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C"-finite elements of Powell-Sabin type on the three
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Let 7 be the triangulation generated by a uniform three direction mesh of the plane. Let
16 be the Powell-Sabin subtriangulation obtained by subdividing each triangle T € T by
connecting each vertex to the midpoint of the opposite side.

Given a smooth function u, we construct a piecewise polynomial function v € C™(R?)
of degree n = 2r (resp. 2r + 1) for 7 odd (resp. even) in each triangle of 7¢, interpolating
derivatives of u up to order r at the vertices of T.
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AMS subject classification: 41A15, 41A05, 65D07, 65D05, 65N30.

1. Imntroduction

Let 7 be the uniform A'-type triangulation of the plane R2. For example that induced
by integer translates of z = 0, y = 0 and z —y = 0. Let 75 be the PS subtriangulation
of T (after Powell-Sabin ), obtained by connecting each vertex to the midpoint of the
opposite side in each triangle T € 7. Let S5 (76) = {v € CT"(R?): v|; € Pp, Vt € 75},
where P, is the space of bivariate polynomials of total degree at most n.

Given u € C™(R?), m > r, we consider the following Hermite interpo-
lation problem HT(u): construct v € Sj(7g) satisfying D%v(a) = D%u(a) for
a=(a,m)EN? joj=aj+ay<randacT

The procedure of construction consists in assembling composite finite elements
vy = vlr for T € 7, vy depending only on interpolation data on T'. For an arbitrary
triangulation of R2, the classical Powell-Sabin element is a C!-quadratic spline of
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dimension 9 (see, e.g., [21, 25]). Later Sablonniere [22] gave a C"-generalized scheme
in a subspace of splines of degree 3r — 1. This result was improved recently by the
first author [16] in subspaces of degree 5s (resp. 5s + 2) for r = 25 (resp. 25 + 1).
In this paper, due to the uniformity of the triangulation, we prove the existence of
Hermite interpolation schemes in a subspace of S}, (74) for lower degrees: respectively
n = 2r + 1 for r even and n = 2r for r odd. These degrees are minimal, as is proved
also in [16]. Another interesting feature is that the construction of our local finite
elements needs only partial derivatives of order at most 7 + [r/2] ([z] is the integer
part of x) at the vertices of the triangulation. So, there is no need of normal derivatives
or derivatives at interior points of triangles. For arbitrary partitions and other types of
finite elements, this cannot be avoided in general (see our related works [13-18] and
[22-26], see also [19, 20, 29]).

The paper is organized as follows: in section 2, we recall and prove some
results on the Bernstein—Bézier form of polynomials on triangles which is used for
representing splines on the triangulation 7¢. In section 3 we give the construction of
PS finite elements and of the solution of the Hermite interpolation problem of order r.
Finally, in section 4, we give some error estimates.

2. Bernstein form of polynomials

2.1. Representation of polynomials on triangles

Let T = A;AyA3 be an arbitrary triangle in the plane. Let p = (u1, u2, p3) be the
barycentric coordinates of a point M with respect to 7. We have

3 3
M=) wdi, lul=) m=1,
i=1 i=]

and M eT ifandonly if 0 i, €1, i=1,2,3.
For a multi-index § = (61,5, () € N3, we will use the notations

3 3
18] =Zﬁi, B! =Hﬁi, wP =P,
i=1 i=1

n! .
Bi(u) = B—!,u,ﬁ for || =n and n € N. (1)

The (“;2) polynomials (1) form the Bernstein basis of the space P,,. Any polynomial
p € P, can be written uniquely as

p(w) =Y b(B)Bj(u),

|Bj=n

which is called its Bézier representation with Bézier coefficients b(().
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()

in R? is the B-net (or control net ) of p on T. In order to simplify the figures, instead
of representing polynomials by their B-nets in R3, it is more convenient to display
their B-coefficients on triangles which are their projections on the plane. We often
make use of this convention.

