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One of  the most interesting problems in the mechanics 
of  continuums with reversible transformations is ~hat of 
the determination of  the thermodynamic potential. 

It  presents two aspects, the physical one of the collecting 
of  information from experiment and the mathematical one 
of  the construction of  an analytic expression compatible 
with the experimental indications. 

These latter are in general largely insufficient. Hence 
the experimenter, in order to be able to work, must needs 
presuppose a certain type of analytic structure; then he 
does no more than proceed to the determination of  the 
numerical values of  the parameters on which the potential 
- -  in its presupposed form - -  depends. 

The fundamental variables having been established, it 
often seems natural to assume as potential the expression 
constituted by the first terms of one of its expansions in 
series, but by doing this, certain fundamental properties 
which the potential must observe are verified only in an 
approximate fashion and without any idea being had of  
the error committed. 

Of greater interest, on the other hand, seems to me the 
establishing beforehand of a certain type of  analytic 
structure and the determining - -  if it exists - -  of the 
exact expression of  the potential on the hypothesis that 
it has that structure. The criterion to conform to can be 
that of  analytic simplicity, or also something different, as 
for example that of satisfying certain requisites in regard 
to the propagation of the waves (1). 

By speaking of  the exact expression of the potential 
I intend to express the fact that it verifies all the conditions 
that reasonably can and must be imposed a priori on the 
potential. 

Here we shall adhere to the idea of analytic simplicity, 
after having described exactly - -  with reference to the 
case of  finite deformations of  homogeneous and isotropic 
elastic bodies without inner constraints - -  the principal 
requisites to which the thermodynamic potential must 
conform in a form that under a certain aspect is less 
restrictive - -  and more s y n t h e t i c -  than the habitual one, 
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(t) To the first criterion conforms the elasticity of second 
grade of A. SIGNORINI, Trasformazioni lermoelaslicl.,eflnite, Memo- 
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1-72, 1949. To the second, that of C. Tozor'rt, Deformazioni 
elasliche: onde ordinarie di discon/inuith e casi di solidi elaslici i:o- 
lropi, Rend. Mat. Appl., Serie V, 4, 34-59, 1943. See also A. 
BRESSAN, SMIa propagazione delle onde ordinarie eli discontinuilh nei 
:islemi a lrasformazioni reversibili, Rend. Sere. Mat. University 
of Padova. V. 33, 99-139, 1963. 

and showing that with the selection of  suitable variables 
the Eulerian stress can assume simple expressions or 
outright linear ones in such variables (which, however, 
are not linear in the derivatives of the components of 
displacement). 

For pure simplicity I shall consider only the isothermic 
case, it being well known, besides, how to adapt it to 
include the adiabatic case, even where finite deformations 
are concerned. 

1. F u n d a m e n t a l  r emarks  and  premisses .  

Let C '  be the actual configuration of  a continuum and C 
a configuration of  reference which for the sake of  simplicity 
we shall suppose to be in natural equilibrium, that is, 
exempt from stress. 

With respect to a rectangular Cartesian frame I shall 
denote by x ,  the coordinates of the generic point (element) 
P '  of  C' ,  by0, ̀ those of its correspondent P in C. Let 

x ,  = x , ( . y t  ,y~. ,ya ; t )  (1) 

be the analytic representation of the transformation between 
C and C' which we suppose to be completely reversible 
and endowed with the well known conditions of  regularity 
and possibly dependent on the time. 

The transformation (1) requires the existence of  certain 
fundamental matrices for the study of the behaviour of  
the continuum. Among them are those which I shall 
indicate by ~, elo, e,, ,  whose elements are, respectively, 

1 f OUr . 0u~ 
= [ - a 5 7  + & o,,, 

! 
1 1 r c)u, Ou~ Out ?-~ 

! , 1 r OUr OU,, OU,. OU~ 

Wt -g-, +-aS-, + 0,, o:,] 
where the Ur are the components of  the displacement P P ' .  

