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Cellular automata may be viewed as a modelization of synchronous parallel 
computation. Even in the one-dimensional case, they are known as capable of universal 
computations. The usual proof uses a simulation of a universal Turing machine. In this 
paper, we present how a one-dimensional cellular automata can simulate any recursive 
function in such a way that composition of computations occurs as soon as possible. 
In addition, this allows us to show that one-dimensional cellular automata may simulate 
asynchronous computations. 

1. Introduct ion 

For a long time, one-dimensional  cellular automata have been known as 
being capable of computations.  They can simulate any Turing machine [13], but 
s imulat ion on a parallel device loses the speed-up induced by parallelism. Various 

authors have given nice full-parallel algorithms on one-dimensional  cellular  auto- 

mata [8] and have studied the computational  power of such a network [3]. In fact, 
cellular  automata have essentially been studied as language recognizers. Comput ing  
funct ions on cellular  automata induces a definition of how inputs and outputs occur 
[10]. In this paper, we do not deal with these questions on inputs and outputs. We 
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always assume that inputs are given to the network on the first diagonal and that 
outputs occur on the first cell of  a semi-infinite line. Giving inputs on the first 
diagonal is not usual, but in [10], we show that the two usual cases (inputs externally 
distributed on cells at the initial time, and inputs given sequentially to the first cell) 
can be quickly reduced to our choice. 

In this paper, we aim to define computat ions on one-dimensional cellular 
automata in an intrinsic way. Let us first observe how authors set-up cellular 
automata which have a given computational behavior: 

(i) First, they define elementary bits of  information (usually the inputs). 

(ii) Then, these bits of  information are moved, via the informal notion of  signal, 
in such a way that meaningful bits meet themselves in order to generate new 
meaningful bits (synchronization problems). 

(iii) Such previous processes are repeated so as to obtain outputs. This repetition 
may be a recursive call to the same process or the initiation o f  a new process. 

To define elementary meaningful bits of  information and their moves,  we 
need to construct the algorithm itself. In this paper, we define a framework in which 
the previous construction can easily be done. In particular, we emphasize the notion 
of  signal. Informally, a signal is a state or a bounded set of  states. We take "signal" 
as a basic notion (a meaningful bit of  information) and we define the notion o f  state 
as a particular signal. This corresponds to the following point of  view: in a cellular 
automata, we emphasize what is communicated by the wires and not what is in the 
memory of the cells. 

In this paper, we present how to use this notion of  signal in order to move 
computat ions on the space-time diagram of a cellular automaton, to compose  
computations,  and hence to show that any recursive function may be computed "as 

soon as possible". 

2. Computations by signals 

2.1. SIGNALS 

A one-dimensional cellular automaton is a semi-infinite line of  finite automata 
which interacts. At each unit of  time, the cellular automaton, located on cell j, has 
a state (an element of  a finite set Z), it knows the states of  its two neighbors, located 
on cells j -  1 and j + 1, and it computes its new state. Thus, a cellular automaton 
is only formalized as a finite automaton (E, •) when ~:  Z3---> Z is the state 
transition function. The parallel character of  the device is induced by the notion o f  
configuration which is the set of  all states of  a half line of  automata at some time 
t (a mapping Ct : 9V ~ ~); then the evolution of  this parallel device is due to the 
global function G, which sets up a new configuration from an older one: Ct+l(n)  

= ~(C,(n  - 1), C,(n) ,  C,(n + 1)). 
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Now let us introduce our notion of  signal: During the evolution, a cell receives 
some information from its two neighbors. We can, usually, make a difference 
between the state o f  a cell (element of  E) and what it sends (element of  E). If  we 
consider that a cell has no more state but sends to itself the set of  meaningful 
information, our definition of  the state transition function becomes an application 
of  .,z,3 into ~3 in which we distinguish the information sent to the three possible cells 
(included itself). 

The information sent is made up of  various elementary bits of  information. 
We distinguish one part which is the data, computed with the algorithm from the 
part which controls the execution of  the algorithm. In some way, we distinguish the 
code from the data. 

But what may be the (local) code on a line of  automata? Looking at a cell 
as a small processor, we consider that the code indicates the next cell to which 
to send data. In order to construct small and procedural pieces of  code, we 
consider that the information sent may be split into smaller (locally) irreducible 
parts called signals. In this way, the previous set E becomes a set of  signals 
~, = { ( ~ i ,  di) : i E {0 ..... k} and d i ~ D }  (where D is a finite set). We look at ~i as 
the code and di as the associated data. 

