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Let r be the triangulation generated by a uniform three direction mesh of the plane. Let 
r6 be the Powell-Sabin subtriangulation obtained by subdividing each triangle T E r by 
connecting each vertex to the midpoint of the opposite side. 

Given a smooth function u, we construct a piecewise polynomial function v E G'r(R 2) 
of degree n = 2r (resp. 2r + 1) for r odd (resp. even) in each triangle of ~'6, interpolating 
derivatives of u up to order r at the vertices of r. 

Keywords: Triangular finite elements, bivariate Hermite interpolation. 

AMS subject classification: 41A15, 41A05, 65D07, 65D05, 65N30. 

1. Introduction 

Let "r be the uniform A l-type triangulation of  the plane IR 2. For example that induced 
by integer translates of  z = 0, y = 0 and z - y = 0. Let  76 be the PS subtriangulation 
of  "r (after Powel l -Sabin  ), obtained by connecting each vertex to the midpoint of  the 

opposite side in each triangle T E -r. Let  Snr (7"6) = {v E cr(~[~2); "olt E l~n, '7't E T6}, 
where ~n is the space of  bivariate polynomials of  total degree at most n. 

Given u E G'm(RZ), m >/ r, we consider the following Hermite interpo- 
lation problem H r ( u ) :  construct v E Snr('r6) satisfying Day(a)  = Dau(a)  for 

oL = (0~1,0~2) E ~2, 10~] = o~ 1 -{- o~ 2 ~ T and a E ~'. 
The procedure of  construction consists in assembling composite finite elements 

VT = VlT for T E ~-, vT depending only on interpolation data on T. For  an arbitrary 
triangulation of  R2, the classical Powel l -Sabin element is a G'l-quadratic spline of  
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dimension 9 (see, e.g., [21, 25]). Later Sablonni~re [22] gave a Cr-generalized scheme 
in a subspace of splines of degree 3r - 1. This result was improved recently by the 
first author [16] in subspaces of degree 5s (resp. 5s + 2) for r = 2s (resp. 2s + 1). 
In this paper, due to the uniformity of the triangulation, we prove the existence of 
Hermite interpolation schemes in a subspace of St(T6) for lower degrees: respectively 
n = 2r + 1 for r even and n = 2r for r odd. These degrees are minimal, as is proved 
also in [16]. Another interesting feature is that the construction of our local finite 
elements needs only partial derivatives of order at most r + [7"/2] ([x] is the integer 
part of x) at the vertices of the triangulation. So, there is no need of normal derivatives 
or derivatives at interior points of triangles. For arbitrary partitions and other types of 
finite elements, this cannot be avoided in general (see our related works [13-18] and 
[22-26], see also [19, 20, 29]). 

The paper is organized as follows: in section 2, we recall and prove some 
results on the Bemstein-Brzier form of polynomials on triangles which is used for 
representing splines on the triangulation T6. In section 3 we give the construction of 
PS finite elements and of the solution of the Hermite interpolation problem of order r. 
Finally, in section 4, we give some error estimates. 

2. Bernstein form of polynomials 

2.1. Representation of polynomials on triangles 

Let T = AnA2A3 be an arbitrary triangle in the plane. Let # = ( # I , ~ 2 , ~ 3 )  be the 
barycentric coordinates of a point M with respect to T. We have 

3 3 

i=1 i = l  

a n d M E T i f a n d o n l y i f 0 < ~ # i ~ <  1, i = 1 , 2 , 3 .  
For a multi-index/3 = (/3],/32,/33) E N 3, we will use the notations 

3 3 

1/31 /3!= S 
i=1 i=1 

n? 
B~(>) = ~.vt, e for 1/31 - n and n e N. ( i)  

The (n+2) polynomials (1) form the Bernstein basis of the space Any polynomial 
p E l?n can be written uniquely as 

p ( , )  = 

IN =n 

which is called its Brzier representation with Brzier coefficients b(p). 
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The set of B-vertices 

in N 3 is the B-net (or control net ) of p on T. In order to simplify the figures, instead 
of representing polynomials by their B-nets in R 3, it is more convenient to display 
their B-coefficients on triangles which are their projections on the plane. We often 
make use of this convention. 

