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ELASTIC AND PLASTIC DEFORMATIONS OF 

S O M M A R I O :  I/modulo di scarico elastico di solidi come k 
rocce, i suoli, i materiali ceramici e granulari dipende dalla entith 
delle deformazioni plastiche. Le conseguenze di questo fenomeno, 
chiamato nel seguito accoppiamento elastoplastico, vengono esa- 
minate sia in relazione alla parte elastica che alia parte plastica 
della hgge costitutiva. In particolare si dimostra the l'accoppia- 
mento e/astoplastico determina la non-normalith della legge di 
scorrimento plastico. La  deviazione della normalitA legata alia 
variazione de/modulo elastico ~ studiata per meZZO di un poten- 
ziale di accoppiamen/o derivalo da quello elastico. 

S U M M A R Y :  In such solids like rocks, soils, ceramics, grain 
en masse the plastic deformation strongly aects the current un- 
loading modulus. The consequences of this effect referred to as the 
elastoplastic coupling both to the elastic and the plastic part of 
the constitutive law are examined. Particularlj,, it appears that 
such phenomenon induces a specific kind of the non-normality in 
the plastic flow law. The departure from the normality is studied 
in connection with the form of the elastic modulus variation basing 
on the notion of a coupling potential. 

1. Introduction. 

The phenomenon referred to as the elasto-plastic coupl- 
ing is meant as the variation of the elastic unloading mo- 
dull caused by plastic deformations. This effect is character- 
istic for behaviour of  such bulk materials as rocks, soils, 
ceramics, powders, grains etc. [1-8]. ]Fig. la  shows a 
typical result of uniaxial stress compression of a rock [1], 
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and Fig. lb  the uniaxial strain compression of a wheat 
grain [5], while Fig. lc  presents a plot for the confined 
compression of concrete in the triaxial test. The fact of  
alternation of elastic moduli is sometimes connected with 
development of such microdefects like an irreversible mi- 
crocracking in rocks and ceramics, or opening and closing 
of pores in granular and porous materials [6, 7, 8]. An in- 
teresting study of the influence of cracks on elasticity moduli 
of rock beams is given in [3]. For granular media the mo- 
dulus variability has been studied theoretically and experi- 
mentally in [9] and [5]. The coupling through the plastic  
volumetric strain affecting elasticity moduli has been imple- 
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mented into a constitutive incremental law for granular 
materials in [10]. 

This paper deals with a proposal of a consequent in- 
corporation of the aforementioned phenomenon in the 
framework of  the theory of  plasticity in the broader con- 
text. The central role plays (sec. 2) the assumption that 
material is hyperelastic in its elastic behaviour, but the 
elastic potentials are additionally the functions of  a 
plastic strain parameter. The consequences to the both 
parts of  the constitutive relation [elasticity (sec. 3) and 
plasticity (sec. 4)] are examined in following sections. 
The special attention is focused on a scalar coupling (sec. 
5); particular cases of  plastic models are then reviewed in 
this context. 

2. Bas ic  relations.  

We shall consider an elastic-plastic material in the ab- 
sence of  thermal effects under the assumptions of homo- 
geneity, isotropy and small deformations. The strain ten- 
sor eo is supposed to decompose into an elastic, g and O 

plastic, e~j parts. 
The central constitutive novelty consists of the assump- 

tion, that since plastic strains modify the elastic properties, 
the latter are no more uniquely defined for the material 
itself but are assigned to its current plastically deformed 
configuration. 

