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Consistency checking reduced to satisfiability of 
concepts in terminological systems* 

Bernhard Hol lunder  

Interactive Objects Software GmbH, Basler Str. 63, 79100 Freiburg, Germany 
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We investigate the inference problem in knowledge representation systems of the 
KL-ONE family. These systems, also called terminological systems, are equipped with 
concept languages that are used to express the conceptual knowledge of a problem domain 
in a structured way. In order to reason with the represented knowledge, terminological 
systems provide a couple of inference services. In this paper we show that the main 
reasoning problems in expressive concept languages can be reduced to a particular infer- 
ence problem, namely checking satisfiability of concepts. This result has two important 
applications. From a practical point of view, our reduction together with the existence 
of relatively efficient implementations of satisfiability algorithms strongly simplifies the 
implementation of inference algorithms in terminological systems. Even from a com- 
plexity point of view, the result shows that in the underlying concept language interesting 
inference problems such as consistency checking or query answering are not harder (in 
terms of the worst case complexity) than satisfiability checking of concepts. 

1. Introduction 

Termino log ica l  knowledge  representation systems in the tradition o f  KL-ONE [4], 

for example ,  BACK [I7] ,  CLASSIC [16], KRIS [1], and LOOM [t3] ,  are used to represent  

the t axonomic  and conceptual  knowledge  of  a problem domain  in a structured way. 

To descr ibe this kind of  knowledge ,  one starts with primit ive concepts  and roles, and 

defines more  complex  concepts  using the operations provided by a so-called concep t  

language.  Concep ts  are usually interpreted as sets of  individuals and roles as binary 

relations be tween  individuals,  which means  that concepts  (roles) can also be v iewed  

as unary (binary) predicates.  Addit ionally,  names for individuals (or objects) of  a 

concre te  world  can be introduced by stating that an individual  is an instance of  a 

concept ,  or  that two individuals  are related by a role. 
To g ive  an example ,  assume that person,  female,  and rich are pr imit ive concepts  

and that child is a role. If  connec t ives  such as concept conjunction, concept disjunction, 
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and concept negation are present in the concept language, one can describe "persons 
who are female or not rich" by the expression person D (female IJ ~rich). Since con- 
cepts are interpreted as sets, concept conjunction, concept disjunction, and concept 
negation are usually interpreted as set intersection, set union, and set complement, re- 
spectively. In addition to these operations on sets concept languages provide concept 
forming operations that employ roles. Value-restrictions and exists-restrictions can be 
used, for instance, to express "individuals with rich children only" by Vchild.rich and 
"individuals who have some child that is rich" by 3child.rich. To impose cardinality 
restrictions on roles one can use quali/~,ing mmTber restrictions: For example, the 
concept (<~ 2 child ~rich) denotes "individuals with at most two children which are 
not rich", and (>~ 4 child (female I-t rich)) denotes "individuals with at least four rich 
daughters". 

The so-called assertional fon~qalism of a terminological system can be used to 
define instances of concepts and roles. This means that one can for instance express 
that Mary is a female person by Mary : (person I-1 female), or that Tom is a child of 
Mary by (Mary, Tom):child. 

Of course, terminological systems should not only be able to represent knowl- 
edge but should also provide facilities to reason with the represented knowledge. In 
fact, the systems mentioned before are equipped with a couple of inference services. 
The most important inference capabilities concerning concepts are the check whether 
a concept is more specific than another one (subsumption of concepts), and whether 
a concept can have an instance at all (satisfiabili O, of concepts). Basic inference ser- 
vices taking the assertions on individuals into account are consistency checking and 
instance checking. Consistency checking is concerned with the question whether the 
knowledge base, i.e., the concept definitions together with the assertions on individ- 
uals, is consistent. Instance checking means to test whether an individual is instance 
of a concept, and can therefore be viewed as the basic inference task for retrieving 
information on individuals. 

In the present paper we show how the consistency and instance checking prob- 
lern can be reduced to the satisfiability problem of concepts. This result has two ina- 
portant applications. From an algorithmic point of view, one can exploit algorithmic 
techniques, which have already been developed for solving the satisfiability problem 
of concepts (see, e.g., [6, 10, 11]), to implement consistency and instance checking 
procedures. Also this method is a good basis for the investigation of complexity 
results. In fact, the proposed reduction in general yields consistency and instance 
checking procedures which are optimal with respect to the worst case complexity of 
the corresponding problems. 

2. The representation formalism 

In this section we formally introduce the formalism for representing knowledge 
in terminological systems. We start with defining a particular concept language, called 
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A£CQ I, which can be used to define the relevant concepts of a problem domain. The 
assertional formalism to be introduced thereafter allows one to describe objects of the 
problem domain with respect to their relation to concepts and their interrelation with 
each other. 

Definition 1 (concept language ,AECQ). We assume two disjoint alphabets of  sym- 
bols, called primitive concepts and primitive roles. The special primitive concepts 
T and _L are called the top and bottom concept. The sets of concepts and roles are 
inductively defined as follows. Every primitive concept is a concept. Now let C,  D 
be concepts and R be a role already defined, and let 'n. be a nonnegative integer. Then 
C F1 D (conjunction), C Lt D (disjunction), ~ C  (negation), VR.C (value-restriction), 
3R.C (exists-restriction), (>/r~, R C) and (~< n R C) (qualifying number restriction) 
are concepts and R I C (range restriction) is a role of the language ¢4£CQ. 

Assume, for example, that person, female, and rich are primitive concepts and 
that child is a primitive role. The concept person n (rich Li ~Iemale) denotes the set 
of all "persons who are rich or not female". Value-restrictions and exists-restrictions 
can, for instance, be used to describe "individuals having rich children only" by the 
expression Vchild.rich and "individuals who have some rich child" by 3child.rich. To 
impose cardinality restrictions on roles one can use qualifying number restrictions. 
For example, the concept ( )  2 child T)  denotes the set of all "individuals having at 
least two children", and the concept (~< 3 (child I lemale) rich) all "individuals having 
at most three female children that are rich". 

The following definition gives a formal semantics to our concept language. 

Definition 2 (interpretation). An interpretation Z of our concept language consists of 
a set A z (the domain of 27) and a function .z (the interpretation function of Z). The 
interpretation function maps every primitive concept A to a subset A z of A z, and 
every primitive role P to a subset pZ of k z x A z. The special primitive concepts T 
and _L are interpreted as A z and the empty set, respectively. 

The interpretation function - which gives an interpretation for the primitive 
concepts and primitive roles - can be extended to arbitrary concepts and roles as 
follows. Let C, D be concepts, let R be a role, and let 'n. be a nonnegative integer. 
Assume that C z, D z and R z are already defined. Then 

(C n D) z = C z c~ D z, 

(C u D) z = C z u D z, 

(~c)Z = ~z  \ C z, 

( v m c )  z = {a ~ A z I vb. (~, t,) ~ ~z  ~ b ~ cZ} ,  

This abbreviation stands for "Attributive concept Languages with Complements and Qualifying number 
restrictions". 
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(3R.c) ~ = {~,, ~ s z I ~l,. (~,., ~,) ~ R ~ A b ~ Cz}, 

(~> ,,. n C) ~ : {a ~ s ~ If{l, ~ s~ i (~.,~) ~ R ~,, t, ~ cz}l ~> .,,}, 

( ~  ,~. _n c )  : ~ :  {a ~ ,s ~ I I{b ~ J I (,~.,~,) ~ -n :~ A l; ~ c o l  ~< ,n.}, 

( n l c ) ~  = {(,,,,, b) ~ s ~ x s~ I (~,,,b)~ n~ At~ c C~}, 

where IXI denotes the cardinality of a set X. 

Qualifying number restrictions are relatively expressive language constructs: On 
the one hand, they generalize (ordinary) number restrictions, which are of the form 
(~> n, R) and (~< "n R),  respectively, as follows: A specified number of role fillers 
for a role can be restricted to arbitrary concepts rather than only to the top concept. 
On the other hand, qualifying number restrictions can be viewed as generalizations of 
value- and exists-restrictions: A value-restriction VR.C expresses that all role fillers 
of a role /~ belong to the concept C, whereas the concept (~< n. /~ - ,C) states that 
all but n. role fillers o f / ~  belong to C. Conversely, an "at least" qualifying number 
restriction (~> 7~. R C) generalizes an exists-restriction 3 R . C  such that one can state 
that at least r~, fillers (rather than at least one) of  the role B are in the concept C. 

