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The syntactical and semantical investigations in contemporary formal logic 
refer always to the languages with specified syntactic structure, as with respect 
to such languages one can formulate exactly and, subsequently examine with 
mathematical tools (1) the rules of transformation (axioms, rules of inference) 
and the systems based on these rules (formalized theories), (2) the relations of 
semantical reference which occur between linguistic expressions and elements 
of  objective sphere. 

Our considerations belong to that part of logical syntax and semantics which 
is independent of any assumptions concerning the rules of transformation. 

The syntactic structure of some language,/2 is determined 1 ~ by the vocabulary 
of ,12 i.e. by the list of simple (undecomposable) expressions in J2, and 2 ~ by the 
rules of construction of Z? which state how the expressions of ,L ~, especially the 
sentences in ,12 are built of simple expressions. 

In the first part of this paper we consider the general principles of the syntactic 
structure of languages. Namely, we shall formulate a scheme of the syntactic 
structure of language. This scheme will be called the standard formalization 1 
and the languages which fall under this scheme will be called the standard forma- 
lized languages 1. 

The scheme of standard formalization is based on a purely syntactical classificat- 
ion of expressions into so called semantical categories. 

The standard formalization is an abstract from the concrete material of artificial 
symbolic languages which are considered in formal logic. It is ge~,eral in the 
following sense: every symbolic language known in formal logic -- after carrying 
some modifications in its calligraphy -- falls directly under the scheme of standard 
formulization. 

In the second part of this paper we consider the fundamental properties of 
semantic reference. First, we introduce a classification of objects into so called 

1 T h e s e  t e r m s  a r e  b o r r o w e d  f r o m  A.  TAR,SKI [7], p .  5, b u t  t h e y  a re  u s e d  h e r e  in  a d i f f e r e n t  

s ense .  

[213! 
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ontological categories. Further malefing use of some simple and quite natural 
connexion of conformity between semantical categories of simple expressions and 
ontological categories of corresponding objects, we can introduce the general 
notion of a model of any standard formalized language. Namely, for every standard 
formalized language .t- ~ we define the family M(t2) of all models of .L ~. Every 
model of .~ is a totality to which the expressions of ~ can refer semantically and, 
conversely, every totality to which the expressions of ~ can refer semantically, 
belongs to the family M(t2). Thus, we obtain a general scheme of the relations 
of semantical reference which is quite closely connected with the scheme of 
standard formalization. This shows the ideographic character of standard for- 
malized languages. 

It may be a reasonable conjecture the content of this paper to be connected with 
the structural inquires in linguistcs and with some problems of the philosophy of 
language and of thinking. But, we do not discuss here these connexions. 

In describing the scheme of standard formalization we make use of suitable 
indices. The method of applying indices in investigations of syntactic structure 
was introduced by K. AJDUKIEWICZ [1], [2]. We employ here such a modi- 
fication of Ajdukiewicz's method which allows to take into account the syntactical 
role of variables and of operators binding the variables. The indices introduced 
below will be applied in the classification of expressions into semantical categories 
and in the classification of objects into ontological categories. 

1. The indices 

The indices which will be used in Our considerations are divided into three ranks. 
Every index i has a rank r(i) = 0, 1,2. The indices are symbolic figures built in 
some manner of the following letters marked with natural numbers: 

I0~ f-l~ t.,~ . . . .  , tk~ . . . .  

These letters are indices of rank 0. The letter i0 is called the principal index and 
the remaining letters tg we call the secondary indices. When distinguishing the prin- 
cipal index we make only one distinction among the indices of rank 0. 

I f  besides the principal index t o one secondary index tk will only occur in our 
considerations, then we write the letter 

i 

instead of this secondary index t~ and the letter 

instead of the principal index ~0. 
The indices of rank 1 are fractions of the form 

tk 
(1.1) 

t k i  . . . . .  tk n 
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in which the numerators are arbitrary indices of  rank 0 and the denominators 
are arbitrary finite sequences of  indices of  rank 0. 

Finally, the indices of  rank 2 are fractions of  the form 

trc 
( 1 , ~ h  

in which the numerators are arbitrary indices of  rank 0 and the denominators 
are such finite sequences of  indices of  rank 0 or 1 in which at least one index of  
rank 1 occurs. 

We admit  the terminol-gy according to which the numerator  of  any index tk 
o f  rank 0 is this index itselt. 

Examples of  indices of  rank 1 : 

T -u ut 

t t t 
t It ttt 

t 

Examples of  indices of  rank 2: 

t t t  

t t t t t 
~ ~ T -~ . 

t t t tt t tt 

t t t  

g t 
t -  

L e t  i be an index of  rank O, 1, 2. We define the multiplicity of  an index tk of  rank 
0 in the index i - -  symbolically m(tk, D: 

(0) i f  r( i)  - -  0 t h e n  m( t~d )  = O; 
(1) i f  r(i) = 1 then m(tk,j) = the number  of  all occurences of  the index t• 

in the denominator  o f  the index i; 
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(2) if r (i) - 2 then m(tk, j) = the greatest multiplicity of the index tk in the 
indices which are occurring in the denominators of the index j. 

For example if v=/=w then m(tv, t~) = m t,~, -~ = O, m t,,, ~ = 1, 

( to') ( t o , )  (to', t~) ( t k )  m tv,~t~ = 2 '  m(to',to)=m t o ' , ~  = 0 ,  m ~ -  = m  t o ' , ~  = 1. 

The notion of multiplicity m(tk, i), however, will play much important role 
for our considerations in these cases in which r(j) = 2. For example, is the index i 
of the following form: 

t~ 

(1.3) t~ tk to" 
tv 

to" fofo" tvt v 

where v if: w then m(to, j) = 2 and m(to',j) = 1. 

Let f be a function defined for each index and assigning to every index i an 
index f ( i ) in  such a way that: 

ffil  =/: i., then f(h)  =/=f(ko). 

I f  the function f fulfils the following conditions: 

(a) f ( t o )  = to,  
(b) if tk is a secondary index of rank 0 then f(tk) is also a secondary index of 

rank O, 
(c) for k = O, 1, 2 , . . .  and for any indices i l , . . . ,  in of rank O, 1: 

[ ( .  *~:. / =  f(tk) 
" \ h ... tn / f(i~) ...f(in) 

then the function f is called a permutation of (secondary) indices. 

2. The idea of the standard formalization 

The conception of the standard formalization is derived from the following 
general ideas concerning the syntactic structure of language. 

(1) Among the expressions we distinguish the fundamental (categorematic) 
expressions and operators (syncategorematic expressions); 

(2) The fundamental expressions are divided into fundamental semantical cate- 
gories 2 among which there is the category of sentences and, eventually, some 
other fundamental semantical categories; 

2 The terms semantical category (Bedeutungskategorie) was introduced by E. HUSSERL and, 
subsequently, used by ST. LE~NIEWSKI and K. AJDUKIEWICZ in connexion with some relat- 
ions of exchange (or substitution) of expressions in sentences ~ see for example [2]. In  our paper 
we use this term in a different sense. The semantical categories in our sense will be defined later 
in a purely syntactical way, but they are closely connected with the kinds of semantical reference- 
This will be explained in the second part of our paper. 
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(3) The  expressions may be simple i. e. single words or compound i. e. built 
from the simple expressions according to some rules of construction; 

(4) There are two kinds of simple expressions: constants and variables; the 
variables are simple fundamental expressions; 

(5) The  operators are closely connected with the rules of construction and they 
are simple nonfundamental expressions; 

(6) There are many semantical categories of operators, but all operators can 
be divided into two kinds" the operators of rank 1 do not bind the variables and 
the operators of rank 2 do. 