Thus the elastic stiffness tensor may be written as fol- 
lows: 

E ,m = E,m(e,~, p,., [ev,]) (2.1) 

while its inverse, the elastic compliance tensor correspond- 
ingly: 

C,j,.t = Ctm(mj, ~tO [e~.t]) (2.2) 

Let f =  0 be a yield locus which defines the elastic 
domainf~< 0. Assume, that the material response in this 
domain is hyperelastic and is uniquely determined through 
the elastic strain potential U or stress potential V. We 
postulate that the both potentials are homogeneous func- 
tions of strain and stress respectively and moreover depend 

on the plastic strain parameter v /tlel =/ll:l(,8U)° 

U =- U(e,~, ttkt [e~s]), (2.3) 

V =  V'(cro, /tA-t [e~]). (2.4) 

According to the definition of hyperelastic solids, stress 
and elastic strain are the gradients of  corresponding po- 
tentials U and V: 

,~,j = (7,s [ d , ,  ~ a U  m',(~,s)]  = a~;j (2 .5)  

~,~ d; [~,j ,  v aV = Fxt(eO)] = (2.6) 

The new variable tt,t(e~) is the passive variable of  U 
and V, with respect to Legendre transformation, see e.g. 
[11], (variables e,~ and mj correspondingly become active 
variables). 

The function U as well as V represents then the one- 
parameter family of potentials, each of which is uniquely 
ascribed to a given state of plastie deformation (Fig. 2). 
A more general assumption could be considered also, by 
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taking U and V as functionals of v e~j, therefore as some 
functions of the history of  plastic strain. 

This however, would be against the postulate made 
relating these potentials to the given plastically defor- 
med configuration, but not to a path on which this was 
achieved. 

The variation in stress about given elasto-plastic situa- 
tion, at f =  O, can give rise both to the elastic unloading 
or the elasto-plastic loading. If  we adopt the standard 
plasticity assumption of  the progression of yield limit: 

df=f~fa,sd~,J+~%&~,s (2.7) 

then for the former case df < 0, while for the latter df= O. 
The plastic strain increment is assumed to be associated 
with yield locus and reads: 

a d ,  = a~, • ~ f  (2.8) 
OtvO ' 

where d), is a plastic multiplier dependent on stress and 
plastic history 

1 Of dert~, (2.9) 
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It takes on the following values: 

d 2 >  O, if f = O ,  df=O,  

d 2 = O ,  if f < O ;  or f----O, af<0. 
(2.~o) 

H is the hardening modulus, positive if the product 
8f/8~i~ da~ is so, negative (softening) if the product is 
negative, and equal to zero if 8f /Sa~ dcr~= 0; in this case 
d2 is indetermined. The last case corresponds to the per- 
fectly plastic behaviour, (critical state in soils and powders 
and brittle/ductile transition in rocks). 

The elastic strain increment becomes the ordinary dif- 
ferential of two tensorial components according to the 
definition (2.6), (Fig. 2b) 

if 

and 

if 

d e l l =  - - 8 2 V  de, t-f- _ _ 8 ~ V  : /~ , ,  (2.11) 
Oau 8a,~ 8ao 8e~.~ 

:=0, df=0; 

de:~ = 8 °" V daA-t (2.12) 
8a~j 8aA.i 

f < O ,  or f = O ,  df<O.  

The Hessian tensors 8~V/Satj 8aez and 82Vl&ro 8e~.t 
are functions of stress and plastic strain amount. In con- 
sequence of (2.5) the elastic strain increment can be dualy 
expressed in terms of elastic strain potential (see Appen- 
dix) 

dels = DIjA.t dax.l - -  DO ..... - - -  aek~ ; f = O, df = O, 
8~,,,, 8ft. t 

de~=Do:ada,~.t; f <  0 or f = O ,  dr< O. (2.13) 

The tensor DUA~z is the inverse of Hessian ~2U/Se~j 8e~l. 
We are now at the position to write the complete incre- 

mental stress strain relation for elasto-plastic coupling in 
the loading condition: 

_ _  82v 8: 8: 82V daA-l+-- ,/2+ --:/2 

(2.14) 

or for brevity: 

e '  e*" 
de,j = deo + detj + d ~  (2.15) 

Note that introduction of the variation of elasticity mo- 
duli relevant to the amount of plastic deformation leads 

to the additional, "coupling" term de'j" in the increment- 
al constitutive law. As can clearly be seen from the flow 
rules (2.10), this term is irreversible on the incremental 
level though it enters the elastic part of increment. Its 
direction in etj space coincides with neither the reversible 

strain increment de~ nor the plastic one. I t  is rather 
related to the mode of the rearrangement of  the elasticity 
tensor due to the plastic flow (Fig. 2b). 

