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S O M M A R I O  : Si formulano, con notazione matriciale, generali 
leggi costitutive linearizzate a tratti e dotate di normalit?t, e se 
ne discutono alcune proprieth e la specia/izzazione ad usua/i tipi 
di incrudimento (in particolare cinematico ed isotropo). 2~iferen- 
dosi a modelli strutturali per elemen/i finiti, si ottengono i risul- 
tati seguenti: 

a) la soluzione olonoma per dati carichi e distorsioni viene ca- 
ratterizzata da sei proprieth estremali di namra "quadratico- 
lineare", due di validith generate, quatlro di validith condizionata; 
b) corr#pondenti teoremi in ambito differentiate vengono proposti 
per analogia; si danno degli enunciati di confronto tra soluzioni 
olonome ed anolonome; c) si fornisce un teorema sull'assestamento 
in campo e/astico sotto azioni esterne variabili in presenza di 

for te  d'inerzia e resistenze viscose, genera/izzando a/le strutnwe 
incrudenti un teorema di Ceradini, e per specializzazione ai casi 
quasi-statici queUo di Melan; d) si propone un metodo per va- 
lutare in assenza di scar#hi locali, o delimitare superiormente 
il coefficiente di sicurezza nei confronti di torture/oca/i dovu/e a 
limitata deformabi/ita plastica. 

S U M M A R Y :  Genera/piecewise linear constimth,e taws with 
associated riow rule.r are formulated in matrix notation; some 
properties and specializations (in particular to ks'nemalic and 
isotropic hardeniJ!g) are discussed. 

With reference to finite element models of structures and, hence, 
in matrix-vector description, the following results are achieved: 

a) the holonomic solutions to the analysis problem for  given 
loads and dislocations are shown to be characterized I 9, means of 
six "quadratic-linear" minimum principles, two of genera/, four 
of conditioned validiO,; b) the incremental counterparts of the 
above theorems are indicated by analog.),; some comparison pro- 
perties concerning ho/onomic and nonho/onomic solutions, are 
pointed out; c) a shakedown theorem is established for variable 
repealed loads arm dislocations, with allowance for inertia forces 
and viscous dampiltg, i. e. a generalization to workhardening 
structures of Ceradini's and (it* quasi-static situations) Melan's 
theorems; d) a method is proposed for evaluating under holonotp O, 
hjpothesis, or bounding from above, the safety factor with respect 
to local failure due to limited plastic strain capaciO,. 

1. Introduction.  

A crucial topic of  plasticity theory is the choice of  the 
description of the material behavior. A good compromise 
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** Istituto di Scienza e Tecnica delle Costruzioni, del Po- 
litecnlco di Milano. 

between generality and fidelity to complex experimental 
data on one hand, and the simplicity needed for developing 
useful analysis methods on the other, is an obvious but 
illdefmed and problem-dependent criterion. In fact nu- 
merous stress-strain relations have been proposed (sur- 
veyed e. g. in [1] [2] [3]) and are still being proposed 
(cf. e .  g. [4> 

For incremental (in rates) problems, the so-called "li- 
near" associated or nonassociated flow-laws, with Koiter- 
Sanders hypothesis of  non-interacting yield modes in 
singular points, has been regarded by many Authors as 
a satisfactory basis for a useful and sufficiently general 
theory. Nevertheless, interesting and meaningful genera- 
lizations were proposed, e. g. involving interacting modes 
[5] [6] [7] and "nonlinearity" [8]. 

For finite (in total quantities) problems, outside the do- 
main of the perfect plasticity assumption, the picture is 
less clear and the choice of the hardening rule is the cen- 
tral, controversial point. Piecewise linearization (nonrota- 
ting yield planes, linear hardening) has been successfully 
developed and widely used, particularly by Hodge and his 
coworkers (see Ref. [9], which surveys previous work). 
Piecewise linear laws with non-interactiug yield planes and 
normality, have led to a "deformation theory" which 
reduces, in four different ways, the finite boundary 
value problem to the minimization of a quadratic functional 
under linear equations and inequalities (briefly "quadratic- 
linear" minimum principles) [10]. Obviously, such an 
assumption cannot allow for certain important phenome- 
nological features (e. g. Bauschinger effect). These limita- 
tions however are not so serious, as long as radial or quasi 
radial loading paths are considered, which rule out large 
regressions of the stress points in the stress-spaces, and 
often actually give rise to "regularly progressive" yielding. 
It is not so for shakedown problems in the presence of 
workhardening: in fact the non-interaction assumption 
even makes these problems trivial, since, clearly, any 
system complying with it shakes down under at / loading  
programmes. Therefore the interaction among yielding 
regimes plays an essential role in the theory of workhar- 
dening structures. 

In this paper, first of  all (Sec. 2) the general piecewise 
linear associated constitutive laws with translating-inter- 
acting yield-planes, are given a suitable matrix formulation 
and some of their basic properties are pointed out. The 
descriptions of the frequently assumed kinematic and 
isotropic hardening behaviours are discussed as particular 
cases. In Sec. 3 the finite boundary value problem in 
terms of the deformation theory, is discretizised by re- 
ferring to a finite element model of the system. On this 
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basis two pairs of previously known finite minimum theo- 
rems [10] are generalized preserving their computationally 
attractive quadratic-linear nature. Two further quadratic- 
linear extremum principles are established, which are 
valid even when lack of symmetry in the interactions in- 
validates the others. 

The analogy between finite holonomic problems and 
rate problems with general "linear" flow-laws is pointed 
out, and used for indicating seemingly new extremum 
properties in the framework of Mandel's generalization 
[6] of the classical incremental theory. Some results obtained 
in Sec. 3.4 allow to compare the path-dependent, nonholo- 
nomic solution to the holonomic one for the same given 
external actions. 

The static shakedown theorem (Melan's) has been 
proved by Neal for beams and frames, the moment-cur- 
vature law of which exhibit workhardening together with 
symmetry with respect to the origin of the axes and with 
a constant elastic range [11] [12]. No further generaliza- 
tion seems to have been carried out sofar, to the author's 
knowledge, nor does Neal's approach seem to supply 
a suitable basis for extensions. In ideal elastoplasticity 
G. Ceradini established recently a dynamic shakedown 
theorem [13], which reduces to Melan's theorem when 
inertia forces are negligeable. This result is extended here 
(Sec. 4) to systems which obey fairly general hardening 
rules. The present approach differs from Ceradini's, among 
others, inasmuch it takes the plastic multipliers as prin- 
cipal variables. 