It can easily be verified that (~> "n, ( /~ lC)  D) z = (>7 ~, I{ (C M D))  z and 
(~< 'n. (E  I C) D) z = (<~ 7~. I~ (CMD))  z for every interpretation I ,  which shows that the 
role-fon-ning operator R] C can be eliminated within qualifying number restrictions. 
This - together with the fact that value- and exists-restrictions are special cases of 
qualifying number restrictions - shows that every concept C of the introduced concept 
language can be transformed to a concept D such that ( 1 ) D contains only the concept- 
fonning operators conjunction, disjunction, negation, qualifying number restrictions 
and primitive roles, and (2) C z = D z for every interpretation 2. 

The assertionalformalism provided by most terminological systems allows the 
introduction of particular objects: One can state that objects belong to certain concepts, 
and that pairs of  objects are instances of  roles. 

Definition 3 (assertion, ABox). Assume an alphabet of symbols, called individuals, 
disjoint from primitive concepts and roles to be given. A concept assertion is of the 
form a.:C, and a role assertion is of the form (a, b) :R,  where a, b are individuals, C 
is a concept, and R is a role. In the latter case we also say that b is an R,-successor 
o fa .  An assertion is either a concept assertion or a role assertion, and a finite set of 
assertions is called an ABox. 

For example, the assertions (Mary, Tom) : child and Tom : (male M oerson) state 
that Mary has some child, Tom, who is a rich person. 

Definition 4 (model for an ABox). The interpretation function .z of an interpretation 
2 is extended to individuals by mapping them to elements of AZ such that a z # b z if 
a 7! b. An interpretation 27 satisfies a concept assertion a : C  iff a z E C z and satisfies 
a role assertion (a, b ) : R  iff ( J ,  ~ )  E R z. We say an interpretation 27 is a model for  
an ABox ,4 iff 27 satisfies all assertions in ,4. 
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This restriction on the interpretation function ensures that individuals with dif- 
ferent names are interpreted as distinct domain elements. This property is called 
mtique name assumption, and is usually assumed in terminological systems. 

Before we introduce the main inference services provided by terminological 
systems, we note that ABoxes can be viewed as a finite set of  first-order formulas (for 
details see, e.g., [3]). Howevez; formulas that correspond to ABox assertions belong to 
a restricted subclass of all first-order formulas for which important inference problems 
are decidable. 

3. Inference services 

This section introduces the basic inference services provided by terminological 
representation systems such as BACK [17], CLASSIC [16], KRIS [1], and LOOM [13]. 

In order to organize a set of concepts in a taxonomy with respect to their 
generality, subsumption between pairs of concepts plays an important role. 

Subsumpt ion  of  concepts:  A concept C subsumes a concept D, written D _E C, iff 
D z C_ C z holds for all interpretation 2. 

For instance, the concept (~< 1 child (female I-1 -~rich)) subsumes the concept 
( )  2 child (female R rich)) I-I (~< 3 child female). To see this, consider an individual 
having at least two female and rich children and at most three female children. But 
this means that the individual has at most one child which is female and not rich, 
which in fact shows that the former concept subsumes the latter. 

In the past years the subsumption problem in concept languages has been thor- 
oughly investigated. As a result, subsumption algorithms for various concept lan- 
guages as well as their computational complexity are known. The seminal paper was 
due to Schmidt-Schaug and Smolka [18] in which the exact complexity of the subsump- 
tion problem ill the language ,A£C has been determined. ~ Subsequently, it has been 
shown that the algorithmic technique developed in [18] could be applied to other con- 
cept languages in order to obtain complexity results as well as subsumption algorithms 
(see, e.g., [5-7, 10, 1I ]. These papers, however, do not directly describe subsumption 
algorithms but algorithms that solve the following, closely related problem. 

Satisfiability of concepts: A concept C is satisfiable iff there is some interpretation 
Z such that C z ¢ ;g. 

Since (7 subsumes D if and only if D I-1 ~ C  is not satisfiable, a satisfiability 
algorithm can in fact be used to solve the subsumption problem. 

A satisfiability algorithm can also be used to check equivalence and disjointness 
of concepts, i.e., whether C z = D z (equivalence) and C z N D z = O (disjomtness) 
hold for every interpretation Z and concepts 6-;, D. 

2 AEC is the sublanguage of A£CQ in which neither qualifying number restriclions nor range restrictions 
are allowed. 
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Let us now turn to the reasoning facilities where individuals of  ABoxes are 
involved. An obvious requirement on the represented knowledge is that it should be 
consistent since everything would be deducible from inconsistent knowledge (from a 
logical point of view). This is all the more important for terminological systems such 
as KRIS, in which - as we will see immediately - most inference problems are reduced 
to consistency checking. The underlying model-theoretic semantics allows a clear and 
intuitive definition of consistency. 

Consistency of an ABox: An ABox is consistent iff it has a model. 

Observe that the consistency problem of ABoxes is at least as hard as the 
satisfiability problem of concepts. In fact, a concept (2 is satisfiable if and only if 
the ABox {a. : C} is consistent where a is an arbitrary individual. This, of course, 
shows that the consistency problem of ABoxes can be viewed as a generalization of 
the satisfiability problem for concepts. 

In addition to the consistency problem, another basic reasoning task is con- 
cerned with the retrieval of information. Due to the object-centered representation of 
information most terminological systems do not allow arbitrary (first-order) formulas 
as queries (as in the case of general theorem proving), but restrict the query language 
to ABox assertions. This kind of inferencing is usually called instance checking. 

Instance checking: An assertion ~ is implied by an ABox A, written A ~ a:, iff all 
models of  A satisfy ct. 

Since our concept language allows for negation on concepts the problem of 
instance checking can be reduced to the consistency problem of an ABox. If (t is a 
concept assertion o, : C, then .,4 implies cz : C iff .,4 U {a : ~C} is inconsistent. Now 
assume that ct is a role assertion (a,b) : / t  I f / {  is a primitive rote, ,,4 implies (+tiff 
c~ E ,,4. Otherwise, R is of  the form 

( . . .  ( ( P I C I ) I C 2 ) [  . . .Oa,),  

where P is a primitive role. In this case ,,4 implies c~, iff (1) (c+., b) : P E ,,4, and (2) ,A 
implies b : C t  M . . , rq Ck.  

Most terminological representation systems provide their users with reason- 
ing facilities for more compact information retrieval such as realization. Realization 
(which is sometimes also referred to as recogni t ion)  means the problem of finding 
those concept names of  a so-called terminology (i.e., set of: concept definitions, see 
section 7) a given individual is instance of. 3 Conversely, the retr ieval  prob lem means 

3 Actually, the systems do not return all concept names with this property, but only those which are 
minimal with respect to subsumption. These concepts, usually called most speci[ic concepts, describe 
an individual most accurately with respect to the terminology. 
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to determine all individuals in the ABox that are instance of a given concept. Ob- 
viously, both the realization and retrieval problem can be implemented by iterated 
applications of an instance checking algorithm. 

To sum up, we have seen that the introduced inference problems concerning 
concepts and ABoxes can be reduced to the consistency problem of ABoxes if, of 
course, the concept tanguage provides concept negation as in the case of A£Cc_2. 
Furthermore, the reductions can be computed in polynomial time, which shows that 
the consistency and instance checking problem are in the same complexity class (with 
respect to the classes R NP, and PSPACE). 

Note that this is in general not true for restricted concept languages. In [8] 
the complexity of the above mentioned inference problems has been deternlined for 
several sublanguages of A£CQ that do not contain general concept negation. It turned 
out that for a particular language the consistency problem is coNP-complete whereas 
the instance checking problem is PSPACE-complete. 

The complexity results presented in [8] also show that for the investigated 
sublanguages of A£CQ consistency checking of ABoxes and satisfiability checking 
of concepts are in the same complexity class, For the language A£C, this result follows 
immediately from the algorithm presented in [2]. In the following we show that the 
consistency probIem is not harder than the satisfiability problem for the language 
A£CQ. The idea behind the reduction is basically the same as the one mentioned in 
[2]. However, as we will see in the next section, the presence of qualifying number 
restrictions makes things much more complicated. 

Before we present a reduction from the consistency problem of ABoxes to the 
satisfiability problem of concepts, we single out a special class of concepts. In the 
following we assume that concepts occurring in ABoxes are built up using primitive 
concepts, primitive roles, concept conjunction, concept disjunction, concept negation, 
as well as qualifying number restrictions. 