Now what may happen on a cell? Our finite automata receives from itself and 
its two neighbors three subsets of  E and it constructs a new subset of  E. We consider 
that for each signal (~i, di), a method to compute the new signal (~i, di) sent to the 
cell itself (denoted by St) is attached to our device, to its left neighbor (denoted by 
L) and to its right neighbor (denoted by R). Hence, we can replace the state transition 
function by 3 x k new ones: f/" indicates if the signal, numbered i, is sent to the 
cell indicated by m, in {St, L, R}, and what data is associated to it. Formally, f/m 
is an application of  E k+13 into ({0, 1} x D); the value of  {0, 1} indicates if the 
signal is sent to some cell and the elements of  D correspond to the associated data. 
If  we suppose that each signal can occur at any time on any cell, the value of  the 
first component  of  the functions ~m indicates if it is really present. We may view 
this set o f  functions j~" as the global code of  our finite automaton itself. 

Another  question arises: do the values of  the data modify the moves? We 
distinguish the two cases. If  not, we say that we have a cellular automaton with 
moves independent of  data. 

To show the evolution of  a cellular automaton, we use a space-time diagram. 
On a quadrant of  plan, the point with coordinates (n, t) represents the cell n at time 
t and we join (n, t) to ( n -  1, t + 1) or (n, t + 1) or (n + 1, t + 1) by lines indicating 
if a signal is sent and what is the carried data. We call a "threadlike signal" a signal 
that we may visualize as a wire in the space-time diagram. This leads us to the 
following definition: 

DEFINITION 2.1 

(1) A cellular automaton (defined by signals) A is 
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t f L  [,St f R .  { O , k , , j i  , J i  , J i  , i lO . . . . .  k i l l  

with 

• D = {d o ... . .  de} is a finite set of  elements (called data), 

• k is an integer, 
• ~'L t:St leR J~ ,Ji ,Ji are the left, stationary and right transition functions associated 

to the ith signal. They are functions of  ({0, 1} × D )  ~+1~ into ({0, 1} × D). 

(2) A line of  automata (defined by signals) £ .a  is made of  . ~  copies of  the 
automaton A .  A configuration C of  a line £ A  is an application of  :TV into 
({0, 1} ×D)  k+13. 
The image of  n by C is denoted by (CL(n), Cst(n), CR(n)). 

(3) From a configuration C, we get another configuration C* by the global function 
G defined (for rn E {L, St, R}) by: 

if n sO,  G(C)m(n) = {fim(CL(rt - 1), Cst(n), CR(n + 1))), 
if n = 0, G(C)m(O) = {3~r"({0, Cs,(O), CR(1))}. 

In addition, f0 ~ is always (1, do); we identify the signal labeled 0 as the 
quiescent  signal which always occurs but is never  significant (do is the 
quiescent data). 

(4) Thus,  a line £ .a  evolves in discrete times, f rom the initial configurat ion Co 
(at t ime 0) to another one Ct (at t ime t) by Co+1 = Co. 

(5) When all the functions f/m are a couple (ari m, fii m) with: 

ai m : ({0, 1 }) k+13 ---> {0, 1 }, 

•i m " D ~+1~ ---> D, 

we say that moves  do not depend on data. In this case, we may express the 
function cr as a Boolean formula using the variables ira, indicating if a cell 
receives the ith signal from itself or one of  its neighbors.  

(6) The signal i 0 is threadlike if only one of the first components  of  the fi[~ has 
value 1. 

2.2. COMPUTATIONS 

Now we deal with the notion of  computat ions.  Formaliz ing the computat ions  
of  functions on a parallel device is not simple. For cellular automata,  in the literature 
we may find two ways to give inputs to the device. The first one dist inguishes a 
cell and data is given sequentially (at each time step) to this particular cell (see [3]). 
In the second one, at t ime 0 we distribute inputs on the cells; this may be seen as 
parallel inputs. In [10], we have shown that in the two cases we may obtain the 
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same states on the diagonal (cells n at time n). We can arbitrarily choose that our 
inputs will be given on this diagonal. In our model, a label (a number) and some 
associated data are given by a complete signal. 

Defining where are the outputs is a little more complicated. We briefly recall 
some kinds of outputs. First, they can appear on a distinguished cell at successive 
times and this leads us to sequential outputs. Second, they can appear, at a fixed 
time, on all active cells and this is called parallel outputs; in this case, cells may 
or may not know that the computation is achieved. Sequential outputs are interesting 
if our device communicates with a sequential "outside", while parallel outputs are 
concerned with composition of parallel devices. We decide to consider sequential 
outputs. Since we have defined signals as (local) code and data, we add to the inputs 
the information needed to set-up the (local) code. This leads us to the following 
definition: 

DEFINITION 2.2 

Let S be a finite alphabet and f a partial function of S* into S*, a cellular 
automaton {D, k, { f/L,j~St,fiR; i E {0 ..... k}} } (defined by signal) with S C D, com- 
putes f if there exists an application (by of 5V into ({0 1 } × D) k÷l such that whatever 

,~ = x0 ...Xl~l+t in S* is: 

• Vi E {0,...,k}, Vn ~5~f, if i ¢ 1, then the ith component of Of(n) has value 
0 in its second component. In other words, signals set up by 4~f and indexed 
by a value other than 1 carry no data. 

