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This paper gives a perfect, ideal, discretization of continuous notions. This is a 
very convenient frame to treat continuous problems or theories with the help of a 
computer. This is illustrated by the conversion of algorithms using real numbers into 
algorithms using integers only and the founding of discrete geometry. 

O. Introduct ion 

It is well known in computer  science that using integers when possible, in 
place o f  reals in algorithms, leads to faster computations. The problem is that this 
code optimization is rather empirical,  lacks precise justification, and is often 
connected to machine language. In this paper, we shed light on this important 
question o f  relations between integers and real numbers in a very unusual but 
efficient way, following the pioneering work of  J. Harthong (see [7]). Our concern 
is not to give tricks to optimize code, but rather to present a mathematical  theory 
thanks to which many difficult problems concerning conflicts between discrete and 
continuous encountered in computer  science can be studied abstractly. Besides code 
optimization, which is a mere by-product  of  our approach, this theory is the first 
that is able to distinguish, among discrete notions, those which are the closest to 
their continuous analogue. We illustrate this by building a new non-Euclidean 
geometry, called ideal discrete geometry, which fits exactly the needs of  discrete 
computer  screens. 

Here are the contents of  this approach to finitization in computer  science. 
Section I contains the foundations, using a little bit of  nonstandard analysis and the 
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very first applications. To help the reader, we have placed, at strategic places, short 
texts summing up the essential facts. The first framed text (section 1.1.1) in the 
beginning sums up the essential properties of infinitely large or infinitely small 
numbers. Our method is based essentially on a correspondence between integers 
and reals, explained in 1.1.2 and 1.1.3, a short abstract being placed in 1.1.5. The 
first application in Euler 's method with infinitesimal steps 1.2.2, 1.2.3 leading to 
the fast algorithm used to compute the exponential presented in the program 
CompExpo. As a second application, we look at Bresenham's algorithm in a straight- 
forward way from the programs given for the exponential. 

Section 2 gives a brief overview of both the main constructions used to build 
nonstandard models of arithmetic and of our discretization process allowing the use 
of integers as a tool for creating algorithms. 

Section 3 briefly recalls the numerous conflicts that exist between discrete 
and continuous in computer science even if we restrict ourselves to geometry. 

In section 4, we begin to solve these difficult questions by constructing a 
discrete geometry for computers. This is much more ambitious than the first 
applications of  section 1, even if we mainly rely on the principles enunciated there. 
Contrary to former approaches to discrete geometry (cfl [1,3,23]), we first build, 
using infinitely large integers, an ideal discrete geometry  which is infinitely close 
to classical Euclidean geometry. In this way, our theory inherits the most from its 
continuous cousin. 

Ideal discrete geometry clearly shows the interest of th ickness  for ideal 
lines; we use this notion to define the main object of standard discrete geometry: 
discrete lines. This is done in section 5, where an arithmetical definition of computer 
discrete lines deriving naturally from ideal lines is given with numerous interesting 
consequences. More precisely, we connect our discrete lines with classical lines 
(Bresenham's notion); we show they are related to modular calculus, give formula 
describing their structure, connect them to quadratic residues, and finally give a 
non-vacuity condition for their intersecting. 

1. A general discretization: Computing with integers 

To create algorithms which solve a given problem, the first step consists of 
an investigation using ideal tools such as reals, real functions or numerical analysis 
notions. At first, using the floating point might seem an easy solution, but it is well 
known that this costs time and requires an arithmetical co-processor. Anyway, reals 
are both practical and common tools: every scientist knows enough about their 
properties to compute with them. 

Alternatively, the working computer scientist knows that using integers can 
result in faster algorithms, if one can write programs developed in integers. Now, 
to formalize the scales between integers, it would be very convenient to have the 
possibilities of: 



J.-P. Reveillds, D. Richard, Back and forth between continuous and discrete 91 

• expressing the notion that some integers are extremely large compared to 
others; 

° expressing the notion that the real inverses of large integers are extremely 
small; 

° keeping the good properties of positive integers (say the existence of a 
minimum for every non-empty set of positive integers, or all properties of 
addition, multiplication, division and order). 

1.1. INFINITE INTEGERS FOR ARITHMETIZATION 

1.1.1. I f  infinite large integers could exist 

To be a little more precise but still from an informal point of view, we keep 
the set M of positive integers and we postulate the existence of a set INFI of positive 
infinite integers determined by the following condition: a is a positive infinite if 
and only if a > n for all n ~ IN. From the very definition of the positive infinite 
integer a, the infinitesimal 1 / a  satisfies 

Consequently, we can extend this definition by deciding that a real e will be 
infinitesimal if and only if e verifies 

~ ' , ,E~ \{O}  ( 6 <  1 ) .  

The properties given in the frame below are intuitive and we shall make free 
use of them. For the moment, we are not concerned with the problem (investigated 
in section 2) of defining and introducing these objects within a theory. If  x and y 
are reals such that I x - y ]  is infinitesimal, then we write out x -  y. 

Nevertheless, we can observe right now how to use these for writing out 
mathematical solutions to get programs in integers allowing a certain kind of curves, 
namely those which are solutions to differential equations, to be computed. 

Suppose that we can reasonably define the union M = M tj INFI of the usual 
integers with the above introduced set INFI consisting of elements a > n for all n 
of  M. Suppose also that we can structure M U INFI in such a way that all usual 
properties of IN concerning the operations of addition, multiplication and division 
hold. 

Verifying these usual properties together with the previous conditions provides 
a first and informal approach to conditions that will be imposed on M to develop 
the usefulness of infinite integers. As mathematicians construct 2~, the set of positive 
and negative integers, from IN, we admit that our set M of (old and new) integers 
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If  a and 13 are positive infinities, if n, m and p are usual positive 
integers of IN, if e and 5 are real positive inverses of infinite integers 
- which we call infinitesimal - ,  then the following are infinitesimals" 

1 E E n 
- e ,  , , e + g,  e - g ,  e.,5, n .e ,  e,/-d. 

a n 0~" 0~' 

The following are not infinitesimals and not infinite: 

1 n 
- n ,  - - ,  - - ,  n + e., re.n,  P ~ ,  m + n. 

n m 

(We shall freely use the word finite for such numbers in the first 
section, before coming to a more precise presentation of these 
objects.) The following can belong to the set of infinitesimals, or to 
the set of finite numbers which are not infinitesimals, or can be 
infinite: 

E a a . ~ , a - / 3 .  

•' /3' 

Frame 1. 

can be embedded by symmetrization in a set 7Z(M) of (old and new) positive and 
negative integers containing 77. Moreover, and in the same way as we construct the 
set Q of rationals from 77 and the set R of reals from Q, we admit the existence 
of a set of (old and new) rationals Q(M) containing Q, constructed from ;V(M) and 
the existence of a set of (old and new) reals R(M), which is the topological 
completion of Q(M) and contains the usual set of reals R. This set R(M) verifies 
(in a certain sense to be explained later in section 2.2) most of the usual properties 
of the usual set R of reals. 

I. 1.2. Arithmetization of  reals 

Now, we want to code all (old and new) reals by (old and new) integers in 
such a way that the chosen correspondence mapping •(M) on 7/(M) preserves the 
operations. We denote by [a] the integral part of  the real a ,  namely the greatest 
integer, of  M smaller than a. In order to do this, we fix an infinite integer co E M \ N 
and we define the function ICo~ (integer code on scale co) as follows: 

ICo~ : R(M) ~ 7/(M) 

x ~ [cox].  
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Conversely, the decoding correspondence CRw (for coded real on scale co) is the 
function determined as follows: 

CRoj : 7](M) --~ ~ ( M )  

x 
x ----) - - .  

cO 

In our situation, the kind of  inversibility that we need is an extension of  the normal 
one. In fact, it is only necessary for the inverse image of  the range of  an element 
x to be infinitesimally close to x. In that case, we shall say that a function has a 
pseudo- inverse .  We see that ICo~ and CR~o are mutually pseudo-inverse,  since 

and also 

[COx] cox - d d 
CRto ° 1Co~ (x )  - - - x - - -  

cO 09 

for some d such that 0 < d <  1. 
We observe that ] CR~ o IC~(x) - x[ = d/co is infinitesimal so that CRco o ICoj(x) 

is infinitesimally close to x (denoted CR~ o IC~(x) ~- x)  and so that IC~ and CRco 

are pseudo-inverse mappings. They will be convenient tools for programming in 
integers. 

Figure I shows the mutual situation of  standard and nonstandard reals: near 
each standard real, we can find the reals that are infinitesimally close to it; one can 
see the infinite reals that are larger and smaller than a standard real; similarly, 
integers of  the usual 7/have smaller infinite integers below them and larger infinite 
integers above them. The coding devices that we use are based on a correspondence 
between reals and integers via homothety having as ratio a fixed infinite integer co. 

1.1.3. A r i thmet i za t ion  o f  operat ions  

At this step, we would like the previous integer codes to preserve their usual 
operations. For this purpose, we first introduce a notion of  indiscernibility within 
7/(M): we say that a and b are c0-indiscernible integers if and only if one has Vn ~ ~1 
(n] a - b [  < co). We denote co-indiscernibility of  a and b by a ~ b, a notation which 
is not to be confused with x = y, for which the reader is reminded that lx - y[ is 
infinitesimal. It is important to note that 

x ~ y if and only if CRw(x) ~-- CRo~(y). 
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Set of infinitesimal 
reals close to a 
standard real X 

b(x)} 

b(o)} 

C/~ 

X 
C ~  

t ~  

0 

• ~ (scaling value) 

• [wX] + t ] integers 
• [~X] ~ indiscernible 
• [ , x l -  t ]o f{~x]  

/ , l  

• 0 2~ 
o-I 

rt(M) Z(M) 

Fig. I. The principle of  arithmetization associates integer [tax] to real number  x; 
this is map lC~o. Reciprocally, CRo~ maps integer n to the real number n/ea. Using 
the good properties of  infinite integers, this mapping acts as if it were a bijection. 

Since we have for all reals x and y of  R(M) the usual inequalities 

[cox] + [coy] < [cox + coy] < [cox] + [coy] + 2, 

we get the fol lowing indiscernibilities: 

1Co~(x) + I C w ( y )  ~ ICo~(x + y ) ,  

ICoj (x )  - l C o j ( y )  ~ IC~o(x - y ) .  
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In order to arithmetize, we need a multiplication on :Y(M), say ®, such that for all 
reals x and y 

ICoj(X) ® ICon(y) ~ 1Co:(Xy). 

The following map from 7J(M) ® 77(M) into g(M) determined by (x, y) ~ [xy/oJ] is 
a natural and convenient candidate to take for the desired product ®. 

As an exercise, we prove that for every pair (x, y) ~ Z(M) × 71(M) and every 
pair (x, y) ~ R(M) x ~(M) the following relations of indiscernibility hold: 

For (1), we note that 

and 

from the equality 

CRco(x) × CR~o(y) ~-- CRco(x ® y), 

ICco(xy) -~ ICon(x) ® ICon(y). 

xy 
CRco(x) x CRco(y) = ( °  2 

1 xy 
CRoj(x ® y) = - - - - ;  ¢..o co 

(1) 

(2) 

xy 
09 2 co k. co = ~  with 0 < d  < I, 

it follows that 6/co is infinitesimal. For (2), we have 

IC~o(x)® I C o j ( y ) = [ m x ] ® [ c o y ] ~ I - ~ Y -  ] =[coxy]=ICoj(xy) ,  

proving the desired relation. 
An adequate division, denoted / / ,  providing a suitable arithmetization of 

reals must satisfy the following two conditions: 

CRo,(x) 
CRo~ (y) 

-- CRo~(x//y), (3) 

lCa~( y )  ~ ICoj(X)//ICo~(y), (4) 

the last one being true if y is not indiscernible with 0. 
The following choice x / / y  = [cox~y] is a convenient one. As a new exercise 

on infinite and infinitesimal, let us prove (3). We have 
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and 

so that 

CRo~(x / /y )= 
COLYJ 

CRo~(x______~) = x / y _ I COx 

CRo~ (y) CO CO CO y 

for some ~ ~ [0, I ], proving (3). The proof of (4) is analogous and left to the reader. 

1.1.4. Usefulness o f  infinite integers as ideal objects 

Our purpose is to program in integers to speed-up the implementation of 
algorithms by avoiding the floating point of real representations. First, we observe 
that the working computer scientist, looking for a solution to a given problem, 
begins by writing out the mathematical treatment usually connected to a numerical 
analysis. In so doing, he uses ideal objects such as reals. Of course, reals do not 
exist (the very name itself could be an historical ruse organized against computer 
scientists), since there is an infinite amount of information in most of them. Also, 
because of this infinity of elements defining a unique real, properties within real 
analysis are very sophisticated (for example, say the upper bound property). On the 
other hand, properties of integers often seem straightforward, and especially when 
we think about the possibility of using inductive methods. It is very convenient to 
possess a choice function giving the smallest integer satisfying a fixed property. 
Moreover, the possible inductive definitions in the framework of usual arithmetic 
are very close to recursivity, and to the process of incrementation and decre- 
mentations. 

Retaining only the following two ideas out of many others: 

(a) computing rapidly and being cost-efficient by saving time; 

(b) helping the heuristic search for solutions having the simplest models of the 
lightest ideal objects, we want to develop in section 2 examples of such 
solutions in infography. 

Before ending this section, we must make a few remarks. 

Remark  1 

We do think that a formal, in a certain sense, exhaustive axiomatization 
within any suitable set theory is intractable, o f  no use to non-logicians and 
unsuitable for  popularizing among computer scientists the new method o f  finitization 
that we are developing in this work. Actually, while we have no desire to present 
our ideas on this, it is formally possible to consider definitions and results written 



J.-P. Reveillds, D. Richard, Back and forth between continuous and discrete 97 

out in the first frame concerning the infinitesimal as axioms. This was done by J. 
Kiesler in [9], or in a more precise and sophisticated way by E. Nelson (cf. [11]). 
It seems that it is better for us to present informal properties leading to ideal objects 
which we have to set to work on immediately to create algorithms. In section 2, we 
prefer to take a semantical point of view consisting of describing sets of new 
objects (say infinite integers) in the usual mathematical structures which are taken 
as models for theories by logicians. Such a set is N U INFI that we defined above, 
and described from outside instead of giving a formal axion satisfied by this set (see 
[19,20]). 

Remark 2 

In section 3, we shall try to give some proofs of the existence of the new (so- 
called nonstandard) objects as a consequence of the ambiguity of formal languages, 
This ambiguity of first-order languages is well known within computer science. 
From both a semantical and syntactical approach, it is easy to give an external 
description of infinite integers and infinitesimal reals. To deal with regular curves, 
little knowledge of these new elements is required, Experience of working with 
them provides the best way of looking more deeply into the so-called nonstandard 
analysis. 