By specializing the treatment to quasi-static situations, 
the basis is obtained for a shakedown theory of hardening 
structures parallel to that previously expounded in this 
Journal [t4] for perfectly plastic structures (however lack 
of normality is not dealt with here). The further specia- 
lization to a one-parameter load family, leads, in Sec. 5, 
to a formulation of  the limit-analysis problem, which lends 
itself to allow, under certain restrictions, for limited plastic 
strain capacity. A method for evaluating under progres- 
sive yielding hypothesis, or for bounding from above the 
safety factor against local failure is proposed. This question 
is of tecnical importance e. g. in reinforced concrete fra- 
mes (see Ref. [15] [16] and the abundant literature su~ceyed 
in them). For the analysis and design of frames, methods 
allowing for limited plastic rotation capacity are already 
in use (A. L. L. Baker's, Macchi's methods). These also 
are tacitly founded on the progressive yielding (holonomy) 
hypothesis, but, in contrast to the present one, involve 
trial-and-error procedures [15] [16]. The method pro- 
posed herein requires further research (to be developed el- 
sewhere), particularly from the computational standpoint 

2. Piecewise-l inear  constitutive laws with interacting.  
y i e ld  planes .  

2.1. AnaO,tical formulation. 

In the discrete idealization of the system, element de- 
formation patterns will be prescribed (as in [14]) implying 
homogeneous strain and, hence, stress fields in each finite 
element. Therefore the material behaviour is directly re- 
flected by the element behaviour, so that it will be suffi- 
cient to describe the latter in the superposed spaces of  the 

"natural" generalized strain m-vector q~ and the "natural" 
generalized stress m-vectors Q* of  the generic element i 
(for a detailed discussion of these concepts see e. g. [17] 
[t8]; the basis of  this approach is clarified in [141). 

The following terminology will be used (t): 

e*, pi, 8*: 

S ~, C*, : 

K ~: 

N' ---- [N1 ~ ... Nu']: 

Hq 

elastic, plastic and dislocation (ther- 
mal) addends of qL respectively. 

element elastic stiffness and, respecti- 
vely, compliance m × m-matrices 
(symmetric, positive definite, constant) 

vectors of  they  plastic potentials and 
corresponding plastic multipliers. 

a positive, constant y-vector. 

m ×y-matrix whose columns are fixed 
unit vectors in the QCspaee. 

y ×y-"workhardening matrix". 

For the sake of brevity we shall omit the element super- 
script index i throughout the remainder of  Sec. 2. 

Consider the relations: 

(~ = Se (2.1) 

p = N x  (2.2) 

>I 0 (2.3) 

= / q Q - -  H x - -  K (2.4) 

q~ ~< 0 (2.5) 

q~ = I~IQ--  H~, (2.6) 

te ~< 0 (2.7) 

7 • 

~ x  = 0 (2.8) 

~ .  = 0 . (2.9) 

Relations (2.4) (2.5) define in the Q-space the elastic 
polyhedron where cl ---- fi according to (2.1). The set of  
relations (2.2) through (2.9) forms a complete description 
of the plastic flow rules: (2.2) (2.3) express the outward 
normality of  the plastic strain vector; (2.9) together with 
(2.3) (2.4) (2.5) rules out the activation of any yield plane 
which does not contain the current stress point Q; (2.2) 
(2.6) guarantee linearity (clearly, in a limited sense) to 
the relation between p and Q; (2.8) with (2.3) (2.7) expres- 
ses Prager's consistency principle of mutually exclusive 
yielding and unloading. 

Thus the matrix description introduced in [19] acquires 

0) Matrices and column-vectors are indicated by bold-face 
letters and sometimes by square brackets enclosing the entries; 
a tilde means transpose, a dot derivative with respect to time. 
0 i s a  matrix or vector whose entries are all zero; vector 
inequalities concern each pair of corresponding components. 
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the remarkable novelty that matrix H is no longer assumed 
as diagonal: ff its element Hr, with r ,~ s is positive, the 

activation of the s-th yield plane (,~ > 0) makes the r-th 
yield plane translate outward, if Hr, < 0 inward; therefore 
the off-diagonal entries of H might be cafled "secondary 
hardening" constants or interaction parameters. 

For H ----- diag [Hi] and H = 0, we return to the familiar 
cases of  noninteracting and, respectively, fixed (nonhar- 
dening) yield planes. The set of  (2.4) (2.5) associated with 
the further relations 

p := N~, (2.10) 

X/> 0 (2.11) 

represents the (indeterminate) link between the "finite" 
or total variables p and Q; this can be conceived as obtained 
by a path-dependent integration of  the above flow-laws. 
With the addition of  

~X = 0 (2.12) 

the finite relation set becomes a holonomic, reversible 
p(Q) law [19]. It  is worth stressing that anisotropy, both 
initial and consequent to yielding (see e. g. [9]), is allowed 
for by the above formulated laws. 

2.2. Some fundamental properties. 

On the basis of  the above remarks the holonomic relation 
between q (with 8 = 0) and Q can be written as the set 
of a linear equation 

q = CQ + NX (2.13) 

and of a "linear complementarity problem" [20] in the 
vectors tO, ~. 

- -  ~ = H X  + ( K  - -  1J4"Q) ) 

(2.14) 

The same mathematical structure has been found in 
[7] for the general "linear" flow-laws of incremental 
(nonholonomic) plasticity; this remark has led to several 
statements, which might be immediately transferred from 
[7] to the present cases by analogy. However  only the 
following minimum properties will be stated here: 

CI) I f  H is symmetric positive semidefinite, the plastic 
strains which correspond through the holonomic law 
to given stresses, are defined by plastic multipliers which 
minimize the function 

subject to 

1 ~.HZ-- ~(I~IQ-- K) (2.15) 

~, 1> 0 (2.16) 

(II) For generic H ,  the plastic strains corresponding, 
through holonomic laws, to given stresses, minimize the 
function 

,o(X)=~HX--~(I~Q--K) (2.17) 

subject tO 

~./> 0 ,  H ) , - -  I~tQ + K >t 0 . (2.18) 

The dear  analogy between on the one hand the relation 
set (2.14), theorems (I) and (II) and on the other hand 
the set (3.7) (3.12), theorems (VI) and (VII/), respectively, 
allows us to give formal proofs of  only the latter and more 
important statements (see Sec. 3). Similarly, another ex- 
tremum characterization (I ')  [dual to CI)] of  p and, hence, 
of  q for a given Q can be obtained by analogy from theo- 
rem (VII). Moreover the inverse law Q = Q(q) exhibits 
again the same mathematical nature as (2.13) (2.14)(2); 
therefore extremum properties similar to (I) (II) (I ')  can 
be stated for the inverse holonomic laws too (clearly the 

conditions will concern H + I~SN instead of  H). 
As pointed out in [7] the stress-strain relations can be 

thoroughly discussed by using some results from operations 
research concerning problem (2.14). A fairly interesting 
property, among others, is the following one: 

(Ill) When H is positive semidefirLite (not necessarily 
symmetric), then for a given stress vector, if there exists. 
any strain vector which complies with the corresponding 
non holonomic laws (one always exists if H is definite), 
there must be at least one strain vector which complies 
with the corresponding holonomic laws. The statement 
remains true if the words stress and strain are exchanged 
and the inverse laws are considered. 

