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The syntactical and semantical investigations in contemporary formal logic
refer always to the languages with specified syntactic structure, as with respect
to such languages one can formulate exactly and, subsequently examine with
mathematical tools (1) the rules of transformation (axioms, rules of inference)
and the systems based on these rules (formalized theories), (2) the relations of
semantical reference which occur between linguistic expressions and elements
of objective sphere.

Our considerations belong to that part of logical syntax and semantics which
is independent of any assumptions concerning the rules of transformation.

The syntactic structure of some language .C is determined 1° by the vocabulary
of £ i.e. by the list of simple (undecomposable) expressions in .2, and 2° by the
rules of construction of £ which state how the expressions of ., especially the
sentences in . are built of simple expressions.

In the first part of this paper we consider the general principles of the syntactic
structure of languages. Namely, we shall formulate a scheme of the syntactic
structure of language. This scheme will be called the standard formalization*
and the languages which fall under this scheme will be called the standard forma-
lized languages.

The scheme of standard formalization is based on a purely syntactical classificat-
ion of expressions into so called semantical categories.

The standard formalization is an abstract from the concrete material of artificial
symbolic languages which are considerzd in formal logic. It is general in the
following sense: every symbolic language known in formal logic — after carrying
some modifications in its calligraphy — falls directly under the scheme of standard
formalization.

In the second part of this paper we consider the fundamental properties of
semantic reference. First, we introduce a classification of objects into so called

1 These terms are borrowed from A. TARSKI [7], p. 5, but they are used here in a different
sense.
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214 ‘ R. Suszko [2]

ontological categories. Further making use of some simple and quite natural
connexion of conformity between semantical categories of simple expressions and
ontological categories of corresponding objects, we can introduce the general
notion of a model of any standard formalized language. Namely, for every standard
formalized language .C we define the family M(£) of all models of .’. Every
model of . is a totality to which the expressions of .2 can refer semantically and,
conversely, every totality to which the expressions of . can refer semantically,
belongs to the family M(£). Thus, we obtain a general scheme of the relations
of semantical reference which is quite closely connected with the scheme of
standard formalization. This shows the ideographic character of standard for-
malized languages.

It may be a reasonable conjecture the content of this paper to be connected with
the structural inquires in linguistcs and with some problems of the philosophy of
language and of thinking. But, we do not discuss here these connexions.

In describing the scheme of standard formalization we make use of suitable
indices. The method of applying indices in investigations of syntactic structure
was introduced by K. AJDUKIEWICZ [1], [2]. We employ here such a modi-
fication of Ajdukiewicz’s method which allows to take into account the syntactical
role of variables and of operators binding the variables. The indices introduced
below will be applied in thé classification of expressions into semantical categories
and in the classification of objects into ontological categories.

1. The indices

The indices which will be used in our considerations are divided into three ranks.
Every index i has a rank 7(i) = 0, 1, 2. The indices are symbolic figures built in
some manner of the following letters marked with natural numbers:

tos L1y tas veees by ons

These letters are indices of rank 0. The letter {, is called the principal index and
the remaining letters t;, we call the secondary indices. When distinguishing the prin-
cipal index we make only one distinction among the indices of rank 0.

If besides the principal index t, one secondary index t; will only occur in our
considerations, then we write the letter

t

instead of this secondary index t,. and the letter
8

instead of the principal index t,.
The indices of rank 1 are fractions of the form

(1.1

t

tkl cenee tkn
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in which the numerators are arbitrary indices of rank O and the denominators
are arbitrary finite sequences of indices of rank 0.

Finally, the indices of rank 2 are fractions of the form

(1.2) e

in which the numerators are arbitrary indices of rank O and the denominators
are such finite sequences of indices of rank 0 or 1 in which at least one index of
rank 1 occurs.

We admit the terminol-gy according to which the numerator of any index t,
of rank 0 is this index itselt,

Examples of indices of rank 1:

3 3 3
t 1 ttt
t t t

Tttt
3 3 2

8 85 838
3 t
st 15

Examples of indices of rank 2:

3 3

3 85

t tt

t t t t t
5 38 F] t t
t tt tt t tt
3 ]
T8 8%
2 122

t tt

t 3 g

) t s
tZ S

t st t3

Let | be an index of rank 0, 1, 2. We define the multiplicity of an index t;. of rank
0in the index j — symbolically m(ty, i):

(0) if r(j) == O then m(ty,}) = 0;

(1) if (i) = 1 then m(tx,}) = the number of all occurences of the index t;
in the denominator of the index i;
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(2) if r (j) = 2 then m(t,, i) = the greatest multiplicity of the index t; in the
indices which are occurring in the denominators of the index .

For example if o =% w then m(t,, t,) = m(tv, Tt”—) =0, m(t,,, %‘—) =1,

w v'w
tw\ _ _ tw \ _ thy _ fe \
m (tw fvvtv?) - 2: m(twatv) =m (tw) tutn) - 03 m (twa t_w“) =m (tw: _tv t—w) = 1.
The notion of multiplicity m(ty, ), however, will play much important role
for our considerations in these cases in which r(j) = 2. For example, is the index |
of the following form:
(1.3) o b f
"ty totw toty

where v £ @ then m(t,,j) = 2 and m(t,,)) = 1.

Let f be a function defined for each index and assigning to every index j an
index f(j) in such a way that:

if {; # > then f(i,) # f(ia)-

If the fuaction f fulfils the following conditions:

(@) f(to) = to»

(b) if t,, is a secondary index of rank O then f(t,) is also a secondary index of
rank 0,

(c)fork=0,1,2,...and for any indices i, . . . , i, of rank 0, 1:

f( te ) (D)
J(iy) - f(in)

then the function f is called a permutation of (secondary) indices.

te

i in

2. The idea of the standard formalization

The conception of the standard formalization is derived from the following
general ideas concerning the syntactic structure of language.