Remark 3 

Some authors, such as J.H. Kiesler (see [9]) in the USA or M. Diener (see 
[5] and G. Reeb, make attempts to introduce nonstandard methods into the 
background of students in their first two years of university education. Physicists 
and other scientists seem interested in beginning the study of Nonstandard Analysis, 
which is the rigorous account of Leibnitz's Analysis Infinitorum. With the help of 
this theory, limits are computed algebraically (see 2.1.2 for a very simple example). 
This tool is both natural and cheap for computing, and close to the object phenomena 
observation that is to be modelized. Imagining solutions with simple concepts 
results in faster thought processes without artefacts due to complicated notions. 

1.1.5. Abstracts of arithmetization of reals by finite and infinite integers 

Our arithmetization principle is illustrated in fig. 2, where real numbers r and 
s are sent, by ICon, onto integers [cor] and [cos]. 

Algebraic remarks 

• (7/ (M)/~,  +, .) is a ring 

• The set of finite (usual or not, i.e. standard or nonstandard) reals F C R(M) 
is determined by: 

F= { r e R ( M ) T 3 a e R ÷ ( t r l  < a)}. 
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z/~[M] 

Fig. 2. w-enlargement of the usual R m 
the set of infinite coding integers ~(M). 

By /.t(0), we mean the set of  infinitesimals. 

We can (easily) prove, but it is not at all used in this paper, the fol lowing 
statement: 

7J(M___~) is a ring isomorphic to F//I(0).  

Our method is summarized in frame 2. 

Coding devices of usual R 

Integer Code ICoj(x) = [cox] 

Coded Real CRoj(X) = X/o9 

Formulas of pseudo-inversibility 

IC~ o CRy(X)  = X 

CRoa o lC~o(x) = x 

Addition (X, Y) ~ X + Y 

Subtraction (X, Y) ~ X -  Y 

Product (X, Y) ~ [XY/co] 

Division (X, Y) ~-~ [toX/Y] 

co-indiscernibility X ~ Y ¢~ I X - Y I / c o - ~  0 

Frame 2. 

This principle will be very useful to obtain discretization for more complicated 
objects, functions, geometric objects, etc. The latter will be considered in sections 
3, 4 and 5 with the aim of  considering them as the pieces of  a discrete geometry. 
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Let us consider, for example, the function f :  • ~ R; the former principle leads to 
function F : 7 / ~  7/given by F(n) = [mf(n/09)], which is what we mean by ICco(f). 
This can, of course, be generalized to any number of variables. 

1.2. FIRST ALGORITHMS 

As we said before, algorithms are usually expressed within the framework of 
the floating point. In order to avoid such reals and to accelerate the running of 
programs, we are going to arithmetize computations using rudimentary tools 
described in section 1.1. 

1.2.1. An example of  arithmetization in analysis 

(This is not a necessary result for  the rest o f  this paper.) We add to our new 
objects the so-called nonstandard functions f from I~(M) into itself and we ask the 
reader to accept the last natural property, namely the fact that the restrictions of f 
to the usual set I~ is continuous if and only if: 

x ~- y ~ f ( x )  ~- f (y) .  

As an example, we prove the classical theorem of intermediate values. 

THEOREM 1.1 

If  f is defined and continuous on a segment [a, b] and if f (a) < 0 < f ( b ) ,  then 
there exists a real c ~ [a, b] such that f ( c )  = O. 

a ~ X  o 

Xrr l - -  1 

27to 

Fig. 3. The intermediate value theorem is 
easily proved with nonstandard analysis. 
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Proo f  

Let co be an infinite integer. We consider points x i = a + ( i /co)(b - a). Note 
that xi and xi+ 1 are infinitesimally close. Let A be the set { i e M I f ( x  - i) > 0 } ; since 
b = x~o, the set A is nonempty. Here we can use methods o f  ari thmetic  - instead o f  
the property  o f  the upper bound o f  reals - and take the minimum of  A. Denote 
min(A) by m; from f ( x o ) = f ( a ) <  0, we see that m > 0. Since f ( b ) >  0, we have 
a < x m < b. Denote by c the unique usual (i.e. standard) real which is infinitesimally 
close to x. Because f is continuous, f (xm)  and f ( c )  are also infinitesimally close. 
Consequently,  we have for infinitesimals E and e '  

f ( x , , ) =  f ( c ) + e  and f ( x , , _ l ) =  f ( c ) + e '  

so that, using the very definition of  xm which implies f (xm_ 1) < 0, we have - e < f ( c )  
< e ' .  We observe that f ( c )  is a usual (standard) real bounded by two infinitesimals. 
Now all we have to do is to consider all possibilities of  sign for e and e '  and to 
use the property that infinitesimals are smaller than every number  l yn for all n e IN 
to deduce that f ( c )  is 0, what we wanted to prove. [ ]  

Let us notice that each limited real number x is always infinitely close to a 
standard real number, called its standard part, denoted by s t (x)  or °x. We shall 
explain this operation in more detail in section 2.2.2. Moreover, we would encourage 
the reader to study also nonstandard analysis in the historical book of  A. Robinson 
(see [22]) and also the books referenced in [2] and [5]. 

1.2.2. Euler 's  method with infinitesimal step 

(Fundamental  result f o r  the fo l lowing algorithm.) We shall make extended 
use of  the following well-known device, which consists of  confusing curve and its 
tangent. Figure 4 shows the situation with an infinitesimal step since the integer co 
is chosen as infinite. 

Yi+l 
Y(Xt+ll 

Y(Xi) 

• ! 

Xi-l-i 

Fig 4. Euler's integration of differential equations 
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More precisely, we claim that the slope of  the line passing through the points 
(xi , f (xi))  and (Xi+l,f(xi+l)) is infinitesimally close to the slope of  the tangent at 
(xi, f (x i )  ) which is y'(xi): 

y(xi+l)  - y(x  i) 
1/¢.o = Y'(Xi )" (*) 

With the notations in fig. 4, the error is e i = l y i - y ( x i ) l  by definition. 
Now suppose that the curve is determined by a differential equation y ' (x )  

=f (x ,  y(x)) and some initial condition. For a fixed co and using the relation (*), the 
previous differential equation provides a finite difference equation, in integers, 
which can be obtained by the following lines. By definition of  the sequence xi = i/co, 
we first have, using (*), 

y(i + I/co) - y(i/co) 
1~co 

or, multiplying by co 

¢o/(i + 1/co) - coy(i/co) 
1~co 

=CO ,y  • 

Integer coding for functions leads us to introduce Y(i)=ICo~(y(x)) and F( i , j )  
= ICco(f(x, y)); thus, the last equation finally gives the difference equation 

1 

Y(i + 1) - Y(i) = --~ E(i, Y). (1) 

This is the key point of this arithmetization: to reach, from a differential 
equation (written out by Euler's method with an infinitesimal step), a recursive 
definition of the considered curve leading to straightforward program com- 
puting values. This program will be obtained using properties of integers such 
as co-expansion, Euclidean division and the determination of remainders. In 
so doing and contrary to floating point programming, we shall "manage" 
remainders. The infinite character of m has at least three virtues: 

- it allows rigorous proofs in the frame of nonstandard analysis, 

- it has heuristic advantages by letting the scientist imagine solutions in a 
discrete way (instead of using continuous notions), 

- finally, it is sufficient to decree that m is a usual large enough integer 
(128, 256, 2 ~ .... ) to force our equation to produce the desired program. 

Frame 3. 

Then eq. (1) can be converted into a concrete recursive definition using 
bounded integers. We generally write integer sequence Y(i) with two digits in radix 
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co, giving Y(i)  = Cio3+ Di and function F(i,  Y(i)) in the same way with two or more 
digits. Ident ifying corresponding digits in both members  gives recursive definit ions 
for all digits. 

Let us explain this using a very simple example.  

1.2.3. A f i r s t  ar i thmet i zed  a lgor i thm o f  the exponent ia l  (G. Reeb [12]) 

The function y = exp x is the solution of y ' ( x )  = y ( x )  with y(0)  = 1. We fix 
an infinite o2 and so we have co e M \ N. From the method just developed in section 
2.2, it fol lows that 

i + 1  y ( _ _ ~ ) _ _ y ( ~ )  = 1 - ~ Y  ~--~)'(i'~ 

Putting y(i /co) = Yi, we obtain 

foyi+l - o3Yi ~ Yi. 

1 i 

(2) 

From o3Yi = [o3Yi] + ri for 0-< r i < 1, it fol lows that R i = [cori] = ICw(ri) and by 
pseudo-inversibi l i ty on the one hand, r i ~- Ri/co = CReo(Ri) and, on the other hand, 
Yi ~ CRro(Yi) = Yi/o3 f rom Yi = [coYi] = ICro(Yi). Formula  (2) can be rewritten in 
integers as follows: 

Ri+l R i l ( y  __~_) 
Y , + 1 + - - =  ~ + - - +  + (3) 

co co ~ i • 

Since 1/o2 2 is infinitesimally smaller  than 1~co, we can neglect Ri/co 2 s o  that eq. (3) 
becomes  

Ri + 1 Ri Yi 
~ + 1 + - - - ~  Y / + - - + - - .  (4) 

co co co 

From the inequality 0 < r i < 1, it fol lows that Ri < co and 

Ri+l [ ~ j  

where, for an integer x, we denote the rest of  Euclidean division of  x by co by {x/co}, 
the quotient being, as usual [x/co]. 

Finally, to get the desired algori thm and to write out the corresponding 
p rogram in PASCAL, we simply have to add Y0 and R o initializations, for example ,  
Yo =Ro= O. 

Now, it is t ime for our coup and to decide that, in practical applications,  the 
infinite character  o f  co is attributed to some integers or, for comput ing convenience,  
to some fixed power  of  2, say co= 27 = 128 or co= 216 or other. 
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Table 1 

Y Rest D Y 

i Yi Ri 

i + 1 Yi + [Ri + Yi/128] {Ri + Yi/128 } Ayi 

0 t28 0 
1 129 0 

2 130 1 
3 t31 3 
4 132 6 
5 133 10 
6 134 15 
7 135 21 
8 136 28 
9 137 36 

10 138 45 
11 139 55 
12 140 66 
13 141 78 
14 142 91 
15 143 I05 
16 144 120 
17 146 8 
I8 147 25 
19 148 43 
20 149 62 
21 150 82 
22 151 103 
23 152 125 
24 154 20 
25 155 44 
26 156 69 

In table 1, which gives a trace of this algorithm (where Ayi is the difference 

Yi÷l - Y i ) ,  we observe jumps  in values for i = 17 and i = 24. The column entitled 
Rest (containing Ri values) shows that we have control over the remainders modulo 128. 
This is one difference, among many, between the two treatments (namely, floating 

point and computat ion in integer). 

TEST 1 

Reveill6s used co = 216 on an INTEL 80286 microprocessor running at 10 Mhz; 

the computat ion provides 32000 values with 10 significant digits in 0.6 seconds. 
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TEST 2 

Diener, on an INTEL 80386 with 10 Mhz and co= 216 obtained 8000 values 
of  e x in 0.25 seconds. 

N.B. The previous results, and almost everything done in this area, are the work 
of  researchers at IRMA in Strasbourg (see [13 -17 ,12 ,24 ] ) .  

Finally, we are in a position to write out the corresponding program in 
PASCAL. 

Program CompExpo; 
Const unit= 128; 
Var Y,i, rest:Integer; 
begin 

Y : = unit; 
Rest : = 0; 
for i := 0 do unit  do 

begin 
Y : = Y + (Y + rest) div unit; 
rest := (Y + rest) rood unit; 

end; 
write(Y/unit : 10 : 5) 

end. 

Program for computing exponentials. 

Even if we use div and mod operations, these have been rewritten to coincide 
with Euclidean quotient and rest. We use these operations in this PASCAL program 
for pedagogical  reasons, the main loop being only two lines long. But in actual 
programs we eliminate them, to increase speed, and replace them by tests followed 
by additions. 

1.2.4. Arithmetized algorithm of  the exponential revisited by using m-expansions of  
integers 

Integers R i are bounded by co; if we neglect Ri+l/m and Ri/m, eq. (4) is 
transformed into 1I,'+ l ~ Y/+ Yi/m, which can also be expressed by 

o)~+~ ~ ro~+ ~. (5) 

It must be emphasized that the great advantage of  the last recursion equation resides 
in the actual fact that we use the numeration of  basis m. This is just a come back 
to the paradise of  integers: the reader is reminded that reals are nothing else but 
sums of  numerical infinite series. We note that using m-expansions, we can write 
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E' = Clco + Co, 

Y/+ 1 = C(co + C6, 
(6) 

where Co, CI, C~ and C{ ~ [0, co[ are numerals of the basis co. We observe that we 
can compute the co-digits C6 and C( from coY/+l = C~ coz+ C~o9. Using the unicity 
of co-expansions for coY/+l and (6), we obtain 

C6 = {C° + CI} ' c o  

C{ : Cl + [C° -1 CI] " ( 3 3  

It is straightforward to write out a program computing exponentials from the two 
previous equations. 

1.2.5. Retrieving Bresenham's algorithm 

The straight line with equation y(x) = ax + [3 is the solution of the elementary 
differential equation y ' (x)  = a such that y(0) = 13. The previous work done in section 
1.2.3 for the general differential equation applies immediately to this case. We will 
nevertheless introduce a slight modification in our discretization process, introducing 

y / = [ c o 2 y ( _ ~ ) ]  and A = [ c o a ]  and B=[ [3a ] ,  

leading to the relation 
Y/+I = E + A. 

Consequently, if we develop Y/and Y/+ I in radix co as 

Yi+l = C;CO + C6 and Yi = Cico + Co, 

we immediately obtain the following recursive equations in integers of this line: 

t ~ [-Co + A] c, =,-, + L - - T j ,  

The initial value of sequence C1 is taken to be equal to B. It is rather obvious to 
see that the values of sequence CI are also the same as those given by the sequence 
[Ai/co] + B. This sequence can be geometrically interpreted as the integer points 
immediately below the line with equation y = (A/co)x + B/ro. This kind of point set, 
which we call discrete lines, will be studied in greater detail in sections 4 and 5 in 
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order to build a rigorous discrete geometry. Just to give an idea of the kind of 
problems we will develop in these sections, let us admit that if we change C~'s 
initial condition by a value e, then we just translate slightly the discrete line. And 
this parameter e can be adjusted such that the sequence given by C1 = [(Ai + e)/co] 
+ B satisfies other constraints. For example, if ~ = [co/2], this formula gives the 
integer points which are the closest to the former line; this is exactly Bresenham's 
line. 

Program CompLine; 
Var a, Y, i, rest, unit: Integer; 

begin 
write('a='); readln(a); 
write('b='); readln(b); 
write('unit ='); readln(unit); 
rest := (unit div 2); 
Y : = b ;  
for i := I to unit do 

begin 
write(Y:5); 
Y := Y + (rest+a) div unit; 
rest := (rest+a) mod unit; 

end; 
end. 

Program for drawing discrete lines. 

Remarks  

(1) It is easy to remove the DIV and MOD operations appearing in the loop by 
an inequality test followed by an IF . . .THEN. . .ELSE instruction (this is done in 
section 4.1.2). 