3. Elastic properties of material with elasto- 
plastic coupling. 

In the coupled elastic-plastic process the elastic behaviour 
is no more insensitive to the yield locus. The material res- 

ponse within the instantaneous yield limit, where 8~j = 
= cons., is purely elastic and characterized by the potential 
function 

V [a,j, ,u,jo], 
Ft]0(elj0) being a dead parameter. 

For the stress paths at the yield limit p~, becomes the 
live parameter and the elastic tensor is affected by the both 

variables alj, e~j. The variation of the elastic potential 
during a loading from the stress point O to B in the pres- 

sence of a progression of plastic deformation from e~j (1) 
to e~j (2) is shown schematically in Fig. 2a. The process 
can be conceived as composed of the hypothetic purely 
elastic part from the point O on the equipotential surface 
V =  V0 to the point A on Va with the dead parameter 
p ~  and the perfectly inelastic part from A to B with cons- 
tant stress. Assume now that an unloading takes place from 
the stress point A to the point C =  O always inside the 
yield surface. 

In the above closed stress cycle the value of the potential 
is not recovered. The difference of the potential V bet- 
ween two points O and C, does not depend on the path 
on which the two states were reached within an individual 
potential surface V = V (crtj, tt = const.) and results 
therefore from the inelastic portion of the loading process 
only; thus: 

A Voc = V(au, po)- V(ao, pc) (3.1) 

This difference corresponds to a dissipated (or adsorbed) 
part of elastic energy due to the irreversible deformation 
of the material in the elastic-plastc process. 

We shall introduce a notion of the materials with fixed 
natural state ( V =  0), which despite of their sensitivity of 
the elastic properties to the plastic deformation, exhibit 
total reversibility of the value of elastic potential in any 
closed stress cycle around the stress-free state. The fun- 
damental feature of the materials with fixed natural state 
is that the strain remaining after stress unloading to 
at~ = 0 from any elastoplastic state, is to be identified with 
plastic strain only, no matter what would be the history 
of plastic and coupling strain. This fact seems to be consi- 
stent with macroscopic experimental approach, since there 
is little hope that a criterion could be found to distinguish 
between plastic and "coupled" parts in measured irreversi- 
ble strain state. On the other hand, after a closed stress 
incremental cycle the coupled strain increment accompanies 
the elastic and plastic strain increments. The above distin- 
ction, make it possible to apply the framework of plasticity 
theory. From now on we shall deal mostly with materials 
with the fixed natural state. 

The phenomenalogical observations quoted in the In- 
troduction fumishe the examples of an increase as well as 
of a decrease of the elastic stiffness due to the plastic de- 
formation. The experience shows moreover that both cases 
may refer to the behaviour of the same material in dif- 
ferent circumstances [5]. Consider a function a = a(~') 
for an uniaxial elastic-plastic coupled process and a stress 
increment from a given stress point A .  The slope of 
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the actual curve i.e. the elastic stiffness may increase or 
decrease with referrence to the hypothetically pure elastici- 
ty. By the analogy to the terminology of plasticity the for- 
mer case will be referred to as "elastic hardening" while 
the latter as "elastic softening". In the hardening response 
the increase of  the potential Y is less then if the material 
were purely elastic. The oposite conclusion may be applied 
to the softening behaviour. In a multi-dimensional process 
a criterion for the elastic hardening can be formulated as 
follows: 

a v  a v  

~V 
<, dV,  = -~Tms dcm 

(3.2) 

The converse inequality can be referred to the softening 
response. 