We shall call 0 the matrix characteristic of  the local 

rotation and a the matrix [ &.,/a,, l; it will be useful 

for the sequel to record the decomposition 

a = 06 (3) 

where 6 is a pure deformation connected with the matrix 
e by the relation 

02 = 1 + 2~.  ( 4 )  

We shall denote by 

x - I 1, Y -  1 Y,, I (5) 
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the Eulerian and Lagrangian matrices of  stress, connected 
by the relation 

X =  - aY-~ (6) 

where ~ indicates the transposed matrix of  a, and we 
have set 

D = det ~ = det%/1 + 2,  = det a. (7) 

We shall suppose the continuum to be of  a simple type, 
that is, capable of  reacting only to contact forces but not 
to couples, and the matrices (5) to be symmetrical. 

For  such a continuum the free energy I -  the Helmholtz 
thermodynamic f u n c t i o n -  depends uniquely on the er~ 
and on the temperatures T, T' of C, C' ,  as well as on the 

_Yi in the case of  absence of homogeneity. 
I shall concern myself only with isothermic transforma- 

tions, remarking only that a well known procedure reduces 
the adiabatic to these. Thus it will suffice to consider, 
rather than the free energy, the isothermic potential IU 
that as a function of the ers is defined by the equation 

IV(~r,) = I(er,, T, T)--i"(0, T, T), (8) 

where on the left hand side is no longer evidenced the 
dependence on T, inessential for the sequel. 

I t  is well known that while the Yrs can be expressed as 
functions of  the ers, the ~-~s depend on the contrary, by 
reason of (6), also on the local rotation. 

I f  the body is isotropic, as we shall suppose, W depends 
on the ~-rs (or on the ersm, or on the er,(p)) only by way 
of  the three principal invariants of  the matrix e (or of e~o, 
or of  eo,), or of  three invariants with which they are in 
one to one correspondence. The matrices e, ~ ' )  are connected 
by the relation e(m = pep-1 and have the same principal 
invariants, as well as the same principal coefficients which 
I shall indicate by E1 , Eo_, Ea • In the sequel I shall refer 
to the three invariants I t ,  I~., D that as functions of  
E l ,  E2 ,  /Fs have the expressions 

/1 = Y~ E , ,  A = ~ E,.E~+I 
,=, ¢=i (9) 

D = V'(1 + 2 E  0 (1 + 2E~) (1 + 2E.~) 

In the case of a system with reversible transformations, 
isotropic, the Eulerian stress Ar~ can be expressed in the 
form of  a second degree polynomial in the characteristics 
of  deformation, e~,m, of  the inverse displacement, with 
coefficients dependent only on the principal invariants or, 
also, as a second degree polynomial in the e~o,), with 
coefficients dependent only on I i ,  I~., D.  

We have, to be precise, the relations 

1 
Xr,, = D c ~  [&" + 2m*,,~) + nm(~)~/,')] (10) 

where 6r8 denotes Kronecker 's  symbol and we have set 

l = D(,') OIV OW OW 
OD(.-----S + ~ + A OI~I.----Y 

' m = Oil{p-------- T + I i ( e ) - -  (11) 0/=(,) 

In  = - - 2  OW 
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equivalent to those of  Finger. The index o indicates that 
the invariants are considered as expressed by means of  
the er,ip), in particular by means of the Edp), according 
to (9). 

2. Some cons iderat ions  c o n c e r n i n g  the  t h e r m o d y n a -  
mic  potent ia l .  A fundamen ta l  condi t ion .  

I shall start to make some observations in relation to the 
analytic structure of  W, first of  all calling attention to 
some of the fundamental requirements that are customarily 
attributed to it. 

Supposing the solid to be isotropic, homogeneous and 
elastic, and hence IV a function of  the ersIt') by way of  
the invariants f ~ , / 2 ,  D ,  it is usual to require the thermo- 
dynamic potential to satisfy the following conditions: 

a) For every non-rigid displacement starting from C 
it results that 

W >  0 

b) tn  uniform traction (compression) the linear coeffi- 
cient of  dilation is positive (negative); 

c) In the simple extension of  a cylindrical body the 
stress on a transverse section is an increasing function of  
the elongation per unit length; 

d) In the problem mentioned in c) the longitudinal 
lengthening increases more rapidly than the corresponding 
tension; 

e) IV tends towards infinity if and only if  at least one 
1 

of the E i  tends t o w a r d s - - - - ~ -  or towards oo. 