For the construction of finite elements, we need the expression o f  partial deriva- 
tives and of smoothness conditions between two polynomials (the details of re- 
suits can be found in Farin [10] or de Boor [2]). The partial derivatives of order 
IOtl : O: 1 n t- Ot 2 = ?', Ot 1 times in the direction AjAk  and a 2 times in the direction 
AjAm,  are given by 

n~ 
Daptp)kiAjAk)a,,t~jAm)a2), , I ,  , , ~  , , _  ( n - r ) !  Z (Aj~Aj~2b(t3)) B~ - r (# ) '  (2) 

where Ajkb(fl) = b(fl + ek) - b(fl + ej), el = (1,0,0), e2 = (0, 1,0), e3 = (0,0, 1) 
and ,X kb(  ) = etc. 

Now let T = -AIAEA3 be a neighboring triangle of T with Al ~ T, ~ = 
(~1,~2,~3) denotes the barycentric coordinates of a point with respect to T and 

#* = (#~,#~,/z~) those of -41 with respect to T. 
Let 

p(#) = ~ b([3)B~(tz) e Fn(T) and ~(~) = Z c(7)B~(~) e Fn(T), 
IN=n t71=~ 

then p and ~" are joined smoothly across the common edge A2A3 up to order r if and 
only if the following conditions hold: 

c(s,i,j) = ~ b((O,i,j) + fl)B}(#*), (3) 

for s = 0 , . . . , r  and i + j  = n -  s. 

2.2. Representation of  splines on PS triangles 

For an arbitrary triangle T of 7-, the vertices of the triangulation 7-6 of T are denoted as 
follows (see figure 1): the points A2i-l, i = 1,2,3, are the vertices of T, the points 
Azi are respectively the midpoints of the edges Fi = Azi-IA2~+I of T and A7 is the 
center of gravity of T. Let tzi-i = Azi-tA2~A7 and tzi = Azi+lA2iA7 (1 ~< i ~< 3) 
be the micro-triangles of r6 in T. Here and in the following, each index relative to a 
vertex (resp. an edge) is counted modulo 6 (resp. 3). 
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r2 

Figure 1. 

A8 

A2 

F1 

A1 

For the definition of barycentric coordinates w.r.t, tk, we label the vertices in 
the order {A2i-1, A2i, A7} for/~2i-1 and {A2i+l, A2i, A7} for t2i. 

Let 

SO(T, T6) = { f 6 C ° ( T ) :  fltk 6lPn, 1 (k<<. 6}. 

Let Pk = fltk, 1 ~< k ~< 6, then {bk(fl): 1/91 = n} denotes the B-coefficients of 
6 polynomial Pk on the triangle tk and [.]k=l{bk(fl): Ifll : n} is the set of B-coefficients 

of the spline f on the triangle T. In the figures, since our splines are at least C °, the 
B-coefficients situated on the interior edges of 7-6 are denoted by the same symbol. 

From conditions (3) we get he following lemma, see, e.g., [5, 10]. 

Lemma  1. Let S[(T,7-6) : Sn°(T,7-6) N Cr(T) ,  r >~ 1. Then f 6 Sr(T,  r6) if and 
only if the following relations hold for i = 1,2, 3: 

Fo r0  ~< s ~< r and k + m  = n -  s, 

j=O 

s! ( -1 )&3 & 
b2i(k,a,m) -: E r! ~ b2i+l(k + flI'fl2'rr~ + fl3)" (5) 

I~l=s 

Let us now introduce some subsets of B-coefficients which are used later in the 
construction of local interpolants (see figure 2 for some examples). 
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Figure 2. 

Definition 1 (subsets of B-coefficients). 

(a) F o r 0 ~ < r ~ < n ,  i = l , 2 , 3 1 e t  

(b) 

(c) 

1 
F 3 

F r = {b2 i_ l ( j , k , r ) ,  b2i( j ,k ,r) :  j + k = n -  r }  

be the rth row of B-coefficients parallel to the external edge Fi. 

