
Annals of Mathematics and Artificial Intelligence 16(1996)285-309 285

Computations on one-dimensional
cellular automata

Jacques Mazoyer ~l

Ecole Normate Sup~rieure de Lyon,
Laboratoire de t'Informatique du Parall~lisme,

46 Allge d'ltalie, 69364 Lyon Cedex 07, France
and lnstitut Universitaire de Formation des Maitres de Lyon,

5 rue Anselme, 69317 Lyon Cedex 04, France

E-mail: mazoyer @lip.ens-lyon. fr

Cellular automata may be viewed as a modelization of synchronous parallel
computation. Even in the one-dimensional case, they are known as capable of universal
computations. The usual proof uses a simulation of a universal Turing machine. In this
paper, we present how a one-dimensional cellular automata can simulate any recursive
function in such a way that composition of computations occurs as soon as possible.
In addition, this allows us to show that one-dimensional cellular automata may simulate
asynchronous computations.

1. Introduct ion

For a long time, one-dimensional cellular automata have been known as
being capable of computations. They can simulate any Turing machine [13], but
s imulat ion on a parallel device loses the speed-up induced by parallelism. Various

authors have given nice full-parallel algorithms on one-dimensional cellular auto-

mata [8] and have studied the computational power of such a network [3]. In fact,
cellular automata have essentially been studied as language recognizers. Comput ing
funct ions on cellular automata induces a definition of how inputs and outputs occur
[10]. In this paper, we do not deal with these questions on inputs and outputs. We

IIThis work was supported by the Programme de Recherches Coordonn6es Math6matiques et Infor-
matique and the Esprit Basic Research Action "Algebraic and Syntactical Methods in Computer
Science".

© J.C. Baltzer AG, Science Publishers

286 J. Mazoyer, Computations on one-dimensional cellular automata

always assume that inputs are given to the network on the first diagonal and that
outputs occur on the first cell of a semi-infinite line. Giving inputs on the first
diagonal is not usual, but in [10], we show that the two usual cases (inputs externally
distributed on cells at the initial time, and inputs given sequentially to the first cell)
can be quickly reduced to our choice.

In this paper, we aim to define computat ions on one-dimensional cellular
automata in an intrinsic way. Let us first observe how authors set-up cellular
automata which have a given computational behavior:

(i) First, they define elementary bits of information (usually the inputs).

(ii) Then, these bits of information are moved, via the informal notion of signal,
in such a way that meaningful bits meet themselves in order to generate new
meaningful bits (synchronization problems).

(iii) Such previous processes are repeated so as to obtain outputs. This repetition
may be a recursive call to the same process or the initiation o f a new process.

To define elementary meaningful bits of information and their moves, we
need to construct the algorithm itself. In this paper, we define a framework in which
the previous construction can easily be done. In particular, we emphasize the notion
of signal. Informally, a signal is a state or a bounded set of states. We take "signal"
as a basic notion (a meaningful bit of information) and we define the notion o f state
as a particular signal. This corresponds to the following point of view: in a cellular
automata, we emphasize what is communicated by the wires and not what is in the
memory of the cells.

In this paper, we present how to use this notion of signal in order to move
computat ions on the space-time diagram of a cellular automaton, to compose
computations, and hence to show that any recursive function may be computed "as

soon as possible".

2. Computations by signals

2.1. SIGNALS

A one-dimensional cellular automaton is a semi-infinite line of finite automata
which interacts. At each unit of time, the cellular automaton, located on cell j, has
a state (an element of a finite set Z), it knows the states of its two neighbors, located
on cells j - 1 and j + 1, and it computes its new state. Thus, a cellular automaton
is only formalized as a finite automaton (E, •) when ~: Z3---> Z is the state
transition function. The parallel character of the device is induced by the notion o f
configuration which is the set of all states of a half line of automata at some time
t (a mapping Ct : 9V ~ ~); then the evolution of this parallel device is due to the
global function G, which sets up a new configuration from an older one: Ct+l(n)

= ~(C,(n - 1), C,(n) , C,(n + 1)).

J. Mazoyer, Computations on one-dimensional cellular automata 287

Now let us introduce our notion of signal: During the evolution, a cell receives
some information from its two neighbors. We can, usually, make a difference
between the state o f a cell (element of E) and what it sends (element of E). If we
consider that a cell has no more state but sends to itself the set of meaningful
information, our definition of the state transition function becomes an application
of .,z,3 into ~3 in which we distinguish the information sent to the three possible cells
(included itself).

The information sent is made up of various elementary bits of information.
We distinguish one part which is the data, computed with the algorithm from the
part which controls the execution of the algorithm. In some way, we distinguish the
code from the data.

But what may be the (local) code on a line of automata? Looking at a cell
as a small processor, we consider that the code indicates the next cell to which
to send data. In order to construct small and procedural pieces of code, we
consider that the information sent may be split into smaller (locally) irreducible
parts called signals. In this way, the previous set E becomes a set of signals
~, = { (~ i , di) : i E {0 k} and d i ~ D } (where D is a finite set). We look at ~i as
the code and di as the associated data.

Now what may happen on a cell? Our finite automata receives from itself and
its two neighbors three subsets of E and it constructs a new subset of E. We consider
that for each signal (~i, di), a method to compute the new signal (~i, di) sent to the
cell itself (denoted by St) is attached to our device, to its left neighbor (denoted by
L) and to its right neighbor (denoted by R). Hence, we can replace the state transition
function by 3 x k new ones: f/" indicates if the signal, numbered i, is sent to the
cell indicated by m, in {St, L, R}, and what data is associated to it. Formally, f/m
is an application of E k+13 into ({0, 1} x D); the value of {0, 1} indicates if the
signal is sent to some cell and the elements of D correspond to the associated data.
If we suppose that each signal can occur at any time on any cell, the value of the
first component of the functions ~m indicates if it is really present. We may view
this set o f functions j~" as the global code of our finite automaton itself.