Without loss of generality we assume that the concepts are in negation normal 
form, i.e., negation occurs immediately m front of primitive concepts different flom 
T and 2_. Negation normal forms can be generated using the following, equivalence 
preserving rules: -~T --> ,1_, 7 ±  --+ T, ~ ( C R D )  --+ -,C t]-~D, ~ (Uu  D) -+ 
--.c n ~O, ~ C  -+ C, -.(> 0 R C) --+ ±. ~(> ,,. ~ C) -+ (.< (,,z- l) t? C) for 
7~ > 0, as well as ~(<~ 'i, R C) and (>7 (n,+ I ) /{  C). A concept which is obtained from 
a concept C by applying as long as possible the previous roles from left to right in a 
top-down manner is called the negation no~wlalfbrm of C and is denoted by NNF(C). 

In order to prove certain properties of concepts by induction, we need the notion 
of size. Let C be a concept containing primitive roles only. The size of C, denoted 
by ICI, is inductively defined as tA1 = 1 for all primitive concepts A, l~Cl - I<-,'l, 
16' m DI -- IC u nl = ICl + IDI, and I(~> 7,. /~ C,)I = I(~< ,,. /{' C)I = 1 -}- ICl. 

4. The reduction 

The consistency problem of ABoxes can be viewed as a generalization of the 
satisfiability problem of concepts in the following sense: an ABox A is consistent only 
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if, for each individual a in A, the concept CJ,~ :=  Cl fq " "  Iq CT,,, is satisfiable, where 
a : C i  . . . . .  a :C , ,  are all concept assertions on the individual a. in A.. Moreover, if an 
ABox does not contain any role assertions, this strategy yields a sound and complete 
consistency algorithm, i.e., an ABox is consistent if and only if for all individuals a in 
,,4 the concept Ca. is satisfiable. Intuitively, this is due to the fact that - in the absence 
of  role assertions - different individuals cannot influence each other. 

In the presence of role assertions, however, this strategy may not detect that an 
ABox is inconsistent. As an example consider the ABox 

.Aj = { Mary :Vchild.doctor, (Mary, Tom) : child, Tom: ~doctor}. 

Although both concepts CMary = Vchild.doctor and CTom = ~doctor are satisfiable, 
ABox Al is inconsistent. The reason why this strategy does not detect the inconsis- 
tency in the example is that it ignores the interaction of  role assertions with value- 
restrictions, i.e., it does not take into account that Tom must be a doctor (which follows 
from the fact that he is a child of Mary). To overcome this problem, the idea is to 
extend the ABox by certain concept assertions in such a way that role assertions 
do not carry any additional information and can therefore be discarded. In fact, if 
A'~ is obtained from ABox AI by adding the assertion Tom : doctor, the strategy is 
now able to detect that A '  I (and hence AI)  is inconsistent because the concept term 
CTom ---- doctor Iq ~doctor is obviously not satisfiable. 

Thus, if an ABox contains a role assertion (o., b) : [£ and a concept assertion 
a : V/£.C we add the assertion b : C (if it is not already in the ABox). Since the 
concept VR.C is equivalent to (~< 0 R -~C) the rule treats appropriately this restricted 
form of "at most" qualifying number restrictions. To motivate how this role can be 
generalized to deal with arbitrary, "at most" restrictions let us consider the ABox 

A e = { a : ( ~ < 2 R A ) ,  a : ( ~  1 ;~ , A ) ,  ( a ,b ) :R ,  ( a , c ) : R } .  

It can easily be verified that A2 is consistent. Furthermore, observe that each model 
for A2 satisfies either the assertion b : A  or c : A ,  which is due to the interaction of 
o,:(~< I R ~A) with (a ,b) : /£  and (a. ,c): /L This, however, shows that neglecting the 
role assertions in A2 means losing this information. 

Thus, the idea is again to extend A2 by certain concept assertions such that the 
role assertions become redundant to some extent. In the above example this means that 
- in order to check whether the "at most" restrictions imposed on a can be satisfied - 
one has to know for each R-successor of a whether or not it is an instance of A (resp., 
'-,A). Thus, the approach is simply to nondeterministically choose the appropriate 
alternative, i.e., i r a :  (<<, "r~ I~ A)  and (a, b) : R are contained in an ABox then either 
add the assertion b : A or b : -~A (if it is not already in the ABox). In the previous 
example, we therefore extend in a first step A2 either by b : A or b : ~A, and in a 
second step either by c : A or c : -~A, which means that one gets four completions of  
A2. It can easily be verified that A2 is consistent if and only if one of the completions 
is consistent. 
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The obtained completions have the nice property that they can be checked on 
consistency purely by performing satisfiability tests for concepts, i.e., role assertions 
are (to some extent) redundant and can therefore be discarded. However, when re- 
moving role assertions from a completion, one has to decrease numbers in number 
restrictions. Consider, for example, the ABox A '  = A2 U {b " A, c ' --,A}. Note 
that c is an R-successor  of  a which is in ~A. Therefore a does not have another R- 
successor different from c which is in ~A because a:(~< I /~ ~A) is in A'~. But this 
means that - when removing (a, c ) ' R  from ..4; - one has to replace a" (<~ 1 R ~A)  
by a '  (~< 0 R -,A). Analogously, the assertion a ( ~ <  2 R A) is substituted by 
a: (~< 1 R A) (because b is an R-successor of a which is in ,4). Thus we end up with 
an ABox 

B = {a:(~< I R A), a'(~< 0 R -~A), b:A,  c : ~ A } .  

Since B does not contain any role assertions, it is easy to verify that/3 is consistent 
if and only if the concepts C,z = (~< I R A) [-I (~< 0 R =A),  C~) = A, and Cc = ~A 
are satisfiable. 

The need for a rule that treats "at least" number restrictions analogously, i.e., 
if a:  (>~ n R A) and (a, b) :R  are contained in an ABox then either add the assertion 
b: A or b: - ,A,  is motivated by the following example. Assume that ABox A3 is given 
by 

{,,,:(.< 2 v) ,  R A), R 

The "at most" rule just described either adds the assertion b '  T or b" --,T. Note 
that the second alternative yields immediately an inconsistent ABox. Thus consider 
A '  = A~ tO { b T } .  It can easily be verified that A~, and hence A3, are consistent. 
However, the ABox 

1 R r ) ,  R A), 

which is obtained from A~ by removing the role assertion (a, b) :R  and by replacing 
a ( ~  2 R T)  by a'(~< 1 R T)  is obviously inconsistent. The problem is that b is either 
in the concept A or ~A, which means that either a '(>~ 1 R A) or a:(>~ I R ~A)  is 
satisfied. The idea to overcome the deficit is to add either the assertion b : A or b : ~ A  
if  the ABox contains a : (>~ "n, R A) and (a, b) " R where 'n. > 0. In the example this 
means that we obtain ..4q tO {b:A} or A q U {b:~A}.  Now, in order to check whether 
these ABoxes are consistent it suffices to invoke satisfiability tests for concepts. In 
fact, it can be easily checked that .A.q tO {b:A} is consistent 

iff the ABox {a:(<~ 1 R T ) ,  a : ( > ~ O R A ) ,  a'(>~ 1 R - , A ) ,  b :A}  is consistent 

iff the concepts C,~ = (~< 1 R T)  I-1 (>/ 1 R -,A) and G, = A are satisfiable. 

Thus we have motivated and informally described two rules (the "at most" 
and "at least" rule, respectively). However, these two rules alone are not sufficient. 
Suppose an ABox contains (a, b) " R and a" D R D' where D (resp., D ~) is of  the 
form (>/ 'r~, R A) or (~< n R ,4). In order to apply the rules just described we have 
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to decompose conjunctive concepts, i.e., ABoxes containing assertions of the form 
a:D D D ~ are extended by a : D  and a :D/.  For similar reasons we need a further rule 
that deals with disjunctive concepts. We will see that these four rules are sufficient 
to transform - in the so-called preprocessing step - an arbitrary ABox into an ABox 
where role assertions are redundant. In a second step, such ABoxes are checked on 
consistency by only testing satisfiability of concepts. 

Definit ion 1 (preprocessing rules). The preprocessing rules are defined as follows: 

I. A - e n  {a:Cj, a : C 2 } u A  

i fa:C1 I-1 C2 is in ,,4, not both a.:Cl and a :C:  are in A. 