In the isotropic case iV can indifferently be considered 
as a function o f / 1 ,  /'.~, D or a symmetrical function of  
E l ,  E~,  /F8, or also of  the principal elongations A~, 
A2, An, connected to the E~ by the equations 

1 + A , = % / 1 + 2 / 3 ) ,  ( i = 1 , 2 , 3 ) .  (12) 

In a three-dimensional Euclidean space referring to a 
rectangular Cartesian frame let Q be the point whose 
coordinates are AI,  A2, An. The properties enunciated 
are usually assumed in consideration of the variation of  Q 
in the three-dimensional region Vdefined by the limitations 

- -  1 < A, < m, (i ----- 1, 2, 3). (13) 

Otherwise it is evident that no natural body is elastic 
in all V. One thinks, apart from anything else, of  the limit 
of  plasticity which defines a threshold of  elasticity. For  
example, in the theory of Von Mises it imposes on a 
quadratic form of the stress the condition of  not reaching 
a certain experimental value. I t  therefore seems reasonable 
to impose the conditions a), b), ¢), d) not in all of  V but 
in a three-dimensional region V '  contained in V and 
containing the point O, reducing the condition e) to the 
requirement that W remains finite in all of V'. 

Thus is enlarged the possibility of selection of  the 
functions W and we can presume that the conditions 
enunciated - -  if  verified in a region V '  of  the type consi- 
dered - -  are sufficient to ensure that any natural body 
admits a given W as elastic potential. 



It  is worth observing that the requirements a), b), c) can 
be derived from a single global condition. In order to 
achieve this I begin with the observation that the surface 
tensions ascribed to the state of  reference are characterized 
by the matrix 

t = - -  aY = - -  o~Y. (14) 

In every problem of homogeneous deformations the 
matrices a, 6, Y do not depend on the2,r and hence the 
same applies to the local rotation that can be assumed equal 
to the identity. Consequently (14) gives 

t = - -  ~y. (15) 

Granted the hypothesis of  isotropy, the matrices ~, 6, Y 
have the same united directions and the same applies for t 
which like ~ and Y does not depend on the .Yr. On the 
grounds of  (15), the principai coefficients, Tr, of t are 
expressed by the equalities 

OW OW 
Tr = - - V / 1  + 2Er  Yr = V / 1  + 2E~ 0 ~  - 0a----7 " (16) 

In the state of  reference, represented by the point 
O - -  (0,0,0), W can be assumed to be equal to zero and, on 
the contrary, C being a state of  natural equilibrium, we 
have furthermore 

OW 01V 
- - = 0 ,  (when A , =  Ao~= A a = 0 )  (17) 

OEr Oar 

There exists the theorem: A sufficient condition for the 
requirements a), b), c) to be verified in a tbreedimensional region 
V '  contained in V and containing 0 is that in ever_), point of V '  
the quadrat# form 

a 02W 
A = ~ - -  $,$h (18) 

, ,  ,,., aa~aa,, 

be definite positive. 
Let t be any curve of  V '  emerging from O and s a system 

of  abscissas on t with the origin in O. Let I be such that to 
every value of s there corresponds a single configuration 
of  the body and such that every one of its possible configu- 
rations, on the contrary, corresponds at most to one point 
of  L Given /, there comes to be defined a (continuous) 
succession of configurations in correspondence to which 
we have 

At = a,($). (19) 

It  is supposed that in every point of l exist the first and 
second derivatives of the A,(s) with respect to s and, on 
the other hand, that the first derivatives of  At are never 
simultaneously equal to zero. On l furthermore 

a OW n( '  ,~,-~i;--~, = o, (2o) 

where the apex denotes derivation with respect to s. 
For  example, every straight line emerging from O satisfies 
the conditions mentioned. 