Another question arises: do the values of the data modify the moves? We
distinguish the two cases. If not, we say that we have a cellular automaton with
moves independent of data.

To show the evolution of a cellular automaton, we use a space-time diagram.
On a quadrant of plan, the point with coordinates (n, t) represents the cell n at time
t and we join (n, t) to (n - 1, t + 1) or (n, t + 1) or (n + 1, t + 1) by lines indicating
if a signal is sent and what is the carried data. We call a "threadlike signal" a signal
that we may visualize as a wire in the space-time diagram. This leads us to the
following definition:

DEFINITION 2.1

(1) A cellular automaton (defined by signals) A is

288 J. Mazoyer, Computations on one-dimensional cellular automata

t f L [,St f R . { O , k , , j i , J i , J i , i lO k i l l

with

• D = {d o de} is a finite set of elements (called data),

• k is an integer,
• ~'L t:St leR J~ ,Ji ,Ji are the left, stationary and right transition functions associated

to the ith signal. They are functions of ({0, 1} × D) ~+1~ into ({0, 1} × D).

(2) A line of automata (defined by signals) £ .a is made of . ~ copies of the
automaton A . A configuration C of a line £ A is an application of :TV into
({0, 1} ×D) k+13.
The image of n by C is denoted by (CL(n), Cst(n), CR(n)).

(3) From a configuration C, we get another configuration C* by the global function
G defined (for rn E {L, St, R}) by:

if n sO, G(C)m(n) = {fim(CL(rt - 1), Cst(n), CR(n + 1))),
if n = 0, G(C)m(O) = {3~r"({0, Cs,(O), CR(1))}.

In addition, f0 ~ is always (1, do); we identify the signal labeled 0 as the
quiescent signal which always occurs but is never significant (do is the
quiescent data).

(4) Thus, a line £ .a evolves in discrete times, f rom the initial configurat ion Co
(at t ime 0) to another one Ct (at t ime t) by Co+1 = Co.

(5) When all the functions f/m are a couple (ari m, fii m) with:

ai m : ({0, 1 }) k+13 ---> {0, 1 },

•i m " D ~+1~ ---> D,

we say that moves do not depend on data. In this case, we may express the
function cr as a Boolean formula using the variables ira, indicating if a cell
receives the ith signal from itself or one of its neighbors.

(6) The signal i 0 is threadlike if only one of the first components of the fi[~ has
value 1.

2.2. COMPUTATIONS

Now we deal with the notion of computat ions. Formaliz ing the computat ions
of functions on a parallel device is not simple. For cellular automata, in the literature
we may find two ways to give inputs to the device. The first one dist inguishes a
cell and data is given sequentially (at each time step) to this particular cell (see [3]).
In the second one, at t ime 0 we distribute inputs on the cells; this may be seen as
parallel inputs. In [10], we have shown that in the two cases we may obtain the

J. Mazoyer, Computations on one-dimensional cellular automata 289

same states on the diagonal (cells n at time n). We can arbitrarily choose that our
inputs will be given on this diagonal. In our model, a label (a number) and some
associated data are given by a complete signal.

Defining where are the outputs is a little more complicated. We briefly recall
some kinds of outputs. First, they can appear on a distinguished cell at successive
times and this leads us to sequential outputs. Second, they can appear, at a fixed
time, on all active cells and this is called parallel outputs; in this case, cells may
or may not know that the computation is achieved. Sequential outputs are interesting
if our device communicates with a sequential "outside", while parallel outputs are
concerned with composition of parallel devices. We decide to consider sequential
outputs. Since we have defined signals as (local) code and data, we add to the inputs
the information needed to set-up the (local) code. This leads us to the following
definition:

DEFINITION 2.2

Let S be a finite alphabet and f a partial function of S* into S*, a cellular
automaton {D, k, { f/L,j~St,fiR; i E {0 k}} } (defined by signal) with S C D, com-
putes f if there exists an application (by of 5V into ({0 1 } × D) k÷l such that whatever

,~ = x0 ...Xl~l+t in S* is:

• Vi E {0,...,k}, Vn ~5~f, if i ¢ 1, then the ith component of Of(n) has value
0 in its second component. In other words, signals set up by 4~f and indexed
by a value other than 1 carry no data.

• The data value associated to the j th integer nj, for which the first component
of the 1 st component of Oy(nj) is 1, is xj. In other words, the signal numbered
1 carries the input (the j th input is the data associated to the j th signal 1
which starts from the diagonal).

• We denote f (~) by Y0 Ym- Starting with an initial configuration evolving
such that, Vn ~ _7~f, C~(n)R is q~f(n), the j th signal, numbered by 1, appearing
in a Ct(O) (its first component is I) has yj as associated data.

2.3. AN EXAMPLE: MULTIPLICATION

In order to illustrate the two previous definitions, we give an algorithm to
compute the multiplication of two integers using a cellular automaton with moves
independent of data.

We use the usual human algorithm with number written in base 2. An example
is depicted in fig. 1: numbers are written the most significant bit in first (at the left
end) and a special mark * is used to indicate the end of the word. We execute
products of the multiplier by successive bits of the multiplicand (the results is either
0 (if the bit is 0) or the multiplier itself (if the bit is 1)); we shift these partial

290 J. Mazoyer, Computations on one-dimensional cellular automata

mullil)lier

mullil}licund

lsl purli'al t

end . f t h e
w.rds

~t l+++Hgt+.~| wcakes| I
dlgl, + di.~il + ~

I I t} IJ 1 t *

(} I (1 1 I 0 ~

0 0 t) 0 0 O
O 0 < 9 O 0 0

2.dpar t ia l t I (} 0 t]
sum ~ 1 I 0 0 1 1 0

3rdl>artial I 1 t 0 0 ! 1
sun| ~ I (10 I [0 0 l 0

[0 I 0 I 1 0 0 l (I

1 I ~} (~ I 1
I 0 I~ 0 I 1 O (J (1 1 0

0 i] !~ tJ 0 t)
~ I 0 0 # 1 1 gl 0 0 1 0

The la.~t parlial sum is tile result

Fig. 1. A human multiplication.

products one position to the left per multiplicand bit. If the usual human algorithm
carries out only one sum with as many factors as there are bits in the multiplicand,
then we execute one addition (between the current partial sum and the n e w factors)
per bit of the multiplicand. The final result is the partial sum of the last line.