We will describe the scheme of standard formalization by means of the syntactic- 
ally marked and syntactically coherent vocabularies. The marking syntactically of  
a vocabulary replaces completely the rules of construction and, therefore, every 
standard formalized language is determined by a suitably marked and coherent 
vocabulary. 

3. Syntactically marked vocabularies 

Any nonempty set of  arbitrary elements called word-types, when divided into 
constant-types and variables-types, is called a vocabulary. We assume that in every 
vocabulary the set of  constant-types is nonempty and the set of  variable-types 
is empty or infinite (i. e. denumerably infinite). 

Let  r be a vocabulary. Every function ~ which assigns to each word-type 
i n / k  an index ~ )  and fulfils two following conditions : 

(a) f f  ~ is a variable-type in r then the corresponding index ,~(~) is of  rank 0 
(b) the set of  all variable-types in ~ to which a common index of  rank 0 is 

assigned, is empty or infinite, 
is called a syntactic-marking-function. 

We decide to represent in general considerations the variable-types marked 
with the index tk, by the following signs: 

(2.1) ~(k) ~k) ~(~) h i  ' ~ 2  ' . . . .  ~ - ~ N '  . . . .  

where k = O, 1, 2, . . . .  

Thus, any syntactically marked vocabulary "{? may be represented in the fol- 
lowing form: 

/ ~ ,  ~ ,  ,.., ~,,, ... ; E(% E('), .... E(k), ... ,, 

\ i l ,  i,,, . . . .  j,~, . . . ;  t o , q ,  ..., tk . . . .  / /  

where the word-types ~ ,  ~2, �9 �9 �9 ~n, �9 �9 �9 are all distinct constant-types in "{2 which 
are marked with the indices ii, i_-, �9 �9 �9 in, �9 �9 �9 correspondingly and every set E(~) 
for k ----- O, 1, 2 , . . . ,  is empty or identical with the set 

of  all variable-types (2.1) marked with the index tk. 
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Every word-type (constant-type or variable-type) marked with an index of  rank 
0 or 1 or 2 is called a fundamental word-type or an operator-type of rank 1 or an 
operator-type of rank 2 respectively. 

We take the following vocabulary ~ *  as an example of  a syntactically marked 
vocabulary: 

O) t x , y ,  z ,  .... or x~, x2. . . ,  xa, ... (variables) 

1) t a Aristotle 

2) t 0 Zero 

t 
3) t-i- + plus 

L a logician 4) -t-- 

N a number  5) ~-  

e~ M more wise 6) - f f  

$ 
7) t--T > greater 

= identical 8) ~-~ 

9) (~ "~ 

~o) .~, A 

11) .~ 

12) ~-~ v 

13) -~ A 

it is not the case that 

and, 

i f  ... then ... 

or 

for every 

V 14) 7 

T 

t 
15) ~ L 

for some 

the object ... such that ... 
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16) 
i -  

t 

an object ... such that ... 

T h e  word-types of  r are placed in the middle column and the corresponding 
indices are placed in the left column. The  right column contains the transcript- 
ions of  word-types into the natural language. 3 

4. The vocabularies and the rules o f  construction 

Every syntactically marked vocabulary r determines in an unambiguous manner  
the  set /2(r of  all expressions which are constructible on the ground of  r Some 
sets/2(r for suitable vocabularies C-Y, will be ideatifie:l with the standard f o r -  

malizecl languages. 

The  operation which leads from any syntadcally marked vocabulary/b~ to the 
corresponding set/2(r will be described i n  strictly formal way in a later section. 
In  the present one, however, we consider some details of  this operation in a so- 
mewhat  informal way. 

I t  has been already remarked that  the rules of  construction of  compound ex- 
pressions can be replaced by marking syntactically a suitable vocabulary. I t  will 
be shown that  every operator-type in a syntactically marked vocabulary deter d 
mines a rule of  construction. The  elements of  the s e t / 2 ( ~ ) ,  for a syntactically 
marked vocabulary r are (1) words or  simple expressions which correspond 
directly to the word-types in "(Y and (2) compound expressions which can be 
built  f rom simple expressions according to the rules of  construction determined 

3 The four last lines of r contain four operator-types of rank 2 known in formal logic. 
They are successively: the general quantifier A, the existential quantifier V,  the singular des- 
criptive operator l ,  and the general descriptive operator .L. 

The operator L occurs in the phrases of the form 

the object x such that so and so 
or symbolically 

La(X) 
x 

The rules of transformation concerning the operator L were formulated by HILBERTIBER- 
NAYS, FREGE and RUSSELL. These rules are discussed in the book [3], pp. 32--39. 

The operator .L occurs in the phrases of the form 
0 is an object x such that so and so 

or symbolically 
0 e _L ~(x)  

X 

The customary rule of transformation concerning the operator .L allows to replace mutually 
the expressions of the form 

0 ~ .l. ~(x) ~(0) 
X 
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by the operator-types in "b ~. Every expression J2(~) is supplied with exactly one 
index. Namely, we assign to the simple expressions in J2(r the indices with 
which the corresponding word-types in r are marked. The rules of construction, 
however, determined by the operator-types in s assign unambiguously an 
index of rank 0 to every compound expression belonging to ~ ( ~ ) .  Such ex- 
pressions in f-)(r to which the indices of  rank 0 are assigned, are called fun- 
damental expressions constructible on the ground of ~ .  

We want to show now in a somewhat informal way the connexion between 
operator-types and the rules of construction of compound expressicns. Namely, 
we will describe the syntactic role played by the operator-types in r in the pro- 
cess of building of compound expressions. 

Let us assume that all word-types in a syntactically marked vocabulary ~ are 
graphic symbols of  different forms which are put  together on some list as in 
the case of the vocabulary ~ *  given above. 

Then, a graphic symbol is a simple expression or word belonging to the set 
�9 C ( ~ )  if and only if it is of the same form as some word-type in ~ .  It  follows that 
the simple expressions belonging to ~ ( ~ )  are divided into (1) fundamental simple 
expressions or fundamental words (spliting into constants and variables) with 
an index of rank 0~(2) operators of rank 1 with an index of rank 1 and (3) operators 
of rank 2 with an index of rank 2. 

The compound expressions, however, belonging to the set , ~ ( ~ )  are the in- 
scriptions which are built in the following inductive manner. We consider two 
cases of construction of compound expressions: by means of an operator of rank 
1 and by means of an operator of rank 2. 

We consider the first case of construction. Let the graphic symbol ~1 be an 
operator of rank 1 marked by the index (1.1) of  rank 1 (p. 214). Then, the ope- 

rator ~ is called a n-ary operator of rank 1. I f  the inscriptions 

091, . . . . .  , ( .On 

are any fundamental expressions, simple or compound, to which the indices 
tkl, ..., tk n of rank 0 being placed in the denominalor of (I.1) had been already 
assigned, then the inscription 

(4.1) ~*a (o9,, ..... ~ con) 

is the fundamental compound expression to which we assign the index tk o f  
rank 1 placed in the numerator of (1.1). 