For the construction of finite elements, we need the expression of partial deriva-
tives and of smoothness conditions between two polynomials (the details of re-
sults can be found in Farin [10] or de Boor [2]). The partial derivatives of order
la| = a1 + a; = r, a; times in the direction A;Ay and o, times in the direction
Aj;Ap, are given by

The set of B-vertices

Dp(u) ((A; Ap)™, (A Am)*?) = Y (A%A%H(6)BE (1), (@

where A;:b(8) = b(B + ex) — b(B +¢;), er = (1,0,0), e2 = (0,1,0), e3 = (0,0,1)
and A2kb(,8) Aji( ka(ﬂ)) etc.

Now let T = A AyA; be a neighboring triangle of T with A ¢ T, p=
(01, fiz2, [i3) denotes the barycentric coordinates of a point with respect to T and

p* = (u3, 3, pu3) those of A with respect to T'.
Let

plu) =Y b(B)Bj(u) € Po(T) and F(E) = D c(y)By(E) € Pa(T),

1Bl=n [7l=n

then p and 7 are joined smoothly across the common edge A, A3 up to order r if and
only if the following conditions hold:

e(s,i,5) = D b{((0,4,5) + B) B§(s*), 3)
|Bl=s

fors=0,...,randt+j=mn-—s.
2.2. Representation of splines on PS triangles

For an arbitrary triangle T of 7, the vertices of the triangulation 74 of 1" are denoted as
follows (see figure 1): the points Ap;—, i = 1,2,3, are the vertices of T', the points
Ay; are respectively the midpoints of the edges I'; = A;_1 A4y of T and A7 is the
center of gravity of T'. Let {51 = Agi_1Ax A7 and ty; = Agip1An Ay (1 £i<3)
be the micro-triangles of 7¢ in T'. Here and in the following, each index relative to a
vertex (resp. an edge) is counted modulo 6 (resp. 3).
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As

A,

For the definition of barycentric coordinates w.r.t. ;, we label the vertices in
the order {AZi—h Ay, A?} for tp;1 and {A2z'+l,-f42i, A‘;} for t;.
Let

ST, ) = {f € CUT): fls, €Pn, 1 <k <6}

Let pi = fli,, 1 < k <6, then {bx(8): |B| = n} denotes the B-coefficients of
polynomial p, on the triangle ¢; and U?FI {bx(8): |B] = n} is the set of B-coefficients
of the spline f on the triangle T'. In the figures, since our splines are at least C?, the
B-coefficients situated on the interior edges of 74 are denoted by the same symbol.

From conditions (3) we get he following lemma, see, e.g., [5, 10].

Lemma 1. Let S;(T,76) = S3(T,76) N C™(T), v > 1. Then f € S(T, ) if and
only if the following relations hold for ¢ = 1,2,3:
ForO<s<randk+m=n-—s,

bZi(s,k,m) = Z (j) (—l)jzs"iji_;(j,k +s—7, m), (4)
=0
I (—1)P236
b2i(k337m Z > ( 95— oA b2i+l(k+ﬂ17ﬁ2>m+ﬁ3)‘ (5)
181= S

Let us now introduce some subsets of B-coefficients which are used later in the
construction of local interpolants (see figure 2 for some examples).
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Definition 1 (subsets of B-coefficients).

(a)

(b)

(©)

ForO<r<mn, i=1,2,3let
r: = {b2i~1(j7 k: ?"), 5211(.7";{;)?‘): J+ k=n-— T}

be the rth row of B-coefficients parallel to the external edge I;.
ForOg<r<n, 0<s<n—-randi=1,2,3 the set

LE’IZ,S) = {bZi—2(IB)7 bZi—l(ﬂ): lﬂl =n, ﬁl =8, /52 < 'r}

is called the sth level of order r opposite to the vertex Ay;_;. It is formed by
the sth row parallel to the edges Ay;_2A7 and Aj; A7 respectively and bounded
by the rows {by—2(B): B2 = 7} and {b2;(B): B> = r} which are themselves
parallel to the edge Az A7.