(1) Among the expressions we distinguish the fundamental (categorematic)
expressions and operators (syncategorematic expressions);

(2) The fundamental expressions are divided into fundamental semantical cate-
gories? among which there is the category of sentences and, eventually, some
other fundamental semantical categories;

2 The terms semantical category (Bedeutungskategorie) was introduced by E. HUSSERL and,
subsequently, used by ST. LESNIEWSKI and K. AJDUKIEWICZ in connexion with some relat-
ions of exchange (or substitution) of expressions in sentences; see for example [2]. In our paper
we use this term in a different sense. The semantical categories in our sense will be defined later
in a purely syntactical way, but they are closely connected with the kinds of semantical reference.
This will be explained in the second part of our paper.
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(3) The expressions may be simple i. e. single words or compound i. e. built
from the simple expressions according to some rules of construction;

(4) There are two kinds of simple expressions: constants and variables; the
variables are simple fundamental expressions;

(5) The operators are closely connected with the rules of construction and they
are simple nonfundamental expressions;

(6) There are many semantical categories of operators, but all operators can
be divided into two kinds: the operators of rank 1 do not bind the variables and
the operators of rank 2 do.

We will describe the scheme of standard formalization by means of the syntactic-
ally marked and syntactically coherent vocabularies. The marking syntactically of
a vocabulary replaces completely the rules of construction and, therefore, every
standard formalized language is determined by a suitably marked and coherent
vocabulary.

3. Syntactically marked vocabularies

Any nonempty set of arbitrary elements called word-types, when divided into
constant-types and variables-types, is called a vocabulary. We assume that in every
vocabulary the set of constant-types is nonempty and the set of variable-types
is empty or infinite (i. e. denumerably infinite).

Let U be a vocabulary. Every function ¥ which assigns to each word-type ¢
in O an index ¥) and fulfils two following conditions :

(a) if € is a variable-type in 7+ then the corresponding index J(C) is of rank 0

(b) the set of all variable-types in 7' to which a common index of rank 0 is
assigned, is empty or infinite,
is called a syntactic-marking-function.

We decide to represent in general considerations the variable-types marked
with the index t, by the following signs:

=(k) (k) [19]
(2.1) ;g,;z,....,EN,.

where k== 0,1,2,....
Thus, any syntactically marked vocabulary " may be represented in the fol-
lowing form:
()

// t;i’ Cz: vees Cn) e 3 E(O)’ E(l): o3 E(k)a XN
N : . /
N Qs o5 eeen Ins wee sty by ey ksl v
where the word-types ;, Coy « . - 5 Gns - - . are all distinct constant-types in " which
are marked with the indices ;5 js5 + - - 5 Ins - - - cOrrespondingly and every set Z¢)
fork=0,1,2,...,is empty or identical with the set

k
(&%) v=-12..

of all variable-types (2.1) marked with the index t,.



218 R. Suszko [6]

Every word-type (constant-type or variable~-type) marked with an index of rank
0 or 1 or 2 is called a fundamental word-type or an operator-type of rank 1 or an
operator-type of rank 2 respectively.

We take the following vocabulary 7' * as an example of a syntactically marked
vocabulary:

0 t Xy Y 25 one. OF Xy, Xp. ooy X3, ...  (Variables)
) a Aristotle
2) ot 0 zero
t , 1
3) W T plus
4) _"t L a logician
5) —s; . N a number
g .
6) i M more wise
s reater
N > g
8) % = identical
9) 2 ~ it is not the case that
3
3
10) +; A and,
11) :; — if ... then ...
8
12) —% N or
13) —2 N for every
t
a f
14) — V or some
t
15) % L the object ... such that ...
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3

3 an object ... such that ..
t

16)
t

The word-types of U+ * are placed in the middle column and the corresponding
indices are placed in the left column. The right column contains the transcript-
ions of word-types into the natural language.?

4. The vocabularies and the rules of construction

Every syntactically marked vocabulary 7" detzrmines in an unambiguous manner
the set 1 2(T") of all expressions which are constructible on the ground of U'. Some
sets .2(0), for suitable vocabularies 7, will be identified with the standard for-
malized languages.

The operation which leads from any syntatically marked vocabulary ¥ to the
corresponding set .2(0) will be described in strictly formal way in a later section.
In the present one, however, we consider some details of this operation in a so-
mewhat informal way.

It has been already remarked that the rules of construction of compound ex-
pressions can be replaced by marking syntactically a suitable vocabulary. It will
be shown that every operator-type in a syntactically marked vocabulary deter-
mines a rule of construction. The elements of the set L2(7), for a syntactically
marked vocabulary U, are (1) words or simple expressions which correspond
directly to the word-types in U and (2) compound expressions which can be
built from simple expressions according to the rules of construction determined

8 The four last lines of 7' * contain four operator-types of rank 2 known in formal logic.
They are successively: the general quantifier /\ , the existential quantifier \/, the smgular des-
criptive operator |, and the general descriptive opérator L.

The operator | occurs in the phrases of the form

the object x such that so and so

or symbolically
a(x)
£

The rules of transformation concerning the operator | were formulated by HILBERT-BER-
NAYS, FREGE and RUSSELL. These rules are discussed in the book [3], pp. 32—39.
The operator L occurs in the phrases of the form
¥ is an object x such thar so and so
or symbolically
ted al@)
x

The customary rule of transformation concerning the operator L allows to replace mutually
the expressions of the form

de L a(x)
o ol®



220 R. Suszko [8]

by the operator-types in ¥, Every expression /2(7) is supplied with exactly one
index. Namely, we assign to the simple expressions in /2(7') the indices with
which the corresponding word-types in 7" are marked. The rules of construction,
however, determined by the operator-types in U assign unambiguously an
index of rank 0 to every compound expression belonging to (7). Such ex-
pressions in 2(7) to which the indices of rank 0 are assigned, are called fun-
damental expressions constructible on the ground of 7.

We want to show now in a somewhat informal way the connexion between
operator-types and the rules of construction of compound expressicns. Namely,
we will describe the syntactic role played by the operator-types in ¥ in the pro-
cess of building of compound expressions.

Let us assume that all word-types in a syntactically marked vocabulary 7 are
graphic symbols of different forms which are put together on some list as in
the case of the vocabulary 7 * given above.

Then, a graphic symbol is a simple expression or word belonging to the set
(0 ) if and only if it is of the same form as some word-type in 0. It follows that
the simple expressions belonging to .2(7') are divided into (1) fundamental simple
expressions or fundamental words (spliting into constants and variables) with
an index of rank 0, (2) operators of rank 1 with an index of rank 1 and (3) operators
of rank 2 with an index of rank 2.

The compound expressions, however, belonging to the set .2(7') are the in-
scriptions which are built in the following inductive manner. We consider two
cases of construction of compound expressions: by means of an operator of rank
1 and by means of an operator of rank 2.