We consider now the second case of construction; it is more complicated than 

the first one. 4 Let the graphic symbol ~ be an operator of rank 2 marked with 

the index (1.2) of rank 2 (p. 215). Then, the operator ~ is called a n-ary operator 

4 N a m e l y ,  in  t he  s econd  case we m u s t  m a k e  u se  o f  the  no t ions  of free occu rence  a n d  o f  bound 
occu rence  o f  a var iable  s in  an  express ion .  T h e s e  no t i ons  are famil iar  to fo rmal  logicians.  T h e y  
will be expla ined  in  a t r ic t ly  fo rma l  way  a n d  in  ful l  genera l i ty  in a la ter  sect ion.  
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of  rank 2. Suppose that tkt, ..... , t~, are all such indices of  rank 0 that their multipli- 
cities in the index (1.2) are different from 0 and let these multiplicities be equal 
to the numbers m~, ..... , m, respectively. Then the construction of  compound 

expressions by means of  the operator ~1 proceeds as follows. 

I f  the graphic symbols 

._(k 1) . (k l) 
~.t,~ . . . . . .  ' ~Nttm 

. . . . ,  . . . .  . . . . . .  . 

(k r) -- (k r ) 

are variables in number ml, ..... , m r and with indices tkl, ..... , tk, respectively, 
then we construe firstly the inscription 

q 
~(k~) k 

Tn?, 

which is called a pre f i x  and contains the operator 11 and all the variables consi- 
dered just now. Further, if  the inscriptions 

are "suitable" fundamental expressions, simple or compound, to which such in- 
dices of  rank 0 had been already assigned that are numerators of  indices i~, ...... i~ 
respectively, being placed in the denominator of  (1.2), then the inscription 

(4.2) ~(kp . . . . .  ~(k,.) 
N~ N~n r 

is a fundamental compound expression to which we assign the index tk of rank 
0 being placed in the numerator of  (1.2). 

Yet it remains to explain the "suitableness" of  the expressions ~1, ..... , ~ .  
For this purpose it will be enough to consider one of  them, namely the ex- 
pression ~t where 1 ~ l ~ n and the corresponding index iz being placed in 
the denominator of  (1.2). Let the numbers mz,1, . . . . .  , mz,r be the multiplicities 
of  the indices fkl, ..... , tkr respectively in the index it. The expression St is " s u i -  

table" if  and only if  for s = I, ..... , r it occurs free in ~6t exactly mr,, variables 
among 

~ (k  s) ~ ( k  s ) 

s . . . . . .  , ~NSms N 1 
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To  illustrate ttie case of  construction o f ' c o m p o u n d  expressions b y  means of" 

Operators of  rank 2, we consider an example. Suppose that  the operator ~1 of" 
rank 2 has been marked with the index (!,3) of  rank 2 (p. 216). T h e n  , the con- 
struction runs as follows. Consider the variables 

' %N1 ' %N2 

where N 1 r N~ and construe the prefix 

11 
~(w) ~(v) ~:(v) 

NO b N l  ~N2 

Consider now any four such expressions 
(w) , /'~: (v) 

C01, C02(~No ) ' ~(No)), ,~(v)~(v)'~ ~'~X~N , C0akgN1, gN2) 

to which the indices iv, iv, tk, tw respectively are assigned and which fulfil the  
following conditions: 

(I) None of the variables ~-N0~r ~Ni'e(v) ~ 2  ) occurs free in the expression to~. 
(2) The  variable ~(w) occurs free in the expression "e(~)~ c~ ~N0/, but  the var- bN0 

iables ~NI,~(') ~N~ ~(v~ do not occur in the exlcre3sion oJ2(~o) ). 
(3) The  variable ~ o  ) and exactly one of the variables ~(~) er ~v~, ~ N-, occur free in 

the expression w.3,bNt,, t'~('0) , ~(NO)). 

(4) The  variables ~Nae(v), ~ )  occur free in the expression c0atgN~'~(v), e(')~N~' but  the 
variable ~ o  ) does not occur free in the expression c 0 ~  rare"') , ~(o)a~e~. 

Finally, construe the fundamental compound expression: 

[ ] ~1 /.-(w)~ ~ ( v )  ~-(v)~ ~ ( v )  t-(v), 

b N  0 b N1 b N2 

to which assign the index t~ of rank 0. ~ 

5. The diagrams of expressions 

The  preceding discussion on the connexion between the operators and the rules 
of construction contains no precise formulation of these rules. Usually, the 
formulations of these rules for artificial symkolic language contain not only the 
description of syntactic relations which hold between simple expressions occurr- 
ing in compound expressions, but  also take into account some conventions of  
calligraphy for compound expressions. It  is clear to see that we have also adopted 
in the preceding section some conventions of this kind. 

The  calligraphy, however, for compound expressions has a little importance 
from our point of view. Namely, we are interested only in the syntactic struc- 

5 We leave to the reader to verify that the customary constructions of  compound expressions 
by means of quantifiers, descriptive operators and other operators binding the variables, fall 
under the second case of construction just described. 



[~11] Syntactic structure and  s'emantical reference 223 

ture of expressions and, therefore, we inted to describe the standard formalized 
languages quite independently of any conventions of calligraphy assumed in these 
languages. 6 

To our purpose we will apply the method of geometric diagrams; comp. [8], 
pp. 225--226. Namely, we will represent the expressions which are comtructible 
on the ground of some syntactically marked vocabulary, as suitable geometric 
diagrams which take into account but the simple expressions and the purely 
syntactic relations between expressions occurring in compound expressions. 

To illustrate the method of geometric diagrams we give below, as examples, 
the diagrams of five expressions which are constructible on the basis of voca- 
bulary ~b ~* given in the section 3. 

I. "~ V (x e L L_ /x x e M(a)) 
3s 

It is not the case that 
some logician is more 
wise than Aristotle. 

II. a Aristotle 

6 Compare the following v. NEUMANN'S remark: ,,...wiirde ...die Bezeichnungsfrage in irgend- 
einer Beziehung wesentliche Schwierigkeiten machen, so w~ire es ein Leichtes, sie in trivialer 
Weise ein fiir aLlemal aus der Welt zu schaffen. Es wiirde gentigen, statt die Formeln fertig hin- 
zuschreiben, bei jeder Formel ihre Entstehungsgeschichte... ausfiihrlich anzugeben." [5] p. 333. 



224 

III.  

IV. 

R. S u s z k o  [12] 

V ( x ~ L A  A ( y e L - - , y  = x V  x [ b l ( y ) ) )  
az .y 

@ 

t 

Some logician is the 
most wise logician. 

t , t 

• • ~k_~= L [ ~  
t 

1 1' t t  I t  

t I ~ I V ~ 7  ~ t 
t I x l  I x  I t 

L ( x ~ N A A ( Y ~ N - ' y + x = Y ) )  This number x such 
x ~ that for every number 

t y : y q - x = y .  

t 
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( x a N A x ~  ' ( y - k  y >  y))--~ x >  
Y 

I f  x is a number y 
such that y q- y > y ,  
then x > 0. 

-i- 
e~ 

6 
t -  

t 

tt 

t 

tt 

t r y [  f v r  f 

These examples show that we can get rid of any problem of calligraphy of  
compound expressions if  we will represent these expressions by suitable diagrams. 

