (local) conditions for the 

solution (x °, w °) of  problem (24) are [12]: 

c0A e3A 8A 
c~x - -0;  ~ww ~< 0; w/> 0; w ~ = 0 .  (25) 

After performing the derivatives, we note that, by 
identifying w ~ v, these conditions coincide precisely 
with relations (12) (13) (18) (19) (20). 

In  the mechanical interpretation of this result, let us 
revert to the previous less compact but more transparent 
symbols and carry out the matrix multiplications. Thus 
we come to the following form: 

which implies the compatibility requirement (14). Hence, 
the objective function of (27) becomes: 

1 [~ ~ D - ]  z(i ,x) ~ -~-  
D s O 1-1 

+ [~ l -  ~ 16] 

and, after the matrix multiplications, problem (29) can be 
reformulated as: 

+ :  • 1 ~ D n ~ + h i  (21) minimize ~2 ~ QDcQ + 

subject to 13Q = F (22a), ~q(~-- D"X < 0 (22b) 

or, with a customary brief notation 

l+ - • 1 ;,D'6,--File min eDSe + = B f - -  N ~ , -  S ; 

X >I 01 . (31) 

From one of the duality theorems of mathematical pro- 
gramming [12] it follows that, for the solution (indicated 
by 0): 

rain {/2((~, X) I ~ ---- i~; ffq(~-- DuX ~< 0}. (26) ~(6o, ko) + z(io, ~,o) = o. (32) 
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3.4. Specialization to nonhardening behavior. 

In ideal elastoplasticity the plastic potentials are assumed 
to be independent of the yielding history: therefore the 
plastic multiplier rates do not influence the plastic potential 
rates. In this, nonhardening, case the incremental problem 
is still governed by the set of  relations (1) to (9), Sec. 3.1, 
provided that all strainhardening coefficients H,I  are taken 
as zero. Thus, matrix Dn becomes the zero matrix, D n =  0; 

hence vector 2 disappears from Eq. (7), and, as a conse- 
quence, from the programming problem (32), which 
reduces to: 

min l +  6D~(~ + 6~  I I~(~ = 1=; lqlQ ~< 01 . (33) 

In fact, we may follow the same path of  reasoning as 
in Sec. 3.2 and give to the governing relations the form 
(12') (13') (18') (19') (20'); where, however, the following 
simplifications hold : 

X~ [Bt--BIN] ; 

S ~ D e ;  b ~ - - S .  

x - Q ;  
(34) 

Since matrix S is still positive definite, the equivalence 
to a quadratic program, namely to (33), readily follows 
as before. Moreover, taking account of the new meaning 
(34) of  the symbols, the same dualization process as in 
Sec. 3.3 leads to the quadratic program: 

min l +  e D S e - - ~ f l  e---- B f - - N i - -  S;~[ ~> 0Ii .(35) 

This might be obtained also from (31), simply by assum- 
ing D n  = 0. 

3.5. Existence and uniqueness of solulion. 

3.5.1. Strainhardening behavior. 

Quadratic programming theory, [11], [12], ensures 
that: (a) the boundedness from below of the function to 
be minimized (objective function) ensures the existence 
of  a (bounded) solution provided that the set of  vectors 
fulfilling the constraints is not empty; (8) the dual problem 
has a solution, if and only if the primal has a solution; 
(y) strict convexity of the objective function guarantees 
uniqueness of  solution (if there is one). 

The objective of  (26), if it is written in form(27), appears 
immediately to be bounded from below; the constraints 

of  (26) can always be satisfied by some vectors (~, ~, (in 
fact any solution I~ of the equality constraints, can comply 

with the inequalities by a suitable choice of  X >I 0). 
Therefore, by virtue of  theorems (a) and (p), both prob- 

lems are always solvable, as physically evident. In problem 
(26) the function to be minimized is strictly convex, hence 
through theorem 0') the stress rate response is unique. 

Let v ° be a solution of problem (29) : the totality of  sol- 
utions can be proved in general [12] to be the set of  vectors 

defined as follows: 

v = vo + v '  ~> 0 (36a) 

AS-l~.v '  = 0 (36b) 

(gS-11t - -  a)v '  = O. (36¢) 

Matrix S-t is positive definite, AS-IA positive semi- 
definite. Therefore both Eq. (36b) and 

• ~v = 0 (37) 

are necessary and sufficient conditions for 

v'AS-~Av' = 0 

therefore (36b) holds if and only if (37) holds. 
In the hardening case Eq. (37) means (see Eqs. (18) 

(18')): 

- -  Bf' + NX' = 0 (38a) 

DnX ' = 0 .  (38b) 

I t  follows from (38b) that X' = 0, whence, since matrix 
B has full column-rank, f ' =  0. 

Eq. (36c) remains satisfied as a consequence, because of 
Eq. (37) and since [see Eqs. (12) (12') and (18) (18')]: 

- 7 -  

av '  = F f ' .  (39) 

Thus we have come back to the known conclusion that 

in this case the structural response in terms of  i" and "X 
is always unique. 