F o r 0 ~ < r ~ < n ,  0 ~ < s ~ < n - r a n d i = l , 2 , 3 t h e s e t  

L r = { b 2 i - 2 ( / 3 ) ,  b 2 i - 1 ( / 3 ) :  1/31 = n ,  /~1 = s ,  ~ 2  < T ' }  (~,s) 

is called the sth level of order r opposite to the vertex A2i-l.  It is formed by 
the sth row parallel to the edges A2i-2A7 and A2iA7 respectively and bounded 
by the rows {b2i-2(/3): /32 = r} and {b2i(/3): /32 = r} which are themselves 
parallel to the edge A2i-1AT. 

F o r 0 ~ < r ~ < n ,  0 ~ < s ~ < n - r a n d i = l , 2 , 3 t h e s e t  

r 

k=O 

is called the rth order plate at the level s associated with the vertex A2i-1- It is 
formed by the (r + 1) 2 B-coefficients situated in the region bounded by the rows 
F ~ - r - s  ~ - r - s  L ~ . ~-1 , F~ and (~,s) 
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(d) Finally, for 0 ~< r ~< n, let Tr be the subtriangle of T whose vertices are 
bl(r ,O,n-r) ,  b3(r,O,n-r) ,  b5(r,O,n-r) and let D r = U~=l{bj(/3)" n - r  <<, 
/33 } be the set of B-coefficients inside Tr (including edges). 

Remark 1. 

(1) We have H[~,s2) C YIT~t,s,u for r~_ < rl  and s~. ) 81- 

(2) For f E 8r(T, 7-6) and 0 ~< s ~< n -  r, F s can be considered as the set of  B- 
coefficients of  a univariate spline of class C r and of degree n - s on a segment 
subdivided into two parts. 

(3) For r <. s <~ n, D s can be considered as the set of B-coefficients of  a bivariate 
spline in the space S~(Tr, 7"6). 

In order to prove the unisolvency of the interpolation scheme, we need the well- 
known following lemma, see, e.g., [3, lemma 4.1] or [7]: 

Lemma 2. Suppose that f C S2n s+l (T, 7"6). 

(1) For fixed integers j E { 0 , . . . ,  n - 2 s -  1 } and i E {1,2, 3}, consider the following 
sets of  B-coefficients: 

A = { b 2 i + ' ( / 3 ) :  1/31=n, j + l  <~/31<~j+2s+l,  flz<~ 2s}  
a n d n  j 2 s - 1  ~ < / 3 3 ~ < n - j - 1  

B = {b2i(/3), b2i+l(P): /31 = J, s + 1 ~</32 ~< 2s + 1 and 1/31 = n} .  

Then the B-coefficients in the set 

C = {b2i(/3), b2i+l (fl): /31 = j ,  f12 ~ S and 1/31 = n} 

can be uniquely computed from those in .,4 and B. 

(2) For fixed integers m ~< n - 2s - 1 and i C {1,2,3},  the set of  B-coefficients 

B' = {b2i-l (/3), b2i(/3): ¢~1 ~< s, /33 = m and I/31 -- n} 

can be computed uniquely from the ones in the set 

¢4' = {b2i-1(/3), b2i(fl): s-t- 1 <~ fll ~ 2 s +  1, /33 = m  and I/3l = n } .  

From theorem 2.1 of Schumaker  [27], we deduce 

Lemma 3. 

d i m S r ( T , 7 _ 6 ) = 6 ( n - ; + l ) + ( r  2) 

where x+ = max(x,  0). 

We need this lemma in the following section. 

?'l,--'t" 

+ ~ ] ( r  + 1 - 2 j )+ ,  
j=l  
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3. Construction of PS finite elements 

We describe in this section the construction of the generalized Cr-scheme of type PS 
on any macro-triangle T of 7". We construct the finite elements in spaces of generalized 

o r , r + [ r / 2 ]  Irr~ \ super-splines On(r) t~, 7"6), where n(r) = 2r (resp. 2r + 1) for r odd (resp. even). 

These spaces of functions vT are defined as follows (see Chui and Lai [6], Schumaker 
[28] and Ibrahim and Schumaker [12]): 

Definition 2 (subspaces of finite elements). 