We consider the first case of construction. Let the graphic symbol 1 be an
operator of rank 1 marked by the index (1.1) of rank 1 (p. 214). Then, the ope-

rator v is called a n-ary operator of rank 1. If the inscriptions

are any fundamental expressions, simple or compound, to which the indices
tkys ooy t, oOf rank O being placed in the denominator of (1.1) had been already
assigned, then the inscription

4.1 (@ e )

is the fundamental compound expression to which we assign the index % of
rank 1 placed in the numerator of (1.1).
We consider now the second case of construction; it is more complicated than

the first one.! Let the graphic symbol ‘;f be an operator of rank 2 marked with
the index (1.2) of rank 2 (p. 215). Then, the operator :; 1s called a z-ary operator

4 Namely, in the second case we must make use of the notions of Jfree occurence and of bound
occurence of a variable sin an expression. These notions are familiar to formal logicians. They
will be explained in a trictly formal way and in full generality in a later section.
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of rank 2. Suppose that tx,, ....., tx, are all such indices of rank 0 that their multipli-
cities in the index (1.2) are different from 0 and let these multiplicities be equal
to the numbers m,, ....., m, respectively. Then the construction of compound
expressions by means of the operator ‘}; proceeds as follows.

If the graphic symbols

(ky) (k,)
=1 1
S .1 s¢eenn y 1
N1 le
ey E(k,)
S 7 ogeeaan s r
N) Nmr

are variables in number m,, .....,m, and with indices ty, ....., t, respectively,
then we construe firstly the inscription

s
N

P kg
SNI ..... SNT
i my

which is called a prefix and contains the operator " and all the variables consi-
dered just now. Further, if the inscriptions

61,....,0)11

are “‘suitable” fundamental expressions, simple or compound, to which such in-
dices of rank 0 had been already assigned that are numerators of indices iy, .....s in
respectively, being placed in the denominator of (1.2), then the inscription

(4.2) _ A [@ps e os @Bl

is a fundamental compound expression to which we assign the index t;. of rank
0 being placed in the numerator of (1.2).

Yet it remains to explain the “suitableness” of the expressions @y, ....., &n.
For this purpose it will be enough to consider one of them, namely the ex-
pression @; where 1 <C/<Cn and the corresponding index i, being placed in
the denominator of (1.2). Let the numbers m;,,, ....., m; . be the multiplicities
of the indices tx,, ....., tx, respectively in the index i;,. The expression @, is “sui-
table” if and only if for s = 1, ....., 7 it occurs free in @, egactly m, , variables
among '
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To illustrate the case of constniction of ‘compound . expressions by n'iea‘ns of

operators of rank 2, we consider an example. Suppose that the operator 11 ] of
rank 2 has been marked with the index (1.3) of rank 2 (p. 216) ‘Then, the con-
struction runs as follows. Consider the variables

W) (@) (V)
5N03 SNy QN“)

where N, = N, and construe the prefix
xx
N
Ew g @ -
No ©SNi N2
Consider now any four such expressions

( ) ( «f (V) «(v)
My, (Oz(E o (03(&1\;’): 51\%)): (04(:51\17)1’ 51\11)2

to which the indices t,, t,, tx, t,, respectively are assigned and which fulfil the
following conditions:

(1) None of the variables E[?, ;‘1},’;, E® occurs free in the expression w,.

(2) The variable £§? occurs free in the expression w,(£%Y), but the var-
iables £, E) do not occur in the expression wy/EW).

(3) The variable End and exactly one of the variables £¢), £%) occur free in
the expression w,’ E%’)’ g,

(4) The variables £, E"” occur free in the expression w,(E%), £{), but the
variable £(? does not occur free in the expression w,(£%), EX).

Fmally, onstrue the fundamental compound expression:

L2
1 (u) (v) £ () (V)
o) &) = (V) Oy, (02(“N0)3 ; (E ) ® (le’ wz)
bNo SNi SN2

to which assign the index t, of rank 0.5

5. The diagrams of expressions

The preceding discussion on the connexion between the operators and the rules
of construction contains no precise formulation of these rules. Usually, the
formulations of these rules for artificial symtolic language contain not only the
description of syntactic relations which hold between simple expressions occurr-
ing in compound expressions, but also take into account some conventions of
calligraphy for compound expressions. It is clear to see that we have also adopted
in the preceding section some conventions of this kind.

The calligraphy, however, for compound expressions has a little importance
from our point of view. Namely, we are interested only in the syntactic struc-

5 We leave to the reader to verify that the customary constructions of compound expressions
by means of quantifiers, descriptive operators and other operators binding the variables, fall
under the second case of construction just described.
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ture of expressions and, therefore, we inted to describe the standard formalized
languages quite independently of any conventions of calligraphy assumed in these
languages.®

To our purpose we will apply the method of geometric diagrams; comp. [8],
pp. 225—226. Namely, we will represent the expressions which are constructible
on the ground of some syntactically marked vocabulary, as suitable geometric
diagrams which take into account but the simple expressions and the purely
syntactic relations between expressions occurring in compound expressions.

To illustrate the method of geometric diagrams we give below, as examples,
the diagrams of five expressions which are constructible on the basis of voca-
bulary 7' * given in the section 3.

It is not the case that
L ~ V (xeL A xeM(a)) some logician is more
x

wise than Aristotle.

=
— ~
3
3
\V; 3
t
t x
S
/\ T
83
2 3
2L M| 2
t = — tt
e
t | x 1 Tx al
1I. a Aristotle

e

6 Compare the following v. NEUMANN’S remark: ,,...wiirde ...die Bezeichnungsfrage in irgend~
einer Beziehung wesentliche Schwierigkeiten machen, so wire es ein Leichtes, sie in trivialer
Weise ein fiir allemal aus der Welt zu schaffen. Es wiirde geniigen, statt die Formeln fertig hin-
zuschreiben, bei jeder Formel ihre Entstehungsgeschichte... ausfiihrlich anzugeben.” [5] p. 333.
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HIL.  VxeLbAa A(yeL—y=2xV xct M(y)) Some logician is the
= Yoo most wise logician.
Vi
t
{ox
3
Al =
38
P g
2L N| 3
t L= t
t(y
x|t — _g-
83
8 g
TR V%
t| x § 13
T M«
by t] x x|t Y
1V. L(xeNAA(YeN—y+x=y) This number x such
x v ' that for every number
b yiytx=y.
L| 5
t
t { x
5
Al —
88
5 S
T8 AN B
/ t
} 5
t{y | 2
o ‘x",\‘ _
x S {L = |2
—
t ]y t
— t
m + y
tly x|
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[13]
V. (xeNAxe ' (3+y>9)—x>0 If x is a number y
v such that y + y > v,
then x > 0.
3
3 3
| “lw
e
5 .
; N x | x t t 0
! 3
. -
t |« L]ty
t Y
3
t X > i
+ : t
tt Y
t1y y t

These examples show that we can get rid of any problem of calligraphy of
compound expressions if we will represent these expressions by suitable diagrams.