ForO0<r<n, 0<s<n—randi=1,2,3 the set

(7' s) — U L(z s+k)

is called the rth order plate at the level s associated with the vertex Ay; . It is
formed by the (r + 1) B-coefficients situated in the region bounded by the rows

o8, I7777° and Li; )
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(d) Finally, for 0 < r < n, let T, be the subtriangle of 7" whose vertices are
by (r,0,n—7), b3(r,0,n—r), bs(r,0,n—r) and let D" = ?=,{bj(ﬁ): n—r <
(3} be the set of B-coefficients inside T} (including edges).

Remark 1.
(1) We have H;isz) C I'IZ?’S[) for r, < r; and s7 > 5.

(2) For f € SI(T,76) and 0 < s < n —r, I'] can be considered as the set of B-
coefficients of a univariate spline of class C” and of degree n — s on a segment
subdivided into two parts.

(3) Forr € s <n, D° can be considered as the set of B-coefficients of a bivariate
spline in the space S; (T}, 7s)-

In order to prove the unisolvency of the interpolation scheme, we need the well-
known following lemma, see, e.g., [3, lemma 4.1] or [7]:

Lemma 2. Suppose that f € S25+!(T, 7%).

(1) For fixed integers j € {0,...,n—2s~1}and i € {1,2,3}, consider the following
sets of B-coefficients:

A o (B) 1Bl =, JH1IS B < j+2s+1, f2<2s
andn—j—2s—-1<B<n—7-1 ’

B={by(B), brs1(B): B =3, s+1< P <2s+1and |B| =n}.
Then the B-coefficients in the set
C = {bx(B), baisr1(B): fr =3, B2 <sand |B] =n}
can be uniquely computed from those in A and B.
(2) For fixed integers m < n —2s — 1 and 4 € {1,2,3}, the set of B-coefficients

B = {bzi_l(ﬂ), b2i(:3): B1 < s, f3 =m and |ﬂ| = n}

can be computed uniquely from the ones in the set

A = {by-1(8), b2i(B): s+ 1< 1 <25+1, f3=mand |f] =n}.
From theorem 2.1 of Schumaker [27], we deduce

Lemma 3.
. n—r+1 T+ 2 ‘
dlmS};(T,Ts):ﬁ( 5 )+( ’ )-i- E (r+1-25)4,

where z,. = max(z,0).

We need this lemma in the following section,
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3. Construction of PS finite elements

We describe in this section the construction of the generalized C"-scheme of type PS
on any macro-triangle T" of 7. We construct the finite elements in spaces of generalized
super-splines S:l’(rr;r[r/ 2 (T, 76), where n(r) = 2r (resp. 2r + 1) for r odd (resp. even).
These spaces of functions vr are defined as follows (see Chui and Lai [6], Schumaker
[28] and Ibrahim and Schumaker [12]):

Definition 2 (subspaces of finite elements).

(i) Ifrisodd: r =2s+1, s> 0, we impose that up be of class C3%*! (instead
of C25+1y at the vertices of T. We thus obtain the subspace S5, (T' 7¢) of

9ga] 45+2
34212 (T',76)-

(1) Ifriseven: r =2s, s > 1, we first reinforce the smoothness of v by imposing
vr € Sfjj:ll(T, 76). Then we impose that vr be of class C3 (instead of C?s+!)

at the vertices of 7. We thus obtain the subspace Sfjj:ll‘h(T, 76) of Sf;_}fl‘ (T, 76).

For the construction we need the following lemma:

Lemma 4.

(1) dim S35F(T,76) = 3(s +1)(2s + 1).

(2) Any function w € 332;1} (T, 76) is uniquely determined by the data

D%w(Api—y) forlaj<2sandi=1,2,3.

Proof. By lemma 3,

im S25+! _e(° 1 2543\ L S 051 2-27), = 3(s4 1)(25 4 1
dim S3;7, (T, 76) = 5 + 5 +j;( s+2-27) =3(s+ 1){(2s+ 1).