• The data value associated to the j th integer nj, for which the first component 
of  the 1 st component of Oy(nj) is 1, is xj. In other words, the signal numbered 
1 carries the input (the j th input is the data associated to the j th  signal 1 
which starts from the diagonal). 

• We denote f ( ~ )  by Y0 .... Ym- Starting with an initial configuration evolving 
such that, Vn ~ _7~f, C~(n)R is q~f(n), the j th  signal, numbered by 1, appearing 
in a Ct(O) (its first component is I) has yj as associated data. 

2.3. AN EXAMPLE: MULTIPLICATION 

In order to illustrate the two previous definitions, we give an algorithm to 
compute the multiplication of two integers using a cellular automaton with moves 
independent of data. 

We use the usual human algorithm with number written in base 2. An example 
is depicted in fig. 1: numbers are written the most significant bit in first (at the left 
end) and a special mark * is used to indicate the end of the word. We execute 
products of the multiplier by successive bits of the multiplicand (the results is either 
0 (if the bit is 0) or the multiplier itself (if the bit is 1)); we shift these partial 
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Fig. 1. A human multiplication. 

products one position to the left per multiplicand bit. If  the usual human algorithm 
carries out only one sum with as many factors as there are bits in the multiplicand, 
then we execute one addition (between the current partial sum and the n e w  factors) 
per bit of  the multiplicand. The final result is the partial sum of  the last line. 

Let  a0 + a t 2  L + ... + ai 2i + . . .  + ap2 p and b0 + b121 + ... + b j2  j + ...  + aq2 q be 
the multiplier and the multiplicand, the j th  partial sum is c0,j + Cl,j21 + ... + cl~;j2 k + 

. . .  + cp+j, j2 p+j, with 

Ck,j+ 1 = Ck, j + b ja; :+j  + r k _ l , j + l ,  (1) 

where ra, # is the remainder of co~ by 2. 
We choose the following inputs (they allow more readable figures), inter- 

living strings with odd cells for the multpticand and even cells for the multiplier: 
the jth bit of the multiplicand is given to the cell 2j + 1 at time 2j + 1 and the ith 
bit of the multiplier is given to the cell 2i + 2 and time 2i + 2. We easily obtain a 
cellular automaton in which inputs are given on sites of the diagonal by grouping 
cells two by two. 

The feaure of the algorithm (illustrated in fig. 2) is the following: 

• bits of the multiplier always remain on their initial cell; 
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Fig. 2. Moves of bits in a multiplication. 

• bits o f  the multiplicand are first sent at maximal  speed (one  cell  per unit o f  
t ime) to the left and, after their meeting with cell 0, they return to the right 
at maximal  speed. 

In this way,  the j th  bit o f  the multiplicand moves  (to the left) a long the 
diagonal  /)j, with /)j = {(k, 2(2j + 1) - k); k ~ {2j + 1 . . . . .  0} }. Then it returns (to 
the right) a long the diagonal  Dj ,  with /3j = {(k, 2(2j  + j )  + k); k > 0}.  On this 
diagonal  Dj ,  it meets  the ith bit o f  the multiplier on the site (2(i + 1), 2(i + 1) 
+ 2(2i  + 1)). On this site, it computes  the values defined in (1), sending Ci, j to the 
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Fig. 3. Computations done on one cell 
out of two, one unit of time out of two. 

site (2(i - 1), 2(i + 2) + 2(2i + 3)) via the left diagonal Dj (and we obtain the left 
unit shift). This process is initialized: the cell 0 always sends the bit 0 to the sites 
(1, 1 + 2j) (with j > 2) as the value of  t_t,j. Figure 3 illustrates the computat ion 
done on such a site. 

Looking at fig. 2, we observe that two (local) codes are needed, corresponding 
to the moves of  the bits of  the multiplier and of  the multiplicand. We add two 
others, corresponding to the first diagonal and to the first cell. The functions ty/" 
o f  definition 2.2 become: 

• Moves o f  the quiescent signal. On all inputs, Vm E {L, St, R}, cry' = 1. The 
quiescent signal is always present. 

• Moves o f  the "first diagonal" signal. If  the signal indicating the first diagonal 
comes from the left neighbor, it is sent to the right neighbor. Thus, on all 
inputs, we have a ~  = 0 and o "st = 0. But a(( (go  ..... g4), (So ..... s4), (ro ..... r4)) 
= 1 ¢=~gl = 1. 