At the same time we see that these diagrams are finite sets of plane points con-
veniently connected by vectors (arrows) and marked with suitable word-types
and corresponding indices. In other words, every such diagram can be decom-
posed into a suitable plane figure and a function which assigns in some way the
word-types of some vocabulary and their indices to the points of this figure.
Therefore, will describe at first these figures and, further, we will characterize the

corresponding functions.

6. The graphs

We consider a fixed plane and we define a kind of geometrical plane diagrams

which we will call graphs.”

7 The term graph is borrowed from the general mathematical theory of graphs. But we use

here this term in a much narrowed sense.

15 Studia Logica
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At first let us call attention to such plane figures called here compound graphs

which have the following properties:

(1) They are finite sets of points containing more than one point; these points
are called nodes.

(2) Their points, i. e. the nodes are interconnected by means of arrows (vec-
tors) called arms, in such a way that

(3) every node is an initial point or an endpoint of some arm, but

(4) there is exactly one node called the vertex which is not an initial point of
any arm and

(5) every node distinct from the vertex is an initial point of exactly one arm.

It follows that in any compound graph there are nodes which are not end-
points of any arm; these nodes are called fundamental nodes.

A node p is called a directly subordinate node to the node ¢ if the node p is an
initial point and the node g is an endpoint of the same arm.

One can enumerate, i. e. mark with numbers 1,2,... all directly subordinate
nodes to some nonfundamental node g. There are of course many such enume-
rations.

But if the nonfundamental node ¢ is not identical to the vertex then we will
take into account only one natural and univocally determined enumeration:

n (2) (3) (1) (S)

This is the counterclockwise enumeration of all directly subordinate nodes to
the given nonfundamental node ¢ distinct from the vertex.
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If the nonfundamental node ¢ is identical to the vertex, then we consider the
whole set of all counterclockwise enumerations of all directly subordinate nodes
to the vertex ¢. It is clear that the choice of one directly subordinate node p*
to the vertex ¢ distinguishes exactly one such counterclockwise enumeration
of all directly subordinate nodes to the vertex ¢ according to which the chosen
node p* is marked with number 1:

4
*
p
(3) (4 (5) (1) (2)

Besides compound graphs we also consider the simple graphs, i. e. the single
points. They have, of course, no arms. Every simple graph, however, contains
only one node which at the same time is the vertex and the only one fundamental
node of this simple graph.

Any graph I' such that

(1) the fundamental nodes of T" are divided into auxiliary fundamental nodes
and proper fundamental nodes, and

(2) if I' is compound then exactly one of the directly subordinate nodes do
the vertex of I' is distinguished just as the first in some distinguished counter-
clockwise enumeration of these nodes,

— any such graph (simple or compound) is called a special graph (simple or
compound).

It is clear that in each special compound graph for every given nonfunda-
mental node (inclusive the vertex) there is exactly one distinguished counter-
clockwise enumeration of all directly subordinate nodes to the given node. It
follows that in every compound special graph each node distinct from the vertex
may be supplied with an univocally determined number 1,2,....

We assume the convention according to which the auxiliary fundamental nodes
will be marked with circles, the other nodes with squares and the distinguished
directly subordinate node to the vertex — with an asterisk. Thus the special -
graphs may be represented as diagrams of the following examplary form:

L] O

n

simple special graphs compound special graph

15*
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In the following we will apply only the notion of a special graph and its theory
and, therefore, we assume the terminology according to which we will write hen-
ceforth graph instead of special graph.

Let ', and I, be graphs. We say that I'; is contained (or included)in 1', or
that I'y is a subgraph of I'; if the graphs T, and T, fulfil the following condit-
ions:

(1) every node of I'y is a node of T,

(2) if p is in I'y directly subordinate to g, then p is in I's directly subordinate
to ¢, and conversly, if p and g are such nodes of I'; that p is in I', directly sub-
ordinate to ¢ then p is in I'y directly subordinate to g,

(3) if pis an auxiliary fundamental node of I'; then p is an auxiliary fundamen-
tal node of I',, and conversely, if p is such a node of I'; which is an auxiliary
fundamental node of I', then p is an auxiliary fundamental node of T,

(4) if T'y is compound then the distinguished subordinate node to the vertex

in I'y is identical to this directly subordinate node to the vertex in I', which
according to the enumeration of nodes in I', is supplied -with least number.

Every graph I'; which is such a subgraph of a graph I, that every funda-
mental node in T’y is at the same time a fundamental node in I', is called a fun-
damental subgraph of T',.

In the set of all such fundamental subgraph of graph I which have a node p
of " as a common vertex, there exists one greatest, i. e. containing each
remained; it is called the fundamental subgraph determined in T' by the node p.

We say that I'y is a direct subgraph of I'y if I'; is the fundamental subgraph
determined in the graph I'; by some directly subordinate node to the vertex
of I'y. Of course, the simple graphs have no direct subgraph. We observe that in
every compound graph I' there is exactly orie distinguished enumeration of all
direct subgraphs of I'.

Let I'; be a fundamental subgraph of T',. If the graphs T'; and I', have a com-
mon vertex and if every nonfundamental node of I'; is an endpoint of exactly
one arm in I'; , then the subgraph I'; is called a branch of T',. It is obvious that
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every node of any graph I is situated on a branch of I" and, further, that every
fundamental node of I' is situated on exactly one branch of I' and, finally, that
on every branch of I' there is exactly one fundamental node.

7. The printed graphs and the sets 10(T)

Making use of the notion of a graph (i. e. of a special graph) as introduced
in the preceding section, we can represent the purely syntactic structure of ex-
pressions by diagrams and determine the corresponding sets 2(7') in a strictly
formal way and independently of any principle of calligraphy for compound ex-
pressions.

Let U be a syntactically marked vocabulary. Every ordered pair
<CE @5

which consists of a graph I" and a function @ assigning to every node p in I'
a word-type ®(p) belonging to ¥, is called a printed graph. The graph I' is called
the position of < I", ® > and the function @ is called the printing-functionof {I",® > .
It may be said that the printed graph (I, ® > is theresult of printing the word-
types of ¢t according to ® on the nodes of I'.