The number of data being equal to the dimension of S;z‘jill (T, 7¢), it suffices to show
that w = 0 when the data are zero. We prove the result by induction on s.

(a) For s = 1, consider the space SQ(T, 76) (see figure 3), whose dimension is
18. We assume that D%w(4;;—;) = 0 for |a| < 2 and 7 = 1,2, 3. Thus from (2) and
(5) the B-coefficients marked by “e” are zero. Using part 2 of lemma 2, those marked
by “o” are zero because C>-smoothness across A7Az;, ¢ = 1,2,3 determines these
B-coefficients from the black ones. Now the B-coefficients “+” are zero by using part
1 of lemma 2. Those marked “X” are zero by C'-continuity across the edges A7 Ay;.
Finally the C!-continuity at A7 determines the central B-coefficient. Thus w = 0,
g.e.d.

(b) For s = 2, in a similar way, we can show that w € 8-? (T, 76) is zero when
D*w(Az;—y) =0 for |a] <4and 1 <1< 3.
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As
U&z
Aj 6 Ay
Figure 3.

(c) General case: we suppose that any v € 83253:21 (T,76), s =2 3, is determined

by the data D*v(Azi—1), || < 25 —2, 1 <1 < 3. Consider w € 832;111 (T, 76) (see

figure 4 for s = 4) and suppose that the data are zero. By (2) and (5) we obtain:

3
b=0 forallbe | JIT . ©)

i=1

Using C?**!-continuity across the edges Aj; A7 (as in lemma 2) we have:

3 s
b=0 forallbe| | JIF (7
i=1 k=0

Consider the disk D3%~2. It can be considered as the set of B-coefficients of a
spline w* € Sg'ss'_"zl (T3s—2,76) (see remark 1). The 2s + 2 B-coefficients

{b2-1(B), bzi-2(B): 18l =3s+1, By =5, B3 < s}

are in the level L%i’:)‘ because the second component of [ satisfies s+ 1 < J, € 2s+1

(see definition 1 in section 2). From (7) they are zero because they are also in I“i-“_,
(or TF), k < s. Thus using lemma 2, we deduce that b = 0 for all b € L%, By (6)

(i,8)
we have also b=0 forall b € I‘I%f‘s*)l.
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Let us remark that the plate [125*! contains T12°=2. The later inclusion implies
p (i,5) (i,9) P

that the partial derivatives of w* of order up to 2s — 2 at the vertices of the subtriangle

Ts5_o are zero. We have S%jle (T35-2,76) C 83233:21 (T35—2,T6). From the induction
hypothesis we get w* = 0. Therefore all B-coefficients of w are zero. O

Definition 3. Let

Sr,r-{—{r/Z}(T) _Jv € Cr(Rz): 'UlT € S;;T-*-[r/zl(T, ’3‘5) (resp. S;:::irﬂr/z](T, Ts)) _
n(r) for r odd (resp. even) forall T' €

Theorem 1.

(1) Given u € C™(R?), m > r + [r/2], there exists a unique function vy €

S;;M[T/ 2 (T, 16) (resp. SZT: +lir+[7‘/ 2 (T, 76)) for r odd (resp. even) satisfying the

following interpolation conditions:
Dp(Azi—y) = D%u(Ay—y) forall ol <r+[r/2]andi=1,2,3. (8)

(2) The global interpolant v defined on R? by v|p = vr for all T € 7 is an element

of the space S;’(T)"[r/ 2 (7).
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Proof. (1) We prove the local interpolation scheme for the space S,fjjll 3S(T 76) (see

figure 5). The derivative data (8) determine the 3sth order plates H(1 s+1) (1€i<3)
(ie., the black coefficients). The C?**!-continuity of v across each edge A7Ay;
determines the non-marked B-coefficients on all rows I“f, k £ 2s: they can be
computed from the corresponding black ones (see lemma 2). In particular, all rows
T% k <s, 1 <i<3are known. The remaining parameters form the disk D3s+!

which is associated with a spline w € 535 o N(T3541,76). Since TI( o) 18 D Distl

hence I'I(1 +1) is included in D35+L, therefore the derivatives D%w, |a| < 2s at the
vertices of the subtriangle T3, are known. By lemma 4, w is uniquely determined.