Let a0 + a t 2 L + ... + ai 2i + . . . + ap2 p and b0 + b121 + ... + b j2 j + ... + aq2 q be
the multiplier and the multiplicand, the j th partial sum is c0,j + Cl,j21 + ... + cl~;j2 k +

. . . + cp+j, j2 p+j, with

Ck,j+ 1 = Ck, j + b ja; :+j + r k _ l , j + l , (1)

where ra, # is the remainder of co~ by 2.
We choose the following inputs (they allow more readable figures), inter-

living strings with odd cells for the multpticand and even cells for the multiplier:
the jth bit of the multiplicand is given to the cell 2j + 1 at time 2j + 1 and the ith
bit of the multiplier is given to the cell 2i + 2 and time 2i + 2. We easily obtain a
cellular automaton in which inputs are given on sites of the diagonal by grouping
cells two by two.

The feaure of the algorithm (illustrated in fig. 2) is the following:

• bits of the multiplier always remain on their initial cell;

J. Mazoyer, Computations on one-dimensional cellular automata 291

T i m e

Bits . r file
(). 1 multiplier

0 9 1 Bits t~r the
multiplicand

*, * End . f w.rds

Bit 0 . f the
multiplier

multiplier

.~."
, / Bit 0,1" tile

":~. mulliplicand
%.

Bit 1 . l ' lhe
ruulliplit-und

t't'lis

Fig. 2. Moves of bits in a multiplication.

• bits o f the multiplicand are first sent at maximal speed (one cell per unit o f
t ime) to the left and, after their meeting with cell 0, they return to the right
at maximal speed.

In this way, the j th bit o f the multiplicand moves (to the left) a long the
diagonal /)j, with /)j = {(k, 2(2j + 1) - k); k ~ {2j + 1 0} }. Then it returns (to
the right) a long the diagonal Dj , with /3j = {(k, 2(2j + j) + k); k > 0}. On this
diagonal Dj , it meets the ith bit o f the multiplier on the site (2(i + 1), 2(i + 1)
+ 2(2i + 1)). On this site, it computes the values defined in (1), sending Ci, j to the

292 J. Mazoyer, Computations on one-dimensional cellular automata

i th digit . f thc
i+j tll digi t . f multiplirr

i+l th carry
t he j+ l th ~ over of the j th
partial sum parlial sum

at time ~[i+2i+4 Ib * i "r'~'¢"

of the j th .dC'll'.~e"
partial sum / ' ~ t ? l 3 " %

• i+j th digit
of the i th
partiai

j th digit ,d'thc \
stlnl

multiplicand i lh digit tJfthe
multiplier

One cell ~ut ,~f tw~ computes ~me time
out ~d" two ;
C= (I ~ ^ [3) ~ (A @ B)
D = ({ ~ ^ ~ A A) V ({ I A [~ ^ B } v (A A B) .

Fig. 3. Computations done on one cell
out of two, one unit of time out of two.

site (2(i - 1), 2(i + 2) + 2(2i + 3)) via the left diagonal Dj (and we obtain the left
unit shift). This process is initialized: the cell 0 always sends the bit 0 to the sites
(1, 1 + 2j) (with j > 2) as the value of t_t,j. Figure 3 illustrates the computat ion
done on such a site.

Looking at fig. 2, we observe that two (local) codes are needed, corresponding
to the moves of the bits of the multiplier and of the multiplicand. We add two
others, corresponding to the first diagonal and to the first cell. The functions ty/"
o f definition 2.2 become:

• Moves o f the quiescent signal. On all inputs, Vm E {L, St, R}, cry' = 1. The
quiescent signal is always present.

• Moves o f the "first diagonal" signal. If the signal indicating the first diagonal
comes from the left neighbor, it is sent to the right neighbor. Thus, on all
inputs, we have a ~ = 0 and o "st = 0. But a(((go g4), (So s4), (ro r4))
= 1 ¢=~gl = 1.

• Moves o f the "`first cell" signal. If the signal indicating the first cell is on
a cell, it remains on this cell. Thus, on all inputs, we have o'~ = 0 and cr~ = 0.
But o'st((go G), (so s4), (ro r4)) = 1 ¢:* sz = 1.

J. Mazoyer, Computations on one-dimensional cellular automata 293

• Moves o f the "multiplier" signal. If the signal indicating the bits of the
multiplier is on a cell, it remains on this cell. Thus, on all inputs cr~ = 0 and
o'~ = 0. But crSt((go e4), (So s4), (r0 r4)) = 1 ¢=~ s 3 = 1.

• Moves o f the "multiplicand" signal. If the signal indicating the bits of the
multiplicand reaches a cell coming from one of its neighbors, it is sent to the
other neighbor, except on the first cell. The first cell is indicated by the signal
labeled 2 and the multiplicand signal is reflected on this cell. Thus, on all
inputs o "st = 0. But o'4g((e0 e 4) , (S O $ 4) , (r 0 r4)) = 1 ¢:> r 4 = I A S 2 = 0.
And cr4R((go g4), (So s4), (ro r4)) = 1 e:~ (g4 = 1 A s2 = 0) V (r4 = 1 A
s2 = 1).