If 3 is the syntactic-marking-function of ¥¢ then to every word-type ¢ in 0
an index J(C) is assigned. Therefore, in every printed graph (I, ® > to every
node p of its position I' an index J(P(p)) is assigned.

Every element of the set.”’(7) of all expressions which are constructible on
the basis of 0", is a printed graph. It will appear later that it is characteristic
for the printed graphs which are expressions belonging to the set ['(7'), some
special connexion between indices assigned to nodes.

It is very easy to see that any printed graph {I',® > can be represented by
a suitable diagram, namely by the graph I, the nodes of which are marked accord-
ing to the function @ with word-types and corresponding indices. Some exam-
ples of such diagrams are just given in the section 5.

Let (T',® > be a printed graph. If I’y is a subgraph of [' then the symbolic
notation
@[T,

denotes the function ® restricted to the nodes of I'y ; the pair <I',,®|T'y > is also
a printed graph, of course.

We say that the variable-type £9 of ¥ occurs free in the printed graph {T', @ ) if
there is in I" a proper fundamental node p such that ®(p) = £ and there does
not exist such a node ¢ on the branch on which the node p is situated that ®(g)
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is an operator-type of rank 2 and ®(g*) = ¥ for some auxiliary fundamental
node ¢* directly subordinate to the node gq.

The elements of the set .2(7), i. e. the expressions which are constructible on
the basis of a syntactically marked vocabulary 7F, can be determined in the fol-
lowing inductive way. We define, firstly, the simple expressions belonging to (7))
and, subsequently, we will determine the conditions under which some printed
graphs built from expressions being just in [(7), are compound expressions
belonging to .2(7); these conditions correspond to the rules of construction
determined by the operator-types in 7', as discussed in section 4.

At the same time we define what is meant by the index of an expression belong-
ing to .L(0).

Let U be a syntactically marked vocabulary and let ¥ be the syntactic-marking-
function of 7.

A printed graph <T',® ) is a simple expression (or word) belonging to .2(0) if
and only if I" is such a simple graph that the only one node p of it is proper and @ is
such a function that ®(p) is any word-type of 7/. The index J(P(p)) assigned
to the node p is taken as the index of the simple expression (I',®>. If this
index is of rank O or 1 or 2 then the simple expression  I', ® > is called a funda-
mental word (constant or variable) or an operator of rank 1 or an operator of rank 2.

If ®(p) is a variable-type or a constant-type, then the simple expression
{T,®> is called a variable or a constant. Any operator is a constant and any
variable is a fundamental word.

We pass now to the compound expressions in .2(7"). We distinguish two cases
according to the division of operator-types in ¢+ and operators in 2(7").

*

For the first case let us assume that ﬁ is an operator-type of rank 1 in ¥" marked
with'the index (1.1) of rank 1 (p. 214) i. e.

o

3 = —

We consider a printed graph (I',®> which has two following properties:
() T' is a compound graph having exactly »n direct subgraphs I'}, ...., T,
~— enumerated just according to the enumeration distinguished in I' and
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2) o(p) = f]‘, where p is the vertex of I

x \L

r‘l . . . . . rn

Now we state: the printed graph <T',® > is a compound expression belonging
to 2(?) and its index is t, if the printed graphs (', @ Ty >,. ..., <T@ >
are expressions (simple or compound) belonging to 2(7") and if their indices are
tyy o . . . 5 ti, respectively.

Notice. It is' to see immediately that for /=1,..., n any variable-type
occurring free in {I',, ® |} > occurs free also in (I, 0.

* *
*

For the second case let us assume that :{ is an operator-type of rank 2 in T
marked with the index (1.2) of rank 2 (p. 215)1i. e.

o t
S = T i
Let us make the following assumptions:
(a) the indices tx;, ..... » tk, are all such indices of rank 0 that their multi-
plicities in the index (1.2) are different from 0;
b r<..... < k3
(c) the multiplicities of the indices tix;, .. ... s Ik, in the index (1.2) are equal
to the numbers m,, ..... , m,_ respectively;
dDm=m +...... + m, #0; ,
(e) the multiplicities of the indices txy, ... .. » tk, in the index i, are equal
(forl==1,..... » n) to the numbers m, , ..... » my , respectively;
(f) the indices tj,, ..... » 13, are the numerators of the indices i;, .. ... s iy
respectively.

We consider a printed graph ¢ I',® > which has the following properties:

(1) I' is a compound graph which has exactly m + » direct subgraphs I'y,. ...,
' Cmygs o oo o5 I'pppyy — enumerated just according to the enumeration distin-
guished in I';

(2) the first m direct subgraphs Iy, . ..., I',, are auxiliary fundamental nodes
in T', the last n direct subgraphs T',,,,,...., ", aré not auxiliary fun-
damental nodes;

(3) the function ® assigns the distinct variable-types in 7% to the auxiliary
fundamental nodes Iy, . . . ., I',,, in such a way that
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(k1) (keq)

oIy = Bt s @)= E
my
5 (7 Uey)
® (Fm—m,.-n) = ;;} 3 e v e > O (m) = ;N:
my

Do(p) = :{ , where p is the vertex of I'.

s

Y

o (ky) (ky)
S5 1 S T
Ny Nm,. :
r,..... I ) Coen

Now we state: the printed graph <I',® > is a compound expression belonging
to () and its index is f; if the printed graphs <{T'pi,®@|Tmpsa D s vnn s
{T'mtns®|Tmen > are such expressions (simple or compound) belonging to
1(TU) that

(1) their indices are t;,, .....» {; respectively and

(2) for every /=1, ...., n and for every s=1, ...., r it occurs free in
. (g (icg)
{ Tims1>®| T > exactly m, ¢ variable-types among gN§ S aeeen s Nss
1 mg

Note. If T, is such a subgraph of I" that Iy and I" have the common vertex
p and the direct subgraphs of I, are identical to the auxiliary nodes I'y, ....,
'y and if ®; = @ |I'y then the printed graph (I'y, @, > is called the prefix of
the expression {I',®>.

