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Tabu search is a metastrategy for guiding known heuristics to overcome local 
optimality with a large number of successful applications reported in the literature. In 
this paper we investigate two dynamic strategies, the reverse elimination method and 
the cancellation sequence method. The incorporation of strategic oscillation as well as a 
combination of these methods are developed. The impact of the different methods is 
shown with respect to the traveling purchaser problem, a generalization of the classical 
traveling salesman problem. The traveling purchaser problem is the problem of deter- 
mining a tour of a purchaser buying several items in different shops by minimizing the 
total amount of travel and purchase costs. A comparison of the tabu search strategies 
with a simulated annealing approach is presented, too. 
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1. Introduction 

Due to the complexi ty  of  a great variety of  combinator ia l  opt imizat ion prob- 

lems, heurist ic algori thms are especial ly relevant  for  dealing with these problems.  

Within the field of  heuristics recent metastrategies for  guiding, e.g., determinis t ic  
exchange  procedures ,  have been proven to provide successful  tools to ove rcome  local 

optimality.  Fol lowing this theme, we investigate the application of  the tabu search 
metast ra tegy for  solving a specific combinator ia l  optimizat ion problem. For  further  
successful  appl icat ions  of  this kind of  metaheuris t ic  to a wide range o f  p roblems  
repor ted in the l i terature see e.g. the two-part  survey Of Glover  [8,9],  G love r  and 

Laguna  [10], VoB [26], and the contributions in Glover  et al. [11]. 

One of  the basic ingredients of  tabu search is the tabu list management, which 
concerns  updating a tabu list, i.e., deciding on how many and which moves  (transi- 

tions f rom a feasible solution to a ne ighbourhood solution) have to be set tabu within 
any iteration of  the search. In this paper we investigate two dynamic  strategies for  
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managing tabu lists: the cancellation sequence method (CSM) and the reverse elimi- 
nation method  (REM). The impact of the different methods is shown with respect to 
the traveling purchaser problem, a generalization of the classical traveling salesman 
problem. 

In section 2 we characterize the traveling purchaser problem and provide ideas 
for obtaining initial feasible solutions. Furthermore, previous improvement procedures 
are considered. Section 3 is devoted to the basic ideas of CSM and REM. A combi- 
nation of these two methods as well as the inclusion of strategic oscillation is de- 
scribed in section 4. Coming back to the traveling purchaser problem in section 5 
gives us a suitable field for numerical investigation of the methods under considera- 
tion. The paper concludes with some final remarks. 

2. The traveling purchaser problem 

There are numerous extensions and generalizations of the well-known Traveling 
Salesman Problem (TSP). One generalization of  wide applicability is the Traveling 
Purchaser Problem (TPP) (see Ramesh [22], Golden et al. [12], Ong [18], Vo13 [24]). 

2.1. PROBLEM STATEMENT AND APPLICATIONS 

The problem can be stated as follows: We are given a set V = { 1, 2 ..... m } of m 
markets, a depot (domicile or home-market) s E V, and a set 1 = { 1, 2 ..... n } of n items. 
For all possible connections between two markets i, j ~ V, let c o denote the cost of 
travel from i to j. If item k is available at market i, dik denotes the cost of item k at 
market i, otherwise dik is set to infinity. The TPP is to find a tour starting and return- 
ing to the depot s while visiting a subset of the m markets to purchase each of the n 
items at one of these markets, such that the total of travel and purchase costs is 
minimized. 

To be clear of pathologies the following is assumed: 

• Each item is available in at least one market. 

• The traveller/purchaser may pass through a market any number of times with- 
out actually purchasing any item there. (This becomes relevant when graphs 
are considered for representing the set of  markets which are not complete.) 

• The traveller may purchase as many items as there are available at each market. 

In addition, Golden et al. [12] claim that no items are available at the depot. 
This may be neglected by choosing suitable values dsk, so that stock-keeping can be 
taken into account (but without regarding time-dependent stock-keeping costs, i.e., 
taking into account consideration of the availability of items at the domicile s at a 
certain fixed cost per time unit). 
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Figure 1. TPP example. 