In order to define the functions Si m, we use the computations shown in fig. 3.
Thus, we consider that the data is a couple. The data associated to the "multiplier"
signal is (]3, 0), where 13 is a bit of the multiplier. The data associated to the
"mult ipl icand" signal is a couple (a, A), where a is a bit of the multiplier and A
is a carry over if the data is carried to the right, a bit of the partial sum else. The
new values of A are given by the formulas of fig. 3. In order to indicate the end
of the input word, the alphabet used for the values of a, 13 and A is {0, 1, *}.

The initial configuration is such that, on the inputs ao... ap and bo... bq, the

fol lowing signals appear:

• At Co(0), only cro ~, or(and O "st have value 1 with data 0.

• At Cl +2h(1 + 2h) (h ~ {0 p}), or4 L = 1 with data (ah, *) (* is used to indicate
the lack of information). At C3+2p(3 + 2p), or4 L = 1 with data (*, *).

• At C3h(h) (h E {0 q}), O "st = 1 with data (bh, *). At C 2 + 2 q (2 + 2q), cr sT = 1

with data (*, *).

The evolution on such a line is depicted in fig. 4. We observe that the outputs
defined by the second component of the data of signal 4 reach the first cell one unit
of time out of four (this is due to the fact that the bits of the multiplicand are given,

on the diagonal, one cell out of two).

3. Gr ids

3.1. MOVES

In the previous section, we have expressed the possible moves by "go to the
right neighbor", "go to the left neighbor", or "stay on the cell". As previously
remarked by Culik [4] and Gruska [5], two moves only are needed: the right and
left ones; the stationary o n e m a y be expressed by a right one followed by a left one.
Any computat ion occurs on such a grid (see, for instance, fig. 4). If we define
another grid, and define the computation as occurring on this new grid, we obtain

294 J. Mazoyer, Computations on one-dimensional cellular automata

Time

' Bils 0 in transit throught
the netw.rk

~, Bits 1 in transil Ihroughl
'z~i~,% thr network %

0 ,] , ~ BiL~ Id' Ihe
result

Bils ~f the
O, | multiplier

{L 1 Bits ~fflhe
mulliplicat~d

'~ * Elld of words

Flit It of lli~
multiplier

Bi! I ~fflhe
mulliplier

Bil 0 . f the
mutliplicand

/
[lit 1 of the
mulliplicand

c~lls

Fig. 4, Multiplying 110011 by 10110.

the same computat ion but on another area o f the space-t ime diagram. This trick
a l lows us to m o v e the computat ional area in the space-t ime diagram.

The first point is to define a new grid (or a new half grid). Figure 5 shows
a new grid with regularly distributed holes (non-meaningful cells). In order to
define a new grid, we forget that a cell may send information to itself; thus, in
definit ion 2.1 we suppress the function f/st. We distinguish two signals, numbered
by i ~ and i ~ , corresponding to the right and left moves . We define the evolut ion
o f these two signals i_, (i~_) in such a way that a left m o v e of i~ immediate ly

J. Mazoyer, Computations on one-dimensional cellular automata 295

Time T

Vllt ~¢1[~ VIII VIII VtI~ VIII VIII VIII VIIt VII~ Vtll Villi

I VIII VIII VIfl Y~II Vilt Viii ~ t l ~{I VIII VIIIVIll ~ l
LIiL~IM !I1[~IIA ~IIA ~IIA llt,~ ~IM t~llJJL~_~IIIL3]
]rFTY l ~1 ¥1 ~ I ¥1 '¥t ~lf l ¥ I ~ I *V-17

1~ I,~ l t t II~ I1~ I1[It[1~ I ~ It[It[. IA
VIII Vlt~ k¢lt~ i/lit VII~ VII~ VII1 VIII VIIt VIII VI[t VII

~A II~ IIV~ 119~ II~ II~ 116~ II!~ II~ 115~ II~ l l ~ ll
I Viii Viii Viii Villl~ll V~ll Viii V~II VIII VIII VIII VIII ~ILI

IIA ~ll/fllM ~IM ~IIA IIM IlIA !llA_~.tlLllll[3]~
¥1 ~¥1 ¥1 ¥1 ~ l ¥1 ~¥1 Irl~V-F"~YT-'irl

I11~ l l ~ ll~,~ I1~ I I~ I1~ II~A I1~I I l ia I I~ I I~ I I~ II~A / [~
I I Vill Viii ViII w l l ViII Viii ¢ ll Vii! Vii! VIiI Vi l / ViJ

~1 ~YI :¥1 ~lrl ~lrl ~¥1 ¥1 ¥1 ~¥1 ¥1]rl ~!¢1 ¥1 ¥1 1

~ll Viii V~[I [ALL~IJ_~II ~ I I V~II~II V~ll L I ~ I / . J I ! L / ~

~'1 Yl .el Y} Yl ¥1 :Yl :¥1 ¥1 'lVl I¢1 Yl ¥1 ¥1

_ <
/

J This right mcJvc /

/

! illdUce lhis litlle ill(iVe

alld ~)tiS]cl ' l I]lt)'ve 1
\

Fig. 5. A regularly twisted grid.

follows a right one, and we consider that a right move, followed by a left one, is
a stationary move of i~ on the initial grid (a left one followed by a right one is
a stationary move for i~_). If we want to obtain a half grid, we send from the origin
a signal iT which is only (new) temporal moves (a right move followed by a left
one) and its marks the "middle" of the grid. Clearly, this process may be iterated;
the two signals i~ and i~ may be viewed as the basic signals of the initial grid.
This notion of a grid is not easy to formalize. A complete description is given
in [I0]. I f moves depend on data, the best way is to define the data associated with

296 J. Mazoyer , C o m p u t a t i o n s on o n e - d i m e n s i o n a l ce l lu lar a u t o m a t a

i . and i~ as a couple, the first component of which is understood as the states of
a finite automaton. In the other case, we replace the signals i . and i~ by a finite
set of signals. In this paper, we only give an example.