Proof. ~ According to a theorem due to Cottle [21], 
when H is as stated, there exists a solution q,, 7, to the com- 
plementarity problem (2.14) if its linear relations are con- 
sistent and these are always so when H is definite. As 
observed in Sec. 2.1, holonomic laws (in firfite terms) 
expressed by (2.14) are more restrictive than the corre- 
sponding nonholonomic laws, precisely because of the 
nonlinear orthogonality requirements ~X = 0. So the 
statement is proved. Its extension to the inverse relation 

flows from the fact that matrix H + N S N ,  which plays 
the same role as H in the direct law, is certainly positive 
semidefmite if H is so, since S is positive definite. 

2.3. Special cases. 

A translatory motion without distorsion of the elastic 
range in the Q-space by yielding (kinematic hardening, 
fig. l-a) is a simple assumption, in fairly good agreement 
with several experimental results, see e. g. [22] [23]. 
The general piecewise linear stress-strain laws formulated 
in Sec. 2.1 cover this case, provided that matrix H (and 
only matrix H)  acquires the special features determined 
below. The elastic range, after the plastic strains defined 

(~) In fact, by solving (2.t3) with respect to Q and substituting 
in the first (2.14): 

Q = Sq - -  SNX (2.13') 

--¢.p = (H  + NSN)X  + (K - -  l~ISq) 
(2.14') 

- - ~ > o ,  x>_-o, ~ ,x=o.  
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by X have developed, is represented by the inequality: 

N Q - -  H X - -  K .< 0 (2.19) 

in the original state by the inequality: 

I ~ Q - -  K .< 0 (2.20) 

Shape and size of  the original polyhedron are preserved 
for any X, if  (2.19) can be given the form 

lq(Q-- Q~)-- K ~ 0. (2.21) 

This condition is fulfilled by assuming Qa as linear trans- 
form of x: Qa - LX. Then, by comparing (2.19) to (2.21): 

H ~ I~tL (2.22) 

As a more particular case, Prager's hardening rule re- 
quires a translation velocity of the yield locus proportional 
to the plastic strain rate (see [2] [3] and fig. l-b), i. e.: 
(~a = hl~, with h > 0. Therefore it can be expressed by 
assuming L = hN in (2.22) and hence: 

= h R N  = h [ g T , N , l .  (2.23) 

In other terms, Prager's kinematic hardening corresponds 
to a matrix H which is (to within the factor h) the Gra- 
mian matrix of  the outward normal unit vectors to the 
yield planes, and which is hence symmetric, positive semi- 
definite (definite if and only if vectors Nr are linearly inde- 
pendent). 

In one-component cases (.), = 2, N = [1 - 1 ] ) ,  using 
(2.22) with L = [&, -- &], & > O, & > O, we obtain the 
analytical description of the behaviour illustrated by fig. 2-a 
(where tg -1 is omitted for brevity and dashed lines define 
the secondary hardening; /Co. < 0): 

a) 

I 
l iZ , ,  y,-, 

c) / . j ~ / ~  . / d) 

,la  If 

Fig. 1. 

a) 

b) 

L) 

K1 

K2 

- ~ H n -  h t 

v 

p 
! 

" ~  H.-h 

p 

~H2~'h 

Fig. 2. 

v l =  Q - - / ( I - - & ) ~ I + & & ~ <  0 1 
~ = - - . . O + K 2 + h l a l - - & & < ~  0 

(2.24) 

2r~> 0, ~,~{r=0, ~ r 2 r = 0  ( r = 1 , 2 ) ;  p = 2 1 - - 2 2 .  

The familiar picture of fig. 2-b corresponds to the as- 
sumption (2.23), i. e. to hi = & = h > 0. 

Although in direct opposition to the concept of Bau- 
schinger effect, the concept of  a uniformly expanding 
yield locus without shape changes (isotropie hardening, 
fig. 1-c) has been frequently accepted and even found 
to be in general agreement with certain experiments (see 
e. g. [24]). Inequality (2.19) defines an elastic range homo- 
thetic (with respect to the origin of the axes) to that de- 
fined by (2.20), when it can be expressed in the form: 

I~IQ--  aK ~< 0 (2.25) 

where a is a scalar depending on the yielding history. 
This condition is fulfilled if H complies with the require- 
ment: 

HX ------- ( a - -  1)K for any }. (2.26) 

which supplies the following 3,(y - - 1 )  equations between 
the .),2 entries H ,  of H :  

-/'firm /are~ 
= ~ (2.27) 
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Therefore the constitutive laws of  Sec. 2.1 describe 
isotropic hardening if 

where t h e y  direct hardening parameters Hss are the only 
arbitrary material constants after the original yield locus 
has been fixed. Assuming equal hardening rate for all 
regimes, Hs, = h, the expression (2.28) reduces to: 

[ 1  1 ]  (2.29) H ~ _ h K  KI ... Kv . 

Matrices (2.28) (2.29) ate not symmetric. For Hss t> 0 
they are not positive semidefinite in general [(2.29) is so 
only for all Kr equal]; however, as readily seen, they are 
both positive and strictly copositive, i. e. 

H >  0, - x H x >  0 for any X>/ 0 (4= 0).  (2.30) 

Fig. 3 illustrates the stress-plastic strain relationship with 
isotropic hardening in one component, according to as- 
sumptions (2.28) and (2.29), in (a) and (b) respectively. 

Q 

a) K,2--~H, H--- ~ K  K 

K2 

HII 

t H2 2 

b) 

Q 

K2 KI 

O 
v 

P 

~ -"--~ n KI 

Fig. 3. 

A description of expanding yield loci can be obtained 
by taking all entries of  H equal to a positive constant h: 
this might supply only a simple approximation for isotropic 
hardening ("quasi-isotropic" hardening), because according 
to such an assumption the elastic range actually changes 
its shape, unless all Kr coincide. 

A diagonal matrix H ,  as already noted, means indepen- 
dently acting yield planes (fig. l-d). Naturally matrix H can 

be adjusted in order to describe many other types of  
hardening behaviour. Note that strain-softening may be 
included as well, simply by taking as negative some di- 
rect hardening parameters Hrr,  or the constant h in (2.23) 
(translation in the inward normal direction) or in (2.29) 
(uniform homothetic contraction). 

3. Finite,  quadrat ic- l inear  e x t r e m u m  t h e o r e m s .  

3.1. Basic relations. 

Vectors and matrices without superscript i are understood 
to assemble as subvectors or, respectively, submatrices 
in main diagonal location, all the analogous vectors and 
matrices introduced with superscripts i at the beginning 
of Sec. 2. These are taken in a fixed order i = 1 ... n, n 
being the number of  the finite elements in which the struc- 
ture to study has been subdivided. I t  is essential to keep 
in mind that, since in the formulae of Sec. 2 the element 
index i has been dropped to simplify the notation, the same 
symbols as in Sec. 2 will be used from now on with sub- 
stantially different meanings: e. g. vectors q and Q define 
henceforth the strain and stress state throughout the structure: 

= [~1 ... ~ . ] .  The foUowing additional symbols are 
introduced : 

F: vector of the independent external (nodal) force com- 
ponents; 

f: vector of  the free nodal displacements; 

B: geometrical compatibility matrix. 