We have seen that they are the m variable-types Et{’ » eenees g(;::) that are printed

1 m,
on the m auxiliary fundamental nodes I';, ...., T, of the prefix of (T, ®) . Now
let us consider in a more detailed way the index i, and the printed graphs
Tl @ Ty > forl=1,...,n Let i = myy o, +m

. . . =k o
If =0 then i, =1; and no variable-type among S [’,...., S,r occur

free in Ty, ® Ty > . Therefore, any variable-type occurring free in
{ Tty ©| Ty > occurs free alsoin (T, 0> .

t,
o - . 2 . . .
If /0 then i, = h ' and there are exactly i such variable-ty-
Iyeeees 1
-44) < (K (K (¢ i
pes ;Evll yeeens ;Ev’i) among ;;’{) yeennn R g(NI) that ;Evll) yaeees Egv’: are enumerat-
1 .
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ed according to the enumeration of variable-types Eﬁ;{), ..... R Eﬁ::) and
1 my
. ! I .
the variable-types E(Nll) sevees Egv;) occur free in < [y, @ | Ty > but they

do not occur freein <I,®>.

Thus we have determined which printed graphs belong to the set /(7). In other
words we have defined, for every syntactically marked vocabulary 7, the set 2(7)
of all expressions which are constructible on the ground of 7'. At the same time
we have defined an assignement according to which to every expression < I',® >
belonging to /2(7) there is assigned an index

J(0s<T,@)

namely the index of the expression {I',®> belonging to (7).

There are always simple expressions in /2(7"). But there exist, of course, such
syntactically marked vocabularies ¢ that the corresponding sets 1’(7}) contain
no compound expression.

The index J(T,<T,@>) of a simple expression (I, ® > in (') may be
of rank 0 or 1 or 2. But the index of any compound expression in (') is of rank 0.
It is easy to see that in any compound expression { I',® > if pis the vertex of the
graph I" then the word-type ®(p) assigned to it, is an operator-type and the
index of this compound expression < I, ® > ie. J(U,{ T, ®>) equals to the
numerator of the index J(®(p) ) assigned to the vertex p.

Every expression <[, ® > in 2(70)such that its index is of rank 0 is called
a fundamental expression. Each nonfundamental expression belonging to (7))
is a simple expression, namely an operator.

Let (I',®> be a fundamental expression in /’(¥") and let I'y be a branch
of T. If p is a fundamental node situated on I'j then the word-type ®(p) is
a fundamental word-type and the index J(®(p)) is of rank 0. On the contrary,
if p is a non-fundamental node situated on I'; then the word-type ®(p) is an
operator-type and the index J(®(p)) is of rank 1 or 2. Therefore, for every
node p in I': the word-type ®(p) is a fundamental word-type and the index
J(@(p)) is of rank O if and only if the node p is fundamental in I'.
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We introduce some relations between expressions belonging to .C(7).

Let (T,®> be an expression. The expression Iy, @, > is a subexpression
of <T,®> or is contained (or included) iz {(T,®)> if and only if Ij is
a subgraph of " and &, = @|T,.

It follows that if (T'y,®,> is a simple expression then (T, @, > is a sub-
expression of (I, ®> if and only if the only one (fundamental proper) node
p, of Ty is identical to some nonauxiliary node p in I" and ®y(p,) = O(p).

Similarly, if (T ®,> is a compound expression then Iy, ®,> is a sub-
expression of (I, ®> if and only if there is a nonfundamental node ¢ in I
such that I’y is identical to the fundamental subgraph determined in I' by
the mode ¢ and ®y(p) = ®(p) for each node p in I,

The expression { [y, @, > is said to be a direct subexpression of the expression
(T, ®> if T, is a direct subgraph of I" and ®, = ®|I',. Every direct subexpres-~
sion is an expression. It follows that the printed graph < T'y, @, > is a direct subex-~
pression of the expression < I', ® > if and only if there exists in I" a nonfundamental
node ¢ which is directly subordinate to the vertex of I" and such that I'; is iden~
tical to the fundamental subgraph determined in I' by ¢ and $,(p) = ©(p)
for each node pinI'y. There are, of course, no direct subexpression in any sim-
ple expression.

The direct subexpressions of a compound expression (TI', ®> are called its
members or arguments. The simple expression { T'y, ®, > being an operator such,
that the vertex pyof <T',® > is the only one proper node of I'y and ®,(p,) = P(p)
is called the %ead of the compound expression < T, ®>. The head (T, ®>
being a subexpression, is not a direct subexpression in (T', ® >. It is clear that
there are exactly » members in the compound expression < I, ® > if and only
if the denominator of the index of the head (T, ®,> is a sequence of exactly n
indices.

Let <(T'y, ®,> besucha printed graph that I', is a simple graph and ®,(p,) =%
where p, is the only one node of Iy, If p, is an auxiliary node in I’y then
{ Ty @y > is not an expression and, therefore, < I'y, ®, > cannot be a subexpres-
sion of any expression. If p, is a proper node in I'y then < [y, @y > is a variable
and it may be a subexpression of some expression {I',® >. Then,p, is identical
to some fundamental proper node p in I' and @, (p,) = @ (p) = §%. Consider
the branch in I" on which the node p is situated. If there is such a node g on this
branch that @ (g) is an operator-type of rank 2 and @ (g*) = £% for some
auxiliary node ¢* directly subordinate to the node ¢, then we say the variable
{Typ;Py > to be bound in { I',® >. If on the branch on which the node p is situated
there does not exist such a node g that @ (g) is an operator-type of rank 2 and
O (¢*) = £ for some auxiliary node ¢g* directly subordinate to the node ¢, then
we say that the variable (T, ®,> is freein (I',®>.
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An expression is called closed if no variable is free in it. An expression is called
open if no variable is bound in it.

Let <T'y,®,> and <T,,®,> be two expressions and let ¢ be such one-to-one
correspondence between the nodes in I", and those in T, that:

(1) a node p is directly subordinate in I', to the node ¢ if and only if the node
< (p) is directly subordinate in T, to the node ¢(g),

(2) a node p is auxiliary fundamental node of I, if and only if the node ¢ (p)
1s auxiliary fundamental node of I',,

(3) if the graph I, is compound then if p* is the distinguished directly subordi-
nate node to the vertex of ', then ¢ (p*) is the distinguished directly subordinate
node to the vertex of I',.

Every such correspondence we call an isomorphism of ', and T',, and we intro-
duce some notions of isomorphism of the expressions <T";,®; > and (I, ®,>.
Suppose that there is an isomorphism ¢ of I'; and T,.