(i) If r is odd: r = 2s + 1, s >7 0, we impose that VT be of class C 3s+1 (instead 
of C 2s+l) at the vertices of T. We thus obtain the subspace S2S+~ '3s+1 (T, 7"6) of 

S2sS++21 (T, "r6). 

(ii) If r is even: r = 2s, s ) l, we first reinforce the smoothness of VT by imposing 
.¢2s+1 (T, 7"6). Then we impose that VT be of class C 3s (instead of C 2s+l) V T  E ~ 4 s +  1 

, - , 2 s + l , 3 s t r ~  "~ .q,2s+ 1 at the vertices of T. We thus obtain the subspace Oas+l / -t , 7"61 of (T, 7"6) ~ 4 s + l  

For the construction we need the following lemma: 

Lemma 4. 

(1) dim 2s+1 83s+l (T, 7-6) --- 3(s + 1)(2s + 1). 

2s+ l  (2) Any function w E S~s+l (T, 76) is uniquely determined by the data 

Daw(A2~_l) for Io~i ~< 2s and i = 1,2,3. 

Proof By lemma 3, 

dim S~s+l (T, 7-6) = 6 2 + 

8 

+ ~ ( 2 s + 2 - 2 j ) +  = 3 ( s +  1) (2s+ 1). 
j = l  

The number of data being equal to the dimension of 2s+1 S3s+l (T, T6), it suffices to show 
that w - 0 when the data are zero. We prove the result by induction on s. 

(a) For s = 1, consider the space $34(T, 7-6) (see figure 3), whose dimension is 
18. We assume that DC~w(A2i_l) = 0 for Ic~l ~ 2 and i = 1,2,3. Thus from (2) and 
(5) the B-coefficients marked by "e" are zero. Using part 2 of lemma 2, those marked 
by "o" are zero because C3-smoothness across AvA2i, i = 1,2,3 determines these 
B-coefficients from the black ones. Now the B-coefficients " . "  are zero by using part 
1 of lemma 2. Those marked " x "  are zero by Cl-continuity across the edges ATA2i. 
Finally the Cl-continuity at A7 determines the central B-coefficient. Thus w - 0, 
q.e.d. 

(b) For s = 2, in a similar way, we can show that w E $57(T, T6) is zero when 
DC~w(A2i_l) = 0 for Ic~l <~ 4 and 1 ~ i ~< 3. 
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As" A8 

~ J  

S 

c ~ ~-2 

pJ 

:A1 

Figure 3. 

-¢2s-l(T, 76), s >/ 3, is determined (c) General case: we suppose that any v E '-'3s-2 
S 2s+1 (T, "r6) (see by the data Dav(A2i_l),  I~1 ~< 2s  - 2, 1 ~< i ~< 3. Consider w E 3s+1 

figure 4 for s = 4) and suppose that the data are zero. By (2) and (5) we obtain: 

3 
2s b = 0 for all b E ~.] Fl(i,s+1 ). (6) 

i=1 

Using C2S+l-continuity across the edges A2iA7 (as in lemma 2) we have: 

3 8 

b --- 0 for all b ~ (.J (J  r,  ~. (7) 
i=1 k=0 

Consider the disk D 3s-2. It can be considered as the set of  B-coefficients of  a 
6,28+ 1 [,r~ spline w* E '-'3s-2 ~-3s-2, ~'6) (see remark 1). The 2s + 2 B-coefficients 

{b2i-l(fl), b2i-2(/3): 1/31 = 3s + 1,/31 = s,/33 ~< s )  

are in the level L 2s+l because the second component  of/3 satisfies s +  1 ~</32 ~'~ 2 s +  1 (i,s) 
(see definition 1 in section 2). From (7) they are zero because they are also in F~_ l 

L 2 s + l  (or F~), k ~< s. Thus using lemma 2, we deduce that b = 0 for all b C ~(i,s) • By (6) 
I~2s+  1 we have also b = 0 for all b E (i,s) • 
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Aa 

) 
p 

as_=~--as_z,r6) = S : to (Tlo , r6 )  

. / I  

/ 1 2 s + l =  L 9 ¢ "" .~" 
• -'(i:) (a,4) ~ ~.. 