(2) It is important to note that the program for computing exponentials provides 
in a straightforward manner a program that is equivalent (after execution) to 
Bresenham's for drawing lines. 

(3) As an exercise, the reader may like to write out programs for computing 
logari thms (from the equation Y/+ I - Y/= co2/i), for computing square roots (from 
the equation Y/+I- Yi = a/coYi),  circles from the differential system 

x ' ( t )  = - y ( t ) ,  

y ' ( t )  = x(t) ,  

which leads to the recursive integer equations 

Xi+l  = Xi  + Yi/co,  

Yi+l = ri - X i / co .  
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We must remark that this algorithm for drawing circles does not give the Bresenham 
circle built with the closest integer points to a real circle. 

These applications of  infinite integers used as tools for writing out integer 
programs conclude the present section. Of course, it is time to prove the existence 
of such objects that provide such efficient tools. This is done step-by-step below 
(see section 2). First, we show some situations where limitations of languages 
surprisingly provide a first notion of infinite integers. Then we try to show how our 
previous sets M and 7](M) and Q(M) and ~(M) work. Avoiding presentation in the 
Nelson axiomatic way (within an extended and new set theory), we prefer to attempt 
a mathematical description of somehow familiar structures. 

2. One possible arithmetization through model theory and nonstandard 
analysis 

2.1. USING A BIT OF MODEL THEORY 

2.1.1. Use of  ambiguity of  some formal "characterizations" 

To give to a machine a precise definition of the set of  natural integers 
structured by its usual successor function, it first seems convenient to note that the 
structure (N, 0, x ~ x + 1 ) satisfies, with S(x) = x + 1, the following conditions: 

h l .  Vx(S(x) ~ 0). 

A2. Vx3y(y  = S(x)) A VxVy(x ~ y ~ S(x) ~ S(y)). 

A3. Vx(x  ~ 0 ~ 3y(x = S(y))). 

We observe that these properties are expressed in a formal language including, in 
addition to usual logic symbols and identity, two specific symbols, namely a constant 
symbol (say 0) and a function symbol (say S). Since quantifications affect only one 
type of elements, this language will be called first-order language. Condition A1 
means that 0 does not follow on from any element; from A2, we know that the 
successor is functional and one-to-one; finally, A3 means that every integer that is 
different from 0 is a successor of some integer, A more precise investigation of 
these necessary conditions is sufficient to see that they do not characterize (up to 
isomorphism) the structure ( N, 0, x ~ x + 1 ), as we can prove immediately. Let A 
be the set (N × {I}) U (Z × {2}) and let Y, be a (successor) function defined by 

Z(x, 1) = (x + 1, I) 

The set A can be drawn as follows: 

E 

(o,t) ( i , i )  ( . , i )  (,~+ ! , i )  

and Z(x, 2) = (x + 1,2). 

z 
i 

4 

(-1,2) (¢1,~)(1,2) (,,,~) ( , ,+i ,~) 

Fig. 5. 
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This set with successor function Z and (0, 1) as an interpretation of the symbol 0 
satisfies the theory consisting of the three conditions {AI, A2, A3 } when we replace 
S by Z. Since A and N are obviously isomorphic, theory {At, A2, A3} has non- 
isomorphic models (we say that this theory is not categorical) and, consequently, 
structure {IN, 0, x ~-~ x + 1 ) is not characterized at all. Besides, it can be shown in 
mathematical logic that there is no possible characterization of natural integers 
equipped with the usual successor function in the frame of first-order logic. We 
shall say that (A, (0, 1) ,Z) is a nonstandard model of {A1, A2, A3}, while 
{ N, 0, x ~ x + 1 ) will be conveniently called the standard model. Considering the 
embedding n ~ (n, 1), we see that, up to isomorphism, natural integers form an 
initial segment of A. To formalize this notion of an initial segment, we add to 
the language {0, S} a symbol for an order relation, say R, and we add to 
theory {AI, A2, A3} a new axiom, say A4, expressing that R is a linear order of 
which 0 is the first element and with no final element. Then both structures 
(IN, 0, x~--~x+ 1, <)  and (A, (0, 1), Z, A) satisfy theory {A1, A2, A3, A4} when < 
is the natural order of N and when we put in A, 

(x,i)A(y, j )  ¢:* [i < j or (i = j and x < y)]. 

It follows from this fact that every element of ;g x {2} (called nonstandard) is 
greater, in the sense of A, than any element of N x {I} (which are said to be 
standard). 

By identification between natural integers and these elements of A which lie 
in IN x { I }, we see that the nonstandard elements of A are infinite since they are 
greater than any natural (hence finite) integer. These nonstandard elements will be 
called infinitely large. The usual constructions allowing the mathematician to get 
rational and real numbers from integers work within A and provide infinitely large 
rationals or reals, infinitely small rationals and reals. These new numbers give a 
new kind of approximation having the huge advantage of providing us with measures 
by means of integers (standard or not) and of their inverses. The new approximations 
are ideal since they are "infinitely" more precise than any classical approximation 
and also because they are just expressed by integers and their inverses. 

I f  x and x '  are usual reals (the numbers known by any pupil or undergraduate 
student) verifying x < x', and i f  co is an infinitely large integer, then x < x + 1 ~co < x ' .  

2.1.2..Leibnitz's dream: how to algebraize analysis 

During their attempt at founding Infinitesimal Calculus, Newton, but especially 
Leibnitz, tried to add to the numbers they used (integers, rationals and reals) 
infinitely large and small ideal numbers. Unfortunately, the necessary formalism 
had not yet been invented (this was done by A. Robinson, who provided it for us 
in the sixties), so that the point of view of Leibnitz was abandoned in favour of 
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Weierstrass '  formulations (and his e -  ~ method) from which mathematics is taught 
nowadays.  Now, model  theory and particularly the discovery of  nonstandard models 
of  arithmetic by Skolem allows us to revise the ideas of  Newton and Leibnitz. 
Without  any justification, let us give the calculation from which a working 
mathematician and follower of  nonstandard methods gets the derivative of  the 
function x v-4 ~ on •: 

d x  A x  

c + xxl:i, ) = st~ Ax(~ff f  + ~ x  + -,/-x)) st ~f~ + z~x + ~fx 

1 1 

s t ( f f x  + A x )  + ff-x - 2 f i x "  

To intuitively understand this calculation, it is sufficient to consider Ax as an 
infinitely small real (which has an infinitely large inverse), and to know that the 
function denoted by st maps every noninfinite nonstandard real onto an infinitely 
close s tandard real (if any exist). It must be pointed out that in the previous 
calculation, there seems to be no sort o f  limit. 

It is now time to briefly present the frame used in the second part for 
comput ing actual programs, namely the nonstandard methods of  finitization. 

2.2. FRAME OF NONSTANDARD ANALYSIS: THE UNIVERSES U AND U" (informal overview) 

We admit that two universes exist, denoted U and U*, such that U C U* and 
such that, in each of  the two universes, a denumerable set of  symbols  of  real 
analysis (namely, certain reals (a/2-, n, . . . ) ,  all integers and rationals, some sets of  
numbers like N, Z, Q, 1~, and some functions from R m to IR n) are realized (or 
interpreted) by elements o f  U and by elements of  U*. Logicians would say that 
both universes U and U* are structures of  the language L(RA)  of  the usual real 
analysis, l) and models of the familiar real analysis considered as a first-order theory, z) 

For convenience (and also by abuse), we denote every symbol s of  L(RA)  and 
its interpretation within U by the same symbol, but within U*, the same symbol 
s will be interpreted by an object denoted by s*. For instance, the symbol  IN of  
L(RA)  will be interpreted by N in U and N* in U*. 

~All sentences that mathematicians can prove within the frame of a good set theory are considered 
as theorems of real analysis. 

2~L(RA) does not seem to be a first-order language if we think that quantification over different kinds 
of objects (integers, functions, etc.) is allowed; actually, L(RA) is a first-order language if we remind 
ourselves of the fact that all objects of analysis are of the same kind, namely sets. 
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In what follows (section 2.2.5) we shall see that 2 / a n d  2/* can be constructed 
so that the fol lowing conditions are satisfied: 

C * R*. AN1. We have ~ C ~ * , ~ C Z * , Q  Q , ~ C  

AN2. I f f  is a functional symbol  of  L(RA), then the restriction f* l  o f f *  to R is f .  

AN3. - transfer principle - a sentence T (a formula  in L(RA)) for which all variables 
are quantified - in other words, a close formula - is satisfied in 2 / i f  and only 
if it is satisfied in 2/* (notation: 2 / ~  T ¢:v 2/* ~ T).  

AN4. Both universes 2/ and 2/* are models of  the theory of real analysis (in the 
sense that any theorem of  real analysis is satisfied s imultaneously within 2/ 
and 2/*). 

Example 

Let us consider  this theorem of  analysis ensuring that Q is dense in ~, 
formalized as follows: 

(Vx E g~)(Vy ~ g~)(x < y ~ (3z E Q ) ( x  < z < y)). 

Consequently,  we have simultaneously 

2 / ~  ( V x ~ ) ( V y E R ) ( x < y ~ ( 3 z ~ Q ) ( x < z < y ) ) ,  

2/* ~ (Vx E ~ * ) ( V y  E lt~*) (x < y ~ (3z E Q * ) ( x  < z < y)). 

2.2.1. Infinitely large integers 

A major  tool of  the results developed in the second part are the so-cal led 
infinitely large integers. Their  existence follows f rom the condition AN1, which 
ensures that N C N * .  So, we must specify what exactly these integers are. 

PROPOSITION 2.'1 (Conditions for defining infinite natural integers.) 

Elements  belonging to I~*\ I~ are called infinitely large; a E I~*\ ~I if and only 
if a E 1~* and if, for all n E 1%1, we have ct > n (notation: a > I~). 

Proof 

We know (condition AN1) that ~ * \ ~ / S O .  Let a be a member  of  ~ * \ ~ .  
Consider  the fol lowing sentence T of  L(RA): 

( V x ) ( x < n o A x E ~ c = ~ ( x = O V  x = l  V. . .V x=no-1 ) ) ,  

where 0, 1 . . . . .  n o - 1, no are symbols  of  natural integers within L(RA). O f  course,  
T is a sentence if and only if n o is a symbol  that is always interpreted by a standard 
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(i.e. actual) natural integer. Moreover,  as T is a theorem of  real analysis,  we have 
"/./~ T and '/./* ~ T. Hence,  ~x> n o since, if not, a_< no, which implies from T that 
a E l%1 and this is contrary to our assumption.  Due to the fact that n o is arbitrary, 
it fol lows that a > n for every n in ~. The converse is obvious.  [ ]  

Remarks 

• Since (Vn E N)3p  ( ( p  is prime) A ( p  > n)) is a theorem, then that theorem 
is true within "d* so infinite natural integers exist which are prime. 

• Let rc be an infinite prime positive integer, then N*\ zrN* = I~*\ gR* is a field. 
From R C R*, all members  of  R*\TrR* are inversible within R*\ zrN* and so, up to 
morphisms,  Q C R ' \  gR*. This sort of  reasoning is routine in nonstandard arithmetic. 

2.2.2. Infinitely small real numbers and some nonstandard notion of R* 

Because  we have N C R* (due to the fact that both "/1 and '/_/* satisfy (Vx ~ N 
x E N), in R" there are reals which are infinitely large. Their  inverses are infinitely 

small since when a E N*\N,  we have a >  n (for every n in N) and 1 / a  E R* is such 
that 0;e 1/c~< 1/n (for every n in N). 

DEFINITION 2.1 

A real number  r ~ R* is said to be infinitely large if and only if r > n for every 
n ~ I~/. A real t ~ 0 is said to be infinitely small or infinitesimal if and only if the 
inverse of  its absolute value 1/i t]  is infinitely large. Area l  x ~ •* is said to be finite 
if there exists y ~II~ + such that Ixl < y  (meaning '/_/* N (Ix] < y ) ) .  

Remark 

A real r ~ R* can be finite without belonging to R (for instance, j 2  + 1 / a  
with a ~  N*\N) .  The monad of 0 ~R* (denoted by it(0)) is the set {x ~R*I  Ixl is 
infinitely small  }. The monad of  x ~ ~* is { y E R*lx - y E it(0) } and is denoted by 

it(x). 
The fol lowing proposit ion shows that our intuition about the structure of  

infinitesimal reals, according to which we thought that a sum (or a product)  of  
infinitely small  reals is also of  the same kind, is founded. More  precisly, i t(0) is 
an actual ideal o f  the set of  finite reals of  1~*. 

PROPOSITION 2.2 

Let F be the set {x E•*t qy ~R+(Ix l  <y )} .  

(i) The monad /2 (0)  is an ideal of  F. 

(ii) The quotient ring Flit(O) is isomorphic to R. 
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Proof 

(i) Let a and /3 be members of #(0). Then, for every 1l ~N\{0} ,  we have 
a< 1/2n and/3< 1/2n, hence c~+/3< 1/n and a + / 3  ~#(0) .  I f x  ~ F ,  then is a ~ N  
is such that Ixl < a, and due to the fact that a <  1/na for every n ~ N\{0}, we have 
Ixal < 1/n, so that x~xE#(0).  Obviously, #(0) C F and F is a subring of N*; 
moreover, the two previous remarks show that #(0) is an ideal of the ring F. 

(ii) To every x ~ R, we can associate x + #(0) ~ F/#(O). Conversely, every coset 
d ~ F/#(O) determines a Dedekind's cut A IB by putting 

A = { b ~ R  t (b<a)}  a n d B = { b ~ R  I ( a < b ) } .  

Such a cut defines a unique (standard) real, which we denote by *a. 

DEFINITION 2.2 

Let a ~ F; there exists a unique real denoted by *a or st(a), called the standard 
part of a and such that *a ~ ~ and ~ E F/#(O). If  we call the members of ~* hyper- 
reals, then the numbers of F are the finite (or bounded) hyperreals and the standard 
part *a E I/~ of the finite hyperreal a is the unique (true) real of R infinitely close 
by a, since a - * a  c# (0 ) .  (Notation: a - b  6 # ( 0 )  is also denoted by a ~-b,  which 
is called a infinitely close by b). 

The above proposition justifies the previous definition. 

2.2.3. How to prove in nonstandard analysis what U says, what U* says, what the 
external observer says and the non-definable in L(RA ) 

We must emphasize some difficulties, which are the key points of nonstandard 
analysis. 

In fact, when we observe that both U and U* realize the theorems of analysis, 
this means that they express the same result. Each of the universes U and U* has 
its own notions of integer (respectively, members of N and members of N*). For 
U and U*, their respective integers have the usual arithmetical behaviour. What 
determines nonstandard analysis is the external observer simultaneously seeing U 
and U*, and who can say that NCN*.  This is not expressible within the language 
L(RA) of analysis because we do n~ot know how to speak of infinitely large integers, 
we just know how to speak of integers. Only a mathematician, in a first-order 
formalizable way situated in the framework of set theory, looking at U and U*, can 
compare them. We can try to draw what our mathematician sees concerning R and 
R* with the help of fig. 6; the left part represents R included in the whole •*. 