2. A ~ u { a : D } U A  

i f a : C l  U 02 is in ,4, neither a : C l  nor a:C½ is in A,  
and D = C I  o r D = C 2 .  

3 . . 4 - - - + )  { b : D } U J  

i r a : ( )  n R C),  (a, b) :17~ are in .4, neither b:C nor b:NNF(-,C) is in A, 
and D = C or D = NNF(~C). 

4. A~<< { b : D } U A  

i fa :(~< n / ~  C) ,  ( a , b ) : R  are in A,  neither b:C nor b:NNF(-,C) is in A,  
and D = C or D = NNF(~C). 

The first two rules are obvious, in fact they are defined as in [18]. Since 
concepts occurring in ABoxes are assumed to be in negation normal form, in the third 
and fourth rule we first compute a negation normal form NNF(-~C) when adding the 
fact that b is in the concept ~C.  

The following proposition shows that the preprocessing rules are colxect. 

Proposition 2, Let A,  A ~ be ABoxes. 

I. If A / is obtained from A by application of the -÷n-rule then A / is consistent if 
and only if A is consistent. 

2. If A ~ is obtained from A by application of the -+u-, -4~- ,  or --+<-rule, then A 
is consistent if A ~ is consistent. Furthermore, if such a rule applies to A, it can 
be applied in such a way that it yields an ABox A ~ such that A '  is consistent 
if and only if  A is consistent. 

Proof The claim for the --+n-rule (resp., -+u-rule) follows immediately from the fact 
that an interpretation Z satisfies a : Cj 71 C2 iff Z satisfies a : Ci as well as a : C2 
(Z satisfies a : CI IA C2 iff Z satisfies a : Cl or a : C2). For the --+>/- and -+<-rule  
nothing has to be shown because b z E D z or b z E (-~D) z = (NNF(--,D)) z holds tbr 
every interpretation Z. [] 
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To prove termination of the preprocessing roles, i.e., that there are no infinite 
chains of  applications of preprocessing rules issuing from an ABox, we need the 
following definition. 

Definition 3 (subconcepts). Let 6, be a concept. The st&concepts of C, denoted by 
Sub(C), are recursively defined as follows. For a primitive concept A we define 
Sub(A) = {A}. If 6" is of the form 

* DI [-1 D2 or DI U D2 then Sub(C) = {C} U Sub(Di) U Sub(D2), 
. ~ D ,  (>~ 'n, R D),  or (<~ 'n./~ D) then Sub(C) = {6,} U Sub(D). 

For an ABox A we define the subconcepts qf A, Sub(A), by [,.J,~:c'EA Sub(C). 

Termination of the preprocessing rules is then an immediate consequence of the 
following observation. If an ABox A'  is obtained from an ABox A by application 
of a preprocessing rule, then A'  = A U {b: D} where b E hM(A), D E Sub(A) or 
D = NNF(-~C) for some C E Sub(A), and b : D ~ A. Since the set of individuals, 
lnd(A), and the set of  subconcepts, Sub(A), are finite for a given ABox A, there are 
only finitely many assertions which could be added. Furthermore, every application 
of a preprocessing rule adds at least one assertion which is not yet contained in the 
ABox. This shows that one ends up after finitely many applications with an ABox to 
which no rule is applicable. Moreover, the length of every derivation issuing from an 
ABox A is bounded by llnd(A)l * (2 * 1Sub(A)l) <, 2* IA[ ~-, where JA t, the size of  A, 
is defined to be the number of assertions in A. Hence we have the following result. 

Proposi t ion 4. Let A be an ABox. After at most O(IAI 2) applications of  preprocess- 
ing rules one obtains an ABox to which no preprocessing role is applicable. 

Definition 5 (preprocessing complete ABox), An ABox is called preprocessing com- 
plete iff none of the preprocessing roles can be applied. 

Note that there may exist exponentially many preprocessing complete ABoxes 
issuing from an ABox A, which however can be enumerated using polynomial space 
in the size of A. 

Proposi t ion 6. Let A be an ABox. 

1. If A is consistent, then there exists a consistent preprocessing complete ABox 
A '  derivable from A by application of preprocessing rules. 

2. If ,,4 is inconsistent, then every preprocessing complete ABox issuing frorn ,,4. 
is inconsistent. 

Proof I. Suppose that A is consistent. Since applications of the --+n-role preserve 
consistency and inconsistency, and the --+u-, -+>-, and --*<-roles can be applied in 
such a way that they yield a consistent ABox (Proposition 2), there exists a prepro- 
cessing complete ABox A'  issuing from A (Proposition 4) that is consistent. 
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2, Suppose that there exists a preprocessing complete ABox ,4' issuing from 
A which is consistent. Then A is obviously consistent because .4 C_ A' .  [] 

Note that the order in which the preprocessing rules are applied is don't care 
nondeterministic. Thus, to obtain all, possibly exponentially many, preprocessing 
complete ABoxes issuing from an ABox A, we start with A and choose an arbitrary 
rule that is applicable to A. If there is no such rule, .4 is already preprocessing 
complete and we are done. Otherwise, we generate all ABoxes that can be obtained 
from A by an application of the chosen rule. We again apply some preprocessing rule 
to each of  these ABoxes etc., until we end up with preprocessing complete ABoxes. 
If we use a depth-first strategy, all preprocessing complete ABoxes issuing from A 
can be enumerated using polynomial space in the size of  .4. This is due to the fact 
that both the length of every derivation and the branching factor, i.e., the number of 
ABoxes obtained by application of a single preprocessing rule to an ABox that is 
obtained from .4, is polynomially bounded by the size of  A. 

Preprocessing complete ABoxes have the nice property that they can easily 
be transformed into ABoxes in which role assertions no longer carry any additional 
information. More precisely, assume that .4 is a preprocessing complete ABox. We 
show how to construct (in polynomial time) an ABox A t from A such that (1) .4 is 
consistent iff A t is consistent, and (2) .4t does not contain role assertions. But this 
means that the consistency of A t , and hence of  .4, can be checked by performing only 
satisfiability tests for concepts. 

The transformation, however, does not apply to any ABox, but only to those 
which do not contain obvious contradictions involving role assertions and "at most" 
restrictions. 

Definition 7 (clash). We say an ABox A contains a clash iff 

{ a : ( <  ~ . R C ) ,  ( a , b , ) : R ,  . . . ,  (a.,b,,~):R, ~,~:C, . . . ,  b, , , :C} < A, 

where n < m for some individual a, distinct individuals h i , . . . ,  bin, some concept C, 
and some role R. An ABox without clash is called clash:free. 

Since distinct individuals occurring in ABoxes are interpreted as distinct domain 
elements (which is due to the unique name assumption) we have the following fact. 

Proposit ion 8. Any ABox containing a clash is inconsistent. 

Now let us formally describe how to translate preprocessing complete, clash- 
free ABoxes into ones without role assertions. 

Definition 9 (notation: C A and A~). For an ABox .4 and all individual a in Ind(A) 
let C A be a set of concepts defined as follows: ('7 E C~ A iff 

• a : C  E A where C is a primitive concept or a negated primitive concept, or 
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,, a : ( > ~ n R D )  E A ,  m = n R , D , A ( a ) , n > m ,  a n d C = ( > ~ ( n - r n )  R D ) , o r  

• a:(~< n R D) E A, m =nR,  D,A(a), n >~ m, and C = (~< ( n - m )  R D), 

where 
nR, D,A(a) = I{b e Ind(A) t (a,b):R and b:D are in .,4}I. 

For an individual a in hzd(A) we define An = {a:C I C E C~A}. 

In other words, an ABox Aa can be viewed as the restriction of A. to concept 
assertions imposed on a. Since we apply the definition to preprocessing complete 
ABoxes only, there is no need to carry over assertions of the form a : C F1 D and 
a:COD.  Assume that n&D,A(a) >I n for some ABox A, some role R, some concept 
C, and some integer n. Then any assertion of the form a : (>~ n' R D) with rz' ~ n 
is satisfied, and is therefore omitted. Finally, notice that if ..4 is clash-free the number 
rz - n & o , A ( a )  is nonnegative for every assertion a:(~< n R D) in A. 

Consider, for example, the preprocessing complete ABox 

A =  {a:(<~ 2 R A), a : ( ~ > 4 R B ) ,  (a,b)'R, ( a , c ) :R ,  b:A, b:B, c-:~A, c : B } .  