3.2. AN EXAMPLE

As an example, we define the following grid: we use signals 0 (the quiescent
one), 1 (the "first diagonal"), 2 (the "first cell"), ---)t (the first move of the "right
move" signal), ----)2 (the second move of the "right move" signal), --)3 (the third
move of the "right move" signal), ~-- (the move of the "left signal"), and 1" 1, 1" 2,
"1"3, $4 (the new "stationary signal").

• Signals 0, 1 and 2 are defined as in section 2.3.

• The signal ~-- is defined by cr~ = 0 and cr~((g o &) , (ro rT)) = 1 ¢ ~

(r~ V el) /X -~r L. That is to say that the signal +-- is created on all sites of
the diagonal and then always goes to the left until it meets the signal "['. Thus,
the signal "left move" is in fact the initial left move.

• The signals indicating the right moves are defined by

cr L = 0 and
-"~1
R

°'--*L((go &4)' (ro rT4)) = 1 ¢~ r L V r~3.

o'L2 = 0 and
R

Cr~2((g 0 g1"4), (r 0 rT4)) = 1 ¢=;, g.---~l •

R cr_~ 3 = 0 and
L

O'~3((go &'4)' (r0 rL)) = 1 ¢:¢, g~2.

Thus, a right move is created on the temporal move of the first cell and then
one new right move is made of two initial right moves followed by a left one.

• The signals indicating "stationary moves" is the "concatenat ion" of signals

-")1, - '-)2, -")3 , ~ " "

If we put the algorithm of the multiplication defined in section 2.3 on this
new grid, we obtain the exchange of information of fig. 6.

3.3.

facts

I.

HOW TO CONSTRUCT GRIDS

In [10], we study how to construct a new grid from an older one. The main
are the following:

If the new grid is regular (all its new right and left moves are the same up
to a translation), it is always possible to construct it and also to construct its
right half part. This construction of a new hole involves only six signals
(indicating is the new right (left) move use a right (left), stationary move or
corresponds to a wire of the new grid).

J. Mazoyer, Computations on one-dimensional cellular automata 297

Fig. 6. Computing a multiplication
with the outputs on the line A(0.~ I.

I ~J 1 n r l l r
mu~lpU~

ii

I l~t "n*d" or
U~ ~ula~r

~L, | ,,r ,|~
m,~l~tl,tl,- ~ ,1

g l l I g iffl$~
~olll ialleild

Bltm I l t J l r ~ d t

~ , ~ d a a r

.

.

Sometimes (in fact, in the general case) it is possible to define new grids that
are not regular. The interesting case is when the left move consists only of
previous left moves. And in this case (with few extra conditions), it is possible
to construct the new half grid only from indications given on the first new
right wire, the construction involving only the area of the new half grid.

There exist not regular but recursive grids that are impossible to construct
within this area.

All these constructions are long and tedious: they involve technical use o f the
notion of signal (see [10l).

298 J, Mazoyer, Computations on one-dimensional cellular automata

Fig. 7. Computing a multiplication
with the inputs on the line A{o ,~).

l+It, I , , r u t
m ult l l , l+r

Ish+ + + ,+a+
m+l+l+,++

l i t mult l l l l l+

mu l l +U~ l

Rlt , • . ' t l l r
mull lpl l4 .m~

BII -~ l . l - ,+I
l i t Wul l l l lUc~l

lal,. o b ,~ .~h
t t f , , u d a I I .

3.4. GRIDS AND COMPOSITION OF COMPUTATIONS

In fig. 7, we show the algorithm of the multiplication o f section 2.3, in which
w e have indentified the multiplicand and the multiplier in order to get the square
function on another grid: the new left m o v e is the initial one; the new right one is
made of an initial right move , and initial right move , an initial left move , an initial
right m o v e and an initial left move. This new right move corresponds to a stationary
m o v e of the grid of section 3.2 and is shown in fig. 6. If we put figs. 6 and 7 in
the same picture, we obtain fig. 8, and we see that the new cellular automaton
computes the function (a, b) --> (ab) 2.

J. Mazoyer, Computations on one-dimensional cellular automata 299

Fig. 8. Computing (ab) z.

BI0m I . t O ~
~alqlpU~

BI~ m , r U ~

~ mulapl~-r

l~t, I ,+t+tr
m~+ip~wml

mull ipl+ mid

DII " . l i p ' ul +
i1+ m ul f l~ lemd

+.m(.+,¢+i~+,

Bil l u bltrm+14
I(+.~I~+(il+

Bil l I l l l l pm+ l
l l ~ , l l l r i I l l

This can be generalized: to obtain the composition of the computations of two
functions, it is sufficient to move the computation of the first one on a grid between
the diagonal and another line (made from the stationary moves of the first cell) and
to move the computation of the second one on a new grid (the initial right wire,
corresponding to the diagonal is the stationary wire of the first one and its stationary
moves are the initial ones). Outputs of the first computation become inputs of the
second one. Thus, roughly speaking, to compose functions is to consider that
stationary moves become right ones.

In addition, the two examples of figs. 6 and 7 show that we may put the
computation in any area of the space-time diagram (between two rational lines).

300 J. Mazoyer, Computations on one-dimensional cellular automata

4. Infinite families of grids

4.1. A CONSTRUCTION

In the previous sectiom, we have indicated that we were able to construct new
grids and to put them in any "rational" place on the space-t ime diagram. The last
example shows that it is possible to put a finite number of them in such a way that
they correspond to a finite number of composi t ions.