The scheme of the space Sfjizl 3S‘H(T, 76) is a straightfoward consequence of

the preceding result. Indeed, we remark that the disk D**! situated in the set of B-
coefficients of vr € Sfﬁg 3sH(T 76) is associated with a spline w; € sts:f 3(T, 75)
So the data D%p(Agi—1), |a] < 3s+ 1, 1 < i < 3, determine the derivatives
D>y, lof €3s, 1 <1< 3, at the vertices of Tyey .

(2) In order to prove the second part of the theorem it suffices to show that the
global function v belongs to C™(R?).

Let v and v~ be the two finite elements uniquely defined on adjacent triangles
T and T* with T'NT* = I'; for example, by interpolating the same function u. Let

A be the corresponding center of gravity of T*. Since A7A; and AJA; are colinear
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and not parallel to I's, it suffices to show that gy = D¥(vp — vp+).(A742)%|r, is
identically zero for k < 7.

Indeed, gy is a univariate spline in the space Si?:')Lk(I‘_o,) for r = 2s (resp.
25+ 1) and n(s) = 4s + 1 (resp. 4s+ 2) (it is a polynomial of degree 2s + 1 for
k = r). We have dim S2!  (T3) = 2(3s + 1 — k) for 7 = 2s (resp. 2(3s +2 - k)
for r = 2s + 1) and g is uniquely determined by the classical degrees of freedom
g,(cm) (A1), gi(cm){Ag) for m < 7+ [r/2] — k (here gém) denotes the mth derivative

of gi). The values g,(cm)(A,-), i = 1,3 are computed from total derivatives of order

kE+m < 7+ [r/2} of v — vp- which are zero because vy and vy« interpolate the

same function u at the ends of I';. Thus g,(cm) (4) = g,(cm)(A3) = 0 and therefore

ngO. g

Remark 2. For 7 even, the local finite element is of class C™*!, but the global inter-
polant is only of class C".

4. Hermite basis and interpolation error

Let n(r) = 2r for r odd (resp. n(r) = 2r+1 for r even). For any triangle T = aja2a;3
in 7, let y; = aja;4+1, z = aia;—; (where the index 7 is counted modulo 3) be the
directions of the edges of T. For a = (ay, a2) € N? with |a| = a; + a; <1+ [r/2]
and i € {1,2,3}, we define the local Hermite basic splines ¥;, € S /(T 7)

(resp. S;: ;;THT/ 21(T, 76)) for 7 odd (resp. even) by the following conditions:

() DPH¥; o(a;).(vF, 21) = 6pa, Oga, Tor p+q <7+ [r/2], where

1
s [L k=1,
=130, ifk#L

(2) D"™;(a;) =0forj#diand || <7+ [r/2].

The local expression of the interpolant w7 u of u on T' (defined by data (8) in
theorem 1) can be written in the local Hermite basis as follows:

3
rru(z) = Z Z D‘a‘u(ai).(yf";zf“’)‘l’i,a(x). )

i=1 [al<r+{r/2]

Now suppose that the vertices of T are the points of Z*. Another global expression
is given as follows: for @ € N?, |a] < 7 + [r/2], let ®, be the spline defined in
Snir *)Lw 2(7) by the data

D"®(a) = Soadoy forn € N, |nl <r+[r/2] and a € Z7.

The support of @, is the hexagon centered at the origin (see figure 6).
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Figure 6.