Suppose the structure be acted upon by a set of  loads 
F and dislocations 8 (proportionally increased, so that 
deformation theory be practically realiable in many cases). 
Let vector 8 include dislocations suitably prescribed in 
additional stiff elements in order to simulate possible forced 
nodal displacements. The structural ~lonomic response 
(Q, q, f) to these straining effects is governed by the follow- 
ing relations : 

X~>0 

q = Bf  (3.1) 

13 Q = F (3.2) 

q = p + e + 8 (3.3) 

e ---- CQ (3.4) 

p ---- N x  (3.5) 

~o = ~IQ - -  H X  - -  K ( 3 . 6 )  

~oX = 0 q~ ~< 0 . (3.7) 

Eqs. (3.1) (3.2) express compatibility and equilibrium, 
respectively; the other relations express the constitutive 
laws of all elements simMtaneously, the last equation (3.7) 
reflects the no-local-unloading or holonomy hypothesis. 

By eliminating vectors q, p, e, Q from the equation 
system 0.1)  to (3.6), this can be replaced by the pair of  
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equations : 

tp = 17qSBf-- (H  + I~SN)X - -  (1QS8 + K) (3.8) 

I~SBf- -  B S N X - -  BS8 = F (3.9) 

which represent, in association with (3.7), a formulation 
of the problem in the unknowns f, X, cp only. 

Let Z indicate the (symmetric, negative semidefinite) 
transformation matrLx from dislocations to their corre- 
sponding selfstresses in elastic conditions; let superscripts 
E and P mark the elastic response to external actions 
F and 8, and to plastic strains, respectively. With these 
symbols we may write: 

Q = QE + QP = Q~ + Z p  (3.t0) 

Q~ = QEF + QE~ = Q~" + ZS.  (3.11) 

By introducing Eqs. (3.10) (3.5) in Eq. (3.6), this becomes 

tp = - -  (H - -  I~ZN)X + (l~lq"; - -  K) .  (3.12) 

Eq. (3.12) together with 0.7) supplies a further alternative 
governing relation set in the unknowns X, tp. Note in 
passing that the same set, and in addition an explicit ex- 
pression for matrix Z, can be obtained by eliminating f 
f rom Eq. (3.8) by means of (3.9) (cf. [25]). 

3.2. Theorems for o,mmetric, positive semidefinite bardenig 
matrices H. 

When the hardening rules are such that 

H * = H I ,  XtH*X*/> 0 for any X ~ ( i = l . . . n )  (3.13) 

the same also holds for matrix H ~-diag [H 1 ... H"]  
concerning the whole structure. Under this hypothesis: 
tbe/ap 9, solution to the bolonomic problem formulated in Sec. 3.1 
for given F, 8, mimmizes: 

1 e S e +  1 ~ ,HX+i~x__~f(3) (3 .14)  (iv) ~,(f, x) ~ ~ -  -~- 

subject to : 

e = B f - - N X - - 8 ,  X/> 0 (3.15) 

1 1 
(V) ~'_~(Q, X) -~ - ~ -  (~CQ + ~ XHX + (~8 (3.16) 

subject to: 

I3Q = F ,  l ~ / q - -  HX < K (L17) 

1 £ (H - -  I ~ Z N ) X -  )~(I~Q e - -  K) (vD (~) .o_,(x) ___ - T  
(3 18) 

(3) The only variables are f, X, since e can be eliminated by 
means of the compatibility equation included in the constraint 
set (3.15). 

(g Fig. 4 visualizes geometrically, for a case of strict conve- 
xity and of two variables, these dual optimization problems and 
their mutual connexions (feasible domains are shaded, lines of 
constant objective dashed, X ° indicates the optimal vector). 

subject to: 

fv][)(,) 

subject to: 

X~>0 

ooCX) ~ + i ( H -  I~ZN)X 

(H - -  t~IZN)X /> l ~ Q S - -  K .  

(3.19) 

(3.20) 

(3.21) 

..~" % / 

/ "  ,," ,4--- ' ,  i. 1 / / "  
tv  / / , / t . .  I J,~ I ty  I / 

/ l ~ ' . J~5~ .7 . . . ¢  , "  , , , 

, y T ~  , .  

Fig. 4. 

s ~  

t 

Proof - -  Only an outline is given below, since the un- 
derlying mathematical concepts are available in standard 
books, e. g. [26], the algebraic manipulations are elementary 
and demonstrations of  this kind have been already devel- 
oped in related papers, e. g. [19] [25]. I f  E is a symmetric 
positive semidefinite matrLx and a, ~ are vectors, the con- 
vex quadratic programming problem 

1 
minimize ~ -  ~Eg + aT subject to ~ >1 0 (3.22) 

is equivalent to the set of  the Kuhn-Tucker local optimality 
conditions [26], which can he expressed in the form: 

n = E g  + a ,  ~ t> 0 ,  g/> 0 ,  ~lg = 0  (3.23) 

The "dual" problem (such that it is solved by any solution 
of the former, "primal" problem, with equal optimal value 
for the objective function) has the form: 

1 
maximize - - ~  ~Eg subject to a + Eg/>  0 (3.24) 

The optimizations postulated by (VI) and (VII) have, 
clearly, the forms (3.22) and (3.24) respectively; as readily 
seen through the same identifications, the necessary and 
sufficient conditions (3.23) coincide with the formulation 
(3.7) (3.12) of  the mechanical problem in hand, and there- 
fore the statements CCI) and (VII) are justified. 

Also the minimization (IV) can be reduced to the form 
(3.22), by substituting the expression (3.15) of  e in (3.14), 
and putting : 

f = - - f - +  f+ f- t> 0 f+1> 0 (3.25) 
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~ ; A =  ; a ~ -  + AS6 (3.26) 

E ~_ AS~. L" O" i"fi'_l " (3.27) 

I t  is easy to check, by means of  the above identifications, 
the coincidence of (3.23) with the governing relation set 
(3.7) (3.8) (3.9) and of (3.24) with (V); thus also the asser- 
tions (IV) and (V) are proved. 

3.3 Theorems for generic hardening matrices H. 

When the interaction matrices H * of some or all elements 
do not comply with either or both conditions (3.13), the 
holonomic analysis problem can still be solved by a qua- 
dratic-linear optimization, according to either of  the fol- 
lowing statements: the/at O, bolonomic solution of the attaO'sis 
problem for given F, 6 minimizes: 

(VIII)  ~'(f, x) --  eSe + ~,HX + SSe + KX - -  ~f(5)  (3.28) 

subject to : 

e =- B f ~  N x - -  8 ,  X/> 0 (3.29) 

riSe = F ,  l ~ S e - -  HX ~ K (3.30 
) 

( IX)  O(Z) ~ X(H - -  N Z N ) X - -  f(lqtQ E -  K) (3.31) 

subject to : 

X/> 0,  (H - -  lqZN)X >.>. IQQ~' - -  K . (3.32) 

f, X, ~o - formulation of  the structural problem consi- 
dered (Sec. 3.1) can be reduced to the form (3.23) through 
suitable identifications, which are precisely those which 
transform 0-V') and (VI) to (3.22) and (V) and (VII) to (3.24). 
Through the same identifications, the minimum seeking 
problems (VIII) and (IX) are reduced to the form (3.33) 
and (3.34) and hence, via (3.23), turn out to be equivalent 
to the original structural problem. 