Summing up and combining the above with (2.8), (2.9), 
(2.10) we can write the condition for elastic hardening and 
softening respectively at a given point mj 

for elastic hardening: 

~V ~f < O; 

and 

for elastic softening 

and 

gou ~f >0 .  

~V ~s" 
"ae~, @a,-, > 0; 

au  a f - -  < 0 (3.3) 

The inequalities for the potential function U can be 
immediately derived from the relations given in the Ap- 
pendix [see (A.2)]. 

4. Plastic properties of  material with elasto-plastic 
coupling. 

The two irreversible increments of  strain appearing in 
the equation (2.14) have different meanings. The latter 
represents the plastic strain rate and is directed along the 
normal to the yield locus. The former is due to irreversible 
changes of the elastic moduli. The joint irreversible strain 
increment can be written in the form: 

The resultant vector of the irreversible strain increment 
is thus non-orthogonal to the yield locus, and the deviation 
from the normality is governed through the Hessian 
matrix 

a2V 

Or 

0% &~, 

The following conclusion may be drawn, that the elasto- 
plastic coupling effect leads to the specific kind of the non 
associated flow rule [12]. The natural question may a- 
rise now, whether it would not be a reasonable simplifi- 
cation to skip the intermediate term in the constitutive 

law, and either to associate the resuhant de{t~ ~ with the 
yield locus gradient or to reduce the case to the classical 
non-associated rule defining appropriately the flow po- 
tential. 

The first of such approaches was adopted in [5], [9], 
[13], [14]. There are however several arguments which 
show certain inconsistencies of the proposed simplifica- 
tions. Consider first the incremental stress cycle around 
some stress point O, presented for the case of the elastic 
softening and plastic hardening for uniaxial stress and strain 
and linear elasticity in Fig. 3. 

i t  t /  
d~d~ e dc p 

~L' I-I A 
O +  

_9 M 

dE 

O ~ -  C D G  Iq g~ 
dc p d t  

Fig. 3 

<0 a2V &~'&0 ~f de,, = ,/2 (aa , ,  ae:-~ + aa,., (4.1) 

or dually by virtue of(A.3) 

de m ~2U &,.&j) ~f 

Let D O  be an elastic unlcading curve from the given 
stress state and O A  the respective loading curve due to 
the stress increment de. Let the unloading curve A D  be 
affected by the elastic modulus reduction dE which cor- 
responds to the angle between the lines 1 and 2, 2 being 
parallel to the unloading line 3. The modulus deviation 
produces the strain increment dE ~, O F =  H K  = DG,  
which actually equals to (~2 V/ao  Oev) dev, if the fixed natu- 
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ral state postulate (see. 3) is supposed to be flulfilled. In fact, 
the strain increment CD remaining after the unloading 
to the zero stress, is equal to that denoted by FB = H A ,  
which is identified with the plastic strain rate. The revers- 
ible part of  the elastic strain increment is equal (with ac- 
curacy of the order dE de) to E &;, what means that the 
distance between the points B and C is negligeable, 
( L K  ~_ BM). From the above consideration it is readily 
visible that as far as the difference, DG, between the strain 
remaining after unloading, CD, and the hypothetical purely 
elastic one, ArM, is of the same,order as the total strain incre- 
ment, the coupling term, K H =  DG, should not be 
neglected in the incremental law. 

The incorporation of the coupling term into the plastic 
one, jointly colinear with some plastic potential gradient, 
leads to the ambigueous definition of the plastic strain 
increment confusing when compared with residual strain 
increment on finite stress cycle, K A  :A CD. Moreover, 
there is no guaranty of  the elastic strain recovery at zero 
stress state. This is particularly relevant when the elastic 
hardening occurs compensating for the plastic flow as it 
takes place for instance in the plastic consolidation of gra- 
nular media, see. [5], [101. 

The direction of  the resultant vector of  the irrever- 
sible strain increment in eq. (2.14) is affected by change 
in Hessian matrix. The simplification by taking a non- 
associated flow law would then require a specific variation 
of plastic potential. 