Then Ca -z" = {(~< 1 R A), (>~ 2 R B)}, C A = {A, B}, and C~ = {~A,B} ,  and hence 
An = {a:(~< 1 R A), a:(>~ 2 R B)}, A,, = {b:A, b:B}, and Ac = {c:~A,  c :B} .  

The following two sections provide a soundness and completeness proof for 
this transformation, i.e., we show that a clash-free, preprocessing complete ABox A 
is consistent iff, for eveo, a in lnd(A), the ABox Aa is consistent. The direction from 
left to right, which we refer to as soundness (of the reduction), is shown in section 5; 
the opposite direction is shown in section 6. 

5. S o u n d n e s s  

An immediate idea to show the soundness of the translation could be the fol- 
lowing, Suppose that A is a preprocessing complete ABox that is consistent. Then 
take an interpretation 27 which satisfies .A, and construct an interpretation Z-' from Z 
by eliminating, for every role R, a tuple (a z, b z) from R z if A contains an assertion 
(a, b) : R. Consider, for example, the preprocessing complete ABox 

. .4= {a:(~> 2 R A), (a,b):R, b:A, c :A}.  

It can easily be verified that the interpretation Z defined by 

A z = { a , b , c } ,  A z = { b , c } ,  R z = {(a, b), (a, c), (c, a)}, a z=~, , ,  b z = b ,  J = c -  

is a model for A. The interpretation 27' is obtained from Z by removing the tuple 
(a,b) from the set R z. By definition, we have Aa = {a:(>~ 1 R A)}, Jib = {b:A}, 
Ac = {c:A}, which in fact shows that 27, is a model for A, ,  Ab, and Ac. 
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Although the approach yields the correct behavior for this example, it is in 
general problematic, i.e., the interpretation Z r may not be a model for an ABox A~, 
where a is an individual occurring in Ind(A). 

To see this, let A '  be the ABox which is obtained from ,,4 by adding the assertion 
c: (~> 1 R (~> 2 R T)) .  Note that c does not have an R-successor in .A t, which means 
that A ' is preprocessing complete. Furthermore observe that the above interpretation Z 
satisfies the additional assertion (because the f?,z-filler a of c itself has two Rz-fillers, 
b and c), which means that Z is a model for A ~. However, the interpretation Z '  is not 
a model for .A~c = {c :A ,  c:(~> 1 R (/> 2 R T))}  (because the only RZ'-filler a, o f c  
itself has exactly one Rz'-filler). 

The problem is that the interpretation 27 is too specific, i.e., it relates the images 
of  two individuals of  the ABox by some role (in the previous example the tuples 
(a, c) and (c, a), respectively), although this constraint is not necessarily enforced by 
the ABox. This observation leads to the following definition, which singles out a 
certain class of  interpretations (models) for ABoxes. 

Definition 10 (simple interpretation and model). Let 27 be an interpretation (resp., 
model) for an ABox A. We say that Z is a simple interpretation (resp., simple model) 
for A iff for all b in hTd(A), (d, b z)  E R z implies that there is some a. in h M ( A )  such 
that a z = d and (a., b) :R  E A. 

The following proposition shows that the above mentioned approach is valid 
for simple models. 

Proposition 
Furthermore 

For every a 

11. Let Z be a simple model for a preprocessing complete ABox ..4. 
let Z '  be the interpretation defined as follows: 

AZ' = k z, 

A z' = A z where A is a primitive concept, 

Rz '  = R z  \ {( az,  b'Z) I (o,, b ) :R  E A} where R is a primitive roIe, and 

a z' = a z where a is an individual name. 

in hzd(A),  Z'  is a model for the ABox ,Aa. 

Before we can prove the proposition we need the lemma: 

L e m m a  12. Let d be an element of  A z such that d 7 ~ b z for all b in Ind(A).  If d E C z 
then d E C z' for every concept C.  

Proof We prove the lemma by induction on the size of C, where we assume that C 
is in negation normal form. If C is a primitive concept, then C z = C z', and thus 
d E C z implies d E C z'. 

Now let C = -',A for a primitive concept A. Then d E A z \ A z = A z' \ A z', 
which shows that d E (~A)  z' = C z'. 
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If C = C1 MCa then d E C z and d E Cf .  By induction we conclude that 

d E C z' and d E C z ' ,  and therefore d E (CI r-] C2) z'. The case C = C~ t_J C2 can be 
shown similarly• 

If  C = (/> n R D)  there exist elements d i , . . . , d , .  (di # dj if i ¢ j )  in A z 
such that (d,d~) E R z and di E D z. Since we assumed d # b z for all b in Ind(A),  
we can conclude that di # b z for all b in bzd(A) (because Z is a simple model for A). 
But this means that (d, di) E R z' (definition of R z') as well as di E D z' (induction). 
T h u s d E  ( )  n R D) z'. 

Finally suppose that C = (~< rl, R D).  Let d r be an element of A z '  such that 
(d, d') E R Z ' a n d  d' E D z'. We show that (d, d') E R z and d' E D z. It then follows 
immediately that d E (<~ n R D) z'. If (d,d')  E R z' then (d,d') E R z (definition of 
Rz ' ) .  To verify that d' E D z, suppose to the contrary that d' E D z' and d' ~ D z. 
Thus d' E A z \ D z. But this means that d ~ E (NNF(~D))  z and, by the induction 

! -~ /7 ! Z' " " hypothesis 4, we can conclude that d E ( N N F ( D ) )  . Hence d ~ D contradmtm~, 
• , 5 [ .  / z '  - - our assumptmn. Therefore we know that d E D ff d E D . Since there exist 

at most r~ elements d l , . . . , d ~  in A z such that (d, di) E R I and di E D I,  we can 
conclude that there are at most 'rz elements d l , . . .  ,d,,  in A z '  such that (d, di) E R g' 
and di E D z'. This shows that d E ( ~ ~, R D) z'. [] 

Proof o f  Proposition 1 t. We prove the claim by showing that 2" satisfies every as- 
sertion in the ABox B = UaElnd(A) ,Aa. From this it follows immediately that Y ' is a 

model for Aa  for every a in lnd(A) .  By definit ion,/3 contains neither role assertions 
nor concept assertions of  the form a : C1 Vl C~ and a : CI kJ C2, respectively, for any 
individual a. (definition of Aa).  We show that 27 satisfies a : C in/3.  

First assume that C is a primitive concept. Since a : C  is contained in ..4 and 5[ 
satisfies .4, we can conclude that a z E C z. But this shows that a z' = a z E C z = C z', 
which means that 2 -~ satisfies a:C.  

If C = -~A for some primitive concept A, then ,4 contains the assertion a : ~A.  
Since " /sa t is f ies  A and A z = A z' for every primitive concept A, we can conclude 
that a z' E A z \ A z = A z' \ A z'. Thus the assertion a: - ,A  is satisfied by Z' .  

Now assume that C = (/> n R D).  Then the assertion a : (/> (,u + m)  R D)  
is contained in A where m = nF:,D,.4(a). Observe that A is preprocessing complete,  
which means that either the assertion b" D or b : NNF(~D)  is contained in A if 
(a ,b)  : R  E A. Since Z is a model for A,  we have b z E D z if b : D  E A and 
b z E (-~D) z if b:NNF(- ,D)  E ..4. But this means that there exist n distinct elements 
d l , . . . ,  dn in A z such that (a z, di) E I~ Z, di E D Z, and di # b z for all b in lnd(.A) 

. . ~ [ t  

(because Z is a simple model for A). Thus we can conclude that (a ,di) E R z 
(definition of Zt), and di E D z' (Lemma 12). Therefore a z' E (>~ "n, R D) z'. 

Finally let C = (~< 'n _R D).  We first claim that there are at most n elements 
d i , - . . , d , ,  in A z such that (1) (aZ, di) E R z, di E D z, and (2) di # b z for all b 

4Observe that INNF(~D)[ <~ I~D[ = LDI < I(~ < n R D)I = lCl, which shows that the size of 
NNF(~D) is strictly smaller than the size of C. 