• Moves o f  the "`first cell" signal. If  the signal indicating the first cell is on 
a cell, it remains on this cell. Thus, on all inputs, we have o'~ = 0 and cr~ = 0. 
But o'st((go ..... G),  (so ..... s4), (ro .. . . .  r4)) = 1 ¢:* sz = 1. 
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• Moves o f  the "multiplier" signal. If  the signal indicating the bits of  the 
multiplier is on a cell, it remains on this cell. Thus, on all inputs cr~ = 0 and 
o'~ = 0. But crSt((go ..... e4), (So ..... s4), (r0 ..... r4)) = 1 ¢=~ s 3 = 1. 

• Moves o f  the "multiplicand" signal. If  the signal indicating the bits of  the 
multiplicand reaches a cell coming from one of  its neighbors, it is sent to the 
other neighbor, except on the first cell. The first cell is indicated by the signal 
labeled 2 and the multiplicand signal is reflected on this cell. Thus, on all 
inputs o "st = 0. But o'4g((e0 . . . . .  e 4 )  , (S  O . . . . .  $ 4 )  , (r 0 ..... r4)) = 1 ¢:> r 4 = I A S 2 = 0. 
And cr4R((go ..... g4), (So ..... s4), (ro ..... r4)) = 1 e:~ (g4 = 1 A s2 = 0) V (r4 = 1 A 
s2 = 1). 

In order to define the functions Si m, we use the computations shown in fig. 3. 
Thus, we consider that the data is a couple. The data associated to the "multiplier" 
signal is (]3, 0), where 13 is a bit of  the multiplier. The data associated to the 
"mult ipl icand" signal is a couple (a,  A), where a is a bit of  the multiplier and A 
is a carry over if the data is carried to the right, a bit of  the partial sum else. The 
new values of  A are given by the formulas of fig. 3. In order to indicate the end 
of  the input word, the alphabet used for the values of a, 13 and A is {0, 1, *}. 

The initial configuration is such that, on the inputs ao... ap and bo... bq, the 

fol lowing signals appear: 

• At Co(0), only cro ~, or( and O "st have value 1 with data 0. 

• At Cl +2h(1 + 2h) (h ~ {0 ..... p}), or4 L = 1 with data (ah, *) (* is used to indicate 
the lack of  information). At C3+2p(3 + 2p), or4 L = 1 with data (*, *). 

• At C3h(h ) (h E {0 . . . . .  q}), O "st = 1 with data (bh, *). At C 2 + 2 q ( 2  + 2q), cr sT = 1 

with data (*, *). 

The evolution on such a line is depicted in fig. 4. We observe that the outputs 
defined by the second component  of  the data of  signal 4 reach the first cell one unit 
of  time out of  four (this is due to the fact that the bits of the multiplicand are given, 

on the diagonal,  one cell out of  two). 

3. Gr ids  

3.1. MOVES 

In the previous section, we have expressed the possible moves by "go to the 
right neighbor",  "go to the left neighbor", or "stay on the cell". As previously 
remarked by Culik [4] and Gruska [5], two moves only are needed: the right and 
left ones; the stationary o n e m a y  be expressed by a right one followed by a left one. 
Any computat ion occurs on such a grid (see, for instance, fig. 4). If  we define 
another grid, and define the computation as occurring on this new grid, we obtain 
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Fig. 4, Multiplying 110011 by 10110. 

the same computat ion but on another area o f  the space-t ime diagram. This  trick 
a l lows  us to m o v e  the computat ional  area in the space-t ime diagram. 

The first point is to define a new grid (or a new half  grid). Figure 5 shows  
a new grid with regularly distributed holes  (non-meaningful  cells).  In order to 
define a new grid, we  forget that a cell  may send information to itself; thus, in 
definit ion 2.1 we  suppress the function f/st. We distinguish two signals,  numbered 
by i ~  and i ~ ,  corresponding to the right and left moves .  We define the evolut ion 
o f  these two  signals i_, (i~_) in such a way that a left m o v e  of  i~  immediate ly  
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Fig. 5. A regularly twisted grid. 

follows a right one, and we consider that a right move, followed by a left one, is 
a stationary move of  i~ on the initial grid (a left one followed by a right one is 
a stationary move for i~_). If  we want to obtain a half grid, we send from the origin 
a signal iT which is only (new) temporal moves (a right move followed by a left 
one) and its marks the "middle" of  the grid. Clearly, this process may be iterated; 
the two signals i~ and i~  may be viewed as the basic signals of  the initial grid. 
This notion of  a grid is not easy to formalize. A complete description is given 
in [I0].  I f  moves depend on data, the best way is to define the data associated with 
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i .  and i~  as a couple, the first component  of  which is understood as the states of  
a finite automaton. In the other case, we replace the signals i .  and i~  by a finite 
set of  signals. In this paper, we only give an example. 