On t it results that 

dW s OW 
- =  ~ a T ,  a , ' ,  (21) ,is i=l 

d~W a O~W 
= E - -  a , ' a , , '  (22) 

dr~ ~, I#=l OA*OAI, 

and, A being by hypothesis positive definite, we have 

d2W 
dr-'-T- > 0. (23) 

d W .  
From this it follows that dTs Is an increasing func- 

tion of  s and becomes equal to zero only in O, assuming 
elsewhere the sign of  s. Since every point of V '  is attainable 
by a curve / - -  for example, with a segment of  a straight 
l i n e - -  and W is equal to zero at O, we can conclude that 
requirement a) is certainly satisfied in V'.  

Furthermore, it is clear that the three derivatives of  W 
with respect to Al cannot simultaneously be equal to zero. 
The same circumstance arises in consequence for the 
Eulerian principal tensions which are proportional to them, 
and - -  in a problem of  homogeneous deformations - -  for 
the three Tr .  

In the problem of  uniform traction or pressure we have 

& =  & =  A s =  A, 2 " I = T o . = T s =  T (24) 

If  we assume as the curve / the straight line of the 
equations 

/J1---- A2 ---- A3 = s (25) 

from (16), (21) it follows that 

0WI 0W/ a w  dW 
T =  OA1 --  OA~ OAa 3dr " (26) 

This signifies that T is an increasing function of s, that 
is, of the value A common to the three principal elonga- 
tions, and has the same sign as they have: requirement b) is 
then satisfied. 

In the simple traction of a cylindrical body with genera- 
trices parallel to the axis of  index three, 7"1,/'2 are equal 
to zero and we obtain, therefore, 

OW OW 
= = 0 ( 2 7 )  

OA1 OA.. 

The curve l of  equations 

& = & = ~(s),  Aa = s (28) 

verifies condition (20). We have, furthermore, 

OlV dW 
Ts = - -  (29) 

O A3 ds 

which by reason of (16), (27) gives 

dTa 
- -  > 0 ,  ( 3 0 )  

dAa 

From this it  follows that Ta increases with A3 and has 
the same sign as it. Requirement c) is therefore verified 
and the theorem enunciated is proved. 

Requirement d) is not, on the contrary, a consequence 
of  the conditions imposed on the quadratic form (18). 
I t  requires that 

d2Ts 
< 0 when Aa > 0 (31) 

dA2s 

which on the grounds of  (28), (29) is equivalent to 

dSWl 
dr---- T -  < 0 when s > 0 (32) 

on the curve of  equations (28). 
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The condition that the quadratic form (18) is positive 
definite, associated with (32), imposes on the potential 07 
a behaviour in a certain sense consonant with the same 
requirement e), within V'.  In reality the condition that A 
is positive definite is superabundant with respect to the 
requirements a), b), c), for the verification of which it is 
only sufficient, but it is worth while to illustrate its signifi- 
cance in relation to any deformations whatsoever, even if 
not homogeneous. Setting 

7 =  q- i t  (33) 

from (14) it  follows that 

7 =  - -  o-'ay----- - -  Oy. (34) 

is, therefore, symmetrical and has the same united 
directions as 6 and 3'- The principal coefficients, T r ,  are 
expressed by (16) and therefore on every line l emerging 

from O and described by the point 

Q - [a~(s), re(s), m(s)] 
it results that 

div  a _ 

= E T ,A( .  (35) 
d~  ~ 1  

I f  l verifies condition (20), then (22) is valid. From this 
it is deduced that the condition that the quadratic form (18) 
be positive definite is necessary and sufficient in order that, 
subordinately to condition (20), the scalar 

8 _ 

M =  ~ T,A, '  (36) 

be an increasing function o f s  and have the same sign as it. 
We have in reality been dealing with a requirement of  

the same type, but  in a more general form, as that indicated 
in the case of  problems of  uniform traction and simple 
extension, which satisfy it as particular cases. 

This encourages the idea of  substituting the ensemble 
of  conditions a)... e) with the followingfimdamentalproperO,: 
A n  expression of the thermodynamic potential W is acceptable 
from the mathematical point of view i f  there exists a region V '  
of V,  containing O, such that in eveo, one of its points the quadratic 

form A proves to be positive definite and, fiwthermore, (32) is 
verified on ever), curve of equations (28). 