148 B. Hollundel; Consistency checking reduced to satisfiabilio, of concepts 

in hM(.A). This follows immediately from the facts that (1) ,,4 contains an assertion 
a :  (~< (n + m)  R D) where m = nR, D,.a(a), (2) the -+<-role does not apply to A, 

and (3) 2- is simple. Thus it remains to be shown that (aZ',d ~) E R z' and d ~ E D z' 
implies that (a z ,  d') E R z and d ~ E D z. Observe that d' ¢ b z for all b in Ind(A).  If 
(a z' ,  d ~) E R z' then (a z,  d ~) E R z (definition of Rz') .  To see that d' E D z suppose 
to the contrary that d' E D z' and d ~ ~ D z. Thus d t E A z \ D z = NNF(-~D) z. By 
Lemma 12 we have d ~ E A z' \ D z'. Hence d ~ ~ D z' ,  contradicting the assumption 
d ~ E D z', which shows that d' E D z. Thus a z' E (<~ n R D) z' holds. 1:3 

In order to give the final proof for the soundness of  our approach, i.e., if ..4 is 
consistent then, for every individual a, the ABox Aa is also consistent, we prove that 
an ABox has a model if and only if it has a simple model. We do this by showing 
that a given model 27 for an ABox A can be transformed into a simple one for ..4. 
The idea behind the transformation is as follows: If  27 is already a simple model, 
nothing has to be done. Otherwise, there is some individual b in Ind(.A) such that the 
tuple (d, b z) E R z, where d is some element in A z and R is some role, violates the 
condition of  a simple model, i.e., there is no a in Ind(A) such that (a, b) : R E A and 
a z = d. The idea is to replace, for every role S, the element b z in tuples (e, b z)  E S z 
which violate the condition of a simple model by a new domain element which is a 
"copy" of  b z. 

To illustrate this idea consider the ABox 

A =  {a:(>~ 2 R A),  (a ,b) :R,  b:A, c:A,  c:(>~ l R (>~ 2 R T ) ) }  

and the model Z for .,4 given by 

A z = {a,b,c},  A z -- {b,c}, R z = {(a,b), (a,c), (c,a)}, a z = a, b z = b, c z = c. 

Observe that 5[ is not a simple model for .A because R z contains the tuples (a, c) and 
(c, a). Thus, in a first step, we generate a new element, say c', which behaves exactly 
like c with respect to concept membership. This requirement can be met by putting c / 
into those primitive concepts A which contain c, and by adding a tuple (c ~, d) to R z 
if (c, d) is in R z. This yields the interpretation Zl where 

,X z~ = {a,  b, c, c '} ,  

A z' = { b , c , c ' } ,  

R z' = {(a, b), (c,a), (a,c') ,  (c', a)}, 

d zl = d z for all individuals d in h~d(A). 

Observe that R zt does not contain the tuple (a, c). It can easily be verified that 271 
is a model for ..4. However, Zl is not simple, because the tuples (c, a), (c t, a) are 
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contained in R zl . Therefore, in the second step, we introduce a new element, say a ~, 
which behaves like a, and we obtain the interpretation 2;2 where 

A z'- = {a, b, c, c', a '},  

A z2 = {b, c, c'},  

R z2 = {(a, b), (a, c '),  (c, a ' ) ,  (c', a ' ) ,  (a ' ,  b), (a ' ,  c')}, 

d z2 = d zl for all individuals d in lnd(.A). 

Again, the thus obtained interpretation 2-2 is a model for ..4, but is not a simple one 
(because (a/, b) is an element of Rz2). We therefore construct the interpretation 2-3 by 
adding a copy, b/, for b. This yields 

h :z3 = {a, b, c, c', a ' ,  b'}, 

A z3 = {b, c, c', b'}, 

R ~ = {(a,  b), (a, c'), (c, a'), (c', a'), (a', c'), ((;, b')}, 
d z3 -- d z2 for all individuals d in h~d(A). 

One can easily verify that Z3 is a simple model for .4. 
To sum up, we have constructed a chain Z, ZI, 2-2, ~ of models for .A such 

that the final element of the chain, Z3, is a simple model. 
However, to guarantee that there is always a last element in such a chain of 

models for an ABox we have to refine the above idea. Consider, for example, a model 
iZnfOr an ABox .4. such that R I = {(d, e), (e,e)}. Assume that a z = e for some a 
• Ind(flt), ( a , a ) : R i s  in A, and b z ¢ d for all b i n  Ind(A).  Note that 2- is not a 
simple model for .A because (d, e) E R z. When applying the above idea we construct 
a model, 2-1, by introducing a copy, say el, for e, which means that 

_~z, = {(~, e~), (e, ~), (e~, e)}. 

Since Z1 is not simple (because of (el,  e)), we introduce a further copy of e, say e2. 
Thus we get a model, 2-2, where 

R z'- = {(d, el ), (e, e), (e~, e2), (e2, e)) .  

But this shows that in proceeding this way we would never end up with a model, 
say _~, that is simple. In fact, since R z" contains a tuple (e,~,e), where en is a new 
domain element, we again have to generate a new element, say e,~+l, which is a copy 
of e~. Hence we get (e~+t ,e)  E R z'+~ for the next interpretation 2-,+1. The reason 
for this kind of  looping is that we would generate infinitely many copies of the element 
e. However, it turns out that it suffices to generate at most one copy for every element. 
In the above example, this means that we take e~ as a copy of e rather than introducing 
the new element e2 when moving from the model Zi to Z2. This modification yields 
R z2 = {(d, e~), (e, e), (el,  el)}, which in fact means that Z2 is simple. 

Instead of introducing a copy for exactly one element when moving from one 
interpretation to the next one, we generate copies for all elements, which are images 
of  ABox individuals, at once. 
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Definition 13 (straight interpretation). Let/7 be an interpretation for an ABox A. For 
each element d e A z such that d = a z for some a E hTd(A) we introduce a new 

element d.. The set of  newly introduced elements is denoted by O. The straight 
h~tetpretation Z' for " / i s  defined as follows: 

• Az' = A Z U O ,  

• A z' = A z O {d'E O [ d E A z}  where A is a primitive concept, 

• a z' = a z where a is an individual name in lnd(A).  

To define the set R z' for a primitive role R, we need the set R z+ that is given by 

R z  + = { ( e , f )  l ( e , f  ) E R z,  3b b Z =  f ,  3 a a Z = e A  (a ,b ) :R  E A }  

u { (~ ,7 ) I  ( ~ , f ) ¢  R z, 3t) bZ = f ,  7ta a.z = eA (a,b):R c .A }  
u {(~, f )  I (~, i )  E S~ z, 7tb ~7 = f } .  

Then 

R 5[' : R I+ V {(k-'., f )  I (e, f )  G 1£... z+ , 3b IJ : f }  

O {(~ , f )  l ( e , f )  ¢ /~z+ ,  Nb b z = f }  

for every primitive role/{.  

Thus, in order to achieve that a copy d behaves exactly like its original d with 
respect to concept instanceship we put d exactly into the primitive concepts d belongs 

to; also we introduce appropriate role successors for d. Of course, d is replaced by 
d" in those tuples contained in R z which contain d as second component and which 
violate the condition of a simple model. As a consequence, the straight interpretation 
"f ~ is a simple interpretation. 

Suppose that an interpretation Z is a model for an ABox A. Before we can 
prove that the straight interpretation Z ~ for Z is also a model for ..4 we need the 
following temma: 

L e m m a  14. Let Z t be the straight interpretation for Z. Then: 

1. If  d E A z then, for all concepts C, d E C z implies d E C z ' .  

2. If d 'E (9 then, for all concepts C, d E C z implies d E  C z'. 

Proof We prove the statements by induction on the size of C. 

Base cases." 

1. Assume that d E C z for a primitive concept C. Since C z C_ C z' we have 
d E C z' .  If C = ~A for some primitive concept A, we know that d E k z \ A z 
and hence d ~ A z.  Since d ~ O we have d ~ A z U O. Thus we can conclude 
that d E k z' \ (A z U O) C_ A z' \ A z', which shows that d E (~A)  z'. 
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2. Assume that d" E (9. If d E C z for some primitive concept C then d" E C z'. 
Now assume that d E C z = (-~A) z = A z \ A z for some primitive concept A. 

Thus d ~ A z, which means that d ~ A z'. Therefore d E  A z' \ A z' = (~A)  z'. 

Induction step for 1. 
If C = CI MC2 then d E CI z and d E C z. By induction we conclude that 

d E C z' and d E Cf ' ,  which shows that d E (Cj M C2) z'. The case C = C1 u C) can 
be shown similarly. 