At the same time we see that these diagrams are finite sets of  plane points con- 
veniently connected by vectors (arrows) and marked with suitable word-types 
and corresponding indices. In other words, every such diagram can be decom- 
posed into a suitable plane figure and a function which assigns in some way the 
word-types of some vocabulary and their indices to the points of this figure. 
Therefore, will describe at first these figures and, further, we will characterize the 
corresponding functions. 

6. The graphs 

We consider a fixed plane and we define a kind of  geometrical plane diagrams 
which we will call graphs. 7 

7 T h e  t e rm graph is bon 'owed  f rom the general mathematical  theory of graphs.  But  we use 

here this t e rm in a m u c h  nar rowed sense. 

15 Studia Logica 
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At first let us call attention to such plane figures called here compound graphs 

which have the following properties: 

(1) They are finite sets of points containing more than one point; these points 
are called nodes. 

(2) Their points, i. e. the nodes are interconnected by means of arrows (vec- 
tors) caUed arms, in such a way that 

(3) every node is an initial point or an endpoint of some arm, but 
(4) there is exactly one node called the vertex which is not an initial point of 

any arm and 
(5) every node distinct from the vertex is an initial point of exactly one arm. 

It foUows that in any compound graph there are nodes which are not end- 
points of any arm; these nodes are called fundamental nodes. 

A node p is called a directly subordinate node to the node q if the node p is an 
initial point and the node q is an endpoint of the same arm. 

One can enumerate, i. e. mark with numbers 1,2,... all directly subordinate 
nodes to some nonfundamental node q. There are of course many such enume- 
rations. 

But if the nonfundamental node q is not identical to the vertex then we will 
take into account only one natural and univocaUy determined enumeration: 

{I~ (2) r (4)  ~5)  

This is the counterclockwise enumeration of all directly subordinate nodes to 
the given nonfundamental node q distinct from the vertex. 
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I f  the nonfundamental node q is identical to the vertex, then we consider the 
whole set of all counterclockwise enumerations of all directly subordinate nodes 
to the vertex q. It  is clear that the choice of one directly subordinate node p* 
to the vertex q distinguishes exactly one such counterclockwise enumeration 
of all directly subordinate nodes to the vertex q according to which the chosen 
node p* is marked with number 1: 

(,3) (4~ (51 ( I )  (2) 

Besides compound graphs we also consider the simple graphs, i. e. the single 
points. They have, of course, no arms. Every simple graph, however, contains 
only one node which at the same time is the vertex and the only one fundamental 
node of this simple graph. 

Any graph F such that 
(1) the fundamental nodes of F are divided into auxiliary fundamental nodes 

and proper fundamental nodes, and 
(2) if F is compound then exactly one of the directly subordinate nodes do 

the vertex of F is distinguished just as the first in some distinguished counter- 
clockwise enumeration of these nodes, 
-- any such graph (simple or compound) is called a special graph (simple or 
compound). 

It  is clear that in each special compound graph for every given nonfunda- 
mental node (inclusive the vertex) there is exactly one distinguished counter- 
clockwise enumeration of all directly subordinate nodes to the given node. It 
follows that in every compound special graph each node distinct from the vertex 
may be supplied with an univocally determined number 1,2, .... 

We assume the convention according to which the auxiliary fundamental nodes 
will be marked with circles, the other nodes with squares and the distinguished 
directly subordinate node to the vertex -- with an asterisk. Thus the special  
graphs may be represented as diagrams of the following examplary form: 

simple special graphs compound special graph 

15" 
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In  the following we witl apply only the notion of  a special graph and its theory 
and, therefore, we assume the terminology according to which we will write hen- 
ceforth graph instead of special graph. 

Let P~ and P,_, be graphs. We say that F~ is contained (or included)in 1'2 or 
that F~ is a subgraph of F2 if the graphs F1 and F2 fulfil the following condi t -  
ions: 

(1) every node of F 1 is a node of F2, 

(2) if p is in FI directly subordinate to q, then p is in P_~ directly subordinate 
to q, and conversly, if  p and q are such nodes of P~ that p is in Fe directly sub- 
ordinate to q then p is in F1 directly subordinate to q, 

(3) i fp  is an auxiliary fundamental node of F~ then p is an auxiliary fundamen- 
tal node of F.~, and conversely, if  p is such a node of F~ which is an auxiliary 
fundamental node of F_~ then p is an auxiliary fundamental node of F~, 

(4) if F1 is compound then the distinguished subordinate node to the vertex 
in F~ is identical to this directly subordinate node to the vertex in F2 which 
according to the enumeration of nodes in F~ is supplied-with least number. 

o-f,.- 
u 

. . . . .  " i  

Every graph F 1 which is such a subgraph of a graph F~ that every funda- 
mental node in Pl is at the same time a fundamental node in F 2 is called a fun- 
damental subgraph of F2. 

In  the set of all such fundamental subgraph of graph F which have a node p 
of F as a common vertex, there exists one greatest, i. e. containing each 
remained; it is called the fundamental subgraph determined in P by the node p. 

We say that F1 is a direct subgraph of F 2 if F1 is the fundamental subgraph 
determined in the graph F2 by some directly subordinate node to the vertex 
of F2. Of course, the simple graphs have no direct subgraph. We observe that in 
every compound graph F there is exactly one distinguished enumeration of  all 
direct subgraphs of F. 

Let F1 be a fundamental subgraph of P.~. I f  the graphs F I and F2 have a com- 
mon vertex and if every nonfundamental node of F1 is an endpoint of exactly 
one arm in F1 , then the subgraph F~ is called a branch of F 2. It is obvious that 
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every node of  any graph P is situated on a branch of P and, further, that every 
fundamental node of P is situated on exactly one branch of P and, finally, that 
on every branch of F there is exactly one fundamental node. 

7. The printed graphs and the sets ~ ( ~ )  

Making use of ' the notion of a graph (i. e. of a special graph) as introduced 
in the preceding section, we can represent the purely syntactic structure of ex- 
pressions by diagrams and determine the corresponding sets U ( ~ )  in a strictly 
formal way and independently of any principle of calligraphy for compound ex- 
pressions. 

Let "?)be a syntactically marked vocabulary. Every ordered pair 

<p , r  > 

which consists of  a graph F and a function cI~ assigning to every node p in P 
a word-type (I)(p) belonging to r is called aprinted graph. The graph F is called 
the position of ( F, (P) and the function (I~ is called theprinting-function of ( P, (I)).. 
It may be said that the printed graph ( P, ~I~ ) is the result of printing the word- 
types of ~ according to cI) on the nodes of P. 

I f  ,~ is the syntactic-marking-function of Z~ then to every word-type ~ i n / )  
an index ~(~) is assigned. Therefore, in every printed graph ( F ,  ~I)) to every 
node p of its position F an index ~(cI~(p)) is assigned. 

Every element of the s e t . U ( ~ ) o f  all expressions which are constructible on 
the basis of r is a printed graph. It will appear later that it is characteristic 
for the printed graphs which are expressions belonging to the set /2('g)), some 
special connexion between indices assigned to nodes. 

It  is very easy to see that any printed graph ( F ,  (I)) can be represented by 
a suitable diagram, namely by the graph F, the nodes of which are marked accord- 
ing to the function (I~ with word-types and corresponding indices. Some exam- 
ples of such diagrams are just given in the section 5. 