If for each node p in T',:
®,(p) = Ox(0(p))

then the expressions < Ty, ®, >, <y, ®,> are said to be isomorphic (or equi-
form), symbolically

(T 0> =T 0>
If for each node p in I'; such that ®,(p) is a constant word-type:

0y(p) = Dx(e(p))

then the expressions {I';, ®, >, < T, ®,> are said to be weakly isomorphic (or
-weakly equiform), symbolically

(Tp® > = (To®)
If for each node p in I':
I (@4(p1) = I (P0(2)))

then the expressions < I';, @, >, { Ty, @, > are said to be syntactically isomorphic
(or equal with regard to the syntactic structure), symbolically

(Tp®;> = Ty ® >
The relations =, =, = are equality relations (i. e. reflexive, symmetric and
transitive relations) in the set 2(7}). They fulfil the following conditions:
if <T@ > =Ty, ®> then (T, ¥, > = (T 0,

and .
if (T, @ > =T, &> then KT @y > =<, 9,0
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Making use of the relation = we can generalize the relation of being-a-sub-
expression. Namely, we say that the expression {I'y,®,> is a subexpression in
a generalized sense of the expression  I',® > if and only if there is a subexpression

in the former sense < f,é > of the expression < I'.® > such that

(T, > = <T0>

In an analogous way one can generalize the relation of being-a-direct-subex-
pression.

8. The standard formalized languages

To every expression 1 in the set (’(7) there is assigned an index J(¢,n), na-
mely the index of the expression 1. Therefore, the set (’(¥") may be divided into
classes of expressions to which the same index is assigned.

For every index j the class )(7,}) of expressions in [’(7") such that any
expression n belongs to it if and only if

J(T,m) =}

is called the semantical category j of expressions in (7).

Every category (U, t,) where & == 0,1, ..., is called a fundamental category or
category of rank 0. Besides the fundamental categories there are categories of hugher
rank. The category (’(0,}) is of rank 1 or 2, if the index j is of rank 1 or 2.
Thus every expression belonging to some category of higher rank is simple ex-
pression, namely an operator. It follows that every compound expression belongs
some fundamental category. On the other hand, every variable is a simple ex-
pression belonging to some fundamental category. _

One fundamental semantical category of expressions shall be distinguished
as the category of sentences. Namely, we determine that the category

(0, to)

is the category of sentences. In other words we say that an expression n is
a sentence if and only if

3(0, 'll) =1

The distinction of the category of sentences is the only to be made from purely
syntactical point of view among the fundamental semantical categories of ex-
pressions. In other words there is no syntactical difference between two non-
sentential fundamental semantical categories.

If there are sentcnces in the set ((7") and if every simple expression is a sub-
expression of some sentence belonging to /’(7") then we say that the syntactically
marked vocabulary 0 is syntactically coherent. Of course, there are syntactically
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incoherent vocabularies, particularly there are vocabularies such that the cor-
responding sets of all constructible expressions contain no sentences.

Now we state that the set 2(7) of all expressions which are constructible on
basis of the syntactically marked vocabulary 0 is a standard formalized language
generated by the vocabulary U if and only if the vocabulary is syntactically co-
herent.

"The set 2(T *) where U * is the vocabulary considered in the section 3 is a stan-
.dard formalized language. We give some other examples of standard formalized
languages.

The simplest formalized languages considered in formal logic are the so called
sentential languages. These languages can be represented as standard formalized
languages generated by vocabularies containing infinite series of constant word-
types (for example the following graphic symbols: p,, p,, ..., p,,, -..) marked with
the principal index 8 and a set of operator-types of rank 1 marked with some of
the indices

3 3 3
87 33’ az3’

On the other side we consider a modified form of the language of the so called
general theory of classes as in TARSKI’s sense [6]. This example shows express-
ly the difference between the index-method applied here and the index-
method employed formerly by K. AJDUKIEWICZ [1], {2].

We present the vocabulary 7, of the language of the general theory of classes
in the manner applied before in the case of the vocabulary 0 * considered in the
section 3. We assume that 2= 1,2, ....

tyc xf,  xf0, ..., x®, ..., (variables of the k-th kind)

ty ek: (predicates of being-an-ele-
ity ment-of-a-class)

ty K :

- A (the general quantifiers)

0

te

tk+1 K R

: E (the abstraction-operators)

0

ty

t . .

t~0 ~ (the sign of negation)

0

t . . .

0 — (the sign of implication)
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We present some examples of diagrams of expressions belonging to .2(7,);
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These expressions may be written in the ususal calligraphy as follows:

2 2 2
e E xi”e x{s’

D

wml oo

2V e x £

1 1 2
~ (xi2)e x(13) — /\ ([ E xil) e x§2)]€x(13)
x) !
Customarily some special principles concerning calligraphy are adopted and in-
stead of expressions given above one writes the following simplified graphic ex-
pressions:

Pex?  or A2>D)

xPe E xPex®

@
1

~(xPexP)— A ([E «PexP]ex™)
J:(22) I(ll)

In such cases the graphic symbols of the form e, A, E aresyntactically am-~
biguous, i. e. their occurences in different expressions may belong to different
semantical categories, and they may have the following ambiguous indices:

t0 _to i tk-a-l
ettty
te te

Further, we note that if we adopt some suitable calligraphical conventions
then the graphic symbol e may be quite eliminated and replaced by the ordering
of remaining graphic symbols.

The example just considered is an illustration of the fact that in artificial
symbolic languages which are considered in formal logic, some conventions of
calligraphy are adopted and that these conventions may conceal in some degree
the purely syntactical structure of expressions in these languages. In order to
see this structure of expressions we have to disregard the calligraphy of expressions
and to take into account the general ideas of standard formalization as presented
in section 2. Sometimes the application of these ideas to the given artificial sym-
bolic language mey be done easily by introducing suitable modification in its calli-
graphy. In this manner we can reach the conclusion that any artificial symbolic
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language considered in formal logic falls under the scheme of standard formali-
zation i.e. it is a standard formalized language generated by suitable vocabulary.®
* *
*

Every standard formalized language is generated by suitable marked and co-
herent vocabulary. Therefore, some relations between standard formalized lan-
guages can be reduced to the relations between corresponding vocabularies. The
most important of such relations are the relation of being-a-sublanguage (or of
containing or of including) and the relation of synractic-structure-preserving-
translation.

In the following definitions we make use of the notion of a permutation of
secondary indices. This is strictly connected with the fact of the non-existence
of any syntactic difference among the non-sentential fundamental semantical ca-
tegories of expressions.