4 --:. 

(i,s) : 

"~jpk I I I I I  /,% 
i i t  I . / ~ ~ , , 7 ,  / / / / / / / / / ": ..... 

/ ' . ~ / ~ , ' , ~ W  II/ / / / / [ ll~UJ)..~',#2:-:~ '' 
a ~ J / ' ~ d . r g ~ . . , , d g - # ; ~  I I  / / 1_ I • L ,,g¢,o2"eg*:~~ ~:*'-':'a£, 

. / ~ , . v ' / v , ~ . c u ' / /  / ," / ~  / / ~ ~ . , ~ . ~  

.ad~..2" ...r . I  . I  .l" ,I" I ,D I / ,1" ,1".2- d" 2"-" ~ .., ", 

As A o  t . . . . . . . . . .  A t  
s 4 P3=ga 

A= 

Figure 4. 

Let us remark that the plate I'I 2a+l contains r I2s-2  (i,s) "*(i,s) " The later inclusion implies 
that the partial derivatives of w* of order up to 2s - 2 at the vertices of the subtriangle 

2s-I  T3s-2 are zero. We have - q 2 s + l ( r 3 s _ 2 , T 6 )  C 8 3 s _ 2 ( T 3 s - 2 , T 6 ) .  From the induction v3s -2  
hypothesis we get w* - 0. Therefore all B-coefficients of w are zero. [] 

Def in i t ion  3. Let 

8~:+[,'/21 { v = 
vlT ~ S~(+[r/z](T,'r6) (resp. S~+~f+k/21(T, r6)) 
for r odd (resp. even) for all T E r j " 

T h e o r e m  1. 

(1) Given u E Cm(IR2), m >~ r + [r/2], there exists a unique function vT E 

S2'r r +[r /2] ( T ,  "r6) (resp..¢r+l,r+[r/2] cm ~2r+I t-~, r6)) for r odd (resp. even) satisfying the 
following interpolation conditions: 

D a v T ( A 2 i _ l )  = D a u ( A 2 i _ l )  for all 1~1 ~ r + [U21 and i = 1,2, 3. (8) 

(2) The global interpolant v defined on •2 by VlT = vT for all T E r is an element 
ST,r+[r/q of the space ~(r) (r).  
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A5 
A6 

Figure 5. 

A I  

Proof (1) We prove the local interpolation scheme for the space S~2+~'3S(T, ~'6) (see 
figure 5). The derivative data (8) determine the 3sth order plates 1]~,s+l ) (1 ~< i ~< 3) 

(i.e., the black coefficients). The G2s+l-continuity of VT across each edge A7A2i 
determines the non-marked B-coefficients on all rows F~, k ~< 2s: they can be 
computed from the corresponding black ones (see lemma 2). In particular, all rows 
F/k, k ~< s, 1 ~< i ~< 3 are known. The remaining parameters form the disk D 3s+1 

"q '2s+l(T3s+l ,T6) .  Since II~,s+l ) is in ~)3s+l, which is associated with a spline w E "-'3s+1 

2s is included in D 3s+~, therefore the derivatives DC~w, loci ~< 2s at the hence II(/,s+0 
vertices of the subtriangle T3s+l are known. By lemma 4, w is uniquely determined. 

,-,2s+t,3s+l/,-~ ,~ The scheme of the space 04s+2 bL, r6) is a straightfoward consequence of 
the preceding result. Indeed, we remark that the disk D 4s+l situated in the set of B- 
coefficients of VT e s2:  ,3s+l(r,,6)is associated with a spline wi E $~ss+~'3S(T, r6). 
So the data DaVT(A2i_I), Ic l ~< 3s + 1, 1 ~< i ~< 3, determine the derivatives 
De'w1, lc~[ ~< 3s, 1 ~< i ~< 3, at the vertices of T4,+l. 

(2) In order to prove the second part of the theorem it suffices to show that the 
global function v belongs to CT(R2). 