Let ( F, ~I~ ) be a printed graph. I f  F0 is a subgraph of F then the symbolic 
notation 

4' IFo 

denotes the function (I) restricted to the nodes o f f  o ; the pair (~Fo,(I) 1 F o ) is also 
a printed graph, of course. 

We say that the variable-type ~ )  of ~ occurs free in the printed graph ( F, (I)) if 
there is in F a proper fundamental node p such that (I)(p) = ~ )  and there does 
not exist such a node q on the branch on which the node p is situated that (b(q) 
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is an operator-type of rank 2 and @(q*) = ~ for some auxiliary fundamental  
node q* directly subordinate to the node q. 

The  elements of the set ,~(r i. e. the expressions which are constructible on 
the basis of a syntactically marked vocabulary Ok, can be determined in the fol- 
lowing inductive way. We define, firstly, the simple expressions belonging to $2('0) 
and, subsequently, we will determine the conditions under  which some printed 
graphs built from expressions being just in <8(r are compound expressions 
belonging to d2(Ck); these conditions correspond to the rules of construction 
determined by the operator-types in ~ ,  as discussed in section 4. 

At the same time we define what is meant  by the index of an expression belong- 
ing to J2(~).  

Let  ~ be a syntactically marked vocabulary and let ~ be the syntactic-marking- 
function of ~ .  

A printed graph < 1-', �9 > is a simple expression (or word) belonging to J2(~)  if  
and only if1' is such a simple graph that the only one nodep  of it is proper and �9 is 
such a function that tI~(p) is any word-type of ~ .  The  index ,~(~(p)) assigned 
to the node p is taken as the index of the simple expression < I', ~ > .  I f  this 
index is of rank 0 or 1 or 2 then the simple expression < r ,  @ > is called a funda- 
mental word (constant or variable) or an operator of rank 1 or an operator of rank 2. 

I f  ~(p) is a variable-type or a constant-type, then the simple expression 
< r', a; > is called a variable or a constant. Any operator is a constant and any 

variable is a fundamental  word. 
We pass now to the compound expressions in .~(~) .  We distinguish two cases 

according to the division of operator-types in ~ and operators in ,~2(/)). 

For the first case let us assume that q is an operator-type of rank 1 in ~ marked 
with'the index (1.1) of rank 1 (p. 214) i. e. 

a~ 

i~ l . . . . . .  tk n 

We consider a printed graph < F,r > which has two following properties: 
(1) F is a compound graph having exactly n direct subgraphs F1, . . . .  , Fn 

- -enumerated just according to the enumeration distinguished in F and 
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4~ 

(2) ~(p) = ~1, where p is the vertex of  F. 

F, Fn 

N o w  we state: the pr inted graph < F~ (I~) is a c o m p o u n d  e x p r e s s i o n  belonging 
to C( r  and its index is tk if  the printed graphs < FI, ~ I F1 > ,  . . . .  , < Pn, O lPn ) 
are expressions (simple or compound)  belonging to , ~ ( ~ )  and ff their indices are 
tkl, . . . .  , t~n respectively. 

Notice.  I t  is' to see immediately that for  l = 1 , . . . ,  n any variable-type 
occurring free in < F~, �9 [ FL ) occurs free also in < F,  (I~ > .  

For  the second case let us assume that ~1 is an operator- type of  rank 2 in ~? 
marked with the index (1.2) o f  rank 2 (p. 215) i. e. 

,%0 - 
t 1 . . . . .  i n  

Let  us make the following assumptions:  
(a) the indices tk~, . . . . .  , te r are all such indices of  rank 0 that their multi-  

plicities in the  index (1.2) are different f rom 0;  
(b) k~ < . . . . .  < kr; 
(c) the multiplicities o f  the indices tk~, . . . . .  , tkr in the index (1.2) are equal 

to the numbers  m l ,  . . . . .  , m r respectively; 
(d) m - - m , +  . . . . . .  + m  r ~ 0 ;  
(e) the  multiplicities o f  the indices t k~ ,  . . . . .  , t k  r in the index i~ are equal 

(for l = 1, . . . . .  , n) to the numbers  m t , . ,  . . . . .  , mL. r respectively; 
(f) the indices tj~, . . . . .  , tj~ are the numerators of  the indices i~, . . . . .  , i~ 

respectively. 
We  consider a printed graph < F,  (I~) which has the following properties:  

(1) P is a compound  graph which has exactly m + n direct subgraphs Fx, . . . .  , 
]-'m, Fro+l, . . . .  , F~+~ - -  enumerated just according to the enumeration distin- 
guished in F ;  

(2) the first m direct subgraphs F~, . . . .  , I" m are auxiliary fundamental  nodes 
in F,  the last n direct subgraphs ['re+l, . . . .  ,1"~+~ a ~  not auxiliary fun- 
damental  nodes;  

(3) the function @ assigns the distinct variable-types in ~ to the auxiliary 
fundamental  nodes F~, . . . .  , F m in such a way that 
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. (kl) t(ki) 
(I, (I ' , )  = g N1 , . . . . .  , q' (Fro,) = b "i, 

�9 �9 ~ �9 o o o o �9 �9 �9 , o �9 

(kr) 
(I) (rm_m~+~) = ~ i  ) , . . . . . ,  (I) (Pro) = ~ 

B / m  r 

(4) (b CO) = I1 , whe re  p is the  ve r tex  o f F .  

[20] 

Pl . . . . .  Pm Fm+l . . . . .  Pm+n 

N o w  we state:  the  p r in t ed  g raph  < F ,  (I)> is a compound expression be long ing  
to ~2(~) and  its index  is tk i f  the  p r i n t ed  graphs  < Pm+l,r Fm+l > ,  . . . . .  , 
< Fm+n,(I J ] Fm+,~ > are such express ions  (s imple  or  c o m p o u n d )  be long ing  to  

L'(r tha t  

(1) thei r  indices are t h ,  . . . . . .  t& respect ive ly  and  

(2) for  every  l = 1, . . . .  , n and  for  eve ry  s = 1, . . . .  , r it occurs  f ree  in 
~(ks) ~(ks) 

< Fm+t,@] 1-'m+t ) exact ly  mt,s var iab le - types  among  g s , . . . . .  , �9 
N I ~ N S  s 

Note .  I f  F o is such  a subg raph  o f  F tha t  F o and  P have the  c o m m o n  ve r t ex  
p and the  di rect  subgraphs  o f  F o are ident ical  to the  auxi l iary nodes  FI ,  .... , 
Fm and i f  (I, 0 = tI,[ Fo then  the  p r in t ed  graph  < F0, ~I, o > is called the  pre f ix  o f  
the express ion < F,  cI) > .  

W e  have seen tha t  t hey  are the  m var iab le - types  SNleCnO' ..... ' -~n~ (~r) tha t  are p r i n t e d  
1 mr 

on the  m auxil iary fundamen ta l  nodes  F1 . . . . . .  P ~  o f  the  pref ix  o f  < F,  (I~ > .  N o w  
let us cons ider  in a m o r e  deta i led way the  index  it and  the  p r i n t ed  graphs  

< F m + t , q ' ] P ~ 7 + >  f o r l - - 1  . . . . .  n. L e t  i = n h .  ~ + .... , + m e .  ~. 

I f  i = 0 t h e n  i~ = t h and  no  va r iab le - type  a m o n g  ~(k0~nx , ..... ' ~(kr)n r occu r  
1 m r 

f ree  in < F~+t, q~jFm+t > �9 T h e r e f o r e ,  any va r iab le - type  occu r r ing  f ree  in  

( Fm+t, (I~ [ F~+~ > occurs  f ree  also in < F,  q' > .  