Despite of the afore-mentioned differences ther~ exists 
the clear analogy in the formal structure between cou- 
pled law and the " frictional" non-associated flow rule 
on the incremental level and will be found hetpfull in the 
foregoing analysis, [16], [17]. 

5. Scalar coupling. 

Consider the general tensorially linear form of the 
elasticity relation (2.6) under the hypothesis of isotropy: 

e 
e,j = M0a~, + MwJj + M~.e,Pj (5.1) 

Where M0, MI, _Mo ar scalar functions of the invariants 
of stress and plastic strain, including mixed invariants: 

ZI = O','JSfPj ; 

" ( 5 . 2 )  2"o. ~--- G/,-18lmtrmA- ; 
P p 

Z 3  ~ ,SIi(;JI¢,SI,:I 

As postulated at the beginning, the material in the virgin 
elastic state is isotropic. This means that tensor ~r~j and 

~,j are coaxial i.e. their principal directions coincide. We as- 
sume now that the plastic deformations do not disturbe this 

coaxiality. Since there is no reasons to suppose that the pla- 
P stic deformation tensor eu is coaxial both with the c;~/and 

e~j, the condition _Mo_ ---- 0 must be set in (5.1). 
Under the above assumptions the general form of  the 

potential V reduces to the expression: 

./..~)], (5.3) 

where the following invariants are employed: 

/ 1  = ~., .~  = d ,  

eIJ¢O 

(5.4) 

and tl is the scalar coupling parameter, su  and e,~ are the 
deviators of ~ru and e}~ respectively. 

This form of the coupling will be referred to as the scalar 
coupling. 

It is of  use to introduce a coupling potential function 
g----g(tl, cr~j) derived from the elastic potential: 

Ol/" 
gO', ¢,J) = 8/, (5.5) 

The variable g has the sense of the thermodynamic force 
acting on the internal variable/ i .  

The irreversible strain increment (4.1) takes now the 
form : 

,j =dA Of ) (5.6) 

where d). is given by(2.9); ~, a scalar function dependent 
on stress and plastic strains is defined as: 

¢(~,j, dj) = aI* ~/ (5.7) 

The resultant vector de~ ~ can be conceived as the sum of  
two gradient vectors multiplied by scalar factors. The 
scalar coupling leads in effect to a corner at the intersection 
point of the yield locus f =  0, and the equipotential surface 
g = go; go ---- cons, being the current value of the potential, 
Fig. 4. 

i 
d£ 

d_.£ p / - 

\/4 ) 

n s t  

0 

Fig. 4 

In the dual formulation the scalar coupling results in the 
following constitutive law: 
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daA.~ = .[5~t~ defj 

0: 0: 
3(1, 

m 

3h~ af 
a~,,.. (5.8) 

Where the dual coupling potential b(e~,, /I) defined as: 

3U 
a G , , / , )  = (5.9) 

3t, 

is related to the primary potential by the expression [see 
(A.3) and (A.4)]. 

ag ~2U = 3b (5.10) 
an,, & , .  &v,, &,,, 

The multiplier ¢ (5.7) is a function of  stress and plastic 
strains. At the beginning of the plastic process it may 
be zero or have a finite value, directly depending whether 
the elasticity moduli function derivative with respect to 
the parameter vanishs at this very moment or not. In the 

former case the deviation of the vector ueo trom the yield 
locus normal is gradual, being zero at the yield initiation. In 
the second case the non-normality is initially present in 
the flow rule. The multiplier ~ plays moreover the role of  
a discriminant between the elastic hardening and softening. 
Rewriting the inequality (3.3) we arrive at the conclusion that 

g~ < 0, (for elastic hardening), 
g¢ > 0, (for elastic softening) (5.11) 

The central novelty in the coupled elasto-plastieity vie- 
wed from the stand point of  non-associated flow rules is 
the fact that the departure from the normality is governed 
by the another phenomenon, i.e. the elasticity variation. It is 
of  interest to examine in terms of  the equation (5.6) what 
the deviation should be expected, given the moduli varia- 
tion. Consider with this scope a polynomial representation 
of the potential (5.3). Following the hypothesis of  purely 
elastic behaviour of  the material before reaching the virgin 
yield surface, we can split the potential into two parts as 
below 

V =  Vo(a~j)"4- Vl(o'i~,/:) (5.12) 

For the sake of simplicity let us restrict ourself to the 
stress-linear elasticity. 