Consequently, from the point of view of naive set theory, the main notions 
are summarized in the following framed text. 
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1 v ~  2 
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v~ vS+, 
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u(v~) 
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Fig. 6. 
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R* \F  

p(x) 

True reals (also called standard reals) 

Hyperreals (the whole collection, standard 
or nonstandard elements) 

Infinitely small reals, i.e. numbers whose 
absolute value is less than every positive 
standard 

Finite byperreals, those who are infinitely 
close to a true real 

Infinite hyperreals, numbers whose absolute 
value is greater than every member of R 

Hyperreals infinitely close to x. More pre- 
cisely, # ( x ) =  { y l x - y  ~/.t(0)} 

Frame 4. 

2.2.4. Revisiting nonstandard proof of  the intermediate value theorem given in 1.2.1 

Below, we give a more precise  version of  the proof  of  the theorem presented  
in sect ion 1.2.1. This new version is deve loped  in the f ramework  of  nons tandard  
analys is  by ar i thmetizat ion.  

INTERMEDIATE VALUE THEOREM 2.1 

Let  f be a cont inuous  function from [a, b] into R. Let  us assume f ( a ) <  0 
< f ( b ) .  Then there exists  c E [a, b] such that f ( c )  = O. 

Proof 

Let co E [~*\~, xi = a + (i/co)(b - a) for 0 < i < 09 and A = {i E ~*[ f*(xi) > 0}. 
Since  c o ~ A ,  the set A is nonempty  and since A C N/*, the set A has a m in imum 
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denoted by m. From f*(x o) = f ( a ) <  0, it follows that m > 0. Consider x,, and 
note that x m E F, the set of finite hyperreals, because a < Xm < b. Let c be *x m. It 
is easy to show that the continuity o f f  implies that f ( c )  ~--f*(xm). But x,,_ z = Xm 
- (1 /Co) (b -a ) ,  so that xm_ z =x , ,  and it follows from the continuity o f f  that 

f ( c )  =f*(xm_l). 
Moreover, we have, by the very definition of m, the inequality a =f*(Xm_l) 

< 0  and f l=f*(xm)>0.  So we have * a = * ( f * ( x , , _ , ) ) = * ( f * ( * x m _ l ) ) = f ( c )  and 
*~ = * ( f * ( x m )  ) = *( f*(*Xm) ) =f(c). For every x E 1~', we can easily prove that the 
condition x < 0 (resp. x > 0) implies *x _< 0 (resp. *x > 0) and consequently *a < 0 
and */3_> 0, arriving at the proof of the desired equality f ( c )  = O. [] 

RemaFk 

The previous proof consists of enumerating some points of [a, b] in R* to 
find an index (m) of hyperreal x,, close to the desired standard point c = *x. We have 
substituted for the notion of greater lower bound of a subset of reals the notion (not 
as complex) of a minimum of a nonempty subset of natural integers. 

2.2.5. Logic foundations of finitization and external description of the set of finite 
and infinite integers 

Here, we put emphasize on the fact that the finitization method is a positive 
by-product of a failure of logicians when they tried (and G6del proved that any 
attempt could not succeed) to define natural integers at first order, i.e. with quanti- 
fications on only one sort of  objects. Now we want to give some more details about 
that important question of defining integers. 

(a) Second-order categorical definition of natural integers; uncategoricity of first- 
order Peano arithmetic. 

It is very easy and well known that ~ can be defined and characterized 
within a logical language where it is possible to quantify both on integers and on 
subsets of  integers. This is simply the usual presentation of I%1 by the so-called 
(second-order) Peano's axioms which ensure that I~ is, up to isomorphism, the 
smallest set such that there exists a one-to-one mapping S (the successor function) 
from 1~ into itself, almost to the extent that only the distinguished element 0 is not 
in the range of S, which is expressible by S(1%1) = 1%1\{0} and verifying the second- 
order axiom of induction: 

(VA C_ ~1) ((0 EA A (x EA ~ S(x) EA))  ~ A = ~1). 

Unfortunately, the main results of mathematical logic (and especially the com- 
pleteness theorem) only just hold in the framework of first order. Consequently, 
research was done to find properties that were both expressible within a first-order 
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language and able to characterize integers. In that direction appeared the first- 
order axioms of Peano. Then G6del proved his famous theorems about the strong 
character of incompleteness of  all theories containing a reasonable arithmetic. 
Finally, Skolem understood that Peano arithmetic P is not categorical: there exists 
at least a denumerable model (say M) of P which is not isomorphic to IN, but has 
N has a proper initial segment. So, the existence of infinitesimally large integers 
(members of  M \ N )  has been proved and also the existence of infinitesimal reals: 
nonstandard analysis was potentially there, but elaborating this theory and the 
connected methods of finitization had to wait for the work of Robinson. 

It seems to us that understanding what a nonstandard model of P actually 
is cannot be done without giving a kind of external description (in the usual 
mathematical style within the framework of the usual naive set theory). Besides, in 
our opinion, the axiomatic presentation of nonstandard analysis via the IST system 
of Nelson (see [11]) is very interesting when one knows examples of nonstandard 
models. 

(b) Nonstandard models of arithmetic: some of their properties considered from 
the outside. 

Here, the use of the word outside refers to the character of nondefinability 
of the considered properties within our first-order language L(RA). Now we restrict 
the used first-order language to £ (P)  =< 0, S, <, + , .  >. We study the nonstandard 
models of  Peano arithmetic P. Let M N P be a denumerable model nonisomorphic 
to IN. We show that such a model is formed by an initial segment IN followed by 
copies of 7] structured as the chain Q of rationals. 

PROPOSITION 2.3 

The isomorphic order type of M is (a~ + (¢o* + c0)r/, where co, co* and 77 are, 
respectively, the order types of IN, of the set 2~ of rational integers and of the set 
Q of rational numbers. 

Proof 

Using the successor function S and the element 0 of M, we easily see that 
there exists an initial segment of IN, isomorphic to N and that we identify with N. 
We use symbols 1 for S(0) and n for S.. .S(0) with n letters S. Within P, it is 
formally provable that [x < n ¢:* (x = 0 v x = 1 V . . . v  x = n - 1)] and consequently, 
as already mentioned, every nonstandard integer a (member of M \ N )  is greater 
than any n ~ N (hence a is infinitely/arge). Let a ~ M \ N  be such a fixed infinite 
integer. Then for all n E IN, all integers a + n and o~- n are also infinite. Let ~ be 
the coset a + 7/in M. Note that ff = fl for fl E M \ N iff there exists z ~ 7/such that 

+ z = fl, which defines an equivalence relation. Let y = [x/2] be the integer which 
denotes the integral part of the rational number x/2; such an integral part is definable 
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in £ (P )  by the formula [x = 2y v x = 2y + 1]. From that, it follows that there are 
infinitely many cosets 77 in M, each one having 09* + 09 as order type since 77 
= {)'+ zlz E R}. Now, we show that the set of  all these cosets 77, where ~ M \ N ,  
forms a denumerable dense linearly ordered set without first or last element, hence 
isomorphic to the chain Q of rationals; in other words, having 77 as order type. We 
put ~ < < f l  if and only if a E M \ N  and f l ~ M \ N  and finally a <  13. This relation 
<< is clearly an order which is the quotient of < by the previous relation, the coset 
of  which is the 77. Since f f ~ f l  and 6 < < f l  implies ~ < < [ ½ a + f l ] < < f l ,  the 
required density is proved. Besides, inequalities like [a /2]  << ~ << 2 a  make the 
existence of a first and last element impossible. []  

Remark 

A nonstandard model of P can be drawn as in fig. 7. For some descriptions 
of the additive structure of certain particular nonstandard models of Peano, see the 
paper [ 1 9]. 

N Z 1 Zq, Zq,. 
0 • • • . . . . . .  • • • 0 • • • . . . . . .  • • • 0 • • • . . . . . .  • • • 0 • • • 

Fig. 7. 

(c) Nonstandard models of Z and discretization of the real plane. 

The external order structure of nonstandard models which we have just 
developed in the previous section provides a deep reason for the efficiency of the 
discretization obtained via a nonstandard method. Actually, the nonstandard part of 
a nonstandard model of arithmetic which is denumerable is arrived at exactly by 
replacing every (standard) rational by a copy of  •, the set of  (standard) integers. 
In a similar way, take nonstandard models which are of the same cardinality as the 
usual set of R (standard) reals. It can be proved that their order type is the following: 

• first, a copy of the usual set [~ of (standard) integers, 

• then the nonstandard part of the model obtained by replacing every (standard) 
• real by a copy of 7/. 

Now, if we look at the Cartesian product of the set M = [~ U INF1 (of standard and 
nonstandard integers) and if we suppose that M has the same cardinality as the usual 
R, then we get a discretization of the usual real plane. Actually, every usual real 
point (x, y) is the index of a net formed by a Cartesian product of the usual set 7/ 
(of standard positive or negative integers). 
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(d) Nondefinability of N within a nonstandard model of Peano and overspill. 

Notions of internal set and of external set are central in logic as in nonstandard 
analysis. This is the reason why we now show that one cannot see (i.e. express by 
formulas of £ (P)  completed by a constant of M\N) ,  from the inside of a given 
nonstandard model of P, the initial segment I isomorphic to IN. We can say that this 
set I is not definable within M by an £(P)-formula,  even accepting symbols for 
members of  M\t~ .  Integers of M are finite (hence bounded) in the framework of 
M. But (see next proposition) elements of M \ N  are infinite when seen from the 
outside (i.e. determined by the infinity of  conditions x > n with n E IN). The set N 
is external in M, but any actually finite F C_ M (with cardinal in IN) is internal since 
it is definable by an obvious formula enumerating its members. Of course, many 
infinite (from the outside) subsets of M are definable within £ ( P )  in M: for instance 
the set of prime numbers, of Fermat numbers, and so on. This leads to the following 

PROPOSITION 2.4 

(i) In a nonstandard model M ~ P, the initial segment I isomorphic to IN is not 
definable by a formula of £ (P ) ,  even with parameter symbols of M. 

(ii) (Overspill). Each definable subset of M including I contains at least an 
infinite integer, i.e. an element of M \ I .  

(iii) (Second form of overspill). Each definable subset of M including M \ I  
contains at least a finite integer, i.e. a member of I. 

Proof 

(i) If  I is definable, so is M \ N  (by negation) and, since in M every definable 
nonempty subset has a minimum, there is a smallest large integer, say a0. 
From conditions M ~ a 0 > n + 1 for every n ~ N, we have M ~ a 0 - 1 > n 
and hence the fact that a o -  1 E M\IN, which is contradictory to the very 
definition of a 0. 

(ii) If  a definable subset A is I, then I is definable contrary to (i). So A C N and 
A CN, and we have A N (M\IN) ¢ 0 .  

(iii) Analogous to (ii). 

(e) Construction of universes U and U*. 

This paper is certainly not the place to give an extended development of a 
construction of U and U*. Nevertheless, it is appropriate to convince the reader that 
nonstandard methods of finitization are in themselves included in the traditional 
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f r amework  o f  a usual  set theory to give 3) the main results  concerning  U and U*. 
The detai ls  of  this construct ion can be found in the first  chapter  of  the book by 
Mart in  Davis  (see [4, pp. 5 - 4 1 ]  and [21]). 

Let  us give 

DEFINITION 2.3 (of the universe U) 

(a) Let  S be an overse t  o f  R; individuals  of  U are exact ly  the e lements  o f  S; by 
induct ion and i f  P ( X )  denotes  the power  set o f  a given set X, we def ine  a 

sequence (Si)iel ~ a s  fol lows:  So = S . . . . .  Si+ l = Si U P(Si) .  We put S = ~.Jie~lSi. 

(b) The universe  U will  be any subset  of  S s imul taneous ly  ver i fy ing  the four 
condi t ions:  

(i) 0 e U; 
(ii) S C U ;  

(iii) I f x ~ U  a n d y e U ,  then {x , y }  e U ;  

(iv) U is t ransi t ive (in other  words: for all x e U ,  ei ther  x e S  or x C U ) .  

Let  UL be a proper  ul trafi l ter  on l%1; the universe U*  is the u l t rapower  of  U 
under  UL. Then it can be shown that couple  ( U ,  U*)  verif ies  all required proper t ies  
AN1,  AN2,  AN3 and AN4. The proof  is based on two logical  results.  

The first result is the theorem of  Los,  which admits the fol lowing consequence.  

PROPOSITION 2.5 

A sentence of  L(RA)  is sat isf ied in U if  and only if it is sat isf ied in U*. 

The seond result  ensures that U* is r icher  than U because  U* is a Rl- 
saturated model  and this is writ ten out in 

PROPOSITION 2.6 (Robinson's principle) 

A binary  relat ion B o f  U is cal led concurrent  if the condi t ion (for every finite 
part  F = {al . . . . .  an} o f  U there exists  an e lement  b(F)  such that (ai, b (F))  ~ B for 
every  i E { I . . . . .  n }) impl ies  the exis tence  of  an e lement  b E U* such that (a, b)  ~ B 
for. every e lement  a of  the domain  dom(B)  of  B. 

3>For the reader familiar with logic, elementary extensions and saturation, we would just like to say 
that we consider a transitive universe U containing R as a subset of individuals of U and we take 
an ultrapower modulo as a proper ultrafilter. By Los' theorem, sentences are preserved (this is 
transfer) in a richer universe U ° which is itself saturated. Hence, every denumerable family of 
existential conditions which is finitely realized is also realized in U °. This is compacity and this 
provides, for instance, infinitesimals and infinitely large reals. 
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Remark  

Once more, we get a compacity result. In particular, if we take B as the 
natural order, then we obtain the existence of infinite integers because dora(<) = ~ .  

This brings us back to the first AN1, which states the fact that l~Ct~*. 

2.2.6. To be or  not to be f in i te:  this is not expressible by machines  

We remind the reader that it is possible to define the usual set t~ at the second 
order within a suitable set theory. Now let us recall the first-order Peano axioms, 
expressed in a usual first-order Peano language £CPA) :  

V x V y ( S x  = Sy ~ x = y) 

V x ( x  ~ 0 ~ 3y(Sy = x))  

V x ( x  + 0 = x) 

V x V y ( x  + Sy = S(x  + y)) 

V x ( x  .0 = O) 

VxVy (x .Sy  = xy + x)  

Vx(q~(x) ~ ¢(x  + 1) A ¢(0)) ~ VxC,(x). 

(S1) 

($2) 

(A1) 

(A2) 

(M1) 

(M2) 

(Ry) 

It is clear that the usual I~ satisfies these axioms. 
In the last part of this section, we would like to convince the reader that it 

is not possible to define at first order (in a usual logical language) the property, for 
a set, of being f in i te .  In order to do this, consider a new constant symbol a and a 
new language £ ' ,  defined as follows: 

L" = £ ( P )  U {at U {fi}n~- 

Within this language £ ' ,  we can express the infinite set of sentences 

Now suppose that FINI(x)  is a first-order £ '  formula such that its interpretation (in 
a model of the chosen set theory) is 

x is f ini te .  