I f  i4= 0 t hen  i t -  th and the re  are "exactly i such  var iab le - ty -  
tq . . . . .  t h 

(kl) t (~ r) ~ (q) t (q) pea '-(q) ~(ti) among  ~N~ ' . . . . .  ' ~ r tha t  , . . . .  are e n u m e r a t -  
bN I ~ .... ) 5Ni Nmr %N 1 ~ bNi 
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ed according 

the variable-types u(h) ~00 occur free in 
b N  1 ' . . . .  , bNi 

do not occur free in ( F, (D) .  
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to the enumeration of variable-types ~(k~) ~ Ck~) and 
N I  1 , . . . . .  , ~ N ~ n r  

( Fm+~, (I~ I Fm+~ } but  they 

Thus  we have determined which printed graphs belong to the set C(~0). In other 
words we have defined, for every syntactically marked vocabulary ~ ,  the set U ( ~ )  
of all expressions which are constructible on the ground of r At the same time 
we have defined an assignement according to which to every expression ( F, (I)) 
belonging to J2(~) there is assigned an index 

,~ffo, < r , o  > ) 

namely the index of the expression ( P ,  (I~) belonging to q('b~). 

There  are always simple expressions in L~('O). But there exist, of course, such 
syntactically marked vocabularies ~ that the corresponding sets C(fY)contain 
no compound expression. 

The  index ~ ( ~ ,  ( 17, �9 ) ) of a sknple expression ( F, ~I~ ) in C(�9 may be 
of rank 0 or 1 or 2. But the index of any compound expression in C(L ~) is of rank 0. 
It  is easy to see that in any compound expression ( F, ~I~ ) if20 is the vertex of the 
graph P then the word-type ~D(20) assigned to it, is an operator-type and the 
index of this compound expression ( F, ~I~ ). i.e. ~( '&, ( F, ~I~ ) ) equals to the 
numerator of the index ~(~I~(p) ) assigned to the vertex 20. 

Every expression ( F ,  cD ) in C ( ~ ) s u c h  that its index is of rank 0 is called 
a fundamental expression. Each nonfundamental  expression belonging to U(~)  
is a simple expression, namely an operator. 

Let ( P ,  ~I~ ) be a fundamental  expression in f f (~)  and let F0 be a branch 
of F. I f  20 is a fundamental  node situated on F 0 then the word-type (D(20) is 
a fundamental word-type and the index ~((I~(20)) is of rank 0. On the contrary, 
if 20 is a non-fundamental  node situated on F 0 then the word-type (D(20) is an 
operator-type and the index ~(~D(p)) is of rank 1 or 2. Therefore, for every 
node 20 in F: the word-type ~I,(p) is a fundamental word-type and the index 
~(~D(20) ) is of rank 0 if and only if the node 20 is fundamental in F. 

"k "k 
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We introduce some relations between expressions belonging to .12(r 

Let ( F, a) ) be an expression. The  expression ( Fo, q~0 ) is a subexpression 
of ( [ ' , ~ )  or is contained (or included) in ( F , a ) )  if and only ff Fo is 
a subgraph of  F and (b o = (b IF 0. 

It  follows that if ( P o, a) o ) is a simple expression then ( Fo, @o ) is a sub- 
expression of ( 1", @ ) if and only if the only one (fundamental proper) node 
Po of Po is identical to some nonauxiliary node p in F and q~o(Po)= r 

Similarly, if ( F o q~o ) is a compound expression then 4. Fo, 'bo ) is a sub- 
expression of (17, @ ) if and only if there is a nonfundamental  node q in F 
such that Po is identical to the fundamental  subgraph determined in F by 
the mode q and Go(p )=  @(p) for each node p in Po- 

The  expression ( P0, q~o ) is said to be a direct subexpression of the expression 
( F, q~ ) if F o is a direct subgraph of P and ~I~ o = q~ ] Fo. Every direct subexpres- 

sion is an expression. I t  follows that the printed graph ( Fo, ~I~o ) is a direct subex- 
pression of  the expression ( F, q~ ) if and only if there exists in I ~ a nonfundamental  
node q which is directly subordinate to the vertex of F and such that Fo is iden- 
tical to the fundamental subgraph determined in F by q and q~o(P)= q~(P) 
for each node p in I'0. There are, of course, no direct subexpression in any sim- 
ple expression. 

The  direct subexpressions of a compound expression ( F, q~ ) are called its 
members or arguments. The  simple expression ( Po, Go ) being an operator such, 
that the vertex Po of  ( 1 ~, q~ ) is the only one proper node of Fo and ~Do(Po) ----- ~(p) 
is called the head of the compound expression ( F, �9 ) .  The  head ( Fo, ~I~o ) 
being a subexpression, is not a direct subexpression in ( F, q~ ) .  It  is clear that 
there are exactly n members in the compound expression ( F, q~ ) if and only 
if the denominator of the index of the head ( Fo, Go ) is a sequence of exactly n 
indices. 

Let ( Po, q~0 ) be such a printed graph that Fo is a simple graph and Oo(Po)-~ ~ )  
where Po is the only one node of Fo. I f  Po is an auxiliary node in F0 then 
( Fo, ~Do ) is not an expression and, therefore, ( Fo, q~o ) cannot be a subexpres- 

sion of any expression. I f  Po is a proper node in Po then ( F0, q~o ) is a variable 
and it may be a subexpression of some expression ( 1 ~, �9 ) .  Then,  Po is identical 
to some fundamental proper node p in F and q~o (Po) = ~I~ (p) = ~r Consider 
the branch in F on which the node p is situated. I f  there is such a node q on this 
branch that q~ (q) is an operator-type of rank 2 and r ( q * ) =  ~ )  for some 
auxiliary node q* directly subordinate to the node q, then we say the variable 
( No, 4~o ) to be bound in ( F,q~ ). I f  on the branch on which the node p is situated 

there does not exist such a node q that ~ (q) is an operator-type of rank 2 and 
(q*) = ~ )  for some auxiliary node q* directly subordinate to the node q, then 

we say that the variable ( Fo, q)o ) is free in ( F, �9 ) .  
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An expression is called closed if no variable is free in it. An expression is called 
open if no variable is bound in it. 

Let < F1, q~l > and < F~, ~2 > be two expressions and let tp be such one-to-one 
correspondence between the nodes in Pl and those in F2 that: 

(1) a node p is directly subordinate in Pl to the node q if and only if the node 
~p (p) is directly subordinate in F._, to the node q)(q), 

(2) a node p is auxiliary fundamental node of F1 if and only if the node q~ (p) 
is auxiliary fundamental node of P2, 

(3) if the graph F1 is compound then if p* is the distinguished directly subordi- 
nate node to the vertex of 1" 1 then q9 (p*) is the distinguished directly subordinate 
node to the vertex of F~. 

Every such correspondence we call an isomorphism of Ft and F.,, and we intro- 
duce  some notions of isomorphism of the expressions < F1, ~1 > and < F.,, (I~.2 >.  
Suppose that there is an isomorphism cp of F 1 and F2. 