3.2. AN EXAMPLE 

As an example, we define the following grid: we use signals 0 (the quiescent 
one), 1 (the "first diagonal"), 2 (the "first cell"), ---)t (the first move of  the "right 
move"  signal), ----)2 (the second move of  the "right move" signal), --)3 (the third 
move of  the "right move"  signal), ~-- (the move of  the "left signal"), and 1" 1, 1" 2, 
"1"3, $4 (the new "stationary signal"). 

• Signals 0, 1 and 2 are defined as in section 2.3. 

• The signal ~-- is defined by cr~ = 0 and cr~((g  o . . . . .  & ) ,  (ro . . . . .  rT))  = 1 ¢ ~  

( r~  V el) /X -~r L. That is to say that the signal +-- is created on all sites of  
the diagonal and then always goes to the left until it meets the signal "['. Thus, 
the signal "left move" is in fact the initial left move. 

• The signals indicating the right moves are defined by 

cr L = 0 and 
-"~1 
R 

°'--*L((go ..... &4)' (ro ..... rT4)) = 1 ¢~ r L V r~3. 

o'L2 = 0 and 
R 

Cr~2((g 0 ..... g1"4), (r 0 ..... rT4) ) = 1 ¢=;, g.---~l • 

R cr_~ 3 = 0 and 
L 

O'~3((go ..... &'4)' (r0 ..... rL))  = 1 ¢:¢, g~2. 

Thus, a right move is created on the temporal move of  the first cell and then 
one new right move is made of  two initial right moves followed by a left one. 

• The signals indicating "stationary moves"  is the "concatenat ion" of  signals 

-")1,  - '-)2, -" )3 ,  ~ " "  

If  we put the algorithm of  the multiplication defined in section 2.3 on this 
new grid, we obtain the exchange of  information of  fig. 6. 

3.3. 

facts 

I. 

HOW TO CONSTRUCT GRIDS 

In [10], we study how to construct a new grid from an older one. The main 
are the following: 

If  the new grid is regular (all its new right and left moves are the same up 
to a translation), it is always possible to construct it and also to construct its 
right half part. This construction of  a new hole involves only six signals 
(indicating is the new right (left) move use a right (left), stationary move or 
corresponds to a wire of  the new grid). 
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Fig. 6. Computing a multiplication 
with the outputs on the line A(0.~ I. 

I ~J 1 n r l l r  
mu~lpU~ 

ii . . . . . . . . . .  

I l~t "n*d" or 
U~ ~ula~r 

~L,  | ,,r ,|~ 
m,~l~tl,tl,- ~ ,1 

g l l  I g iffl$~ 
~olll ialleild 

Bltm I l t J l r ~ d t  

~ , ~ d a  a r  

. 

. 

Sometimes (in fact, in the general case) it is possible to define new grids that 
are not regular. The interesting case is when the left move  consists only of  
previous left moves.  And in this case (with few extra conditions), it is possible 
to construct the new half grid only from indications given on the first new 
right wire, the construction involving only the area of  the new half grid. 

There exist not regular but recursive grids that are impossible to construct 
within this area. 

All these constructions are long and tedious: they involve technical use o f  the 
notion of  signal (see [10l). 
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Fig. 7. Computing a multiplication 
with the inputs on the line A{o ,~). 

l+It, I , , r u t  
m ult l l , l+r 

Ish+ + + ,+a+  
m+l+l+,++ 

l i t  mult l l l l l+ 

mu l l +U~ l  

Rlt ,  • . ' t  l l r  
mull lpl l4 .m~ 

BII -~ l . l -  ,+I 
l i t  Wul l l l lUc~l  

lal,. o b ,~ .~h  
t t f , , u d a  I I .  

3.4. GRIDS AND COMPOSITION OF COMPUTATIONS 

In fig. 7, we  show the algorithm of  the multiplication o f  section 2.3, in which 
w e  have indentified the multiplicand and the multiplier in order to get the square 
function on another grid: the new left m o v e  is the initial one; the new right one is 
made of  an initial right move ,  and initial right move ,  an initial left move ,  an initial 
right m o v e  and an initial left move.  This new right move  corresponds to a stationary 
m o v e  of  the grid of  section 3.2 and is shown in fig. 6. If  we put figs. 6 and 7 in 
the same picture, we  obtain fig. 8, and we see that the new cellular automaton 
computes  the function (a, b) --> (ab) 2. 
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Fig. 8. Computing (ab) z. 