Considering any finite part, Y~f= {a  > n-l- . . . . .  a > n--~-- } of Y~(a) Then m e N exists 
such that the structure (1~, t2 = m) satisfies P + Vx FINI(x )  + ~ f ( m ) .  By the logical 
compactness theorem (see any introduction to mathematical logic), we know that 
if any finite part of an infinite set of sentences has a model, then the whole set of 
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sentences itself also has a model. Let M be such that there exists in M an element 
6: (interpreting the symbol of  £ ' )  such that the structure M verifies for all x in M 

P + Vx FINI(x) + E (m). 

M6zalor (R. Queneau): 

- on one hand, FINI(6:) is true because for every element x of  M ,  the relation 
FINI(x) is true; 

- on the other hand, 6: > n for every n ~ N so that 6: is infinite. This shows that 
structure M contains one element that does not satisfy the interpretation 
of  FINI, while all elements satisfy the interpretation of  FINI. This is a 
contradiction which makes it impossible to characterize at first order the 
notion of  finiteness. 

3. Computer science as a source of discrete problems 

The conflicts between the continuum and the discrete 

Computers  being finite machines cannot manage directly nature 's  modell ing 
obtained from continuous notions using real numbers. This is the main source of  
conflicts between two of  our tools: modelling using continuous notions and 
computers.  I f  we look a little bit closer, we see that the cont inuum usually requires 
the axiom of  infinity which is out of  the computer ' s  range. 

3.1. THE CLASSICAL THESIS AND ITS LIMITATIONS 

By chance, using numerical analysis (error calculus), we can generally solve 
this conflict for functions whose range is contained in N. This permits us, of  course, 
to solve some geometrical or topological problems if a small error is accepted. 
Numerical  processing of  continuous objects defines discrete objects still greatly 
unknown. These are close to the continuous ones we want to study if the computat ion 
uses a high-precision floating-point or fix-point arithmetic, and this closeness is 
often sufficient. However,  we can notice that this classical thesis in the way 
computers  are used to manage continuous objects is far from perfect: 

r This thesis is right for functions but is not very convenient  when we want 
to study general continuous objects. For example, a discretized manifold will never 
be identical to its mother notion. It can be difficult to guess how some continuous 
properties we rely on for the end of  an algorithm must be adapted in the discrete 
case (connected components,  in particular, become practically unworkable).  

• Floating of  fix-point arithmetics are not the only way discrete objects appear; 
many devices (screens, scanners, printers, digital signal devices, etc.) also convert  
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continuous objects into discretized objects and often not very accurately. Conse- 
quently, discrete objects are, in these situations, unavoidable and cannot be hidden 
behind a high-precision computation. Once a line or a circle has been digitized in 
this way and transmitted, we have to make do with it. 

• Even for functions, numerical analysis cannot answer all the questions. 
Geometrical transformations, for example plane rotations, which are relevant in this 
case, lose the property of  being bijections after a discretization has occurred. Yet 
this property can be fundamental in certain situations such as image processing or 
desktop publishing. 

The three former observations describe a very vast and almost virgin territory: 
defining and studying discrete objects which can be related to those appearing in 
the use of computers. Or to put it in another way, what part o f  the continuous can 

be reached with a computer? We intuitively feel that this domain is an unlimited 
source of questions and work. 

3.2. THE EXAMPLE OF LINEAR APPLICATIONS 

The main problem with the domain we have just outlines is its immensity. 
We would certainly first like to delimit some interesting areas where the job can 
be done effectively, but this is not so easy. To show an example of the type of 
difficulties, let us examine the discretization of a linear mapping. Many people 
already noticed in the past that quantization of linear mappings, even for the 
contracting ones, destroys their dynamical properties. Cycles may appear in the 
discretized function in place of the unique fixed-point, zero, of  the linear map. But 
these cycles, which appear in fix-point computations for example, are really difficult 
to explain formally; we mean in such a way that we can, if we take into account 
the coefficients of a linear mapping, predict the cycles of its quantization. If  we 
treat this problem along the lines of section 1, we can at least express formally these 
digitalizations, that is, give arithmetical formulas describing them exactly. These 
equations do in fact show that, among all discretizations, there exists a canonical 
one which, in a certain sense, is universal and is the first step in a theoretical study. 
Let f be a rational plane linear transform whose matrix (in canonical basis, for 
example) is 

co 

where all parameters are integers; this hypothesis is obviously not a restriction. 
Suppose we want to compute this transform using a finite precision device, say in 
fix-point arithmetic where precision is c. If  (x, y) E ~2 is a point in the Euclidean 
plane, the result of computation is exactly the point 

t r u n c  , t r u n c  , 
co co 
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where, for real number a,  trunc(a) denotes the largest, among numbers of  the form 
ke, k E ~, and bounded by a. Moreover, if we are interested in f ' s  iterations, we 
can also suppose that the starting point (x, y) is of the form (me, he) for integers 
m and n. Function f ' s  digitalization is then given by 

where brackets denote the integer part. Thus, we see that f ' s  discretization is 
entirely defined by the function ~b : 7/2---~ g 2, defined by 

X'  = [~x+br 1 
L m . t '  

('/') r '  = rex-Y1 
L ,co j "  

This integer function is a rescaling of f ' s  digitalization. We observe that this 
rescaling is independent of precision e; it is a normalized discretization. As far as 
fix-point arithmetic is concerned, any R 2 linear rational mapping f is converted to 
such a 7/2 transformation whatever the precision e is; this shows that an increase 
in precision is useless if we want to know more a b o u t f ' s  discretization. To do this, 
the best choice would be the study of ~. Of  course, a perfect knowledge of ~ may 
require errorless computations with large integers if x and y are large, otherwise its 
properties will not be correctly detected. 

3.3. QUASI-AFFINE-TRANSFORMATIONS 

We intend to call quasi-affine-transformation (QAT for short) ~2 mappings 
such as ~b. This leads us immediately to the study of their numerous dynamical 
properties (cf. [10] and [8]). We must warn the reader that QATs possess many 
surprising properties. For example, this domain is very close to fractal geometry. 
Let us give a particular example, taking, in ~b's definition, a = 1, b = 1, c = -1 ,  d = 1 
and co = 2. Figure 8 shows, for this mapping tp, the inverse image of the origin of 
order 7, that is, the set defined by D 7 = q~-7(0). 

Fig. 8. The celebrated dragon curve obtained with a QAT. 
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We recognize the well-known dragon curves. A definition of Dk'S through 
function ~ leads to a new description of these fractal curves from which their 
properties can be developed (see ref. immediately above). This rather elementary 
example is nevertheless very instructive. It shows that a mere transcription of a 
discrete problem in our setting is a partial answer to some difficulties that come 
from quantization. Correctly converted, the problem reveals very quickly its deepest 
features, that it is a miscellany of arithmetics, dynamics and fractal geometry. At 
the same time, this example shows that the range of discrete notions is not organized 
in a simple manner: many domains, traditionally far apart in the classical point of 
view, interfere with each other as soon as quantization occurs. 

3.4. THE EUCLIDEAN TRIANGLE'S PICTURE INDUCED ON ~2 

It is rather easy to get examples of discretization that come from geometry. 
Let T be a usual triangle contained in an Euclidean plane. The very first question 
is: what is T's discretization? In the spirit of the truncation process explained 
before, this amounts to appyling the discretization process pointwise; this is the 
usual discretization giving the left lower corner of unit squares. 

But this way of approximating T leads to numerous questions and difficulties. 
Here are some of them, illustrated by figs. 9 to 12 (the reader can produce as many 
as he or she wants to). We shall denote by P an Euclidean point and by P its 
canonical discretization ( P  is required to be an integer point). 

Fig. 9. A discretized triangle may be disconnected. 

Another digitalization for T is simply given by the set of integer points it 
contains; this is closer to the principle of normalized discretization as being more 
invariant with respect to precision increasing. Higher precision digitalization 
amounts to considering integer points contained in homothetic magnifications of T. 
Nevertheless, this second discretization for T does not solve all former problems, 
though membership is clearer. It will not be surprising if we say that no intuitive 
solution exists; all the machinery of section 2 will be required to solve some of 
these questions. One can say the geometry which was, for a long time, the art of 
reasoning correctly from false patterns drawn on paper, nowadays has become, on 
computers, the art of reasoning from false numerical results giving false patterns 
when fortunately computations end. Let us observe that the first major difficulty is 
to find a convenient definition of discrete lines which makes their study possible. 
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Example for membership 
A 

B 
C 

Point membership for a discrete triangle. 

Fig. 10. If a rational triangle is given by the three vertices A, B and C, we can 
consider discrete sides (for example, in the sense of Bresenham) to convert it into 
a discrete triangle. But this leads to strange situations; for example, point P 
satisfies Pe t  Tand P- e T. On the other hand, point Q satisfies Q ~ Tand Q ~ T. 

Fig. 11. A digitized triangle generally does 
not possess three vertices any longer. 

/% 
Fig. 12. The discretization of the three heights 
intersect at point P, while the discretization 

of  the real orthocenter is point Q. 
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3.5. THE FUNDAMENTAL EXAMPLE OF DISCRETE LINES 

When we look at and see how usual discrete objects are modified by 
digitalization (see, for example, the discretization of  a real line in fig. 13), we may 
legitimately wonder if geometry is not completely lost through discretization. 

m m ___.-- 

Fig. I3. What occurs to Euclidean lines on a computer screen. 

Figures 14 and 15 illustrate the puzzling problem of  line intersection, which 
may also be void or infinite or contain any number of  points. This gives an idea 
of  the damages suffered by Euclidean geometry after digitalization. 

....I,III, 
i l l  I l i  

I l l l l l ] l  I l l  
l i l l  

Fig. 14. Sometimes, line intersection is rather simple. 

Fig. 15. Sometimes, line intersection can be complicated. 

In Euclidean geometry, a false pattern is acceptable because its properties can 
still be obtained using simple axioms. In the discrete case, these axioms are lost; 
for example, there exist 

• several discrete lines between two points, 

• non-parallel lines with no common point, 

• non-parallel lines with 18 common points (see fig. 15). 
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subsegments whose slopes are different from the line including them. Hence, 
a lot of very important properties are lost when we go from continuous 
Euclidean geometry to discrete patterns of computer screens. Building discrete 
geometry is a difficult task. 

For a long time, the only way to handle discrete lines was to use their 
definition as the set of the closest integer points from a given Euclidean line, or 
the set of  points given by Bresenham's algorithm, which allows us to draw them 
(a short version of this algorithm is given below). Neither way, geometric or 
algorithmic is convenient to begin an actual study of these structures. The main 
reason comes from a simultaneous use of  real and integer numbers (our arith- 
metization process is supposed to be able to solve this conflict). 

y : = O  
E r r o r  := b div 2; 
drawpoint(0,0);  

f o r i : = l  t o b d o  
if e r r o r  < b - a then 

begin 
error  : = error  + a; 
drawpoin t ( i ,  y) 

end 
else 

begin 
error  : = e r ro r  - b + a; 
y : = y + l ;  
drawpoin t ( i ,  y) 

end;  

A simplified version of Bresenham's algorithm. 

We see, looking at Bresenham's algorithm, that it cannot answer the questions 
about discretization we presented above. 

4. Ideal  discrete  geometry  

In this section, we shall use the existence of infinite integers presented in 
section 1 to solve the difficult problem of constructing discrete geometry rigorously. 
We first build an ideal theory, as infinite integers are ideal integers possessing 
powerful properties, then we explain what this ideal discrete geometry says about 
standard discrete geometry. 
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4.1. BIG-POINTS ON THE HYPERFINITE SCREEN 

To start our investigations, we can first try to keep a discrete screen which 
is supposed to be infinitely wide and measurable. This means that we can take an 
infinite integer 09 for the width of the two edges of this square screen. We are indeed 
working within a hyperfinite square of (7:*) 2, denoted by SQSC(co). Observing this 
screen, and thinking of proximity, it is clear that the vertices of  the screen (seen 
as a square) are far from each other; and that neighbouring pixels are close. This 
closeness usually leads the Working Computer Scientist (WCS) to consider 4- 
connexity and 8-connexity. Unfortunately, the underlying topology is too far from 
the usual R-topology needed by geometry. How can we make it more flexible in 
order to recover all Euclidean results? The answer already implicitly arises from the 
above. 

Two points A = (:cA, Ya) and B = (xB, YB) of (Z*)2 are close if and only if 

max(IxA - xBI, l YA - YnI ) = ~(A, B) 

is infinitesimal in front of 09. Using co-indiscemibility introduced in 1.1.3, this can 
also be written as 

(Xa ~ xs )  /X (YA ~ YS). 

We shall use the symbol t5 << co to designate that integer 6 is infinitely smaller than 
integer 09. 

It must be emphasized that this integer 6(A, B) gives a notion of closeness. 
It has all the properties of a distance, but we save this denomination for the 
following: 

max(I Xa -- xBI, ]YA, YBI ) 
d(A,  B) = 

(1) 

Let A be an integer point, let us call it big-point associated to A, and denote A- the 
collection (or coset) of  all integer points M such that d(A, M) is infinitesimal; 
ordinary integer points will still be called points. It is easy to see that the role of 
points within continuous geometry is held by these big-points. This can be done 
using a natural topology with the help of which we can recover the desired 
geometrical results. This topology is defined by the distance 

A(A, B) = [d(A, B)] °. 

The following result shows that big-points behave as usual Euclidean points; its 
proof follows immediately from definitions. 

PROPOSITION 4.1 

If  big-points A" and B have a common integer point, then A = B. 
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As usual for quotient spaces, the set of big-points associated with the ideal 
screen SQSC(co) will be denoted by SQSC(co)/S. 

The use of both notions of points allows us to solve the conflicts existing 
between Euclidean and discrete geometry. It is exactly here, for an easy management 
of these two notions at the same time, that the power of nonstandard analysis is 
required. 

Remark 

This paper is just a first introduction to ideal discrete geometry aiming to 
show how mathematics provides tools to solve many difficulties encountered in 
practice around discretization of continuous notions. We suppose implicitly some 
restrictions while constructing this geometry. First, we suppose our space of 
investigation is limited to our screen SQSC(co), for example, point (coz, coz) is not 
considered; secondly, irrational numbers will be avoided. 

Each of these limitations can be overcome using a little more of nonstandard 
analysis; for example, irrationals ~ can be replaced by infinitesimally close rational 
approximations ~ = a/f l ,  with a and fl infinitely large integers. 

4.2. DISCRETE LINES ON THE HYPERFINITE SCREEN 

Looking precisely at the way of thinking of Euclidean continuous geometry, 
we note that lines have both an ideal property of being without thickness and the 
physical property of having a thickness when drawn. To keep the physical thickness 
of  lines, we introduce strips with a non-zero thickness, say "r ~ 0, but to also keep 
the ideal property of thinness, we impose the fact that such a parameter "r must be 
infinitesimal in front of the width co of edges of the screen. Let us note that it is 
the quotient "r/co which is infinitesimal, so that it is consistent with the following 
assumptions: 

• the parameters z and co are integers (condition of arithmetization); 

• • is hyperfinite (and so is o9). 