3.4. Remarks. 

3.4.1. From the mechanical standpoint, it is worth 
noting that the optimization ~\r)  yields equilibrium besides 
the constitutive rules X i> 0, ~X = 0; (V) supplies compati- 
bility besides the constitutive rules ~ ~< 0, ~ x  ----- 0. The- 
refore these theorems are conceptually amenable to the 
principles of  potential and complementary energy respec- 
tively. The other four theorems are extremai formulations 
of  constitutive requirements only. 

From the operative standpoint, the optimizations (IV) 
to (VII) can be achieved by any quadratic programming 
algorithm (e. g.Wolfe's, Beale's) [26] ; (VIII) and (IX) can 
be achieved by Ritter's method [27] in general, by the 
simpler methods of Lemke or Cottle [20] if all H*, though 
violating condition (3.13), are strictly copositive, as for 
isotropic and quasi-isotropic hardening (Sec. 2.3) or po- 
sitive semidefinite matrices, respectively. 

For the validity of  theorems (VI) and (vii) condition(3.13) 
can be relaxed to the analogous condition concerning 
matrix H - -  I~IZN. 

The number of  solutions, in particular uniqueness, and 
the solvability can be discussed and checked in any case 
on the basis of  recent mathematical results (cf. [20] [25] 
and ref. thereof). 

We only note here that in cases of  lack of uniqueness 
the dual properties (V) and (VII) are not only necessary 
but also sufficient for the solutions, provided that they 
be further constrained by X >/ 0; a formal proof  of  this 
assertion can be deduced via specialization and analogy, 
from [25], Sec. 6.3. 

I f  the minimum is not zero, no solution exists. 

Proof. - -  For whatever matrix E,  the set of relations 
(3.23) in the vectors g, YI (a linear complementarity problem) 
is fully equivalent to the (generally nonconvex) quadratic 
programming problem 

minimize: 

subject to: 

~Eg + aT (3.33) 

/> 0 ,  E g  + a >/ 0 (3.34) 

supplemented by the statement that, if the minimum is not 
zero, (3.23) is not consistent. This equivalence is readily 
proved by noting that (3.33) is the inner product ~g and, 
hence, cannot be negative. It  has been observed in the 
preceding proof  that both the X, ~ - formulation and the 

(5) See footnote (s). 

3.4.2. The results obtained for discrete models of  
continua can be straightforwardly translated in the tra- 
ditional tensor field description. However, this does not 
rule out the interest of a separate discussion. Simply on 
the basis of  the mechanical meaning of each term, stat- 
ement (VIII), e. g., can be expressed in the form: 

~ z e  

f + f + V V 

+ f v  K r A r d V - - f v  F i u l d I / - - f B T  Tfu,dB+ 

eijSlsn~-gt~.dI/ - -  - e + f , " ' f . / , ,u,S,snmejB (3.35) 

subject to : 

e ~ a 

~o = -T" \Tm-m 0xi / 
(3.36) 

Ul  ~--" Ul On Bu 
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0 (Sor, e~,) -'1- Fj = 0 in V,  n,Son~e~nA. = Tj on B r  
0x't 

(3.37) 

N,j~St jnk~A.--  K r - -  H~,2~ <<. 0 in V 

where: index summation convention is assumed; u, = di- 
splacements; a~j, e,j c, ~,ja = stress, elastic strain and thermal 
strain Cartesian tensors; S~jn~ =elast ic  moduli tensor; 
V = v o l u m e  of  the body; B,,, B a , = b o u n d a r y  parts 
where displacements h, and traction T, are prescribed; 
Ft = volume forces; n~ = normal unit vector to /3,,; 
x, = space coordinates. The constraint set (3.36) and 
(3.37) correspond to (3.29) and (3.30), respectively. 

4. Incremental  versus deformation theory. 

4.1. Analogous rate statements. 

When the deformation theory cannot be accepted (com- 
plex loading paths) or relied upon, the loading process 
must be followed step by step in the spirit of  the flow- 
law plasticity theory. It  is important to observe that all 
the preceding extremum characterizations of  holonomic 
finite solutions can be transferred by analogy to the solu- 
tions of  the incremental (step) problems. In fact, consider 
the element (or material) flow-laws (2.1) (2.2) (2.3) (2.6) 
(2.7) (2.8) (2.9). The last condition (2.9) can be disregarded, 
as implicitly satisfied, if we assemble in matrix N ~ only 
the normal vectors Nj * of those yield planes which contain 
the stress point at the considered situation, and if we di- 

mension H*, X i and q;~ accordingly. Let N indicate again 
the supermatrLx containing the n above defined matrices 

N * in diagonal positions, and zero elsewhere, so that i ~ = 
- % "~ 7 

= N~. with ~. ---- [~.1 ... ~.,], p _--- [p~ ... p ,] ,  (n is the number 
of  finite elements). By dotting the symbols of  all variable 

vectors, giving to N, H,  ~., q~ the meanings specified 
above and dropping the constant vector K, the set of re- 
lations (3.1) to (3.7) is transformed into that which governs 
the incremental problem. The clear analytical analogy 
between the formulations extends to the developments 
and conclusions. Therefore we may state e. g., as a counter- 
part of  theorem (VIII) but eliminating ~, that: 

(VIII*) whatever matrix H may be, the/any solution 

to the rate problem for given F, S is characterized by the 
minimum (if zero) of the quadratic function: 

7 .  7 
- -  F f - -  l iS(Bf - -  N i )  (4.1) 

subject to: 

i> 0, i3SBf- BSNi = F + 13S6 (4.2) 

INSBi--(H + INSN)k ~< l(lSg . (4.3) 

All the six finite theorems can be similarly translated in 
incremental terms, without needing separate treatment. 

In the rate problem the piecewise linearization is an 
immaterial restriction; vectors N~' may be thought of  
as gradients of  regular, but not necessarily linear, yield functions 
in the current stress point. With this interpretation, the 
incremental counterparts of  the six minimum principles 
of  Sec. 3.2 and 3.3, include the generalizations (to interact- 
ing yield regimes) of  the theorems proved in Ref. [28] 
and are specializations (to small displacements and asso- 
ciated flow-laws) of  some results obtained in [25]. 