Figure 1 visualizes an example of the TPP with a tour through the depot s and 
a subset of three additional markets shown in boldface. Each item is available in at 
least one of the markets the purchaser runs up to. 

Applications of the TPP are quite frequent. Besides some obvious applications 
directly derived from the problem description, another interesting application of the 
TPP concerns the scheduling of n jobs on an m-state machine. To change the state of 
the machine from state i to state j corresponds to a set-up time of cij, and to process 
job k at state i corresponds to processing time dik. The problem is to find a processing 
sequence starting and ending at a certain state s, so that each of the n jobs is 
processed on a specified state of the machine while minimizing the makespan (or 
maximum completion time), i.e., the total amount of set-up and processing times. This 
problem is easily verified to be a TPP as market i corresponds to machine state i and 
item k corresponds to job k, whereas the cost values coincide with the set-up and 
processing times, respectively. 

Some further applications are given as the TSP is a reduction of the TPP. This 
is just the case when m = n and each market carries only one item. This also shows 
that the TPP is an NP-hard problem since the TSP is one (see Garey and Johnson [7]), 
indicating that it seems that only problems of moderate size can be solved by an exact 
procedure. 

Since in real-world problems visiting a market (and e.g. queueing up and wait- 
ing at the cash-desk) is consuming time that can be associated with some costs, we 
therefore introduce a fixed cost for visiting each of the markets. For each i ~ V, le t~  
denote the fixed cost of  visiting market i. Whenever one or more items are purchased 
at market i, one has to take 3] into account. So we are given a traveling purchaser 
problem with fixed costs. When ~ = 0 for all markets i, the problem reduces to the 
TPP. (Furthermore, whenever we deal with complete directed graphs, the )~-values 
need not be explicitly considered because they may be included within the arc 
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weights. Note that all procedures described below may equally be applied to directed 
as well as undirected graphs, despite the fact that our experiments are conducted on 
data with fixed costs on undirected graphs.) 

A somewhat different application can be motivated from architectural aspects 
of  certain ring networks, e.g. in high capacity telecommunications networks with 
reliability constraints. Here, markets may refer to distribution panels and items to 
devices or terminals that have to be spanned from the installed distribution panels in 
a star-like way. Note that there is a close relationship to various generalized Steiner 
problems in graphs (cf. Vo13 [25]). 

Recalling the TPP as an extension of the TSP gives an obvious but impractical 
way of solving the problem exactly by applying exact algorithms for the TSE If we 
solve a TSP with respect to any subset of the m markets and choose that one which 
minimizes the total of  travel, purchase, and fixed costs, we obtain an optimal solution 
for the TPP with fixed costs. Since this might not be the best approach for solving the 
problem exactly and even the problem is NP-hard, in the sequel we refer to heuristics 
for the TPP. Note that the only exact approach for the TPP we know from the open 
literature is a lexicographic search procedure given by Ramesh [22], who presents 
numerical results for problems with up to 12 markets and 10 items (without consid- 
ering any fixed costs). 

2.2. FINDING INITIAL FEASIBLE SOLUTIONS 

Next we describe the basic ideas of the ADD-procedure and the DROP- 
procedure that were developed for location models e.g. in Jacobsen [13] and applied 
to the TPP in Vo13 [23]. Similar procedures are applied, e.g., for the multiconstraint 
zero-one knapsack problem in Dammeyer and Vo13 [4], for clustering problems by 
Osman and Christofides [20], and for the generalized assignment problem in Osman 
[19]. 

The following notation will be used: 

V = { 1 ..... m } : set of markets the purchaser may visit, 

~.:= V-{s}, 
Vf C_ V : set of so-called "forbidden" markets the purchaser does not visit, 

Vr C_ V : set of so-called "run up" markets the purchaser visits, 

V,, C V : set of so-called "undecided" markets for which it is not yet decided whether 
the purchaser runs up to them or not. 