Let VT and VT. be the two finite elements uniquely defined on adjacent triangles 
T and T* with T N T* = 1-'3 for example, by interpolating the same function u. Let 
A.~ be the corresponding center of gravity of T*. Since ATA2 and A~A2 are colinear 
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and not parallel to ]73, it suffices to show that gk = Dk(vT -- VT*).(A7A2)kIr3 is 
identically zero for k ~< r. 

Indeed, gk is a univariate spline in the space S2s+ln(s)-I~t rF31 ~ for r = 2s (resp. 

2s + 1) and n(s)  = 4s + 1 (resp. 4s + 2) (it is a polynomial of degree 2s + 1 for 
k = r). We have dim ,.,n(s)_k~c2s+l ~,--3) ~ . . . .  2(3s + 1 k) for r 2s (resp. 2(3s + 2 k) 

for r = 2s + 1) and gk is uniquely determined by the classical degrees of freedom 

g~m)(A1), 9(m)(A3) for m ~< r + [ r / 2 ] -  k (here 9(m) denotes the ruth derivative 

of g/0. The values g(m)(A~), i = 1,3 are computed from total derivatives of order 
k + rn ~ r + [r/2] of VT -- vT* which are zero because VT and VT* interpolate the 

same function u at the ends of F3. Thus 9~'~)(A1) = g(m)(A3) = 0 and therefore 
g k - 0 .  [] 

Remark 2. For r even, the local finite element is of class C r+I, but the global inter- 
polant is only of class C r. 

4. Hermite basis and interpolation error 

Let n(r) = 2r for r odd (resp. n(r) = 2 r +  1 for r even). For any triangle T = ala2a3 
in 7, let Yi = a~ai+l, zi = aiai-i (where the index i is counted modulo 3) be the 
directions of the edges of T. For a = (cq,a2) E N 2 with = cq + ~2 + 

and i E {1,2, 3}, we define the local Hermite basic splines Wi,a C S2'rr +[r /U] ( T, T6) 
(resp. S2++ll r+[r/2] (T, 7-6)) for r odd (resp. even) by the following conditions: 

(1) D p + q ~ .  [,~A [~ P ~,a,~z,.,vi,z~) = apat~Sq~ 2 for p +  q ~< r + It/2], where 

1, if k =  l, 
5k t=  0, i f k ¢ l .  

(2) D~W~,c~(aj) = 0 for j ¢ i and 1,71 + 

The local expression of the interpolant ~'T u of u on T (defined by data (8) in 
theorem 1) can be written in the local Hermite basis as follows: 

3 

i=1  lal<~r+[r/2] 

Dlalu(ai).(y~ ; z~2 ) Wi,a(x). (9) 

Now suppose that the vertices of r are the points of Z 2. Another global expression 
is given as follows: for a E N 2, lal ~< r + It/2], let Oa be the spline defined in 
S r,r+[r/21 (r) (7) by the data 

DnOa(a) = 5OaSan for 7 E N 2, 171 r + and a e Z 2. 

The support of ~ is the hexagon centered at the origin (see figure 6). 
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Figure 6. 

The global interpolant 7r u of  u obtained by assembling PS finite elements can 
be written as a linear combination of  translates of  ~ a ,  i.e., 

aEZ 2 laJ~<r+[r/2] 

Since our problem is local, we give in the following theorem the interpolation error 
corresponding to the form (9) using the following notations: for a function f defined 
and bounded on a subset  X C It{ 2 we set 

Ilfll ,x = sup If(m)l. 
zEX 

Let D m f  be the total derivative of  order m of f E Gin(X)  and let 

[ I D m f ( x ) l l c ~ = s u p { l D m f ( x ) . ( v l , . . . , V m ) [ ,  vi E R  2, llv, II-- 1, 1 ~< i ~< rn}, 

where Ilvll, v •2 is the usual Euclidean norm in R 2. Finally we set 

M m ( f )  = max I I D m f ( x ) l [  . 
xEX 

T h e o r e m  2. Given u E Cn(r)+l(N2), there holds 

117rT u -- ull~,T <~ Crhn(r)+l Mn(r)+l (u), 

where Cr is a positive constant depending only on r and h is the diameter of  T. 
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Proof We use the Taylor formula for u at the vertex ai (i = 1,2,3):  

,~(r) 

u(ai) = ~ 1Dku(x).(xai)k + n-@r~.J°(u, ai)(x), 
k=O 

where 

f0 
1 

J°(u, ai)(x) = (1 - t)n(r)Dn(r)+lu(Ti(x)).(xai) n(r)+l dr, 

~/i(x)=Oix+(1-Oi)ai, O<Oi< 1. 