Now suppose that C = (>/'n, R D).  There exist distinct elements dl , .  • •, d,~ in 
A z such that (d, di) E R z and di E D z. We show that there is for each di an element 
d I (dli ¢ d~ if i ¢ j )  such that (d, d~) E R z' and d1~ E D z'. If (d, d~) E R z' for some 

i we set di = d~. By induction by can conclude that dli E D z'. Now assume that 

(d, di) ~ R z'. Then (d,d,/) E R z+, and thus ( d , ~ )  E R z'. With 2. it follows that 

d'i E D z' if d~ E D z.  
Thus it remains to be shown that d~ ¢ a} if i ¢ j .  Suppose to the contrary 

that d~ = d} for some i, j ,  'i ¢ j .  First suppose that d~., = d i  and d} = rLj. But this 
means that di = d¢ for 'i 7 ~ j ,  thus contradicting our assumption that d t , . . . ,  d,, are 

distinct elements. Secondly, suppose that d~i ¢ di and d} ¢ dj. Thus d~i = ~ and 

d} = ~ .  Hence, di = dj for 'i, ¢ j ,  which again yields a contradiction. Finally, 
= dj (the symmetric case d ~ ¢ dj and d~i = di can be suppose that d~i ¢ di and dj j 

treated similarly). Since d~ ¢ di we know that d~i = d'i, which shows that d~i ~ A z. 
Since d} E A z, we also have a contradiction. 

Finally let C = (<~ n R D).  We show that for each d Ji such that (d,d'i) E R z' 
and d' i E D z', there is some d~ such that (d, di) C R z and di E D I, where d i ¢ dj if 
dti 7 ~ d}. Since d E (~< rL R D) z it then follows immediateIy that d E (<~ rz R D) z'. 

Thus assume that (d,d~) E R z' and d~i E D z'. If (d,d~) E I~ z we set di = d' r Since 
d} E D z' we can conclude (by induction and using the contrapositive) that di ff D g. 
Now assume that (d, d~i) ~ I~ z. Then d~i = ~" for some Y E (9, and we set di = e. 
With 2. it follows that, for all concepts E, e z E E z implies ~" E E z'. Since ~" E D z'  
this also shows (using the contrapositive) that e E D z. 

Similarly to the previous case, one can show that de ¢ di if d~ ¢ d}, which 
completes the proof. 

b~duction step ~br 2. 
Assume that d 'E  O. If d E C z = (Ci M C2) z then d E C z and d E Cf .  By 

induction we conclude that d 'E C z' and d'E z'  C 2 , which shows that d E  (Cl M C2) z'. 
The case C = C1 t3 C2 can be shown similarly. 

Next suppose that C = (/> r~ R D).  There exist distinct elements dl . . . .  ,d,, 
in A z such that (d, di) E R z and di E D z, By definition of R. z' ,  there are distinct 

elements d ] , . . .  ,d~. in A z' such that (d,d~) E R z'. Thus it remains to be shown that 
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d{ E D z'. If d' i = di then we can conclude with 1. that d' i C D z'. Thus suppose that 

d'~ ¢ d~. This means that d ' i=  ~ ,  and we can conclude by induction that d'~ E D z'. 
The case C = (~< .a R D) can be treated similarly. [] 

Proposition 15. Let Z be a model for an ABox ,,4. The straight interpretation Z ~ for 
Z is a model for A. 

Proof Let Z be a model for A, and let Z'  be the straight interpretation for Z. To 
show that Z '  is a model for A let c~ be an assertion in A. 

Case 1, ct is of the form a : C for some a in Ind(A) and some concept C. 
Since Z is a model for A we have a. z E C z. By Lemma 14 we can conclude that 
o f  = a z' E C z'. Thus Z ~ satisfies a : C, 

Case 2. c~ is of the form (a, b) : R for some a, b E tnd(A.) and some role R,. 
Then (a z,  b z)  E R z. Since (a, b) : R E A, we know that (a z' ,  b z ) E R z (definition 
of  straight interpretation). Thus Z'  satisfies (a, b) :/iL 

Both cases together show that Z '  is a model for ,,4. [] 

Thus we can prove the following theorem: 

Theorem 16. An ABox has a model if and only if it has a simple model. 

Proof One direction is trivial, since a simple model is in particular a model. In order 
to show the other direction let 27 be a model for an ABox A that is not simple. The 
straight interpretation Z' for 27 is a model for A (cf. Proposition 15). Since U is a 
simple interpretation, we have proved the claim. [] 

Let ,A be a preprocessing complete ABox that is consistent. By the previous 
theorem we know that ,,4 has a simple model, But this means that we can apply 
Proposition 1 1 which shows that, for every a E bld(,A), the ABox ,Aa is consistent. 
Thus we have established the main result of this section. 

Corol lary  17. Let .,4 be a preprocessing complete ABox that is consistent. Then, for 
each a in lnd(A) ,  the ABox Aa is consistent. 

6. Completeness 

To prove completeness of the transformation, i.e., a preprocessing complete 
clash-free ABox A is consistent if, for every a in b~d(A), the ABox Aa is consistent, 
we proceed as follows. To show that A is consistent, we construct a model for A out 
of  the simple models for the ABoxes ,Aa. This idea leads to the following definition. 

Definition 18 (composed interpretation). Let ,A be a preprocessing complete clash- 
free ABox. Furthermore, let I a  be simple models for the ABoxes Aa (a E Ind(~[)) 
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such that a z" = a, and A z° ClA z~ = ~ for all a, b, b ¢ a. The composed interpretation 
Z for ,4 is defined by: 

• zxz :=  U~,~x,,d(.a~ Az°, 

• AZ := UaElnd(.A) AZ" where A is a primitive concept, 

• Rz  :=  UaElnd(A) RZ" U {(a., b) [ (o., t)) :1~ G ,A} where R is a role, 

• a z :=  a z" = a where a C lnd(A).  

Note that A z~ A lnd(.A) = {a} for every a in hzd(.A). Before we can prove 
that the composed interpretation Z is a model for ..4 (Proposition 20) we need the 
following lemma. It shows that the elements of  zX z'~ different from a behave similarly 
in 2-~ and 2" with respect to concept membership. 

L e m m a  19. Let 2" be the composed interpretation for a preprocessing complete clash- 
free ABox .,4. Furthermore, let a be an individual of hzd(A). If d E zX z'~, d ¢ a,, then 
d E C z~ implies d E C z for every concept C. 

Proof Assume that d ~ a. We prove by induction on the structure of the concept 
C that d E C z" implies d E C z. Without loss of generality we assume that C is in 
negation normal form. First assume that ¢;' is a primitive concept. Since C z,' c_ C z 
we immediately get d E C :z. 

Now Iet C = -~A for a primitive concept A. Then d E ~5 z~ \ A z" and hence 
d ~ A z''. Since A z° MA zb = ~ for all b, b ¢ a, we have d ~ ~z~, and therefore 
d ~ A zb for a ¢ b. But this means that d ~ UcElnd(A) Az~ = Az,  and thus d E 
A z \ A z = (-~A) z = C z. 

I f C  = CI V1C2 then d E Ct z'' and d E C{". By induction we can conclude 
that d E C~ z and d E Cf ,  and therefore d E (Ct fG½)  z. The case C = C~ U C2 can 
be shown similarly. 

Now suppose that C = (~> n R D). There exist distinct elements d l , . . . ,  d,, in 
A z" such that (d, di) E R z'~ and di E D z". Since R z" C_ R z we have (d, d~) E R z. 
We observe that di • a (because Z~ is a simple model for A,d. Thus we can conclude 
by induction that di E D Z. Therefore we have d E (>1 "n. IR D) z. 

For C = (~< n R D) we have to show that there are at most n elements 
a l l , . . . ,  dn in A z such that (d, di) E R Z and di E D Z. Theretbre we verify that 
(d, di) E R z" and di E D z~ if (d, di) E R z and di E D z. If (d,d~) E t~ z then 
(d, di) E R z" becaused  E A z~, d : ~  a, a n d A  z~'NA zt, = ~ forcz.-¢ b. To see that 
di E D z" suppose to the contrary that di E D z and di ~ D z". Then di E A Z~' \ D z" = 
(NNF(~D))  z~. By induction we conclude that di E (NNF(~D))  z which contradicts 
the assumption di E D z. Thus we have shown that for each di such that (d, di) E R z 
and di E D z we also have (d, di) E 1~ y'~ and di E D z°. Since d E (~  l~ R D) z" we 
can therefore conclude that d E (<~ r~. R D) z. [] 

Now we are able to prove the completeness of the transformation. 
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Proposition 20. Let 2 be the composed interpretation for a preprocessing complete 
clash-free ABox .4. Then Z satisfies .4. 