To go into more detail, following the ideas contained in [15], a discrete line of 
rational direction (a,  [3) of width ~ is the set of  integer solutions (x, y) of  the two 
inequalities 

y <_ f l x -  ay  < y + "r. 

The meanings of  parameters will become clearer and clearer as we go further into 
definitions and proofs; the width (or thickness) ~r is not a metric notion, but rather 
an arithmetical one. I f x  = 0, this discrete line contains integer points whose ordinate 
satisfies [ ( - y -  V)/a] + 1 < y < [ -  y /a] .  
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Here, the links between discrete and continuous geometry are given by the 
notion of the shadow line D of any discrete line D canonically determined by 

= {A E SQSC(co)/t~[A E D}. 

Within such a frame, it is time to list and prove some main results of continuous 
geometry in this altogether heuristically finite in one sense (because ~ and co are 
hyperfinite integers), infinite in another (because z >  n and co> n for all standard 
n) and in any case discrete geometry (as one can see by the very definition of our 
screen). 

4.3. HOW EUCLIDEAN GEOMETRY LIFTS TO IDEAL DISCRETE GEOMETRY 

Our discrete version of the classical Euclidean theorems concerning lines 
(usually taken as axioms), providing a first step in a discrete axiomatization of 
geometry, is the following. 

THEOREM 4.1 (bipoint determination) 

Let A and B be two integer points of the screen SQSC(CO) such that A(A, B) 
is appreciable, and let • be a given integer such that N << z << co. Then all discrete 
lines D with width v passing through A and B have a unique shadow line D. 

Proof  

Let A = (xA, YA), B = (XB, YB) be the given points. The hypothesis on A and 
B says that at least one of the two numbers xe - XA and YB - YA is not infinitely small 
with respect to co. Eventually exchanging x and y, we can suppose that it is xB - Xa. 

Let D's inequations be 
y < a x - b y < y +  v, 

where a, b and y are integers, and "r is an arithmetic width satisfying the above 
conditions. Also, let M = (Xu, YM) be a point in discrete line D. We will suppose that 
M is co-limited, which means that a standard integer s exists such that A(O, M) is 
bounded by sco; this allows us to treat points off the screen SQSC(co) but not too 
far. Let us recall the meaning of the hypothesis A(A, B) is appreciable imposed on 
big-points A- and B; this condition means that this (real) value must be non- 
infinitely small and co-limited. This amounts to saying that A(A, B) is infinitely 
close to a non-zero standard real number. Translated into ordinary points A and B, 
this means that there exists a standard integer s such that 

o9 < ~(A, B) < so). 
S 
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From the hypothesis on A, B and M, we can immediately deduce that the rational 
number 

X M --  X A 

X B --  X A 

is limited (i.e. bounded by a standard real number). Let us consider point R = (Xg, YR), 
with the same abscissa Xg as M, belonging to the real line passing through A and 
B. We point out that although point M is an integer, R is generally rational. We must 
show that, for all authorized YM values, the difference [YM-YRI is bounded by an 
integer which is infinitely small with respect to co. The equation of line A B  is 

from which we get 

(YB - -YA)(  x -- xa) -- (XB - -XA)(Y  --YA) = O, 

YR : YA + (XM -- XA ) 
(Y8 - YA ) 
( X  B --  X A ) ' 

From the definition of A and M, there exist integers "r m and v M in interval [y, y+  T[ 
such that we have equalities 

axA - b y A  = 7+ ra 

leading to 
a X M  - b y M  = 7 + "EM, 

and 

l (7 + T A )  (YB -- YA) 
YR = -~ X A  b + ( X M  - X A  ) ( x  B - x A ) 

a (7 + TM ) 
Y M  = ~ X M  b 

Forming the difference of ordinates YM-YR, we obtain 

[ Y M - - Y R [  = ( X M - - X A ) ~ b  

which can be written as 

\ 
YB -- Ya ] + T A  --  T M 

X B X A ) b ' 

l ( x M - xA )(a(xB _ 
lYM--YR[= b < X B _ X A  X A  ) --  b(YB - YA) )  + - -  T A  --  b T M  " 

The definition of B gives, as for A, the existence of an integer vB ~ [?;, 7+ z [ such 
that we have 

axB - byB = g + ~;8; 

from this, it is easily deduced that [a(x B - - X A ) -  b ( y  8 -Ya)[ < z. As we also have 
IT A --TM[ --V, we obtain 
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[ Y M - - y R I 5  b l  X M - - X A  I - -  + l .  

X B -- X A 

But A(A, B) being appreciable, we have seen above that (XM--XA)/ (XB--XA)  is 
bounded by a standard number whence [ YM- YR l is bounded by T times a standard 
integer and is effectively smal l  with respect to co. [] 

THEOREM 4.2 (crossing lines) 

Two given lines D and D '  with respective different standard rational slopes 
have a nonempty intersection contained in the unique coset A" of any point A of that 
intersection. Moreover, the big-point A satisfies {A} = D N D' .  

P r o o f  

The theorem first asserts that there is a point M ~ D  n D' .  Let us suppose 
these discrete lines respectively defined by inequations 

7 < a x -  by < 7 + "c, (D)  

7" < a ' x  - b 'y  < 7" + ~r', ( D ' )  

where a, b, a" and b '  are standard and their arithmetic width v and ~:' are infinitely 
large integers which are infinitesimal with respect to co; we also suppose gcd(a,  b) 

= g c d ( a ' ,  b ' ) =  1; let 5 = a ' b - a b '  be the determinant, which can be supposed 
positive. Any solution to inequations (D) and (D')  is of the form 

ax - by = 6, 

a ' x  - b 'y = e ' ,  

where e E [ y ,  7+ "r[ and E' E [ 7 ' ,  7"+ ~"[. To solve this system we use Bezout 's 
theorem, which gives two standard integers u and v such that au - b y  = 1. Solutions 
of the first equation are (x, y) = (kb + eu, ka + ev).  Carrying back in the second 
equation, we obtain one integer k satisfying the equation 

~k = (a 'u  - b '  v ) e  - e ' ,  

which implies that the system associated with intersection D n D '  has integer 
solutions if and only if there are two integers e and 6 '  in their respective intervals 
such that 

6" -- (a 'u  - b" o)e  mod 5. 

If a solution exists, there is an integer m such that 

e" = (a 'u  - b" v ) e  + mS,  
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from which we immediately deduce that the (x, y) solution is 

(x,  y)  = (ue  + bm, v6 + am) .  

A solution to the system (D) fq (D ' )  does exist because, for any 6, 8be ing  standard 
and 7 '  infinitely large, there are values of  m such that 

( a ' u  - b ' v ) E  + mdi E [7/' ,  7/' + "r'[, 

We now consider the constraints on e ' ,  say 7/'_< 6"<  7/ '+ 7"; from the above 
expression for 6 '  and the bounds on 6, we can deduce the bounds on integer m. First 
we have 

7/" < m S  + (a 'u  - b ' v ) e  < 7/" + v ' ,  
then 

7/" - (a 'u  - b ' v ) e  < m 6  < 7/" + ~r" - (a 'u  - b ' v ) e .  

Using e ' s  bounds, we have (if a ' u -  b ' v  > 0), 

7/" - (a 'u  - b ' v ) (7 /  + "r) < m 5  < 7/" + "c" - ( a ' u  - b ' v ) y .  

But the difference between these last bounds is exactly 

v" + l a ' u - b ' v l v ,  

from which we can deduce that m belongs to an interval of  length 

[v"  + l a ' u -  b ' v l v ]  = v,,  

A similar conclusion can be made if a ' u  - b 'v  < 0. This last bound T" is, as required, 
infinitely large but small with respect to 09; moreover, this length is bounded by 
T + 7 '  because I a ' u  - b 'v l  < S and 5 > 1. An easy consequence of  this bound for m 
is that for two different solutions (xl, Yl) and (xz, Y2) of  system D N D '  we have, 
with obvious notations, 

[xl - x21 -< lu(el - e 2 ) l  + l b ( m ,  - rnz)l  <- lurv  + Ib[  r" ,  

lYl - Y21 < Iv (e l  - e2)l + [a(ml - m2)l < Iv[ ~" + I a t't'". 

The last assertion of  this theorem is then obvious. [ ]  

Let us point out that a, b, a ' ,  b '  being all standard from the hypothesis,  then 
the s lopes  are d i f ferent  s tandard  rat ionals .  If  that were not the case we could have, 
for  example, a, b standards and a ' ,  b '  infinitely large, such that both rationals a / b  
and a ' / b "  would have been infinitely close. But then the length of  the interval 
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containing m values could have been co-appreciable and thus not negligible in front 
of  co. This theorem can be generalized to nonstandard slopes a / b  4~ a ' / b ' ,  where 
a, b, a '  and b '  are infinitely large integers. 

THEOREM 4.3 (Euclid postulate) 

Let D be a discrete line with given slope a and given width ~ such that 
N << z<< co and A be an integer point such that the big-point A does not belong 
to D. Let z '  be a given integer such that N << z ' < <  w; then any discrete line D" 
with width 'r '  and slope infinitely close to a has the same shadow D" (the parallel 
to D passing through A). 

P r o o f  

The proof results immediately from the following lemma, which says that 
close enough lines have the same macroscopic trace. [] 

LEMMA 

Let D and D '  be two discrete lines, whose slopes are infinitely close, 
containing an integer point A; then D = D' .  

P r o o f  

With now usual notations, both lines are defined as 

Y < a x -  by < y + z,  (D)  

Y" < a ' x  - b 'y  < y" + z ' ,  ( D ' )  

with N << z, z '  << w. We also suppose that b > 0, b '  > 0 and determinant S = a b ' -  a 'b 

> 0, which implies a ' / b ' <  a / b .  This is not a restriction. The hypothesis on the 
slopes says that the difference a / b  - a ' / b "  is infinitesimal. We also use integers u 
and v which, by Bezout's theorem, satisfy the relation: au - b y  = 1. Point A = (Xa, YA) 

belonging to D 71D '  and two integers t E [ y, y+ z[ and e '  E [ y', y '  + v ' [  exist such 
that 

ax A - by A = E, 

a ' x  A - b 'y  A = E'. 

The proof of the previous theorem showed us that this system accepts a solution 
(Xm, YA), thus values y +  £ and ?" + e '  are necessarily tied by the congruence 

e" -- (a 'u  - b '  v ) e  mod c5, 

which says that integer m = vx - uy is such that 

~," = - e '  + (a 'u  - b ' v )  O' + e) + m6.  
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We must now consider two points in D and D" having the same abscissa  x 
and different respective ordinates y and y ' ,  and show that the value ( 3 ' -  Y') /co is 
infinitesimal; for the same reasons as those mentioned in the preceding theorems 
we can suppose x is co-limited. We can draw y and y '  f rom Ds and D ' s  above 
inequations; this gives 

l ( a x -  y - v + 1) (1) 

and 

~--;(a'x - y '  - 1) (2) V I + 

Subtracting eqs. (1) and (2), we obtain 

I 
<_ y < ~ ( a x -  7 + l), 

1 ?,, 
< y" < ~ 7 ( a ' x -  +1).  

the inequalities 

( b  a ' )  y '  7 + l - v  1 y,  ~-7 x +  b - - 7 - - ~  - - f f - + ~ 7 _ < y  - 

< x +  + 
- b - - V -  

Dividing this equation by co gives 

- b ' )  a) + - - d  + c o - - U -  co 

<- - - d  + - d  b" + co--  + - cob" 

To conclude the proof,  it is sufficient to show that left and right members  are 
infinitesimal.  This amounts  to proving that each term occurring in these sums is 
infinitesimal: 

• The term (a /b  - a ' / b ' ) x / a )  is infinitesimal because (a /b  - a ' / b ' )  is infinitesi- 
mal and x/a)  is bounded by a standard integer. 

• For 1 / a ) ( y ' / b ' - y / b ) ,  we first observe that y ' / b ' - y / b  = ~ / b - e ' / b "  
+ x a ( a ' / b ' - a / b )  (multiply relations defining xa and YA respect ively by 
b '  and b, form their difference and use ( ~ = a b ' - a ' b .  Then we get 1/co 
( g ' /b"  - y /b )  = 1/co( e/b  - e ' / b ' )  + XA/co(a'/b" - a /b )  but e < r a n d  •' < z ' ,  
ari thmetical  widths v and v '  being infinitesimal with respect to co, and XA/a) 
is bounded by a standard integer. We can then deduce from these bounds that 
1/oJ( y ' / b '  - y /b )  is infinitesimal. 

• The final terms (1 - q/cob', (v' - 1)/a)b and 1/a)b are obviously infinitesimal. 
[ ]  

The introduced ideal lines are somehow regular because we supposed their 
slope is rational and standard, a and b being standard integers. This is not a real 
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limitation; we can introduce nonstandard discrete lines with a and b infinitely 
large integers, arithmetical width v being restricted by max(lal ,  IbL)<< z<<  
max(lal,  I bl )co. Nonstandard lines can be seen as discretization of Euclidean lines 
with irrational slope; previous theorems can be generalized, with slight modifi- 
cations, to these lines. 

4.4. THE STATUS OF IDEAL DISCRETE GEOMETRY. THE WAY TO STANDARD DISCRETE 
GEOMETRY 

The previous theorems are examples of properties of discrete lines we intro- 
duced. They should convince the reader that all Euclidean notions and theorems can 
be adapted, in the same fashion, for conveniently defined discrete objects; their 
totality will form ideal discrete geometry (IDG for short). This geometry is then a 
perfect discretization of Euclidean geometry (abbreviated to EG) because any 
classical result has an IDG version and every IDG result gives in return a macro- 
scopic, Euclidean, similar property. Nothing is lost going from EG to IDG. In other 
words, the last theory is an infinitesimal deformation of the first; we also say that 
ideal discrete geometry is potentially equivalent to Euclidean geometry. But this 
does not mean that EG and IDG have the same properties; an infinitesimal drift is 
indeed present. Let us consider how line intersection depends on their angle. In EG, 
this intersection is a point if the angle is non-zero and a line if it is zero. This 
dependence is non-continuous. Besides, for two discrete lines their intersection 
increases regularly from a small number of integer points when the angle is standard 
to a very large number when this angle decreases toward infinitesimal values. It is 
not difficult to generalize theorem 4.2 and prove that discrete line intersection 
depends continuously on their angle. The remarkable fact is that these different 
behaviours do not prevent an exact conversion of properties from one theory to the 
other; this equivalence relies on the strength of standard part function. 

What occurs if we decrease the size of our screen SQSC(CO)? As long as co 
remains an infinitely large integer, we can show that all discrete models SQSC(co) 
of the continuous plane are equivalent. But when co lands in standard territory, the 
situation is completely different: SQSC(co)'s topology is a discrete topology (in the 
classical sense: every set is open) and its geometry is now very far from Euclidean. 
We are now in the usual domain of discrete geometry (DG for short), that of 
computer science. Hence, we can travel from continuum to discrete through a 
hyperfinite number of steps. 