Here, we aim to construct an infinite number of such grids in order to achieve
new computat ions in which the number of steps is induced by the inputs. How to
construct such a family of grids using only a finite number of signals is not
obvious. Fortunately, in the studies of the Firing Squad Synchronizat ion Problem
(see [2,9, t7], for instance), infinite families of lines have been set up. We use this
method to set up infinite families of grids. In this paper, we only give one example ,
that o f fig. 9.

We describe the exchange of signals, setting up the family Fn~ N, of fig. 9.
The left space move of the nth grid is the initial left move. The initial right space
move of the first grid Fl is made by two initial right moves. In this way, we obtain
a stationary move for grid FI, which is made of a (initial) left move fol lowed by
two right ones. Then the right space move of grid F 2 is made by two stationary
moves of grid Fi ; thus, the stationary move of grid Fz is made by three t imes a right
(initial) move fol lowed by a left (initial) one, all fol lowed by a right (initial) one.
Repeat ing this process (a right move of Fn+l is made by two stationary moves of
Fn), we obtain an infinite family of grids. The right move of the nth grid is made
by 2 n - 1 initial right and left moves, fol lowed by an initial right move.

The main idea to set up such a family of grids with a finite number of signals
is to send special signals which indicate to the signals setting up the nth right move
to finish their move by an initial right move. These special signals are created on
any point o f the diagonal and run at maximal speed to the left. The signal "first cell"
o f a grid suppresses one out of two of them.

4.2. AN EXAMPLE: EXPONENTIATION

In order to illustrate the previous construction, we describe how to compute
the exponentiat ion.

We write x and y in binary in basis 2. Let x be ao + 2aj + 22a2 + . . . + 2hah

and y be bo + 2bl + 22b2+ ... + 2kbk, we use the usual algorithm, writing x y as
i=k X 2i+1 l"I i=0 p(b l ,), where p (a ,]3) is]3 if a is 1, 1 else. We denote the value of

'I =j X 2i by zcj.
i=0

Thus, we must make 2k multiplications:

• computat ion of x 2~+~, which is x 2j*' x x 2~*',

• computat ion of rcj+ I, which is ~rj if bj+j = 0 or tcjx x 2j*~ if bj+j = 1.

J. Mazoyer, Computations on one-dimensional cellular automata 301

/ ~ , " / / Pdghl space moves .~ 0 O @ Nodes

"\-,,~'N.~ Left space moves 0 '0" ~' @, Impact sites

""...... Signals T "., Signals setting up the (1,1)-th node

Fig. 9. Setting up an infinite family of regular safe
grids (the darkness of the grid indicates its rank).

302 J. Mazoyer, Computations on one-dimensional cellular automata

Fig. 10. Areas of computation of exponentiation: the
nth area corresponds to the computation of the values
of the nth vatues of r/and rein the sequential algorithm,

We observe that we need only one recurrence with k steps and, at most, two
multiplications by step. The sequential algorithm is:

Yg:= X;

r/ :=x ;

f o r j : = l to k d o

begin

T1:= rl x rl ;

i f bj = I t h e n ~ : = g x 7/;

e n d .

J. Mazoyer, Computations on one-dimensional cellular automata 303

On our infinite family of grids, we put the computation of the nth values of
r /and Jr on the nth grid. We ~ive the inputs as in the example of section 2.3. It is
easy to obtain the values o f x 2 : we start with x as the input on grid F~ and compute
x 2 on FI; the result is the input of grid F 2 on which is computed x 22 and so on.
Computing the values of rcj+l is a little more complex; we need to multiply rcj by

j + !

1 or x z on the g n d j + 1. So we start the computation on grld F2, and grid F~ only
sends x as output. In order to compute zrj (on ~+i) , all the signals involved in grid
Fj+I must know the value of bj (choice between the two possible multiplications).
Giving the value of bj to the signals involved in Fj+ i is a little complicated. The
idea is to distinguish the first right wire of the grids; and, then, on any grid, bits
bj make a left move followed by stationary moves until they reach the "first cell"
signal of the next grid. In this way, all the bits bj move one cell to the left per grid
and the first bit met by the first right wire of a grid gives the needed value bj,
needed by the whole grid.

To achieve the previous process, we mark the second cell (numbered 1 by a
signal which has only stationary initial moves; and, when a first right wire of a grid
does not meet any bit (of y) on this cell (but the symbol * ending the input word),
it stops the process of construction of the family of grids and the least computed
value zr k is sent to the first send among all points of this initial wire.

4.3. CONSEQUENCES

The previous computation (we observe that the moves may be viewed as
independent of data if we introduce new data indicating that the proces is achieved)
is in fact an example of the computation of a function defined by primitive recursion.
In [10], we proved the following theorem:

THEOREM 4.1

Any recursive function is computable ("as soon as possible") by a cellular
automaton defined by signals with moves which do not depend on the carried data.

In this theorem, "as soon as possible" means that a new computation starts
as soon as all the needed data have been computed as in the example of fig. 8. The
proof is long and tedious, and quite similar to the example of section 4.2. The only
tricky point is to define how inputs of a function with several variables are given
and then to reorder these inputs.

We now make some comments. Cellular automata are ("synchronous?")
parallel devices. But the definition of recursive functions by composition, primitive
recursion and minimization is basically sequential: the two schemes of primitive
recursion and of minimization are sequences of the first one: the composition. By
our implementation of the composition, we do not need synchronization; more
precisely, we do not need to achieve the first computation to start the second. In
some ways, our local computations are done "as soon as possible".

304 3". Mazoyer, Computations on one-dimensional cellular automata

Our construction of the composition of functions (fig. 8) induces the con-
struction of a new grid, the right moves of which are the temporal moves of the
second one. Thus, the composition of functions can be summarized by

"Time becomes right space"

But this fact induces that the holes of the second grid are greater than the holes of
the first one and, thus, we must waste time in the second computation. Pursuing the
same idea, if we look at the family of grids of section 4.1, we observe that the size
of the holes is exponential in the number of the grid. Decreasing the simulation time
is a problem similar to obtaining more efficient infinite families of grids on which
the size of holes increase in a polynomial or linear ratio.