Then 

1 o 
V = --~-- (al? + o912a), x = Y.o + xt(p). (5.13) 

o9 = o90 + ogd/')- 

Where x and (̀ 0 are the bulk and shear compliance moduli, 
and ~ ,  coo, ~q, rot, their constant and variable parts res- 
pectively. Elasticity relations read now: 

e ;¢(lt) amm ¢}ff -~" o9(fl) StJ (5.14) 

&~" = ~.(/.,) da',r 6 ,  + o90,) d~, (5.15) 
It'' ( k ~1~ 3(.0 ) 

d~# = , ar t  6,j "F ~ so at, (5.16) 

The coupling potential g = OV/3/t  is again the quadratic 
form in stresses. Its any equipotential section forms in the 
plane of  stress invariants the family of  ellipses parametrized 
with respect t o / t :  

I" 3xx . 2 ,  & o l .  .,'v'-..~'l a(,,,,,,) = I.-W: , , ~ - ~ : ,  w,, . ,~ j .  (5.17) 

The components of the coupling potential gradient are 
in this case: 

~A a/, 

3g 3o91 
--'-- 3/t "V/ '~  (5.18) 

a a/& 

An example of  the coupling equipotential and the yield 
locus allowing for plastic hardening as well as for soften- 
ing is depicted in Fig. 5, in the case of the positive multi- 
plier ¢. 

Let us assume now that only the volumetric elastic 
compliance modulus varies due to plastic deformations; 
the shear modulus remains constant. Then the terms in the 
equations (5.14, 5.16, 5.18) containing the factor 3o9,1a/, 
vanish. The equipotential g = go reduces to the form of the 
straight line parallel to the/2a-axis and the coupling strain 
rate term gives the contribution only to the volumetric 
component of irreversible strain rate Fig. 5a. When the 
shear elastic compliance alone is affected by the plastic 
strain, the additional term in the incremental law has only 
the deviatoric component. In fact, 3u/3/* = 0; the equi- 
potential g =go  degenerates to the straight line parallel 
to the first invariant axis. Note that in the case of  the elastic 
hardening, presented in Fig. 2, when the value of the po- 
tential V decreases with the increase of the plastic volu- 
metric strain, the coupling strain rate vector is directed 
toward the interior of the coupling potential in the plastic 
consolidation range. It is directed to the exterior in the 
dilatation range where the elastic softening occurs, Fig. 5b. 

Basing on the described properties of the coupling po- 
tential a particular approximative model for the coupl- 
ing in granular and rocklike materials was proposed in 
[10]. The experimental results [5] indicate that in the 
plastic consolidation range the elastic volumetric stiffness 
increases while the shear stiffness remains constant. The 
opposite refers to the plastic dilatation range. The coupling 
equipotential surface in principal stress space composes of 
a cylinder and a plane lid in the above ranges respectively 
intersecting along the critical surface [10]. 

6. Simplified elastoplastic coupl ing models.  

Let us focus our attention on two limiting cases of the 
material property types. 

First case refers to the characteristic properties of hard 
rocks which initially have relatively high stiffness, so that 
in the virgin elastic domain V0 = 0 (5.12) for any stress 
and the material responses as a rigid one. 