3.5.2. Nonhardening behavior. 

By virtue of  theorem (~,), the minimization problem (33) 

admits unique solution (~0, if any. However  its constraints 
need not be compatible, i. e. the problem may not be 
solvable: this means that situation Y represents a plastic 
collapse state. 

In this case also problem (35) will not be solvable, by 
theorem (p). The entire set of  solutions to the latter prob- 
lem can be described by means of relations (36). Eq. (36b) 
implies again Eq. (37), which now simply reads: 

NX' = Bf ' .  (40) 

Eq. (36c), through Eqs. (37) (39), becomes 

Ff '  = 0.  (41) 

Eqs. (40) and (41) show that, whenever more than one 
solution exists, they differ by a compatible stressless plastic 
strain rate set and by displacement rate vector orthogonal 
to the given load increment vector. 
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I f  Eqs. (36b) (36c) can be satisfied with v '  ~> 0, i. e. 
with ~,~>0, then the set of  solutions turns out to be either 
empty (when there is no v °) or unbounded: the former 
case implies that the objective is unbounded from below 
over the feasible domain; both cases mean that the structure 
is at plastic collapse in the starting situation Y. 

4. Concluding  remarks .  

4.1. Statements in mechanical terms. 

It  seems worthwhile to formulate the minimum pro- 
perties established analytically in the preceding sections 
by statements in mechanical terms. 

The former quadratic optimization problem, Sec. 2.2 
and 3.2 admits the following interpretation: 

Theorem I:  Within the class of  all stress and plastic mul- 
tiplier rates which are statically and plastic potential ad- 
missible (i.e. which obey equilibrium and make the plastic 
potentials non positive), the actual one is characterized 
by the fact that it minimizes the sum of the second order 
elastic stress energy, dissipated work and work connected 
with the internal and external dislocations. 

Correspondingly the latter optimization, Sec. 2.3 and 
3.3, can be expressed by the statement: 

Theorem II :  Within the class of  all velocities and plastic 
multiplier rates which are kinematicallyand direction admis- 
sible (i. e. which comply with compatibility and outward 
normal rule), the actual one minimizes the sum of the se- 
cond order elastic strain energy and dissipated workand the 
opposite of  the (second order)work performed by the body 
and surface forces. 

Clearly the above mechanical interpretations of  the 
objective functionals are rigorously valid only for the 
solution. The specialization of the above statements to 
nonlaardening behavior (see Sec. 2.3, 3.4) is quite obvious. 

4.2. Comparison with the classical rate principles. 

I t  might be interesting to deduce the classical minimum 
principles of  flow-law plasticityfromthetheorems discussed 
in this paper. For this purpose note simply that full confor- 
mity is guaranteed by any solution, although not all of  the 
flow-rules are imposed through the constraints. 

In the former optimization problem (subsecs. 2.2 and 
3.2) the constraints involve only plastic potential admissi- 
bility, see inequalities (11) Sec. 2, (8) Sec. 3. Since the 
remaining rules, (12) (13) Sec. 2 or (6) (9) Sec. 3, are cer- 
tainly fulfilled in the solution, we may introduce these 
rules as additional constraints in the optimization without 
altering the results. For the so restricted feasible classes, 
we may write in tensor and matrix notation, respectively: 

" ""  
= " ~ m J  ( 1 )  

Q p .  (I') 

Taking into account these relations, and Eqs. (1) (2) 
Sec. 2 and Eqs. (3) (4) Sec. 3, the former optimization 
problem can be transformed into the following one: 

a,,,, + £ = 0 in v ;  a,,., = P, on sT 1 (2) 

I t  is essential to note that strain rates are understood to 
correspond to any trial stress rates through the constitutive 
laws. 

The above non quadratic minimization problems express 
the Prager-Hodge theorem [1] [2] [3] generalized to 
imposed internal dislocations. 

Correspondingly, in the optimization problem formulated 
herein in subsecs. 2.3 and 3.3, the constraints do not 
involve the flow-rules (11) (13) Sec. 2, (8) (9) Sec. 3. Ho-  
wever these are certainly obeyed in the solution, so that 
they can be added without influencing the results, and once 
again reference can be made to a restricted class where 
Eqs. (1) (1') hold. Obvious substitutions, as before, lead 
the the following non quadratic optimization problems: 

• 1 
- - f  T ~ d S ]  ~ j = - ~ - ( u , , , + b n , ) i n V ; ' u , = b ~ o n S =  I (3) 

• / S  T 

(39 

Note that the stress rates in (3) (3') are meant to be 
related to the strain rates through the constitutive laws. 

The preceding minimization problems generalize the 
Greenberg theorem [1] [2] [3] to cases where internal 
dislocations are prescribed. 

I t  is worth noting that the above generalized classical 
theorems implicitly involve full conformity; hence, if  
they are transformed, using the constitutive laws and 
following in the reverse direction the above path of  
reasoning, they give rise to the quadratic optimization 
problems discussed in this paper, but with all constraints 
which reflect full conformity. However the sets o f  these 
constraints can be proved to be redundant; this would be 
an alternative demonstration, founded on the classical 
rate theorems, of  the conclusions reached in the paper. 

Received 30 July 1969. 
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