I f  for each node p in FI: 

r = r 

then the expressions < Pl, r > ,  < F~, (I)., > are said to be isomorphic (or equi- 
form), symbolically 

< F1, q'l > = < F.,, ~_~ > 

I f  for each node p in F1 such that eh(P) is a constant word-type: 

'I'l(p) = q~2(qD(P)) 

then the expressions < F,,  (Ih >,  < F o, ~2 > are said to be weakly isomorphic (or 
�9 weakly equiform), symholically 

< P,,  (1)1 > ~ < F2, (I'._, > 

I f  for each node p in Pl:  

,~ ('Pl(P)) = ,~ (,I,.,(cp(p))) 

then the expressions < F1, @1 > ,  < F2, (I)2 > are said to be syntactically isomorphic 
(or equal with regard to the syntactic structure), symbolically 

<F1,  q ) l )  --= <F2,(I~2> 

The relations _--, _--, ___ are equality relations (i. e. reflexive, symmetric and 
transitive relations) in the se t /2 (~) .  They fulfil the following conditions: 

if  < F1, (I' 1 > = < r2, (I~ > then < F1, r > -- < F2, eb_ > 

and . 

if < F1, ~1 > -- < F~, q'2 > then < P~, (I' 1 > ---- < P~, ~I'., > . 
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Making use of the relation ~ we can generalize the relation of being-a-sub- 
expression. Namely, we say that the expression (F0,O 0 ) is a subexpression in 
a generalized sense of the expression ( F~q~ ) if and only if there is a subexpressio1~ 

in the former sense ( F ,~  ) of  the expression ~ F,O } such that 

F0,O 0 )  - ( F , ~ }  

In an analogous way one can generalize the relation of being-a-direct-subex- 
pression. 

8. The standard formalized languages 

To every expression 11 in the set L~(~) there is assigned an index ~('O, 11), na-  
mely the index of the expression I1. Therefore, the set ~L~('b ~) may be divided into 
classes of expressions to which the same index is assigned. 

For every index j the class L~(~, j) of  expressions in U ( O )  such that any 
expression 11 belongs to it if  and only if 

~(w, ,1) = i 

is called the semantical category j of expressions in L~(P). 
Every category L~(~, tk) where k =: 0,1, ..., is called a fundamental category or 

category of rank 0. Besides the fundamental categories there are categories of higher 
rank. The category L~(~, i) is of rank 1 or 2, if the index j is of  rank 1 or 2. 
Thus every expression belonging to some category of higher rank is simple ex- 
pression, namely an operator. It follows that every compound expression belongs. 
some fundamental category. On the other hand, every variable is a simple ex- 
pression belonging to some fundamental category. 

One fundamental semantical category of expressions shall be distinguished 
as the category of sentences. Namely, we determine that the category 

C(W, t0) 

is the category of sentences. In other words we say that an expression 11 is 
a sentence if and only if 

~( "b~, , I )  = to 

The distinction of the category of sentences is the only to be made from purely 
syntactical point of view among the fundamental semantical categories of ex- 
pressions. In other words there is no syntactical difference between two non- 
sentential fundamental semantical categories. 

I f  there are sentcnces in the set L~(~)) and if every simple expression is a sub- 
expression of some sentence belonging to L~(~) then we say that the syntacticaUy 
marked vocabulary "b ~ is syntactically coherent. Of course, there are syntactically 
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incoherent vocabularies, particularly there are vocabularies such that the cor- 
:responding sets of aU constructible expressions contain no sentences. 

Now we state that the set J2(~) ofaU expressions which are constructible on 
basis of the syntacticaUy marked vocabulary ~ is a s tandard  f o r m a l i z e d  language 

g e n e r a t e d  by  the vocabu lary  ~ if and only if the Vocabulary is syntactically co- 
herent. 

T h e  set Q(b~*) where ~ *  is the vocabulary considered in the section 3 is a stan- 
.dard formalized language. We give some other examples of standard formalized 
languages. 

The simplest formalized languages considered in formal logic are the so called 
s e n t e n t i a l  languages.  These languages can be represented as standard formalized 
languages generated by vocabularies containing infinite series of constant word- 
types (for example the following graphic symbols: Pl, P.,, ..., Pn, ...) marked with 
the principal index 6 and a set of operator-types of rank 1 marked with some of 
Ihe  indices 

, ~6' 6 ~ ,  . . . 

On the other side we consider a modified form of the language of the so called 
genera l  theory  o f  classes as in TARSKI's sense [6]. This example shows express- 
ly the difference between the index-method applied here and the index- 
method employed formerly by K. AJDUKIEWICZ [1], [2]. 

We present the vocabulary ~0 of the language of the general theory of classes 
in the manner applied before in the case of the vocabulary r considered in the 
section 3. We assume that k = 1,2, .... 

tk 

to 
~k fk+l 

to 

t~ 

tk+l 

t o 
tk 

to 

0 

to 
tot o 

x~ k ) '  x~ k ) '  �9 " " ' x(k)n , �9 �9 �9 , (variables o f  the k-th kind) 

k (predicates of being-an-ele- r 
ment-of-a-class) 

k 

k 
E 

(the general quantifiers) 

(the abstraction-operators) 

(the sign oi ~ negation) 

(the sign of implication) 
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We  present  some examples o f  diagrams of  expressions belonging to . /2(~o);  

t o ~ t,t--; 

f2 

t2 

tO 

To 

to t~ 

t o 

tl ~ ~ t2 
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These expressions may be written in the ususal calligraphy as follows: 

x~2, 2 2 x~3, x~ ~, e x~ 2, e E x~) e 
.r~ 2) 

239 

~ ( 4  *' e x~ ~') --, A ([ E ~ X (D e x (2)1 r X (3)~ 
1 2 J 1 1 

4 ~, ~ ,  

Customarily some special principles concerning calligraphy are adopted and in- 
stead of expressions given above one writes the following simplified graphic ex- 
pressions: 

4 "  ~ x?' or 4 ~'(4") 

X~ 2) e E x 1(2) ex~(3) 

In such cases the graphic symbols of the form e, A,  E are syntactically am- 
biguous, i. e. their occurences in different expressions may belong to different 
semantical categories, and they may have the following ambiguous indices: 

to to tk+l 
t~ tk+ 1 t o t o 

tk tk 

Further, we note that if we adopt some suitable calligraphical conventions 
then the graphic symbol e may be quite eliminated and replaced by the ordering 
of remaining graphic symbols. 

The example just considered is an illustration of the fact that in artificial 
symbolic languages which are considered in formal logic, some conventions of 
calligraphy are adopted and that these conventions may conceal in some degree 
the purely syntactical structure of expressions in these languages. In order to 
see this structure of expressions we have to disregard the calligraphy of expressions 
and to take into account the general ideas of standard formalization as presented 
in section 2. Sometimes the application of these ideas to the given artificial sym- 
bolic language mey be done easily by introducing suitable modification in its calli- 
graphy. In this manner we can reach the conclusion that any artificial symbolic 
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language considered in formal logic falls under the scheme of standard formali- 
zation i.e. it is a standard formalized language generated by suitable vocabulary. 8 

~r 

Every standard formalized language is generated by suitable marked and co- 
herent vocabulary. Therefore, some relations between standard formalized lan- 
guages can be reduced to the relations between corresponding vocabularies. The 
most important of  such relations are the relation of being-a-sublanguage (or of  
containing or of including) and the relation of syntactic-structure-preserving- 
translation. 