Once the yield locus is achieved and plastic strains ap- 
pear, the elastic stiffness gradually decreases. V = I/'1 is no 
more zero and reversible and coupling strain rates come 
into the picture in the constitutive incremental law. 
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It may appear that the elatstic, stiffness is still very high 

and def~" may be neglected while the coupling terms is of the 
comparative order with the plastic strain rate, 0(0V1/0at~) 
daij,~ O( O Vx / Oa~l) / ~,u • ( O/t / Oe~) ; the constitutive relation 
then reduces to 

deu = ,,elj = d2 ~ ~ + (6.1) 

In other words, despite of  the initial lack of elasticity the 
elasto-plastic coupling takes place, and in particular case 
leads to non-associated flow rule of rigid-plastic hardening 
material. 

The formulation presented in the preceding sections is 
not restricted by the assumption of H ~ 0. In fact, we show 
below the limiting case of rigid-perfectly plastic model 
with variable dilatancy due to the coupling. Such a model 
[15] is oriented at the description of  the positive and ne- 

~ . 1 1 2  gative dilatancy, defined as the ratio dJl/d-.,C~a 12 (,.¢1, o~2a 
being the first and second deviatoric invariants of strain), 

asymptotically ceasing for the advanced flow. The flow 
rule is the same as (6.1), but dt is now an undetermined 
magnitude. Assume that the plastic flow produces shear 
deformations only, whereas volumetric strain rate is due 
to the elastic volumetric modulus variation. Consequently: 

1 
f = -~ -  soslj - -  ko ; 

v v  t /a = (e~:,j) 

(6.2) 

k0 being constant. 
The complementary potential takes on the following form: 

I ~,(:) z;: (6.3) v0 =0, v1 =-~- 

while the coupling potential and the multiplier ~ are equal: 

" (6.4) 
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The complete strain rate-stress relation reads: 

v 0n ] 
. o) ,, e~-, -77  l,O,j + m aeft = aa &t (6.5) 

Note that the dilatation function is variable and depends 
on the stress and strain: 

d J 1  e~-t &e /1 
djr~ d sl¢.l O/l ~0 (6.6) 

J p  ~ /  2a 

Let us assume the function ~ in the form: 

---- ~eo(1 - - / t )"  (.oolt)cr-- 1)", 

~.o = ~o(Oo/O-) > 0 
(6.7) 

where m, n are integers (n-necessarily odd) while Qo and ~o~ 
are the initial and critical density of  the material. Then for 
Q0 > per the material dilates, while for Q0 < t)er it consol- 
idates, and both processes asymptotically cease if the shear 
deformations are large enough, 

7. Conclusions.  

The alternation of the elastic moduli due to the plastic 
deformation casted into the framework of incremental ela- 
sto-plasticity theory leads to a specific kind of the non- 
associated flow rule. The substantial difference appears 
then between the residual strain on incremental and on global 
stress cycle. On the latter cycle the normality of remaining 
( =  plastic) strain vector to the yield locus is conserved. 
One of  the crucial phenomenologically observed effects 
of  presence of  coupling is its influence on the dilatation 
function. The direct connection between type of elastic 
moduli variation and deviation from normality gives clear 

indication to the possible experimental rules in the examin- 
ations of  coupling phenomenon. The limiting cases of 
coupling suggest the eventual less "a priori" interpretation 
of the non-associated flow, laws. The existence and uni- 
queness of response and stability of behaviour of  materials 
with coupling as well as incremental boundary value prob- 
lems are expounded elsewhere [16], [17]. 
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Appendix. 

Let U and V be a pair of dual potentials interralated 
through the Legendre transformation with respect to their 

active variables e,j, ms correspondingly and e~'j the com- 
mon passive variable [11]. 

(A.1) U(~,5, ~,5) + V(,~,j, ~,5) = ,~,~,~ 

Three straightforward results are useful to be reminded: 

OU ~ V  

Oe~ Oe~ 

b z V  

at given eel, mj 

~2U O~V 

02U ~2V O~U 

(A.2) 

(A.3) 

(A.4)  
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