Two main remarks have to be made at this point. We have a whole family 
of geometries, those of all screens SQSC(v) for v =  co, co-  1, co-  2 ..... 1024, 
1023 ..... 512 . . . . .  the last ones being usual computer screens. From our point of 
view, this is a one-parameter family of geometries and this family is heuristically 
continuous. This explains how objects or properties can travel along this route from 
EG to DG through the intermediate state given by IDG. This allows us to predict 
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that EG can leave impressions on DG. More precisely, if we are trying to define 
or study new DG objects, let us say a notion N ,  it is very helpful to do it for the 
whole chain of  notions N ( v )  at once. That is, we try to work for all screen 
resolutions at the same time and especially for those with infinitely large values 
where continuous geometry is potentially true. Moreover, good discrete notions 
N ( v )  will have a corresponding notion in IDG, which is of  invaluable help to 
decide if N ( v )  has some interest in DG. For example, IDG says that arithmetical 
width z o f  discrete lines is a good notion. The last section o f  this paper is simply 
a by-product  of  this observation. 

5. Standard discrete geometry 

5.1. STANDARD DISCRETE LINES 

At the beginning of  section 4, we reminded the reader how lines are digitalized 
on computer  screens with the help of  Bresenham's  algorithm. It is well known that, 
if a Euclidean line D is given, this discretization D is made up of  the set of  integer 
points which are the closest to D. Consequently, this discrete line has a functional 
property: for all integer values of  the variable, there is one and only one point of  
D having this abscissa (in other words, these lines are 8-connected and not 4- 
connected).  But we can ask if this notion of  a discrete line is convenient  for 
building up a discrete geometry. The answer is no. We can already understand the 
main reason for this: if a good theory is obtained with these lines on standard 
screens, i.e. SQSC(v) with v standard, then we can follow the way to the cont inuum 
and we should, for infinitely large values o f  v, obtain geometries equivalent to IDG. 
But our study of  IDG's  axiomatics shows that arithmetical thickness has often to 
be infinitely large if we want to obtain general and easy theorems. Thus is it very 
natural, and in fact unavoidable, to introduce a notion of  discrete lines where 
arithmetical thickness is a new parameter independent of  slope and ordinate at the 
origin. This leads us to the following definition, which first appeared in [15]. 

DEFINITION 5.1 

A discrete rational line D is the set of  integer solutions (x, y) of  inequalities 

7/< ax + by < ~' + oo, 

where a, b, ~, co are integers and co> 0; we denote it D ( a ,  b, ~, co). 

The values a, b define D ' s  slope, y and 2' + co are D ' s  bounds, and co is D ' s  
arithmetical thickness. 

In addition to the theoretical vindication of  arithmetical thickness, many 
other reasons to introduce this notion can be found afterwards; they all support this 
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way of defining discrete lines. Even if we do not study them in what follows, let 
us give some of these motivations. 

• If we consider different discretizations of a continuous line, all are particular 
cases of our discrete line notion for well-chosen z values. Consider, for example, 
the set of pixels across a given Euclidean line; this discretization is in fact t h i c k e r  

than Bresenham's line, but this is exactly what we obtain using our notion if we 
take "r= [a] + [b[. Other cases also fit perfectly. 

• The thickness of lines allows a discrete version of stretching and folding 
which is inaccessible to usual discrete notions. This possibility is valuable in the 
study of metric properties of discrete lines or discrete transformations. 

• Definitions of higher dimensional lines, planes, hyperplanes, etc. are obvious 
from our point of view. Moreover, the consideration of discrete planes immediately 
shows that their plane sections are general discrete lines such as we have just 
introduced. 

5.2. ARITHMETICS OF DISCRETE LINES. M O D U L A R  C ALCULUS AND ALGORITHMICS 

A former definition of discrete lines requires the study of their algorithmic 
properties. Up to now, we have not been able to decide if the general notion is, from 
an algorithmical point of view, as simple as Bresenham's lines or more complicated. 
In other words, is the the interest in these new lines only theoretical or also practical? 
In what follows, we will show that general discrete lines contain Bresenham's lines 
and that they are, algorithmically, as simple. To obtain this answer, we will follow 
a simple idea, which goes back very far in the history of science, but has been rather 
overlooked. Prior to 1750, the astronomer Jean Bernoulli introduced Une N o u v e l l e  

M d t h o d e  de  Ca lcu l ,  which was an arithmetical treatment of linear rational inter- 
polation. He observed that if we want to interpolate a linear rational function 

a 
y =  -~x  

for rational values of abscissa x, it is very convenient to work with r a d i x  b. Jean 
Bernoulli observed that the knowledge of the sequence 

a x  modulo b, for x =  0, ! ..... b -  1 

is sufficient to compute the values of the function y for all abscissa 

X ---- X2XlX 0 ' X_IX_2X_3X-4  "'" 

written in radix b; this means x i ' s  are digits, i.e. xi E [0, b [. With proper shifting of 
digits, it is sufficient to compute the values for abscissa equal to x = xnxn_ ~ .. "XlXo, 

the result being given by y = Yn+t Y n - l " "  Yl Yo, Yi E [0, b - 1 [. Introducing sequence 
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ri for  carries defined by r0 = 0, and for  0 < i < n ri+l = [(axi + ri)/b], Yi values are 
given by 

y i = {  a x i + r i . }  0 < i < n ,  

and Yn+l = rn+l.  
This computat ion uses modular  evaluation and integer parts, but an occurring 

integer part function has a limited domain,  interval [0, b - 1  [, and can also be 
studied with modular  evaluation; it is indeed a discrete line. J. Bernoulli ,  who was 
the first to be interested in this structure, developed algorithms allowing fast modular  
evaluat ion if values ax mod b are already computed:  only easy carry reports have 
to be done. Here  is what he said about the comput ing method he derived f rom this: 

" . . .  ~ t  cette mdthode est d 'une telle faci l i tg  dans l 'application, qu'on 
est souvent  en ~tat d'gcrire, sans autre calcul, les produits  de plus de 
1000 rkgles de trois, en deux heures de terns. "4) 

His concern with computing time (besides that of  numeration basis) seems very 
modern.  His position as an as t ronomer explains that he certainly needed to compute  
extensively and was already interested in fast algorithms. Let us restrict this study 
to the, so-called, naive lines which, by definition, satisfy condition v = max(l  a I, I bl) .  
It is easy to prove tht naive lines are 8-connected. For convenience,  we also suppose 
:D's inequations are 1,< ax - by < 7+ ~, and that parameters  a and b satisfy both of  
the fol lowing conditions: - 0 < a < b - greatest  common divisor of  a and b is equal 
to 1, we can express :D(a, b, 7, "r)'s y values as a function of x. We obtain, using 
v = b, that 

y = I ~ - - 7 - 1  for x ~ 7 7 .  

Denoting, respectively, by [m/n] and { m / n  } the quotient and the rest of  the Euclidean 
division of  m by n, we can write the identity 

where { (ax - g ) / b  } E [0, b [, or alternatively 

+ 
{(ax - 7) /b}  

4~ ... and this method is so easy to apply that we can write, without computation, the result of  more 
than a thousand rules of three, within two hours. 
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This proves that the discrete naive line D ( a , - b ,  ~, b) is formed by all the integer 
points situated immediately below the Euclidean line whose equation is 

a x  -- ~/ 
Y -  b ' 

and that errors made in replacing exact rational values by the integer part [(ax-y)/b] 
are all proportional to the values of the modular sequence { (ax-  g)/b }, x E 77. Let 
us observe now that this modular sequence is nothing but the repetitive addition of 
the constant value a, this evaluation being made modulo b. The immediate 
consequence of this is that if for a certain integer value x we have 

then we also have equality {[a(x + 1) - ~']/b} = { (ax -  ?')/b} + a. Adding a to both 
Sides of  the former Euclidean division equation, we get 

hence 

a(x + t ) -  ~/= b + b ' 

which is a Euclidean division equality; unicity says that for such x we have 

We have proved the main part of the following proposition. 

PROPOSITION 5.1 

The horizontal steps of the discrete naive line :D(a, - b ,  t", b), a, b satisfying 
the previous hypothesis, are in a one-to-one correspondence with ascending parts 
of the modular sequence { (ax -  y)/b}.  

The last part of this result says that the jumps between horizontal steps 
correspond exactly to descending parts of this modular sequence; the proof follows 
by similar arguments. This proposition has two fundamental consequences. First, it 
says that: 

All geometric information contained in a discrete naive 
line is contained in a modular sequence {ax/b}. 
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This general  pr inciple  can be pursued much further. The proposi t ion  is the key 
result  to obtain many fast a lgor i thms to draw genera l ized lines (see [15]). Let  us 
give the first of  these algori thms.  

Let  us denote by yo(x) = [ax/b] and Yl (x) = {a.x/b} the two sequences associated 
with the par t icular  naive line 0 _< a x -  by < b ( former  hypothes is  0 < a < b and 
gcd(a,  b) = 1 are still  valuable) .  The second sequence is per iodica l  with per iod b; 
consequently,  the first  one is pseudo-per iod ica l  and its per iodic i ty  vec tor  is (b, a) .  
We immedia te ly  obtain the s imple  algori thm: 

Starting with a ze ro  value, then 

• i f  the current  value is strictly lower  than b -  a, then a d d  a 

• o therwise  s u b t r a c t  b -  a. 

For  example ,  let us take a / b  = 5 /17 ,  and col lec t  values of  the first per iod  of  both 
sequences  in table 2. 

Table 2 

x 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Yo 0 0 0 0 1 1 1 2 2 2 2 3 3 3 4 4 4 
y~ 0 5 I0 15 3 8 13 1 6 11 16 4 9 14 2 7 12 

In the second period,  x E [17, 33], Yo values are the same as the preceding  
ones increased by 5; those of  the Yl sequence are the same. For  a general  naive line, 
with y ~  0, the a lgor i thm is the same except  we start with a value equal  to { ~//b} 

and Y0 = [~'/b]. 

5.3. THE RELATION BETWEEN DISCRETE LINES AND BRESENHAM'S LINES 

Let D be the rat ional  Euclidean line whose equation is 

a x -  by + c = O. 

By defini t ion,  Bresenham's  l ine associated to D is the set of  integer  points  which 
are the c losest  to D. Let  us prove it is precisely  the discrete and naive  line: 

We will  prove this in the par t icular  case c = 0, the general  case fo l lowing  easily.  
I f  x ~ Z, then i f  b is odd ot if  b is even and {ax /b}  ~ [b /2} ,  the integer  point  which 
is c losest  to (x, a x / b )  is given by 
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{ [-~] if {-~} _< [~], 

[-~] + I  if {-~} > [3]- 

Otherwise (b even and {ax/b} = [b/2]) there are two closest integer points, [ax/b] 
and lax~b] + 1. The preceding formula gives the first one, that is, [ax/b]. This 
sequence, which at first sight needs two formulas for its generation, is identical with 
the sequence (x, [(ax + [b/2])/b]. To see this, we just have to consider both Euclidean 
division identities 

and 

and the equality 

a x +  ~ b +  ax = 

They show that if {ax/b} <_ [b/2], we have inequality {ax/b} + [b/2] _< b, otherwise 
we have inequalities b < {ax/b} + [b/2] < 2b. In the first case, we can deduce 
that both Euclidean division equalities are identical and consequently we have: 
[(ax + [b/2]/b] = [ax/b]. In the second case, we get the relation [(ax + [b/2]/b] 
= lax~b] + t. In all cases, we have verified that (x, [(ax + [b/2]/b]) is the integer 
point which is the closest to the rational point (x, ax/b),  from which is follows that 
Bresenham's line associated with Euclidean line D is indeed 79(a, - b ,  - c  - [b/2], b). 
Other computations in the same vein lead us to the following: 

PROPOSITION 5.2 

All discrete lines with the same parameters a, b and • are equal within a plane 
integer translation. 

Consequently we see, as an example, that Bresenham's line associated with 
D and the discrete line of rounded points, that is, 79(a, b, - c ,  b), are equal within 
translation. Any property true for Bresenham's notion is also true for our naive 
discrete lines and reciprocally. Since our definition is more manageable, this 
equivalence is interesting. 

5.4. SYMMETRIES OF DISCRETE LINES 

Here is one example of the advantage of our lines: their symmetries can be 
pulled much more directly than using Bresenham's definition. In fact, they follow 
directly from our definition. 
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Let D(a ,  b, ~, 1-) be a discrete line, then its transform by symmetry with 
respect to 

• O x  is D ( a , - b ,  ~, "r), 

Oy is D ( - a ,  b, y, 1-), 

O is D ( - a , - b ,  7, 1") or D(a ,  b, - ] / -  1"+ 1, 1"), 

line X = x0, Xo ~ 77, is D ( - a ,  b, ~/- 2ax o, 1"), 

line Y = Yo, Yo E77, is D ( a , - b ,  y - 2 b y  o, "c), 

point (x0, Yo) is D ( - a ,  - b ,  7/- 2(axo + byo), T) = D(a ,  b, - 7 +  2(ax0 + byo) 
- 1 - +  I, 1"). 

Moreover, line D(a ,  b, 7, 1") contains symmetry points if and only if its thickness 
is odd; in this case, its symmetry points are the solutions of the diophantine 

equation ax + by = 7/+ ['c/2]. 
These properties of discrete lines explain why we can restrict our study, in 

accordance with our recurring hypothesis: 0 < a < b and gcd(a, b ) =  1, to lines 
contained in the first octant. 

5.5. ARITHMETICS AGAIN: LINEAR RECIPROCITY AND STEP END FORMULAS 

The nice thing about generalized discrete lines is that they are pure 
arithmetical objects (more precisely, they belong to the geometry of numbers). 
Considering them as such is by far the most fruitful point of view, the best way to 
translate and solve real-life probems when they occur. It is very surprising to 
consider theoretical questions obtained by translating actual questions. They may 
be elementary or deeper arithmetic results or entirely new queries. Once again, 
using a computer initiates new abstract matters. In the last pages of this paper, we 
will somehow argue this point without being able to exhaust it. Discrete lines, as 
we have seen, are made of horizontal steps; we would like to know a little more 
about this structure: is there, for example, a law which will give the successive 
lengths of these steps? This question will be tackled using elementary arithmetic 
tools. Under the standing hypothesis on parameters a and b, we will now prove a 
formula, well known to mathematicians, which expresses how the reciprocal function 
of a discrete naive line works. Here, this formula has a geometric flavour which 
explains it nicely and which can, once understood, answer our question. We 
know that the application )~ : • --> ;~, such that ~(x) = lax~b], is not l inear at all; 
nonetheless, this discretization of a linear function reminds us of a little of continuum 
life (another example of continuous mark) and satisfies the following formula, 
which says that function ~ is a kind of reciprocal of funtion K'(x) = [bx/a]; the 
composition ~ ot¢ is close to identity. But we warn the working computer scientist 
that the other composition, too ~, is not the identity. 
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PROPOSITION 5.3 

If  0 < a < b and gcd(a, b) = 1, then we have 

[@1 { x - I  if x ~ 0 m o d  a, 

x if x - O m o d  a. 