BI0m I . t O ~  
~alqlpU~ 

BI~ m , r U ~  

~ mulapl~-r 

l~t,  I ,+t+tr 
m~+ip~wml 

mull ipl+ mid 

DII " . l i p '  ul + 
i1+ m ul f l~ lemd 

+.m(.+,¢+i~+, 

Bil l  u bltrm+14 
I(+.~I~+( il+ 

Bil l  I l l l l pm+ l  
l l ~ , l  l l r i  I l l  

This can be generalized: to obtain the composition of  the computations of  two 
functions, it is sufficient to move the computation of  the first one on a grid between 
the diagonal and another line (made from the stationary moves of the first cell) and 
to move  the computation of  the second one on a new grid (the initial right wire, 
corresponding to the diagonal is the stationary wire of the first one and its stationary 
moves are the initial ones). Outputs of  the first computation become inputs of  the 
second one. Thus, roughly speaking, to compose functions is to consider that 
stationary moves become right ones. 

In addition, the two examples of  figs. 6 and 7 show that we may put the 
computation in any area of  the space-time diagram (between two rational lines). 
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4. Infinite families of grids 

4.1. A CONSTRUCTION 

In the previous sectiom, we have indicated that we were able to construct  new 
grids and to put them in any "rational" place on the space-t ime diagram. The last 
example  shows that it is possible  to put a finite number  of  them in such a way that 
they correspond to a finite number  of  composi t ions.  

Here,  we aim to construct  an infinite number  of  such grids in order to achieve  
new computat ions  in which the number  of  steps is induced by the inputs. How to 
construct  such a family of  grids using only a finite number  of  signals is not 
obvious.  Fortunately, in the studies of  the Firing Squad Synchronizat ion Problem 
(see [2,9, t7],  for instance), infinite families of  lines have been set up. We use this 
method to set up infinite families of  grids. In this paper, we only give one example ,  
that o f  fig. 9. 

We describe the exchange of  signals, setting up the family Fn~ N,  of  fig. 9. 
The left space move of the nth grid is the initial left move.  The initial right space 
move  of  the first grid Fl is made by two initial right moves.  In this way, we obtain 
a stationary move for grid FI, which is made of  a (initial) left move  fol lowed by 
two right ones. Then the right space move of  grid F 2 is made by two stationary 
moves  of  grid Fi ; thus, the stationary move  of  grid Fz is made by three t imes a right 
(initial) move  fol lowed by a left (initial) one, all fol lowed by a right (initial) one. 
Repeat ing this process (a right move  of  Fn+l is made by two stationary moves  of  
Fn), we obtain an infinite family of  grids. The right move  of  the nth grid is made 
by 2 n - 1 initial right and left moves,  fol lowed by an initial right move.  

The main idea to set up such a family of  grids with a finite number  of  signals 
is to send special signals which indicate to the signals setting up the nth right move  
to finish their move  by an initial right move.  These special signals are created on 
any point o f  the diagonal and run at maximal  speed to the left. The signal "first cell" 
o f  a grid suppresses one out of  two of them. 

4.2. AN EXAMPLE: EXPONENTIATION 

In order to illustrate the previous construction, we describe how to compute  
the exponentiat ion.  

We write x and y in binary in basis 2. Let x be ao + 2aj  + 22a2 + . . .  + 2hah 

and y be bo + 2bl + 22b2+ ...  + 2kbk, we use the usual algorithm, writing x y as 
i=k X 2i+1 l"I i=0 p(b l ,  ), where p ( a ,  ]3) is ]3 if a is 1, 1 else. We denote the value of 

'I =j X 2i by zcj. 
i=0 

Thus, we must make 2k multiplications: 

• computat ion of  x 2~+~, which is x 2j*' x x 2~*', 

• computat ion of  rcj+ I, which is ~rj if bj+j = 0  or tcjx x 2j*~ if bj+j = 1. 
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/ ~ , " / /  Pdghl space moves .~ 0 O @ Nodes 

"\-,,~'N.~ Left space moves 0 '0" ~' @, Impact sites 

""...... Signals T "., Signals setting up the (1,1)-th node 

Fig. 9. Setting up an infinite family of regular safe 
grids (the darkness of the grid indicates its rank). 
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Fig. 10. Areas of computation of exponentiation: the 
nth area corresponds to the computation of the values 
of the nth vatues of r/and rein the sequential algorithm, 

We observe that we need only one recurrence with k steps and, at most, two 
multiplications by step. The sequential algorithm is: 

Yg:= X; 

r/ :=x ;  

f o r j : = l  to k d o  

begin 

T1:= rl x rl ; 

i f  bj = I t h e n  ~ : =  g x  7/; 

e n d .  
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On our infinite family of grids, we put the computation of the nth values of 
r /and Jr on the nth grid. We ~ive the inputs as in the example of section 2.3. It is 
easy to obtain the values o f x  2 : we start with x as the input on grid F~ and compute 
x 2 on FI; the result is the input of grid F 2 on which is computed x 22 and so on. 
Computing the values of rcj+l is a little more complex; we need to multiply rcj by 

j + !  . . . . .  