I t  is worth observing that if  the fundamental property is 
verified at O where, in fact, it is necessary as well as suffi- 
cient for the verification of  conditions a)... d), reasons of  
continuity imply the existence of  a region V'  contained 
in V and containing O where the specified requirement 
is verified. Furthermore, it is evident that the admitted 
reasons of  continuity show the necessity of  the existence 
of  a region V '  of  the type considered where the fundamental 
property is satisfied. 

After what has been said, it  can also be affirmed that 
the necessary and sufficient condition for the fundamental property 
to be verified in a certain region I/ '  of the type considered is that 
it maintains at O. 

3. O n  poss ib l e  types  of  t h e r m o d y n a m i c  potent ia l .  

The complexity of  the analytic problems of  the theory 
of  finite deformations induces us to look for expressions 
of  IV which lead to expressions of  the stresses that are not 
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too complicated, even if, in such a case, the small number 
of  the coefficients on which the potential comes to depend 
limits its validity as regarding the variation of natural 
bodies and the increase in their deformations. 

The Eulerian matrix of  the stress (5,1) is the one which 
presents the greatest practical interest and it is therefore 
natural to wonder, in relation to the possibility of expressing 
it by means of  the characteristics ersm of  the inverse 
displacement, if  the Xrs can depend linearly on the 
*rs"). The answer, as is known, is in the negative. 
Signorini (2) has demonstrated that in the hypothesis of  
linearity we are not able to satisfy condition a) for the 

variation of  ~ O") = _ (Elm, E ore, Esm) in the region V") 
1 

defined by the limitations - - - ~ - <  E(% < m. It  is worth 

observing that even with less restrictive conditions - -  
analogously to what was said in the preceding section - -  
such as accepting an expression of  the thermodynamic 
potential provided that it satisfies conditions a)... e) in a 
more restricted region of  V in the neighbourhood of 
Om ---- (0, 0, 0), we find the impossibility described by 
Signorini. In fact, the hypothesis of  linearity concerned 
implies for W/the expression (8) 

(IV t, + 1 ) -  t, , (~ > 0), (37) I V =  D.---T" 

where D m  a n d / l m  are deduced from (9) by the substitution 
of Est*l for Es and tt is a constant. 

As a result of  (37) we recognise easily that however small 
the neighbourhood of  the origin choseu it is not possible 
to satisfy the fundamental requirement enunciated, in 
particular the condition that A be positive definite (4). 
In fact, more simply, it is sufficient to observe that in 
correspondence with the non-rigid displacement characte- 
rized by the equalities /31~o = E ~ o  , Ez~o = 0 , (37) 
gives IV = 0. 

I t  seems to me still more interesting to observe that we 
can have a linear Eulerian stress, but in the variables 
~i) In  such a case we get (s) 

W/=/ ,D(I~(p l - -  I) + t,, (t, > 0), (38) 

I mean to say that the stress deriving from the expression 
(38) of  IV on the grounds of  (10), (11) is linear in the 
e~,(p~ and that there exists a region Y '  contained in V 
and containing O where IVverifies the fundamental property. 
For the moment I renounce the examination of  the expreS- 
sion (38) of  W/but  observe that it can be considered as a 
particular case of  a IV corresponding to an Eulerian stress 

(~) SmNoRim A., Loc. cit.: note (1), p. 34. 
(z) Expression (37) is an immediate consequence of what is 

said in loc. cit. in note (2). See also G. GRIoLI, Mathematical 
Theory of Elastic Eqailibrium (Recent Results), Ergebnisse der 
Angewandten Mathematik, 7. Springer-Verlag 1962, p. 24. 

(4) With reference to the impossibility that the Eulerian stress 
is linear in %8" (i), P. G. BoaDom has demonstrated the possibi- 
lity that the Xrs are expressed by the product of linear functions 
of the ~r~) by a same function of the invariants I1(0 , D(0: 
Sopra le trafformazioni termostaticbe finite di certi solidi omogenei 
ed isotropi, Rend Mat. pura e appl. V. XIII, S.V., 237-266, 1953. 