5. Moves depending on data

In all the previous sections, we have indicated how to construct a cellular
automaton with moves that do not depend on data. When we allow moves to depend
on data, we may do some computations which are asynchronous. We give two
examples: in the first one, the time of computation may be long; in the second, the
time of communication may be long.

5.1. LONG COMPUTATION TIME

We consider the multiplication given in s~ction 2.3, and we set up a (unnatural
but convenient) time of computation: the needed duration is the carried bit of the
multiplier times the carried bit of the multiplicand plus the carried bit of the partial
sum and plus the bit of the carryover.

The first idea is to use a "time delayed" grid (see fig. 11, part b) in which
a left move (corresponding to the moves of the bits of the partial sum) is made by
a left initial move followed by three initial stationary moves (thus, any computation
has, on a cell, a duration of three units of time).

The second idea is: when signals reach a cell on which computations must
be done (even machines receiving a bit of the multiplier), looking to the carried
values, they wait on this machine until all needed signals have reached it. When
all needed information has arrived, the machine knows if the delay of the local
computation is of 0, 1, 2 or 3 units of time. Thus, it sends to the right and to the
left two signals q~R and eL, freezing the evolution of the line (with the needed time
of computation as data). These signals return to the cell which has created them,
after 0, 1, 2 or 3 units of time. In this case, we observe that the bits of the result
are obtained in an irregular manner. We see that a long computation time does not
imply a delay for all forthcoming computations (for example, in some cases two
delays have the same result as only one). We also observe that the bits of the result
are obtained faster than in the first process.

J. Mazoyer, Computations on one-dimensional cellular automata 305

Par~ a Part b ~ar(c

Fig. 11. Multiplication with long computation time. Part a: the grid
of fig. 4; part b: the time delayed grid; part c: the dynamics grid.

o
-'k

!

g
.g

'x
a

~'

.-1
 ,.
,o

e.
,

m
.

;it,!
}i;i~

ii 2!~
i~!-

,~i~
i~! ~I~

-?I?
-~,~

!~. i i
4.

'

bq
-

.
.

.
.

,

.
'

~
~

/
,

'

-~

N
 .

.
.

.

;'
t

::

";
/-

--
--

N

"
i~

ti

.

-;

or
: .

..
..

..

~ .
..

..
..

..

iT
.7

-.'
i-

.i-
-i

"~
"r

"~
 ..

..
..

7

r~
s"

:
:'

i
:i

7
i"

:

iii
!i

'

' .
...

..
ii

...
..

...
..

i~

!4
1i

.~
.~

.
•

•
r,

i,
~~

-.

_.
,-

.-
7,

E
Z~

I~
7:

~T
T

~:
:

~-
'

~
i

'
"q

!
I~

T~
!-

.4
..

~.
~Z

I~
I~

L.
i

''~
't~

'::

,
,.

,
,

•
~

~
;

!
~,

:

~
'

~
i

•
~

~
"

~
:~

~

'
i~

'

~
I

:
:

~
~

i
~

~
~

~
•

;
~

~
'

~
~

~
~

i
'

~
~

~
i

~
:

-
!

• "T
I'-

'ff

"r
 T

IT
'~

"T

::
~'

'F

~'
Tr

-."

--
r "

~'~
 q"

i '
"

"'r
'1

"q
~'

~c
T

"r
-

"i
'"

i~
T~

+,
,"

!"
rr

!~
fT

~,
-

'?
I~

'~
t"

!
'

"r
"~

"'
b

T'
ri

-i
"i

"1
"~

'1
":

'"
r'

?'
"

f"
~

~"
1"

"r
 '

b1
~q

"1
"+

"r
">

'>
÷"

~
?"

-'T

"t
"f

~

i
"~

"

-~
"'

b"

.e
 ~

r-
-~

'"
,7

"-

 ~
!"

~
,,'

N:
, ~

..
..

..
..

~'

d'
~i

"~

-
""

~
">

'1
I'"

!
"~

..

..
..

..
.

~-
'~

.-
-r

'-!

~-
!-

-
"-

>-
'b

!
..

..
..

..

b.~
.+-

{'..
~.-

.~-
-->

.~
--

~..
r~

-'v
-1

-.
-'~

'r~
i'~

'~,
~'-

>~
-ff

'+'
.I~

-,-
't-

a,
-r-

-~
.-~

,~

-->
'~.

-.;
'-4

-

g, O
',

t-,
,i

t~

J. Mazoyer, Computations on one-dimensional cellular automata 307

How to interpret the last algorithm? One way is to consider that the moves
of signals always occur on a grid, but that this grid is now set up dynamical ly and
depends on the data (see fig. t l , part c).

Clearly, this example leads to some questions. In this example, two freezing
areas never intersect. When such an intersection occurs, we only take the union of
the freezing areas. The important question is: may this method be generalized to
arbitrary complex algorithms?

5.2. LONG COMMUNICATION TIME

We consider the multiplication given in section 2.3, and we set up a time of
communicat ion which is the sum of the carried bits.

The first idea is also to use a "time delayed" grid: right and left space moves
are made by a right (left) initial move followed by two initial stationary moves, the
maximal possible times (see fig. 12, part b).