1 or x z on the g n d j  + 1. So we start the computation on grld F2, and grid F~ only 
sends x as output. In order to compute zrj (on ~+i) ,  all the signals involved in grid 
Fj+I must know the value of bj (choice between the two possible multiplications). 
Giving the value of bj to the signals involved in Fj+ i is a little complicated. The 
idea is to distinguish the first right wire of the grids; and, then, on any grid, bits 
bj make a left move followed by stationary moves until they reach the "first cell" 
signal of the next grid. In this way, all the bits bj move one cell to the left per grid 
and the first bit met by the first right wire of a grid gives the needed value bj, 
needed by the whole grid. 

To achieve the previous process, we mark the second cell (numbered 1 by a 
signal which has only stationary initial moves; and, when a first right wire of a grid 
does not meet any bit (of y) on this cell (but the symbol * ending the input word), 
it stops the process of construction of the family of grids and the least computed 
value zr k is sent to the first send among all points of this initial wire. 

4.3. CONSEQUENCES 

The previous computation (we observe that the moves may be viewed as 
independent of  data if we introduce new data indicating that the proces is achieved) 
is in fact an example of the computation of a function defined by primitive recursion. 
In [10], we proved the following theorem: 

THEOREM 4.1 

Any recursive function is computable ("as soon as possible") by a cellular 
automaton defined by signals with moves which do not depend on the carried data. 

In this theorem, "as soon as possible" means that a new computation starts 
as soon as all the needed data have been computed as in the example of fig. 8. The 
proof is long and tedious, and quite similar to the example of section 4.2. The only 
tricky point is to define how inputs of a function with several variables are given 
and then to reorder these inputs. 

We now make some comments. Cellular automata are ("synchronous?") 
parallel devices. But the definition of recursive functions by composition, primitive 
recursion and minimization is basically sequential: the two schemes of primitive 
recursion and of minimization are sequences of the first one: the composition. By 
our implementation of the  composition, we do not need synchronization; more 
precisely, we do not need to achieve the first computation to start the second. In 
some ways, our local computations are done "as soon as possible". 
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Our construction of the composition of functions (fig. 8) induces the con- 
struction of a new grid, the right moves of which are the temporal moves of the 
second one. Thus, the composition of functions can be summarized by 

"Time becomes right space" 

But this fact induces that the holes of the second grid are greater than the holes of 
the first one and, thus, we must waste time in the second computation. Pursuing the 
same idea, if we look at the family of grids of section 4.1, we observe that the size 
of  the holes is exponential in the number of the grid. Decreasing the simulation time 
is a problem similar to obtaining more efficient infinite families of grids on which 
the size of holes increase in a polynomial or linear ratio. 

5. Moves depending on data 

In all the previous sections, we have indicated how to construct a cellular 
automaton with moves that do not depend on data. When we allow moves to depend 
on data, we may do some computations which are asynchronous. We give two 
examples: in the first one, the time of computation may be long; in the second, the 
time of communication may be long. 

5.1. LONG COMPUTATION TIME 

We consider the multiplication given in s~ction 2.3, and we set up a (unnatural 
but convenient) time of computation: the needed duration is the carried bit of  the 
multiplier times the carried bit of  the multiplicand plus the carried bit of the partial 
sum and plus the bit of the carryover. 

The first idea is to use a "time delayed" grid (see fig. 11, part b) in which 
a left move (corresponding to the moves of the bits of the partial sum) is made by 
a left initial move followed by three initial stationary moves (thus, any computation 
has, on a cell, a duration of three units of time). 

The second idea is: when signals reach a cell on which computations must 
be done (even machines receiving a bit of the multiplier), looking to the carried 
values, they wait on this machine until all needed signals have reached it. When 
all needed information has arrived, the machine knows if the delay of the local 
computation is of 0, 1, 2 or 3 units of time. Thus, it sends to the right and to the 
left two signals q~R and eL, freezing the evolution of the line (with the needed time 
of computation as data). These signals return to the cell which has created them, 
after 0, 1, 2 or 3 units of time. In this case, we observe that the bits of the result 
are obtained in an irregular manner. We see that a long computation time does not 
imply a delay for all forthcoming computations (for example, in some cases two 
delays have the same result as only one). We also observe that the bits of the result 
are obtained faster than in the first process. 
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Par~ a Part b ~ar( c 

Fig. 11. Multiplication with long computation time. Part a: the grid 
of fig. 4; part b: the time delayed grid; part c: the dynamics grid. 
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How to interpret the last algorithm? One way is to consider that the moves 
of  signals always occur on a grid, but that this grid is now set up dynamical ly and 
depends on the data (see fig. t l ,  part c). 