The global interpolant = » of u obtained by assembling PS finite elements can
be written as a linear combination of translates of @, i.e.,

ru(z) = Z Z D%u(a).®y(z — a).

aeZ? |a|lsr+([r/2]
Since our problem is local, we give in the following theorem the interpolation error
corresponding to the form (9) using the following notations: for a function f defined
and bounded on a subset X C R? we set

[ flloox = sup [ f(z)].
zeX
Let D™ f be the total derivative of order m of f € C™(X) and let
D™ @], = sup {| D™ £(@).(vn, ., om)], v €BE, sl = 1, 1< i < m),
where ||v]|, v € R? is the usual Euclidean norm in R?. Finally we set
M, = m .
m(f) = max [ D™ f(z)]|
Theorem 2. Given u € C™")*+!(R?), there holds
”"rT U — u"oo,T < C’rh'n(r)_*'l'Zw:n(r)+l (u),

where C, is a positive constant depending only on r and h is the diameter of T.
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Proof. We use the Taylor formula for u at the vertex a; (s = 1,2,3):
n(r)

u(a) =Y %Dku(x).(m ai)f + ——

—— I (u, ai)(2),
£ k! ( )’ U, a.

where

1
T(u, 01)(z) = / (1 ="M D"y (y(2)). (2 ;)™ dt,
0
vi(z) =0z + (1 — 6)a;, 0<6; <1,

Similarly, we have for 1 < |o| = o)+ <7+ [r/2]:

n{r)
Dloly(a;). (y; 282) = Z m])ku(:p).((mai}k_{ai; Y 2?)
k=|a]
1 g
" a0 6,

where
J*(u, a;)(x)-(y5"5 %)
1
:/ (1 — ¢yrt=led prttly (4 (2)). (2 @)™ =l 2 02,
0

Using the technique of multipoint Taylor formulas (see Ciarlet [9, chapter 3],
Arcangeli and Gout {1] and Gout [11]), we get

rru(z) — ulz ) i:z: JO(u, a;)(z)¥s,6(z)

Y e 6 )

n\r
i=1 Ig|af<r+(r/2]
Clearly, we have for all z € T,

1

Y My (w) R FL

[Jo(u, a;)(z)| <

Similarly, for 1 < |a] < 7+ [r/2]

97 00)(@)- (145557 < g My (P
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Table 1
\yl,()”co,T 1
¥0mlleer 2411 x 1077
”"}ll,(Z,(l)”E’O,T 3.063 x 10—2
¥0.0ller 2441 x 1072
”‘"Pl,(B,())Hoo,’I‘ 1800 X 10*'3
¥ el 1485 x 1077

Thus we obtain

l77 u — v,

3
r) + l (Z H\Pz Olloo T) Mn(r).H (u)hn(r)+1

i

1
+(Z L EOT )1muw) Mg (RO

i=1 1]al<r+{r/2]

Therefore the constant of the theorem is given by

1 2 3 :
Cr=__“—(n(T)+l)!§ll\I’i,0||oo,T+Z Y sarrmiieler

i=1 1<lal<r+{r/2]
O

Examples.
(1) For r =1 it is shown in Sablonniere [25] that C; < 1/3.

(2) For r = 2 and n(2) = 5, we estimate C; by direct computation of norms
of functions ‘¥; o, of the Hermite basis. The result is obtained by a computer
code. In table 1 norms of W10; Wy (1,000 1,200 ¥r,0,105 ¥1,60005 Yi,21) are
given. We have the same norms for the other functions by permutation of indices
i=1,2,3.

From table 1 we deduce the following estimate for C;:

C, =~ 0.03021.
5. Conclusions

(1) The only required data are partial derivatives at the vertices of the trian-
gulation T. Hence there is no degree of freedom of type 2 (according to the ter-
minology of Zenisek [29]), i.e., derivatives at points inside T or inside edges of 7.
Thus, the above finite elements are perhaps more interesting for use on the uniform
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mesh 7 than the HCT type elements, which need partial derivatives at the vertices
together with normal derivatives at some interior points of the edges of 7 (see [16,
17D.

(2) The functions forming the basis of the interpolation space have the same
support as displayed in figure 6. These functions have smaller supports than some
box-splines constructed on the mesh 7 by several authors (see, e.g., [4]). But of course
the structure of the local space is more complicated.
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