Similarly, we have for 1 ~< Ic~l = ~ + ~2 ~ r + [r/2]" 

Dl~lu(ai).(y]';z~ ~) = (k ll~l)(Dku(x)'((xadk-I~t; yT.; z~2) 
k=lal 

+ 
(n(~ ' ) -  Io~1)! 

• c ~ 2  J~(~,ad(~).(y~',z, ), 

where 

J~(~, ad(x).(y~'; z~) 

fo 1(1 t)~(r/-t~l D~(~)+lu(-y~(x)).((x ad~(T)+~-I"l .o~'.-~2~ 
= -- 'Y i  '~ i  }" 

Using the technique of  multipoint Taylor formulas (see Ciarlet [9, chapter 3], 
Arcangeli and Gout [1] and Gout [11]), we get 

3 

÷S Z 
i=1 l<~lc~l~<r+[r/2] 

1 
(n(T) - Ic~l) ! J~(u' ai)(x)'(Y~';z~2)g[i'c~(x)" 

Clearly, we have for all x E T, 

[J°(~, ad(~)  l ~< 
1 

n(r) + 1 Mn(r)+l (u)h n(r)+l. 

Similarly, for 1 ~< 1o~1 < T + [T/2] 

1 Mn(~)+L(u)h~(r)+ l 
n(r) -I- 1 - - I~ l  
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Table 1 

ll~l,,,ll~,r 1 
IlWl,(,,,,)ll~,~ 2.411 x 10 - t  
[[~l,(2,c,)l[~,~ 3.063 x 10 -2 

l [~h(h0l lc~ , : r  2.441 x 10 -2  
II~Ft,(3,o)l[~,T 1.800 X 10 -3 
ll"t'l,~2,~lll~,r 1.485 x 10 -3 

Thus we obtain 

(n(~)+l)! ~II~,011~,T Mn(r)+l(u) hn(r)+l 
i=1 

+ ~ (n(r)- Ic~l + 1)! IlWi'~tl~'T Mn(r)+l(u)hn(r)+l" 
i = l  l~<]c~l~<r+[r/2 ] 

Therefore the constant of the theorem is given by 

3 3 
1 1 

(n (r )+ 1)! ~~ II~,011~,T + ~ ~ (n(r) - I~1 + 1)! II~'~II~'T 
i = l  i = l  I ~<[c~l~<r+[r/2 ] 

[] 

E x a m p l e s .  

(1) For r = 1 it is shown in Sablonni6re [25] that C1 ~< 1/3. 

(2) For r = 2 and n(2) = 5, we estimate C'2 by direct computation of norms 
of functions W~,~ of the Hermite basis. The result is obtained by a computer 
code. In table 1 norms of q?l,o; qJl,0,o); W1,(2,o); Wl,(1,1); W1,(3,o); Wl,(z,1) are 
given. We have the same norms for the other functions by permutation of indices 
i = 1,2,3.  

From table 1 we deduce the following estimate for C2: 

C'2 -~ 0.03021. 

5. C o n c l u s i o n s  

(1) The only required data are partial derivatives at the vertices of the trian- 
gulation 7-. Hence there is no degree of freedom of type 2 (according to the ter- 
minology of 7.eni~ek [29]), i.e., derivatives at points inside T or inside edges of T. 
Thus, the above finite elements are perhaps more interesting for use on the uniform 
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mesh "I- than the HCT type elements, which need partial derivatives at the vertices 
together with normal derivatives at some interior points of the edges of "I- (see [16, 
17]). 

(2) The functions forming the basis of the interpolation space have the same 
support as displayed in figure 6. These functions have smaller supports than some 
box-splines constructed on the mesh ~- by several authors (see, e.g., [4]). But of course 
the structure of the local space is more complicated. 
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