Let 7', and U, be marked and coherent vocabularies and let }, and J, be cor-
responding syntactically-marking-functions in these vocabularies.

If every constant-type in 7', is a constant-type in ¥}, and every variable-type
in 7, is a variable-type in 7', and if there is a permutation f of indices such that
for each word-type T in 7,:

J=(0) = f(5:(D)

8 It should be noted that in the case of CHURCH’s simple theory of types [4] for instance, it
will be convenient to use another set of secondary indices of rank 0. Namely we define the set
of all indices of rank 0 in the following inductive way: (1) tp is the principal index of rank O,
(2) t; is the first secondary index of rank 0 and (3) if to and {g are indices of rank O then i(qp)
is also an index of rank 0. Thus, in the vocabulary which generates the language of Church’s
simple theory of types we encounter besides fundamental word types an infiinite set of opera-
tor-types of rank 1 which are called application-operaror-types and marked with the indices of
rank 1

te
tap) 18

and an infinite set of operator-types of rank 2 that are called A-operator-types and marked with
the indices of rank 2
tap)
la
tp
The customary conventional calligraphy adopted in the language of Church’s simple theory
of types implies that in the expressions of this language the ) -operator-types are printed by means
of graphic symbols of the same form
A

and the application-operator-types are not printed at all because they are concealed in the ordering
of other inscriptions. '

It is clear that any change in the choice of the infinite set of secondary indices of rank 0 does
not violate in any way the essential principles of the scheme of standard formalization.
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then we say that the language (2(7',) is contained (or included) in the language
L(T,) or that O(T,) is a sublanguage of 12(T,).

If (7)) is a sublanguage of () and if f is the corresponding permutation
of indices then every expression n in 2(7,) is also an expression in ((7,) and
J(Uem) = ATV 15m))

1. e. every expression belonging to the category .0(7,,i) belongs to the cate-
gory (T, f(1)). Therefore, every sentence in /’(7,) is a sentence in 2(T,).

Now let f be a permutation of indices and let ~ be a relation holding bet-
ween the word-types in the vocabulary 75, and the word-types in the vocabulary
T, If f and ~ fulfil the following conditions:

(1) for every word-type ¢, in 7, there exists a word-type , in 7, such that
G Z,CQ-

(2) if ¢, ~ T, then T, T, are constant-types in 75, and U, respectively or
Ty, Co are variable-types in ¢, and T, respectively,

(3) there does not exist two different variable-types &', £’ in 7}, such that
€'~ E and " ™ E for some variable-type t in ',

(4) if T, 5T, then J, () = f(E:(E0)
then we say that the relation ™~ is a translation of U, into Ur, with respect to the
permutation f.

Every translation of vocabularies can be extended to a translation of the corres-
ponding languages. Namely, if the relation ~ is a translation of 7', into U, with
respect to f, then we can define a relation that we denote by the same symbol ~
and which holds between theexpressionsin (7 ,)and the expressions in (T,).
This relation can be called 2a syntactic-structure-preserving-translation of 2(U )
into (2(T,) generated by the given translation of 7', into U, with respect to the
permutation f. In defining of it we procede as follows.

If <TW, D> is a simple expression in ((7,) such that p, is the only node of
I'®, then we state that

KTW, pW S ~ (@ G
if and only if (T'®, ®® > is asimple expressionin [’(T,) and @O (p,) ~ @@ (p,)
where p, is the only node of I'®,

Now let < I'®D,0M > be a compound expression in (7). We consider two cases
corresponding strictly to these of building the compound expressions considered
in section 7. Taking into account these two building-cases we procede as follows.

In the first case if p, is the vertex of I'; then ®®(p,) is an operator-type of
rank 1 in ¢, and there are exactly » direct subexpressions

KT 0T >, .. ,» TP, 00|17
in (TW®, @M We state in this case that
(TW, Q0> ~ (IO, >

16 Studia Logica
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if and only if <IT'®,®® > is a compound expression in .2(T},) such that, firstly,
there are exactly » direct subexpressions
TP, 0@ TP 5, ... s <T7,0®|T2
in (I'®e®> and
(TP, 001> & <IP, 0@ |1 >

< F(l) (I)(1) l F(l) > < 1‘\_(’?, (I)(2)| I‘g) >
and, secondly if p, is the vertex in T'® then ®W(p ) ~ @(p,).

In the second case if p, is the vertex of I'”then ®™(p,) is an operator-type
of rank 2 in 7*, and there are exactly m-+n direct subgraphs ', ..., I, T

W e
'Y, . in W such that I'Y,.....,[Y are auxiliary fundamental nodes in I'® and

(TY 0P T >, oL , <T¥,,20(TD
are all direct subexpressions in { I'®, ®® % We state in this case that
KT, 00> ~ (T, p@ >

if and only if < I'®,0® >is a compound expression in .2(7,) such that there are
exactly m + n direct subgraphs I'?, ..., '@, T'®, _, .., T@  in ['® and, firstly

m?

(1 (1) (2) 2
(T 0 TR0 > = (T, 0@ T2y, >

Tiins @O TR > 2 (T, @ T >
secondly
QW (I'V) ~ @ (1“(12))

QO(TR) ~ 0 (1)

thirdly, if p, is the vertex in I'® then @MW (p,) ~ ®®@ (p,).

Thus we have defined the syntactic-structure-preserving-translation ~ of
L(T,)into L2(T,) generated by the given translation of 7', into 7", with respect
to permutation of indices f. It is not difficult to see this the translation has
the following properties.
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For every expression 7, in (2(7,) there exists an expression ), in .2(7},) such
that n; ™ m, and J(T gy me) = f(F(T 1, my)).

If <T@, 0> ~ ('@, @ > then there exists an isomorphism ¢ of
the graphs I'® and I'®, and for every node p of I'® :

OW(p) = O(g(p))
J{PD(p)) = f(T(2(w(p)))

The relations of being-a-sublanguage and of translation just introduced, may
be applied in the cases of extending a language (for instance, in the process
of introducing new words by means of definitions or postulates and in the process
of introducing a new kind of variables). But we do not consider here these special
problems. Similarly, we do not consider here some problems connected with
the equality relations =, =, =,

We pass to the second part of our paper where we will consider the fundamen-
tal properties of semantical reference.’

Allatum est die 7 Octobris 1957

9 The second part will be published in the next volume of ,,Studia Logicars.

18*
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