4.2. Comparison properties. 

Given an external action set F, 6, the relevant nonholo- 
nomic, history-dependent solutions involve vectors which 
clearly satisfy the constraints of  all the optimizations 
(IV) to (IX). tn fact the nonlinear hotonomy condition 
~ .  = 0 never appears as a constraint and is always a con- 
sequence of the optimization process. Therefore, six 
bounding properties follow and can be expressed by the 
statement: 

(X) The energy functions ~l  , ~tu , 121, 122, ~u attd 12 attain 
for  the holonomic solution, values which bound from below the 
valnes they attain for  the nonbolonomic solulions relative to any 
path leading to the same final loading condition F, 6. 

It has been seen above that the stress and strain state 
in a structure subject to F and 8, must obey, under the 
holonomy assumption, a further requirement ( ~ ,  = 0) 
than for nonholonomic laws. The following theorem is 
of interest in this regard: 

(XI) IF'hen matrix H - - I ~ t Z N  h positive semidefinite (not 
necessarily (ymmetric), then for  given external actions F, S, i f  
there exists an 3, nonholonomic solution (one always exists i f  the 
matrix is definite), there must be an holonomic solution. 

Proof. - -  The multiplier strain vector ~. defines comple- 
tely a solution, through Eqs.(3.5)(3.10); the linear relations 
contained in (3.7) (3.12) govern all the nonholonomic 
solution. The same mathematical theorem (Cottle [21]) 
used in Sec. 2.2 for statement (III), leads directly to the 
above conclusion, if it is applied to the complementarity 
problem (3.7) (3.12), 

5. Shakedown analysis in dynamic  and quasi-static 
c o n d i t i o n s .  

5.1. 1formulation of the problem. 

Let the structure be subject to external actions F(t), 
6(0 varying in time so that dynamic effects cannot be ne- 
glected, but the influence of geometric changes on the 
equilibrium relations can ("small deformation" hypothesis). 

First suppose that the material be linear elastic: then if 
damping of  only a viscous nature is assumed, the displa- 
cement response fit) of a finite element model of the sy- 
stem is governed by the following set of  linear ordinary 
differential equations: 

f~P[f(t)] --: rn i :+ Dt:-l- BSBf---- F(t) -t- I]SS(t) (5.1) 

associated with the initial conditions: 

f(o) = fo, i(o) = io ,  (5.2) 
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In Eq. (5.1), m is the equivalent mass matrix for the 
assembled structure (diagonal in lumped-mass models), 

13$B the (external) stiffness matrix, D the damping matrix 
(often assumed proportional to either of  the preceding 
ones). For details on these notions see e. g. [18]. Eq. (5.1) 
readily derives from Eqs. (3.1) to (3.4) provided that inertia 
and damping forces are considered in the equilibrium 
Eq. (3.2). 

Studying the motion f(t) of the same system on the basis 
of  elastoplastic constitutive laws, is a formidable task in 
most cases, far more difficult than solving problem (5.1) 
(5.2). An important question on the dynamic evolution of 
an elastoplastic system is whether it shakes down to purely 
elastic behaviour or undergoes unlimited plastic yielding 
and, hence, becomes eventually inserviceable. 

I t  will be shown in the next sections that, for a large 
class of  elastic-workhardening structures (including those 
which obey Prager's kinematic hardening rule), this que- 
stion can be answered only on the basis of  the elastic dynamic 
response, i. e. of (5.1) (5.2), and of certain static character- 
istics of the actual system (matrix Z). For perfectly plastic 
continua a similar result has been previously established 
by Ceradini [13]. The path of  reasoning will be partially 
patterned on his and on Koiter 's demonstration [29] of  
Melan's theorem. 

5.2. Basic dynamic shakedown theorems. 

(XTI) IVhen the workhardening matrix H is o,mmetric posi- 
tive semide)qnite, shakedown wilt occur i f  there exist a plastic 

- -  7 

multiplier set X and a displacement and velocity set fo, fo, 
such that, should they be imposed on the s/rncture at t = O, 
the whole d_ynamic evolution under the given loading programme 
F(t), /i(t) would lead to stresses below the 3,ield limit at all ele- 
ments and instants. 

Proof. - -  At any instant t of  the actual process, the plastic 
potentials throughout the structure can be expressed, via 
(3.6), (3.10), (3.5), in the form: 

~0(t) = I~QE(t) + l~lQP(t)--  H i ( t ) - -  K f 0 

where: 

(5.3) 

qv(t)  = ZNX(/) (5.4) 

QE(I ) = Q E v + Q ~ , + Q E I + Q e o .  (5.5) 

The expression (5.5) of  the elastic stress response, com- 
pared to (3.11) is implemented by the addends due to inertia 
and damping forces. 

For the fictitious elastic process postulated by the hypo- 
thesis, we may write (symbols relevant to this process are 
overlined) : 

where 

$ ( t )  = l 0 (t) + lq0 -- x < o (5.6) 

QP = ZNX (5.7) 

(~E(t) = Q~r  + Q~, + ~ ,  + (~Eo. (5.8) 

QB(t) generally differs from Qn(t) both because of the dif- 
ferent initial conditions and because of the absence of 
plastic yielding. 

Henceforth, dependence on time will not be explicitly 
marked by (t), and A will indicate the difference between 
the values that the argument assumes, at the same instant, 
in the actual and in the fictitious process. 

Consider the never negative function X: 

2X = A Q P C A Q  t" + A k H A X + A Q S C A Q E + A [ m A i  (5.9) 

and the derivatives with respect to the time of  each of 
its addends, separately. 

x , -  Ahpc h" (5.10) 

which, by means of the virtual work principle and of Eqs. 
(3.5) (5.3) (5.6) successively, becomes: 

= - = -  - "  X( A ~ +  H AX - I~IAQe); 

because ~o~, ---- 0, 1 ~ ---- AI~, and via (5.5) and the analogous 
expression (5.8) for R E, ~1 can be expressed as: 

-...%. .-- 

7., = q~X-- AXH~. + Ap(AQ E," + AQV.O). (5.11) 

X2 - -  A~,HAX. (5.12) 

through Eq. (3.4) and (5.5), 7.s can be written as: 

7 

~a = Ae(AQ 51 + A Q B ° ) .  (5.13) 

Z4 = A fmAf"  

by virtue of the virtual work principle becomes 

;¢4 = - - ( A e  + Ap)AQ E' . (5.14) 

By summing up Eqs. (5.11) (5.12) (5.13) (5.14) and taking 
account of the further virtual work equation: 

 Q,oAq = - -  

we finally obtain: 

- _ _ .  

y. = q~X-- A fD A f  . (5.15) 

Because of the hypothesis (5.6) and the positive defini- 
teness of  D, ~ is never positive and becomes zero if and 

only if both f = f and X = 0 .  Therefore, since Z/> 0, 
the laws of the two motions must tend to coincide( ° ) 

(6) This collateral conclusion clearly rests on the presence 
of the viscous damping dissipation (D ~ 0), which on the other 
hand makes the motion of the fictitious system asymptotically 
independent of the initial conditions. 
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and plastic yielding must vanish at least asymptotically 
in time (q. e. d.). 