(8) In the case of incompressible bodies (38) reduces to the 
expression proposed by D.C. TrtELOAR, The elasticity of a net- 
work of long chain molecnles, Trans Faraday SOC. 39, 1943, pp. 
36-41 and 241-246. 



expressed by the product of  a power of  D for a polynomial 
in the rrdP). In particular, I shall consider the problem of  
a stress of the type 

X~, = D<v)p-IP~(er,(v)), (39) 

where P~(~rs(p)) is a second degree polynomial in the 
ers(v), while p is any real number or zero. 

On the grounds of  (t0), (11), for (39) to be valid, it 
must be true that 

l l = Di~ t (a + bllCv) + clt(m + dI~(,)) 

m D(~ (e +fI~C.)) 
n gD~, (40) 

where a. b . . . . . . .  g are constants. 
From the combination of  (11) and (40) it follows that 
aIV 

(~/IIPl 
OIV 
O12{v) 
OIV 
OD(P) 

[,-++(<÷1,), 4 
g 

-- 2 D(~, (41) 

= [ o + ÷ - , + < , , - / > i , , , , +  
+ d,,.,~ + aS.;.,] 

which imply the conditions of  integrability 

1 p " f = b - - e p  2 ' if p ~ O ,  

- T  12p(b-- @)-- 42 +P)I 

or 

(42) 

q - - f = 0 ,  c = 0 ,  d = 0 ,  if p = 0 .  (43) 

I shall consider first of all the case p ~ O. 

Setting 

,, = e + - ~ ,  ~ = 2 ( b - -  ep) P , 

(41), integrated on the hypothesis that C is a state of natural 
equilibrium, give for IV the expression 

[ ( r )  I V = D ( ~  ,, /i-- 1 + M l ( m + - 7 I z ( . )  + - 7  (45) 

With some calculations, taking (12) into account, we 
find that in O ~ (0, 0, 0) we obtain 

0zIV 
OA,OAI~ = a + 2pOts, (46) 

where 6r, is Kronecker's symbol and we have set 

d d 
2 = 2a + pv + - 7 ,  p = v 2p (47) 

It is easily verified that the necessary and sufficient 
condition for the quadratic form (18) to be positive definite 
in O is that the coefficients 2 and # (of Lamt) verify the 
well known conditions 

p>O, 3 2 + 2 # > 0 .  (48) 

From (47) it follows that 

2 + 2~ ~ (2 + p)v (49) 
d = 2p(,,--p), a = 2 

and the expression (45) of  IV becomes (0) 

IV = D¢~ I 2 + 2/~--2 (2 + p)~ it(.)2 + 2( , - -  p)12~.) -{- 

+ ,  :~¢v)-- + - 7 "  
(50) 

After some expansion it is seen that all the conditions 
imposed by the fundamental property are verified in O, 
whatever are the values of v and p ~: O. We conclude that 
there exists a region V'  of  the type considered where 
for IV expressed by (50) the fundamental property is verified, 
whatever are the values of v and if p # 0. This assures 
the mathematical acceptability of  IV. It  is clear, on the 
other hand, that for v = 0, IV satisfies condition a) in the 
whole region V. 

With v = p,p = -  1, (50) becomes 

Iv= 1 D'" '  [ - ~ / l ( P ) z  + P(/I(") + 1)] - / 1 '  (51) 

formally analogous (but substantially different) to the 
expression that we have in the case of an Eulerian stress 
depending on two parameters in the characteristics of  de- 
formation of  the inverse displacement (7). In such a case 
it is seen that the necessary and sufficient condition in 
order for IV > 0 in the whole of V is that we have 

92 + 5# > 0, # > 0, (52) 

slightly more restrictive than (48). Conditions (52) coincide 
with those necessary and sufficient for the acceptability 
of the theory depending on two parameters of  an Eule- 
rlan stress of  the second degree in the characteristics of  
deformation of  the inverse displacement, already establi- 
shed by Signorini, but the greater restriction of the condi- 
tions on 2 and p are due to the search for a potential 
which is acceptable in the entire region V. 