Clearly, this example leads to some questions. In this example, two freezing 
areas never intersect. When such an intersection occurs, we only take the union of  
the freezing areas. The important question is: may this method be generalized to 
arbitrary complex algorithms? 

5.2. LONG COMMUNICATION TIME 

We consider the multiplication given in section 2.3, and we set up a time of  
communicat ion which is the sum of  the carried bits. 

The first idea is also to use a "time delayed" grid: right and left space moves 
are made by a right (left) initial move followed by two initial stationary moves, the 
maximal possible times (see fig. 12, part b). 

The second idea is the following. When signals move between two machines 
on which a computation must be done (even machines marked by a signal cr carrying 
a bit o f  the multiplier), they must move at a speed which depends on the carried 
data. From a physical point of  view, the channel (the wire on which a signal is sent) 
corresponding to the involved signal is not available during some units of  time. As 
usual, we introduce a new signal, indicating that the channel is not available. If  the 
channel is not available for h times, it must indicate this fact to the signals which 
may use this signal in the next h units of  time, and thus up to the h cell in the 
opposite direction of  its move. Thus, we induce a new signal Inhibit with data h 
on both sides. When the communicat ion is achieved, a new signal lnhibitEnd is sent 
on both sides. The area involved by the signals lnhibit R and InhibitEnd s may be 
viewed as a freezing area: all other signals have only temporal moves in this area. 
We obserse that the bits of  the result are obtained in an irregular manner. We see 
that a long time of  communicat ion does not imply a delay for all for thcoming 
communicat ions  (for example, in some cases, two delays have the same result as 
only one). We also observe that the bits of  the result are obtained faster than in the 
first process. 

How to interpret the last algorithm? Also in this second case, one way is to 
consider that the moves of  signals always occur on a grid, but that this grid is now 
set up dynamical ly and depends on the data carried by the signals (see fig. 12, 
part c). Clearly, this example leads to the same question as in section 5.1. 

6. Conclusion 

In this paper, we have considered that a cellular automaton is made of basic 
bits of  information (called signals), which can move in any "direction". 
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The notion of "direction" is the one introduced by the treillis automata. This 
notion allows us to define the moves of the signals on an underlying grid, which 
defines all the allowed moves. The interest of this notion of grid is due to the fact 
that we can construct one grid F on another, underlying grid F*. All the computations 
associated with F are moved onto this new constructed grid. 

By this fact, we consider that a computation defined by signals on the usual 
treillis is a piece (a "procedure") of computation occurring in some area of the 
space-time diagram and we can move and twist this area, putting it in another part 
of the space-time diagram (using F*). The main consequence is that it is possible 
to define the composition of computations "as soon as possible", the temporal 
border of the first computation becoming the right border of  the second. 

However, all computable functions cannot be defined from a finite set of 
basic function and multiplication; we need to use recursive calls (modelized by the 
primitive recursion and the minimization). If on a sequential device (a Turing 
machine, for instance) this recursive call is done on a single machine (with a 
potentially infinite memory), in our framework in which a machine has only a finite 
memory, this recursive call is obtained by a (potentially) infinite number of grids. 
We use the possibility to put an infinite number of grids in a quarter of the plane 
and we may define an infinite family of grids. Using this trick, we may achieve 
computations involving primitive recursions and minimizations. Finally, we obtained 
the possibility of finding a direct, uniform, computable translation of any recursive 
scheme in an automaton computing the same function. 

How much does the parallel device (defined by cellular auromata) speed-up 
the sequential time of computation? From our point of view, this depends on the 
number of recursive calls and on the different infinite family of grids we may 
define. In this paper, our infinite family of grids is very expensive: the size of holes 
grows exponentially with the index of the grid. We do not know if it is possible 
to define an efficient infinite family of grids that grows polynomially with its index. 

All previous facts have been set up with a strong constraint: our signals move 
carrying some data and this data never interacts with the moves of the signals. Thus, 
we must explicitly construct all the grids that may be used in the execution of 
the algorithm To construct all these grids requires the prediction of all possible 
evolutions of the algorithms on all possible data, and this fact may lose a lot 
of time. In the last section, we study examples of the multiplication when the 
computational time or the communication time depends on the carried data. The 
idea is to associate to any signal some "flag" signals, indicating to the outside that 
some area is not available (it is "frozen"). It may be interesting to generalize these 
ideas in the general case. From two points of view: first, when both computation 
and communication take more than one unit of time; and second, when the needed 
time is not known "a priori". From the second point of view, the feature is to 
distribute the input one node out of two, which allows us to have signals faster than 
the inputs and to send a "freezing" signal killed by a faster "unfreezing" signal. 
Such a study remains to be done. 
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