(XlI*) IVhen the external actions are periodic, i f  shakedown 
occurs, then there exist distributions..of plastic multipliers, di- 

splacements and velocities -x, f-o, f o ,  such that, should they 
be imposed on the structure at t = O, the whole dynamic process 
under the given loading programme F(t), 8(t) would develop without 
plastic 3ie/ding in any element or instant. 

Proof. ~ Let xs be the instant at which the system shakes 
down. Because of  the supposed periodicity, there exists 
a time z1> r6 such that, for any t >i r, 

F(t) = F ( t - -  z), 8(0 = 8 ( t - -  T) . (5.16) 

Assume as initial conditions the displacements, velocities 
and plastic multipliers which are actually present at the 
instant T: 

~0=e,,  f0= f,, ~ = x , .  (5.17) 

The resulting fictitious process for t > 0 coincides with 
the actual one for t > z; hence, it does not involve plastic 
deformations and satisfies for all t >  0 the inequality: 

~o(t) = l'qQn(l) - -  (H - -  l'74"ZN)X-- K ~< 0 . (5.18) 

(XIII) When the workhardening matrix H is o,mmetric positive 
definite, the system shakes down under any loading programme, 
which produces a bounded elastic dynamic response. 

Proof. - -  I f  H is positive definite, also H - - / ~ t Z N  is 
so. Then, according to the algebraic theorem used for 
proving (III) and (XI), for any fixed vector a there is a 

x I> 0 such that 

( H -  I~IZN)~. i> a for any t. 

I t  is always possible, for bounded elastic response, to 
assume 

a > N Q E ( t ) - -  K 

and, hence, to comply with (5.6), which ensures shake- 
down • by virtue of (XII). 

5.3. Specialization to quasi-static conditions. 

When the external actions vary so slowly that inertia 
and damping forces can be neglected, the preceding state- 
ments (XII)(XII*)  still hold, provided that they do not 
mention initial conditions in terms of  displacements and 
velocities, which become immaterial. Time plays the role 
of  an "ordering variable" and may be replaced by any mo- 
notonic function of  it. The loading programme can be 
defined through the intervals within which each component 
Fn, 6n varies in whatever way and attains any value an 
infinite number of  times. In this case it is possible to in- 
troduce the vector 

M ~ [... M~... MT...] where MJ ~- max {l~l;QS'(t)} 
(5.19) 

and express the sufficient (XII) and the necessary (XI'I*) 
condition for shakedown, respectively, in the form: 

M - -  (H - -  I~ZN)X--- K < 0 (5.20) 

M - -  ( H  - -  I ~ Z N ) X - -  K ~< 0 . (5 .21)  

For perfectly plastic systems (H = 0), reference can be 

made to selfstress states R e instead of to X: thus statements 
(XII) and (XII*) reduce to part (a) and (b), respectively, 
of  Melan's classical theorem (see e. g. [29] [14]). 

5.4. Safe O, analysis and programming problems. 

Let k be a common positive multiplier for all the strain- 
ing effects F(I), 8(t)and the initial conditions f0, f0 (which 
however are taken zero in most practical cases). The 
safa3factor is defined as a value s such that for any k ~< s 
the structure shakes down, and for k >  s it does not. 

When the external actions are periodic, statements 
(XII) (XII*) leads to the evaluation of  s as a constrained 

maximization problem in the variables k, X, f '0 ,  "~o; for 
generic loading programmes, this supplies only a lower 
bound to s. For perfectly plastic structures, periodic forces 
and absence of  damping, the safety problem has been di- 
scussed in [30]. Only the quasi-static case will be briefly 
considered here below for hardening structures. 

(XIV) If the hardening matrix H is symmetric positive semi- 
definite, the safety factor with respect to repeated external actions 
variable within given intervals, is the optimal value of the following 
dual linear programming problems in the variables k, X: 

(P) maximize k 

subject to (~) : 

kM - -  (H - -  ~IZN)X ~< K (5.22) 

(the constraint X >>. 0 ir immaterial) 

(D) minimize ~X' 

subject to: 

lVIX' = 1, (H - -  I~ZN)X' ----- 0 ,  X' ~ 0 . (5.23) 

Proof. ~ The primal program (P) clearly derives from 
(XII) and (XII*) via specialization and (5.20) (5.21). Only 
the statement in brackets requires a formal proof. Suppose 
that the inequality (5.22) be satisfied, for a given k, by a 
vector X with some negative component. By identifying 

kM with I~IQ 8, this inequality can be thought of  as de- 
fining the feasible domain of  problem (VII). This is sol- 
vable for kM, since any quadratic program is so, if the 
objective function is bounded below in the feasible region 
[26] (s). Because of  the duality relation, problem (VI) is 
solvable as a consequence, and its solution certainly com- 
plies with both X I> 0 (3.19) and (3.21). Therefore, if (5.22) 

(7) The constraint k >/ 0 is clearly superfluous, as long as 
K >~ 0; it may be convenient in the dualization (el. [14]). 

(s) A new interesting proof of this known concept of pro- 
gramming theory is given by Eaves in Techn. Rep. 69-4, Op. 
Res. House, Stanford Un. July 1969. 
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is fulfilled by a generic X, it is so also by a nonnegative X: 
this justifies the statement in brackets. 

The linear program (D) is obtained by means of  a dual- 
ization process and of  some remark, which are completely 
analogous to those expounded in a previous paper in this 
Journal [14], and which, therefore, do not need to be given 
here. A prime on X in(D)recalls thatX has in(D)values and 
meaning different from those in (P). 

Through the same mechanical interpretation as in [14] 
Sec. 6, it is easy to recognize in (D) a formulation of  the 
kinematic shakedown theorem extended to hardening 
structures. The only new point to be clarified is the meaning 
of  the second constraint (5.23). By premultiplying this 
equation by X' we have: 

~,'HX' + ~,'1~(-- Z)NX' = 0. (5.24) 

Since both quadratic forms are nonnegative definite, 
both must vanish and, hence (see e. g. [26] p. 32): 

HX' = 0 (5.25) 

ZNX' = 0 .  (5.26) 

Eq. (5.26) combined with X' >i 0, means that the minimi- 
zation must be performed within the class of the X' which 
define stressless(compatible)plastic strain s ystems("mechanisms'), 
as in the nonhardening case. Eq. (5.25) shows that feasible 
plastic multiplier distributions must leave unaltered all the 
plastic potentials, and, hence, the yield loci(°). A plastic strain 
set p '  = NX' is the result of an "admissible plastic strain 
rate cycle", in the sense of  Koiter [29] but with the addi- 
tional property (5.25). 