In the following definitions we make use of the notion of a permutation of  
secondary indices. This is strictly connected with the fact of the non-existence 
of any syntactic difference among the non-sentential fundamental semantical ca- 
tegories of expressions. 

Let ~a  and ~2 be marked and coherent vocabularies and let ~i and ~ be cor- 
responding syntactically-marking-functions in these vocabularies. 

I f  every constant-type in ~1 is a constant-type in ~ ,  and every variable-type 
in P l  is a variable-type in D e and if there is a permutation f of  indices such that 
for each word-type ~ in ~)1: 

�9 ~ ( ; )  = f(~l(;))  

8 It should be noted that in the case of CHURCH's simple theory of types [4] for instance, it 
will be convenient to use another set of secondary indices of rank 0. Namely we define the  set 
of all indices of rank 0 in the following inductive way: (1) i 0 is the pr,incipal index of rank 0, 
(2) t 1 is the first secondary index of rank 0 and (3) if Ia and t~ are indices of rank 0 then f(a~) 
is also an index of rank 0. Thus,  in the vocabulary which generates the language of Church 's  
simple theory of types we encounter besides fundamental word types an infiinite set of opera- 
tor-types of rank 1 which are called application-operator-types and marked with the indices of 
rank 1 

is 

and an infinite set of operator-types of rank 2 that are called )~-operator-types and marked with 
the indices of rank 2 

l(al~) 
Is 

The customary conventional calligraphy adopted in the language of Church's  simple theory 
of types implies that in the expressions of this language the k -operator-types are printed by means 
of graphic symbols of the same form 

k 

and the application-operator-types are not printed at all because they are concealed in the ordering 
of other inscriptions. 

It is clear that any change in the choice of the infinite set of secondary indices of rank 0 does 
,not violate in any way the essential principles of the scheme of standard formalization. 
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then we say that the language ~(r is contained (or included) in the language 
,Q(r or that r is a sublanguage of ~ (~2) .  

I f  U(r is a sublanguage of t2(~1) and i f f  is the corresponding permutation 
of indices then every expression ~l in t2(~1) is also an expression in ~(~2)  and 

�9 = 

i. e. every expression belonging to the category ,~(~1,  I) belongs to the cate- 
gory t2(r f0) ) .  Therefore, every sentence i n  r is a sentence in /2(r 

Now let f be a permutation of indices and let ~ be a relation holding bet- 
ween the word-types in the vocabulary ~21 and the word-types in the vocabulary 
~.,. I f f  and ~ fulfil the following conditions : 

(1) for every word-type ~1 in ~1 there exists a word-type ~o in ~., such that 

(2) if ~ __~,~.o then ~1, ~2 are constant-types in ~1 and ~.z respectively or 
~1, ~_o are variable-types in ~k 1 and "bL_, respectively, 

(3) there does not exist two different variable-types ~', ~" in Ox such that 
~' _~, ~_ and ~" ~,  ~ for some variable-type ~ in q_o, 

(4) if ~t ~ ~., then ~- 
then we say that the relation ~ is a translation of ~ t  into ~.,, with respect to the 
permutation f.  

Every translation of vocabularies can be extended to a translation of the corres- 
ponding languages. Namely, if the relation ~ is a translation of r into ~ with 
respect to f ,  then we can define a relation that we denote by the same symbol 
and which holds between theCxpressions in f2(~1) and the expressions in U ( ~ . ) .  
This  relation can be called a syntactic-structure-preserving-translation of ,~(r 
into 0(~,_,) generated by the given translation of r into r with respect to the 
permutation f.  In defining of it we procede as follows. 

I f  ( F tl), ~o) ) is a simple expression in 0 ( ~ )  such that pl is the only node of 
F o), then we state that 

< F(1), r  > ~ < F(~), r > 

if and only if ( F (-~), r ) is a simple expressmn m _ ' ( ~ )  and (I)(" (Pl) -~ ~'~) (P2) 
where pe is the only node of F (~). 

Now let ( F(',(I~(~) ) be a compound expression in 0 ( ~ ) .  We consider two cases 
corresponding strictly to these of building the compound expressions considered 
in section 7. Taking into account these two building-cases we procede as follows. 

In the first case if Pl is the vertex of F1 then ~~ is an operator-type of 
rank 1 in ~x and there are exactly n direct subexpressions 

< 1', ) ,  . . . . . .  , < r r' r> 

in ( F (~), ~(~) ) .  We state in this case that 

< F(1) r > ~ ,  < F(2) r > 

16 S t u d i a  Log ic~  



242 R. S u s z k o [30] 

if and only if  < F%~(  ~ > is a compound expression in A ? ( ~ )  such that, firstly, 
there are exactly n direct subexpressions 

< r ?  ~, r I r ? '  > ,  . . . . . .  , < I 'T,  ~c', t r($ > 
in < F %  r > and 

< r~' ,  ~,m I p~" > ~ < p~ =~, ,I,('-" l F ?  > 

and, secondly if P2 is the vertex in D 2) then ,bm(p~) _~ ,b(2~(p2)" 

In the second case if  px is the vertex of F m then qx*)(p~) is an operator-type 
of rank2 in ~ andthere  are exactly m+n direct subgraphs F~ ~), ... F m F m m ,  r r t+ l ,  . . . .  

Fm in pm such that F~ ~, r,m m+n ....... m are auxiliary fundamental nodes in F m and 

<p m Cm p m ~,m Cm[p~+~> 
~+~, I ~+I >, . . . . . . .  , <*~+~, 

are all direct subexpressions in < r m, ~m >.  We state in this case that 

if and only if < F(e),~ (~) > is a compound expression in Y2(~,) such that there are 
exactly m q - n  direct subgraphs F{ ~), .'. ', ~m,P(~) ~m+~,P(~ ...., F~)+n in F{ ~ and, firstly 

m+~ > ~ < ~m+,,~" I '~+,  > 

secondly 
< r~(1) (I)(1) r (1) 1 -'(2) oh(2) I 1 -'(2) 

thirdly, if p2 is the vertex in F(2~ then ~ m ( p l ) _ ~  ~(2~ (P2). 
Thus  we have defined the syntactic-structure-preserving-translation _~, of 

22(~1) into A2(~2)generated by the given translation of ~1 into ~2 with respect 
to permutation of indices f.  I t  is not difficult to see this the translation has 
the following properties. 
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For every expression ~h in 2(fYl) there exists an expression ~1~ in ,8(r such 
that ~h --~ 112 and ~(fY2, ~1_o) ----f(,~(r ~h)). 

I f  ( F  r qm))  ~ (F(2), a)~2)) then there exists an isomorphism q~ of 
the graphs F a) and P c~), and for every node p of F m :  

~c,~( p) 2,  q~c~(q~fp)) 

~l(q'm(p)) = f(~2(q,c~'(cp(p))) 

The relations of being-a-sublanguage and of translation just introduced, may 
be applied in the cases of  extending a language (for instance, in the process 
of  introducing new words by means of definitions or postulates and in the process 
of  introducing a new kind of variables). But we do not consider here these special 
problems. Similarly, we do not consider here some problems connected with 

~e 

the equality relations _ ,  _ ,  _ .  
We pass to the second part of our paper where we will consider the fundamen- 

tal properties of semantical reference? 

Allatum est die 70ctobris 1957 

�9 q The second part will be published in the next volume of ,,Studia Logic.a',. 

I S  = 
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