The second idea is the following. When signals move between two machines
on which a computation must be done (even machines marked by a signal cr carrying
a bit o f the multiplier), they must move at a speed which depends on the carried
data. From a physical point of view, the channel (the wire on which a signal is sent)
corresponding to the involved signal is not available during some units of time. As
usual, we introduce a new signal, indicating that the channel is not available. If the
channel is not available for h times, it must indicate this fact to the signals which
may use this signal in the next h units of time, and thus up to the h cell in the
opposite direction of its move. Thus, we induce a new signal Inhibit with data h
on both sides. When the communicat ion is achieved, a new signal lnhibitEnd is sent
on both sides. The area involved by the signals lnhibit R and InhibitEnd s may be
viewed as a freezing area: all other signals have only temporal moves in this area.
We obserse that the bits of the result are obtained in an irregular manner. We see
that a long time of communicat ion does not imply a delay for all for thcoming
communicat ions (for example, in some cases, two delays have the same result as
only one). We also observe that the bits of the result are obtained faster than in the
first process.

How to interpret the last algorithm? Also in this second case, one way is to
consider that the moves of signals always occur on a grid, but that this grid is now
set up dynamical ly and depends on the data carried by the signals (see fig. 12,
part c). Clearly, this example leads to the same question as in section 5.1.

6. Conclusion

In this paper, we have considered that a cellular automaton is made of basic
bits of information (called signals), which can move in any "direction".

308 J. Mazoyer, Computations on one-dimensional cellular automata

The notion of "direction" is the one introduced by the treillis automata. This
notion allows us to define the moves of the signals on an underlying grid, which
defines all the allowed moves. The interest of this notion of grid is due to the fact
that we can construct one grid F on another, underlying grid F*. All the computations
associated with F are moved onto this new constructed grid.

By this fact, we consider that a computation defined by signals on the usual
treillis is a piece (a "procedure") of computation occurring in some area of the
space-time diagram and we can move and twist this area, putting it in another part
of the space-time diagram (using F*). The main consequence is that it is possible
to define the composition of computations "as soon as possible", the temporal
border of the first computation becoming the right border of the second.

However, all computable functions cannot be defined from a finite set of
basic function and multiplication; we need to use recursive calls (modelized by the
primitive recursion and the minimization). If on a sequential device (a Turing
machine, for instance) this recursive call is done on a single machine (with a
potentially infinite memory), in our framework in which a machine has only a finite
memory, this recursive call is obtained by a (potentially) infinite number of grids.
We use the possibility to put an infinite number of grids in a quarter of the plane
and we may define an infinite family of grids. Using this trick, we may achieve
computations involving primitive recursions and minimizations. Finally, we obtained
the possibility of finding a direct, uniform, computable translation of any recursive
scheme in an automaton computing the same function.

How much does the parallel device (defined by cellular auromata) speed-up
the sequential time of computation? From our point of view, this depends on the
number of recursive calls and on the different infinite family of grids we may
define. In this paper, our infinite family of grids is very expensive: the size of holes
grows exponentially with the index of the grid. We do not know if it is possible
to define an efficient infinite family of grids that grows polynomially with its index.

All previous facts have been set up with a strong constraint: our signals move
carrying some data and this data never interacts with the moves of the signals. Thus,
we must explicitly construct all the grids that may be used in the execution of
the algorithm To construct all these grids requires the prediction of all possible
evolutions of the algorithms on all possible data, and this fact may lose a lot
of time. In the last section, we study examples of the multiplication when the
computational time or the communication time depends on the carried data. The
idea is to associate to any signal some "flag" signals, indicating to the outside that
some area is not available (it is "frozen"). It may be interesting to generalize these
ideas in the general case. From two points of view: first, when both computation
and communication take more than one unit of time; and second, when the needed
time is not known "a priori". From the second point of view, the feature is to
distribute the input one node out of two, which allows us to have signals faster than
the inputs and to send a "freezing" signal killed by a faster "unfreezing" signal.
Such a study remains to be done.

J. Mazoyer, Computat ions on one-dimensional cel lular automata 309

References

[1] A.J. Atrubin, An iterative one-dimensional real-time multiplier. Term Paper for App. Math. 298,
Stanford University (1962).

[2] R. Balzer, An eight-state minimal time solution to the Firing Squad Synchronization Problem,
Inf. and Contr. 10(1967)22-42.

[3] S. Cole, Real-time computation by n-dimensional arrays, IEEE Trans. Comp. 4(1969)349-365.
[4] C. Choffrut and C. Culik II, On real-time cellular automata and trellis automata, Actae

Informaticae (1984) 393-407.
[5] C. Culik II, J. Gruska and A. Salomaa, Systolic treillis automaton (for VLSI), Research Report

CS-81.34, Department of Computer Science, University of Waterloo (198 l).
[6] C. Culik II, Variation of the Firing Squad Synchronization Problem, Inf. Proc. Lett. (1989)

152-157.
[7] C. Dyer, One-way bounded cellular automata, Inf. and Contr. 44(1980)54-69.
[8] P.C. Fisher, Generation on primes by a one-dimensional real-time iterative array, J. ACM

12(1965)388-394.
[9] J. Mazoyer, A six-state minimal time solution to the Fring Squad Synchronization Problem,

Theor. Comp. Sci. 50(1987)183-238.
[10] J. Mazoyer, Computations on one-dimensional cellular automaton: Extended version, Preprint

(1993).
[11] J. Mazoyer and V. Terrier, Signals on one-dimensional cellular automata, Preprint.
[12] N. Reimen and J. Mazoyer, A linear speed-up theorem for cellular automata, Theor. Comp. Sci.

101(1992)59-98.
[13] A.R. Smith, Cellular automata theory, Technical Report 2, Stanford University (1960).
[14] A.R. Smith, Real time language recognition by one-dimensional cellular automata, J. ACM

6(1972)233-235.
[15] M. Minsky, Finite and Infinite Machines (Prentice-Hall, 1967) pp. 28-29.
[16] R. Prters, Recursive Functions (Akadrmiai Kiad6, Budapest, 1967).
[17] A. Waksman, An optimal solution to the Firing Squad Synchronization Problem, Inf. and Contr.

9(1966)66-87.