In so far as concerns the dependence of  the expression 
(50) of W on p, we observe that i fp  > 0, IV tends toward 
zero in accordance with the tendency of  even a single one 

1 
of  the /F~ towards - - - - ~ - .  This indicates that if p > 0 

the acceptability of  the expression (50) of  IV is limited 
to a region V'  in which the Al are greater than quantities 
greater than - -  1, otherwise it is not certain that the funda- 
mental property is verified. We can observe besides that 
an analogous fact hoIds where we look for a polynomial 
Eulerian stress in the ers(P), of  a whole degree however 
high. In this case we find for W an expression of the type 

IV= D(v)P(It¢o), Is(v))+ #, (53) 

where P(It, Iz), is a whole degree polynomial in /1 ,  h and 
/~ is a constant. This strengthens the idea that the condition 
that the thermodynamic potential should satisfy the require- 
ments a)... e) in the whole V, in particular e), is too re- 
strictive and also superfluous in practice. 

(6) If we compel in (50) the constant ~ to reduce to zero the 
(p)o coefficient of 11 -we get the expression for the incompressible 

bodies as proposed by M. MooNEY, A Theory of Large H/aak 
Deformations, J. Appl. Phys. XI, 1940, pp. 582-592. 

(7) SIGNORINI, Loc. Ch. in note (1), p. 37. 
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It  is worth observing that for v = 0, (50) becomes 

I V =  D(~ [ 2 + 2 2/1 iltp)~ - 2p/~(p)] (54) 

This is the case of  an elastic potential that differs by 
the factor D~' from that of the linearized theory. The same 
cannot be said, however, for the stress. 

On the other hand, for 2 = p p ,  v = p, from (50) 
we obtain 

- - -F  + (55) 

This is now the case of  a linear Eulerian stress in the 
er,(P) less the factor D ~  1. In the special case p = 1 we 
find again the expression (38) and we have a linear Eule- 
rian stress in the ersip): 

Taking into consideration (12), (16), it becomes clear 
that in the problem of uniform traction and pressure we 
have, on the grounds of (38), 

(1 + A) 2 -  1 
T =  5t, (1 -b A) 2 2 ' (57) 

while in the case of simple extension the result is 

Z , =  a~.= % / 5 - - ( 1 +  m) ~ 1 (58) 
2 

T l =  T= = 0, 

5 
Ts = -T6--/1 [(1 + A s ) " -  1] [ 5 -  (1 + As) =] . (59) 

By analysing the expression (38) of  W it becomes clear 
that requirement a) is verified in the entire region V. 
The same cannot be said for the fundamental property 
that is decisive for the acceptability of the expression of 
IF/that has been found. For the reasons given there certainly 

exists a V '  of  the type considered where the specified 
fundamental property is verified. I t  is not difficult to 
reeognise that V'  has no points external to the region V,, 
defined by the limitations 

1 1 < A, <-V/3 - 1 (60) 

It  is worth observing that if  the theory expressed by 
(38), (56) is linearized, we find the formulas of  the classical 
linear theory of  elasticity exactly for the case in which 

1 
the value of the Poisson coefficient is -~-. In other words 

it can be presumed that for deformations which are not 
too large and materials having a Poisson coefficient 

1 
near -~- - -  quite a concrete case - -  the theory depending 

on the thermodynamic potential (38) may prove to %e 
useful. 

I shall dedicate only a few words to the case p = O. 
On such a hypothesis, easy calculations show that we have 

l'×= ( ~ - -  p) (ln D(e'-- Ii(')) + 

1 
11(.) 2 -  + I~(p~, + - ~ -  (2- t -  + )  (61) 

whereg, 2 and tl are constants. I t  is possible to demonstrate 
that the conditions expressed in (48) are also now necessary 
and sufficient for the existence of a region V'  contained 
in V and containing O where the fundamental property is 
satisfied. It may be observed that f o r g =  4p,(61) reduces - -  
only formally, h o w e v e r -  to the classical expression of  
the linearized theory. 
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