6. Generalized limit analysis. 

6.1. Structures with unbomMed plastic strain capacity. 

When the external actions do not vary in time, the linear 
programs of  Sec. 5.4 reduce via (5.19) to the form 

(XV-P) maximize k subject to: 

kl~lQ r- - -  (H - -  lqZN)X ~< K (6.1) 

(XV-D) minimize I(X' subject to: 

(~eNX' = 1, ( O - - l q l Z N ) X '  = 0 ,  X'>~ 0 . (6.2) 

Their common optimal value is the safety factor sp 
against plastic collapse, characterized by the possibility 
of  simultaneous compatible unlimited plastic yielding at 
constant loads and fixed yield planes, as appears from 
(6.2), (5.25) (5.26). By the virtual work principle: 

(~eNX' = (~'VNX' = (~oNX' = l~f ' (6.3) 

(9) If either H o r -  I~IZN are definite, the feasible domain 
of (D) is empty; since that of (P) is not so (k = 0, X = 0 are 
always feasible) the objective of (P) is unbounded on it accord- 
ing to a known programming theorem. Hence s = co. In the 
former hypothesis, (XIII) is thus confirmed in a narrower 
context. The latter may hold when not all elements of the struc- 
ture are considered plastic. 

where Qo represents any stress state equilibrated with the 
loads F, and f '  represents the displacement set which 
governs, through (3.1), the strain set q '  = p '  = NX'. Eq. 
(6.3) shows that dislocations 8 do not influence sp and allow 
to rewrite (XV-D) making explicit the classical notion 
of  kinematically admissible multipliers: 

(XV-D' )  minimize k subject to: 

I(X' ( =  kFf ' )  =/eQr-NX',  

(H--I~IZN)X'=0, X'1> 0. 
6.2') 

The first equation in(6.2')expresses the balance between 
external and dissipated work, the latter being represented 
by 1~ ' ,  since H X ' =  0. 

The preceding formulations can be readily reduced to 
the traditional ones for perfectly plastic behaviour. 

It may be interesting to observe that the linear programs 
(XV) for calculating sp, can be re-established on the basis 
of  the finite minimum theorems (VI) and (VII). In fact 
consider the totality of  the solutions to (VI) for a given 
k, i. e., x ° being a single holonomic solution, the vector 
set characterized as: 

Z o + x ' / >  0 ,  ( H - - l q Z N ) X ' = 0 ,  

x'(k~qQ E -  K) = 0. 

(6.4) 

A comparison between (6.2') and (6.4) shows that (6.2') 
expresses the condition that, i f  a holonomic solution exists, 
there is also an unbounded solution set, i. e. k = sp. 
Since, if no holonomic solution exists, there cannot be 
any nonholonomic solution, theor. (XI), it is justified 
to use (6.2) or (6.2') in the search for the limit multiplier 
with also nonholonomic laws. 

Similarly the constraints (6.1) can be regarded as the 
necessary and sufficient condition [see proof (III)] for 
the solvability of  the analysis problem with holonomic 
and, hence, through (XI), also with nonholonomic laws. 

6.2. Smtcmres with fimited plastic strain capaciO,. 

In many structures the basic assumption of  unlimited 
deformability is invalid; local failures may preceed plastic 
collapse so that predictions founded on the classical limit 
theorems become unsafe, sometimes quite seriously. 
Step-by-step calculations are an obvious but lengthy 
way of  dealing with these cases. Procedures of  practical 
value have been devised for the analysis and design of  
reinforced concrete beams and frames in view of  the above 
circumstances (cf. e. g. surveys [15] [16]). However di- 
rect methods for evaluating or bounding the safety factor 
sL with allowance for local failure, seem desirable but 
have not been proposed so far, to the author's knowledge. 
The present approach and the above conclusions lend 
themselves to a preliminary discussion of  this question. 

For one-component stress-strain relations (e. g. flexural 
characteristics of  beams) it is reasonable to refer to extreme 
values Mjn of plastic multipliers (e. g. rotation capacity). 
In multicomponent cases the analogous assumption 2,~ ~< 
<~ 2,n~ is convenient though questionable; however any 
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function of X* might be chosen, with computational but 
without conceptual consequences. By associating to (6.1) 
the further constraints 

X ~< X n where Xn-= [Xln ... 7~"n] (6.5) 

the maximum k ° provided by the linear program (XV-P) 
is clearly an upper bound to st.: 

sL ~< k ° ~< sv (6.6) 

By dualizing the so modified primal program, the same 
value k o can also be obtained by means of the following 
optimization (details on the dualization process can be 
found in Ref. [26] and 114]; it is convenient to put X = 
= X + -  X-, X +/> 0, X-~> 0, write the primal problem 
in tableau form and "transpose" this tableau according 
to the rules given in Ref. [14], Sec. 5): 

minimize 

i { X ' +  ~ , ~ ( H -  I~IZN)X' 

subject to : 

(~eNX'>~ 1 ,  (H- - I~ IZN)X '  ~> 0 ,  X'>~ 0 (6.7) 

In contrast to s v , the safety factor sg clearly depends on 
loading history, dislocations and preexisting selfstresses. 

However a "radial" loading path is implied by the am- 
plification of the given external action through the common 
factor k. This path often gives rise to regularly progres- 
sive yielding in Hodge's sense: every yield plane, if activ- 
ated, does not loose contact with the stress point (i. e. 
no local unloading). I f  this happens, the actual structural 
response for increasing k is defined by a sequence of  bolo- 
nomic solutions Xo(k) such that X2°(k2) >i Xz°(kz) if k2 > kz: 
then if X, °(kl) violates inequality(6.5), anyXo, o(k2) for kz > k, 
will violate it as well. Therefore if (6.5) forms a constraint 
system together with all the relations (3.7) (3.12) which 

govern the holonomic solutions, and if k is maximized 
subject to such a system, the maximum represents sL, i. e. 
denotes either a plastic collapse or a local failure situation. 

This conclusion can be expressed as follows, by intro- 
ducing the slack variable vector v :  

(XVII) I f  plastic 3ielding progresses regularly throughout as 
the factor k increases, the safety factor sL is provided b 3 the 
programming problem in the variables k, X, ~,  v :  

maximize k >. 0 subject to:  

k~qQ e -  (H - - / ~ I Z N ) X - -  ~o = K ,  X + v = Xn (6.6) 

~< 0 , X~> 0 ,  v_.> 0 ,  (6.7) 

~X = 0 (6.8) 

Like all results of  the deformation theory, the above sta- 
tement is to be applied with caution. If  the hypothesis is 
not verified the maximization (XVII) furnishes merely 
an upper bound for sL, anyway a better one in general 
than that supplied by the above linear programs. However, 
computational experience shows, as is well known, that in 
most practical cases under proportionally increasing loads, 
"local unloading" either does not intervene or has little 
influence. It is reasonable to expect that the higher the 
workhardening coefficients Hrr the more likely thisis to hap- 
pen. However no restrictive hypothesis on matrix H was 
needed for (XVII). 

The complementarity condition (6.8) make the program- 
ruing problem nonlinear and its feasible domain generally 
not convex. Nevertheless the problem is only marginally 
nonlinear: it has been pointed out in [31] for a special 
class of cases and in [32] for a general case including the 
present one, that an optimization of  this kind can be achie- 
ved by means of a numerical procedure essentially founded 
on Dantzig's simplex technique, implemented in each 
pivotal step by an additional rule which reflects Eq. (6.8). 

Received 29 October 1969. 
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