Proof To prove the claim we show that the interpretation Z satisfies every assertion 
c~ in ..4. If  ct is of  the form (a,b)  : R then Z satisfies c~ by definition of Z. Now 
assume that ct is of  the fon-n a : C. We prove by induction on the structure of C that Z 
satisfies o:. First assume that C is a primitive concept. By definition of .,4,, we know 
that a : C is contained in .Aa. Since Z,~ is a model for "4<, it follows that a E C z ' .  
Since C z~ C C z we can conclude that a E C z. 

If C = - ,A for a primitive concept A, we have a E A z~ \ A z" (because 
a : ~ A  E "4a), and therefore a ~ A z~, Since A z° M A z~ = ~ for all b, b ¢ a, it follows 
that a ~ A :r~, and therefore a ~ A z~ for all b, b ¢ a. Thus a ~ [..JcEl,d(A) Az~ = Az,  
which means that a E A z \ A z = (-~A) z = C z. 

Assume that C = Cl I-1 C2. Since the ---~n-rule does not apply to A (because 
A is preprocessing complete) we know that a:Cl  and a:C2 are in ..4. By induction 
we conclude that 27 satisfies a:C1 and a:C2, and therefore the assertion a :  (Cl M C2) 
is satisfied by Z. The case C = Ci U C2 can be shown similarly. 

Now let C = ( )  n R D).  F o r m  = nR,D,A(a) the assertion a:  (/> ('n - m ) / ~  D) 
is contained in Aa.  Since Z~ satisfies A<, there exist distinct elements d j , . . . ,  d,,_,,, 
in A z~ such that (a, di) E R z~ and d i E D g~'. But this means that (a, di) E R z 
(definition of  Z) and di E D z (Lemma 19). Thus I{d' E eX zo I (d,d') E R z and d' E 
Dz}I >1 n - m. Now consider b E hzd(A) such that (a ,b)  : R and b : D are in .4. 
Since b: D E A we can conclude by induction that b E D z. Furthermore, (a, b) E R z, 
which follows from the definition of  27. But this means that I{b E Ind(A) I (a, b) E 
R z and b E Dz}] ~> m. Therefore I{d E AZI (a,b)  E R z and b E DZ}] >~ n, which 
shows that a E (~> n /g D) z. 

Finally assume that C = (.<, n R D).  If m = ntLD,A(a), we have n ~> rn. 
because .,4 is clash-free. There are individuals b l , . . . ,  bm in tnd("4) such that (a, bi) E 
R z (definition of Z) and bi E D 5[ (by induction). We show that there are at most n - m  
elements el . . . .  , e,~-m different from bj (for all j ,  1 ~< j ~< m) such that (a, ei) E R z 
and ei E D Z, Let ei be such an element. 

We first observe that ei 7 fi c for all individuals c in hzd(.A). Suppose to the 
contrary that ei = c for some c E hzd("4). This means that (a, ei) : /~ E "4. Since 
.,4 is preprocessing complete either ei : D or ei : NNF(-,D) is in A. If ei : D E ..4 
then ei = bj for some j ,  which contradicts our assumption that ei 5 k bj for all j ,  
1 ~< j ~ m.  If  e i : N N F ( ~ D )  E "4 we can conclude by induction that ei ~ D z 
contradicting the assumption that ei E D z. 

Thus we have shown that ei 7 ~ c for all c E lnd(A). Hence we know that 
ei E A z". Therefore (a, ei) G R Z° and, as can easily be verified with Lemma 19, 
ei E D z=. Since a E (~< ( n - m )  R D) x" (because a : ( ~  ( n - m )  1~ D) is contained 
in A,~), there exist at most n - m  elements e l , . . .  , e n - m  different from bj (for all 
j ,  1 ~< j ~< m) such that (a, ei) E R z and ei E D x. Thus we can conclude that 
a E (~< n R D)  z. [] 
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This result together with the results from the previous section yields a reduction 
from the consistency problem of ABoxes to the satisfiability problem of concepts. This 
establishes the main result of the paper. 

Theorem 21. The consistency problem of ABoxes can be reduced to the satisfiability 
problem of concepts using polynomial space in the size of the ABox. 

Proof Let `4 be an ABox. First assume that A is consistent. By Proposition 6 there 
is a preprocessing complete ABox A '  such that (1) A '  is consistent and (2) A '  is 
derived from ,,4 by application of preprocessing rules. But this means that, for every 
a E Ind(A), the ABox `4'~,. is consistent (Corollary 17). Since A'~, = { o , : C l , . . . ,  a:C,,} 
for some concepts Gi , .  • •, C,,, we know that A~ is consistent if and only if the concept 
C'l D . . .  D Cn is satisfiable. 

Now assume that ,4. is inconsistent. Then every preprocessing complete ABox 
`4' issuing from A is inconsistent (Proposition 6). We now show that `4' either 
contains a clash or there is some a E Ind(A) such that A~ is inconsistent. Suppose 
to the contrary that ,4' is clash-free and ,4'a is consistent for every a E Ind(,4). By 
Theorem 16 we know that ,4'a has a simple model. But this means that A ~ is consistent 
(Proposition 20), which is not possible. 

Since all preprocessing complete ABoxes issuing from A can be enumerated 
using polynomial space in the size of A this yields the claim. [] 

7. Terminologies 

When modeling the relevant notions of a problem domain with the help of 
a concept language it is convenient to refer to already introduced concepts, rather 
than defining every concept from scratch by using primitive concepts and roles only. 
Almost all terminological systems therefore allow their users to introduce abbreviations 
for concepts and roles. For example, the concept definition mother -- woman D 
3child.person introduces the concept name mother as an abbreviation for the concept 
occurring on the right hand side of the definition. Using this abbreviation the concept 
parent can simply be defined by parent - mother U father if father is appropriately 
defined. Analogously, we may introduce abbreviations for roles as, for instance, 
daughter -- child I female. The so-called terminology (for short TBox) is given by a 
set of such concept and role definitions together with statements which introduce the 

primitive concepts and roles. 
Almost all terminological systems do not allow arbitrary ten-ninologies, but only 

those that satisfy the following two additional conditions: Every primitive concept and 
primitive role may appear at most once at the left hand side of a definition, i.e., every 
concept and role has a unique definition. And secondly, the terminology must not 
contain cyclic definitions, i.e., the right hand side of a concept (role) definition must 
not refer directly or indirectly to the concept (role) name to be defined. 
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It is a well-known fact that an ABox that refers to a terminology that satisfies 
both conditions can be transformed into an "equivalent" expanded ABox that does no 
longer refer to the terminology (see, e,g., [14]). The idea behind the transformation is 
to enlarge the ABox by the facts expressed in the terminology. That is, if A - G' is 
a concept definition of the terminology, and a : D is a concept assertion in the ABox 
such that A occurs in D, we substitute each occurrence of A in D by C. This process 
is iterated until the rewrite rule just described is no longer applicable. Obviously, this 
process terminates if the concept and role definitions do not contain any cycle. 

An expanded ABox thus obtained may be exponential in the size of the termi- 
nology as mentioned in [I4]. But this might imply that tile consistency problem of 
an ABox w.r.t, a tenninology has a higher complexity than the consistency problem 
of an ABox. In fact, Nebel [15] has proved that for the restricted concept Ianguage 
f £ -  (which includes concept conjunction, value-restriction, and the restricted exists- 
restriction 3/R.T) subsumption becomes co-NP-hard if the concepts are given by a 
terminology, while subsumption between a pair of f £ - - c o n c e p t s  can be checked 
in polynomial time [12]. For the rather expressive concept language A£CQ of the 
present paper this however is no longer true. When successively expanding concept 
definitions during the consistency check as described in [9, Chapter 5] (rather than 
starting with the completely expanded concept definitions), one can show that the 
consistency problern of an ABox w.r.t, a terminology can be decided with polynomial 
space. But this means that this inference problem is not harder than the consistency 
problem of ABoxes in A£CQ. 

8. Conclusion 

We have presented a reduction from the consistency problem of ABoxes to the 
satisfiability problem of concepts for the concept language A£CQ. This result has two 
important applications. From a practical point of view, our reduction together with 
the existence of relatively efficient implementations of satisfiability algorithms strongly 
simplifies the implementation of consistency and instance checking algorithms. Even 
from a complexity point of view, the result shows that consistency checking is not 
harder (in terms of the worst case complexity) than satisfiability checking in our 
concept language. 
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