Proof 

of  a, we have 

~(x) = 

If  x is not an integer multiple of  a, 
gcd(a, b) = 1). Thus, [bx/a] < bx/a. 

a 

b 
and 

Let q~(x) = [a[bx/a]/b] denote the composition 2 o to. I f x  is an integer multiple 

the rational bx/a is not integer (we supposed 
We easily deduce the following upper bounds: 

¢(x) < x. 

The next lower bounds are clear: 

> - - - l ,  
a 

1 a g > x -  5-, 

1 
l > x - ~ - l .  

Reminding the reader that a/b is lower than 1, we obtain 

q~(x) > x - 2, 

whence the result. [ ]  

The geometrical  interpretation is as follows. The graph of  function rc is a 
discrete line of  slope greater than 1, it is injective, so that is loses no information; 
function ~ recovers that information. If  we compose the other side, the story is not 
the same: function )~ begins to lose information. Within horizontal steps, integer 
values are mapped onto the Same point; if these are coloured pixels, for example, 
the last in wipes former ones out, nothing can be done to recover them. 
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(k) (6) (t) 
• v t  _ 
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p z p p 

Linear reciprocity formula 
a=12, b=17 

Fig. 16. Start with an abscissa x, then go to up to curve (k) of slope 17/12, 
then reflect on diagonal (6) and go down to line (l) of slope 12/17 and 
go back horizontally to diagonal (6). We always reach abscissa x = 1 
except for periodically spaced points p = I2k, where we reach p again. 

COROLLARY (linear reciprocity formula) 

I f  0 < a < b and gcd(a, b) = 1, then we have for integers x the ident i ty  

The corol lary  fo l lows immedia te ly  from the former identi ty and we would  
l ike to make  one remark which is the content  of  the next for thcoming lemma.  

This formula  says that function [ax/b] + 1 is the left inverse of function 
[(bx-  1) /a] ;  they are, respect ively,  sl ight per turbat ions  of  the functions ,~ and ~cwe 
cons idered  above.  The l inear reciproci ty  formula  will  be used in one or another  
form: as in proposi t ion  or corollary.  This reciproci ty  formula  has nice consequences  
for  di 'screte lines. Let  us give two of  them. 

First ,  it impl ies  that the lengths of  horizontal  steps forming the discrete  l ine 
given by function ~.(x) = lax~b] are a lways  the integers [b/a] and [b/a] + 1. Of  
course,  both lengths are equal to b if a = 1. 

Secondly,  it gives  a formula  for the absc issa  X, of  the last point  of  the n th  
hor izonta l  step. This formula  is given by the fo l lowing proposi t ion.  
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PROPOSITION 5.4 (step end formula) 

We have 

nE2~, 

and, by convention, we give index n = 1 to the horizontal step beginning with 0. 

Proof  

We begin by showing two lemmas. 

LEMMA 1 

For any integer value x, we have the identity 

iexOOmo a 

[ ~ - ] -  1 if x = O m o d  a. 

The second case is clear; the first one follows, as always, from Euclidean 
division equality bx = [bx/a]a + {bx/a}  from whose members we subtract 1; this 
gives: b x -  1 = [bx/a]a + {bx /a}  - 1. But the hypothesis implies that {bx/a}  > O, 
thus the final equality is another Euclidean division equality; the equation follows. 

The following lemma characterizes the points which are located at the right 
end of each horizontal step of a naive discrete line. It is given, always for 0 < a < b 
and gcd(a, b) = 1, in the particular case of lines D(a ,  - b ,  0, b) which, as we have 
seen, allow a parametrization y = [ax/b]. But the invariance of structure with respect 
to discrete lines' third parameter, i.e. bound )', permits us to generalize this lemma 
easily to all naive lines. Its proof follows directly from the general principle relating 
the behaviour of  modular sequences, here {ax /b} ,  to discrete lines' geometrical 
properties. Let us recall a particular point of our preceding algorithm: each jump 
between two consecutive D ' s  steps correspond to values where the modular sequence 
is greater than or equal to b -  a. Hence, we have 

LEMMA 2 

Let D be the discrete line given by y = [ax/b]; x is located at the end of a 
D ' s  step if and only if {ax/b}  > b -  a. 

Now we are close to the step end formula; let us consider the horizontal step 
of line D where the ordinate value is n and the point whose abscissa is [(bn - 1)/a]; 
its ordinate is [ ( a [ b n - 1 / a ] ) / b ] .  But the conjunction of the first lemma and 
the linear reciprocity law shows that this function takes, for any n, the value 
n -  1. Moreover, for the point considered, the value of the modular function is 
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{(a[bn - 1/a])/b}.  This integer can be shown to be equal to b - {bx/a} i fx  ~ 0  mod 
a, and to b - a if x - 0 mod a. But both values are >b  - a; hence, after our second 
lemma, this is an end point of  a horizontal step. 

We advise the reader that, because o f  the shift between n and n - 1 which 
appeared in the computation, we must give index one to the horizontal step con- 
taining 0; so the end of  the first step occurs with abscissa [(b - 1)/a]  and the index 
of  the step containing 0 is equal to - 1 .  

Let us use our former example a / b -  5/17  again to illustrate this step end 
formula. If  n = 1, 2 ..... 5, the abscissa are given by [(17n - 1)/5] and we obtain, 
respectively, 3, 6, 10, 13 and 16. 

The study of  the lines'  steps can be pushed much further (see [15]), but we 
cannot go on here. 

5.6. ARITHMETICAL THICKNESS AND QUADRATIC RECIPROCITY LAW 

We now present one example of  a rather surprising mixture of  a practical 
problem and deep arithmetics. It has to do with Bresenham's  lines, naive lines and 
quadratic reciprocity law. Let is briefly recall the definition of  Legendre ' s  symbol.  
Let p be a prime number  and a any integer. The symbol takes three values: 

P 

if a is a quadratic residue of  p, 

if a is a non-residue of p, 

if p divides a. 

The fol lowing Gauss lemma (one o f  them!) which expresses Legendre ' s  symbol 
( ~ )  as a quantity ( - 1 )  u, with a convenient integer #,  is the main part of  his 
celebrated quadratic reciprocity formula (cf. [6] for a proof). 

LEMMA 3 

Let p be a prime number greater than 2, a any integer and p be the number 
among elements 

whose smallest Euclidean rest modulo p are negative. Then Legendre 's  symbol is 
equal 'to ( -  1)". 

The smallest rest refers to the alternative Euclidean division defined, for two 
integers a and p, by 

a = p q + r  and - [ P I _ < r < [ P ] .  

It results f rom the definition of  discrete lines that 
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Bresenham's line associated with the usual line y =  a x / p  is given by 
y = [ax/p]*, where [ ]* denotes the smallest rest quotient. 

Bresenham's line is also equal to D ( a , - p , - [ p / 2 ] ,  p), from which we im- 
mediately deduce that integer # is equal to the number of points in the 
interval [0, [p /2] ]  where functions [ax/p] and [(ax + [p /2]) /p]  differ by I. 
In fig. 17, we represent the second function with white pixels, then the first 
function with black pixels which hide some white pixels. But abscissa where 
the two functions differ by 1 are unambiguously identified by the presence 
of a black pixel above a white one. As the first half of one period is needed, 
we directly interpret # as the number of such twin pixels on the left of the 
vertical line. 

a=,l p=ll ;t=~i p=I I 
& & It t f  

/~ = 2 t z = :1 
q is resi(lu rood I I 6 is IIon-rc'sid~l mo,I I I 

Fig. 17. 

This number # can be interpreted in a slightly different way. It is also 

either the number of  intersection points of the naive lines D(a ,  - p ,  0, p) and 
D ( a , - p , - [ p / 2 ]  +p ,  p) whose abscissa is bounded by 1 and [p /2] ,  

or the number of points of the non-connected line D ( a , - p ,  - [ p / 2 ] ,  [p /2] )  
whose abscissa is bounded by 0 and [p/2] .  

5.7. NON-VACUITY OF THE INTERSECTION OF TWO LINES 

As a further nontrivial example of our approach to discrete lines, we give 
here some simple conditions on the parameters defining two discrete lines so that 
their intersection in non-void. Such conditions will undoubtedly interest computer 
graphists, for they seem to be completely new. This certainly shows the advantage 
of science over tricks - even the most ingenious ones. 

Let A and C be two discrete lines defined by their inequations 

{ 7 < a x + b y <  7 + c o  (A) ,  (1) 

rl < cx + dy < rl + p (C), 

where (a, b) = (b, d) = (c, d) = 1, ad - bc = d > 0, co > 0 and p > 0. Determining their 
intersection is equivalent to solving diophatine system (1). Using matricial notation, 
it becomes simply 
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t )  l a b)/x)l  ?' < < . 
7"/ c d y r / + p  

(2) 

If S = 1, the lattice generated by vectors (a, b) and (c, d) is all 7/2. In this case, the 
number of intersection points of A fq B being exactly cop, this intersection is 
always non-void because we supposed co > 0 and p > 0. The main work concerns 
the case S> I, treated below. Let us consider the vector (v, u) of line A ,  defined 
by au  + b y  = 1, and the unimodular matrix 

Then we have equality 

c d cu + d v  

Consequently, (2) is equivalent to 

(3) 

or, still denoting M( ~ ) by ( x  ) (this is well defined because M is unimodular), 

(4) 

Let us introduce the vertical transvection matrix 

N =  - ( c u  + d v )  ; 

1 then the lattice generated by vectors ( cu + dv  ) and ( ] )  is transformed in the lattice 
R generated by vectors (~) and (~) .  This means that the system matrix (a d b) has 
been reduced to Smith normal form. Solving system (4) is thus equivalent to 
determining which points of the lattice R are contained in the parallelogram 
r l  = A B C D ,  the image by transvection N of the rectangle [y, y+ co[r/, 7/+ p[. Of 
course, the solutions lying on the union of segments A D  and C D  are omitted. We 
denote, to ease notation, cu  + d v  by 0; an easy proof shows there is a right vector 
(u, v) such that inequations 0 < 0<  6 are satisfied. Let us then determine the 
coordinates of the vertices of I-I, which are 
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7 7 + p - 0 y  q-Oy ' 

c:( 1o:( 1 71 - O(y + co) ' rl + p - O(y + co) " 

To obtained the simplest possible non-vacuity condition, we first recall a necessary 
and sufficient condition such that the interval [m, n] C 7z contains an integer multiple 
of  S >  0 (obviously, condition n - m  > fi is sufficient but not necessary). We have 

LEMMA 5 

If  n - m < c5, then the ] m, n] contains a multiple of c5 if and only if we have 

~ > 6 + m - n .  

Proof  

If  there is an integer k such that k 6 e ] m ,  n], we have n = kcS+ u, u > 0 and 
m = k d - v ,  v > 0 .  As n - m < 6 ,  we have u + v < 6 ,  hence u < 6 a n d  v < 6 ,  from 
which equalities {~} = 6 -  v and 5 + m - n = 6 -  v -  u and the conclusion follows. 

Reciprocally, let us denote r =  {~}, q =  [~] ,  m=qcS+ r. Hypothesis r >  5 
+ m - n  gives n > 6 +  m -  r =  (q + 1)6. Thus, we have (q + 1 ) ~ E ] m ,  n], ending the 
proof. [ ]  

Let us return to system (4) and consider parallelogram 17" obtained from 17 
omitting sides AD and CD. As A',  C ' ,  D '  are integer points, their coordinates are 
A" = A + (0, - 1), C '  = C + ( -  1, 0) and D" = D + ( -  1, 0 -  1). The question is to know 
if 17' contains a point of  lattice R .  

We first ask if there is a line with equation y = k~ intersecting 17"? The 
former lemma applied to the interval defined by C '  and A '  ordinates gives the 
answer. Such a line exists if and only if we have 

{ r l - O y - O ( c o - 1 ) -  l }  > 5 -  

Then, does such a line contain an integer point in 17'? We remark that if YI" is the 
paral lelogram A ' B " C ' D "  where B " = ( ] / - ( p -  1)/0, r / + p -  0 y -  1) and D " =  
( y +  c o -  1 + ( p  - 1)/0,  77 - 0( y +  co -  1)), then if a line y = kS has an integer point 
in FI" it has one in 17'. This is due to the fact that segments A'B and C'D" are 
parallel to the second coordinate axis and have integer abscissa. If  D~ denotes the 
line with equation y = kS, then Dk cuts 17' (or 17") if and only if 

k6 e [ r / -  0(~' - 1) - Oco, rl - 1 - 07 + p]. 



150 J.-P. Reveilles, D. Richard, Back and forth between continuous and discrete 

i 
i 13"  

/3 

Fig. 18. Parallelograms FI' and H". 

13" 

In this case, a short computation gives abscissa of intersection points Dk A B"C" 
and Dk f-) A'D": 

71-kt~ and 7 7 - k S + p - 1  
0 0 

Then line Dk contains an integer point within II" if and only if the interval 

contains an integer number or, equivalently, if and only if the interval 

[r l -kS ,  rT- k S + p  -11 

contains an integer multiple of O, whence, using the above lemma, 

( 7 1 - k S - I }  

Finally, the two discrete lines (A) and (C) have a non-empty intersection if 
and only if both conditions are satisfied: 

{ r / - 1 - O ( f f + o g - 1 ) } > ~ _ p _ O ( c o _ l )  (I) 

and if (1) is satisfied 

3 k ~ [  r/-1-O(~'+c°)t5 , r / - l + p - O ~ ] 6  
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Remarks 

• These  condi t ions ,  mainly  the second one, are cer ta inly  diff icult  to guess or 
circumvent i f  we want to solve  such an intersect ion problem without  a theoret ical  

approach.  

• This way of  s tudying line intersect ion requires,  for the second case 0co> p,  
a walk within a part  of  a d iscre te  line. Here,  the non-vacui ty  condi t ion is not given 
by a formula  in the sense we are accus tomed to in Eucl idean geometry.  This  
drawback,  which is rather unavoidable  in discrete  geometry,  results from the fact 
that many ar i thmat ical  functions,  for instance the length of  the Eucl idean algori thm, 
are not  descr ibab le  by formulae.  

• In order  to obtain an actual  and fast computer  implementa t ion ,  the compu-  
tation of  the modular  sequence { (7 / -  1 -kc~) /O} ,  for authorized k values,  can be 
done in the same way as the a lgor i thm given in the paragraph concerning  modula r  

ca lculus  and a lgor i thms.  

• The walk is eff icient  because  we use mul t ip les  of  ~, the largest  invar iant  
factor  of  the sys tem matrix.  Moreover ,  this method can be genera l ized  to any 
d imens ion  or  to any number  of  l ines or  discrete  spaces after  the system matr ix has 
been reduced to its Smith normal  form and by then using invariant  factors in 
decreas ing  order. Never theless ,  we do not know if this a lgor i thm is opt imal .  
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