A partitioning of V into Vf, Vr and V,, will be referred to as a partial solution 
iff V u is non-empty and all items are available at least at one of the markets in Vr U V u. 
A partitioning of  V into Vf and Vr (V~ = •) is a feasible solution iff all items are 
available at least at one of the markets in Vr. A vector x = (xl ..... x,n) of binary vari- 
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ables may be used to indicate which markets are included within a solution (X i = 1) or 
excluded (xi = 0, i.e. it is "forbidden" to purchase any items at market i). That is, any 
tour through the markets of V r runs up to exactly those markets i with value x i = 1 
(with respect to a solution a market is said to be "run up to" iff it is included in the 
solution). 

The ADD-procedure is a greedy heuristic. Initially, Vr = {s }, V~, = V.,., i.e., no 
market (despite the depot) is run up to, all markets are undecided and the objective 
function value is Z = ,,,, (or the sum Y~kdsk, when items are available at the depot). In 
each step, the procedure adds to Vr that remaining element of V u of the known partial 
solution which provides the largest reduction of Z, such that the new partitioning 
remains a partial solution or becomes a feasible solution if V,, = 4~. If no more reduc- 
tion of Z is possible, then define Vf:= V~,, V, : = ¢, and the procedure terminates with 
a feasible solution. Given an initial cycle or (sub)tour T, adding a market may be 
formalized as follows: Determine a market p ~ V,, and (adjacent) markets i, j ~ Vr such 
that the following quantity (savings) is maximized over all possible choices of p, i, 

and j :  

Cij -- (Cip "k- Cpj ) h- ~ max{min{dhklh E T} - d p k ,  O } - ft'" (1) 
k = l  

The purchaser does not use edge (i, j )  any longer (i.e. savings of cij). Instead, he runs 
up to market p through edges (i, p) and ( p , j )  (i.e. negative savings of Cip +fp + cpj). 
Additional savings are obtained for each item that may be purchased at p at a cheaper 
cost than at any other market of the previous tour T. 

For ease of description within the subsequent consideration we refer to the 
process of adding a market to a solution as ADD-step. (Note that this notation is in- 
dependent from the fact whether the solution is feasible or not.) That is, the described 
ADD-procedure consists of a number of at most m - 1 consecutive ADD-steps. Since 
in each ADD-step no revision of decisions taken in earlier steps with respect to run 
up markets is allowed, the ADD-procedure may be characterized as a construction 
method. This procedure has been proposed by Golden et al. [12], whereas modifica- 
tions concerning a suitable choice of the first market to form an initial tour have been 
given in Ong [18] and Vo13 [24]. Here, we build an initial tour T = (s, i, s), where i ~ V, 

m i n i m i z e s  Csi + ~ .kd ik  + f i  + Cis. 
Like ADD, the DROP-procedure is also a greedy heuristic. Generally speak- 

ing, it is an inversion of the ADD-procedure. Initially VU= ~ and Vr = V, i.e., each 
market is run up to, each item is purchased at the cheapest price and a cycle or tour 
through all the markets has to be generated. The value of the objective function Z is 
the sum of the travel costs of the cycle, the cheapest purchase costs of each item and 
the fixed costs of all markets. Starting with this feasible solution, the procedure in 
each step drops that market which gives the largest reduction of Z. If no more 
reduction is possible, we terminate with a feasible solution. This procedure has been 
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described as a so-called tour reduction heuristic by Ong [18]. The initial tour is 
determined by applying some TSP heuristic (e.g. an insertion method by Karg and 
Thompson [14] and 3-opt by Lin and Kernighan [16]). 

Corresponding to the above notation, we refer to the process of dropping a 
market from a solution as a DROP-step. Furthermore, unless explicitly stated, we 
assume for both, ADD- as well as DROP-steps, that they are performed in a greedy 
fashion, i.e., the best possible choice is made for the respective step. Note that for a 
given tour T, the effect of a DROP-step may be calculated in a similar way as the 
savings of an ADD-step in (1) above. 

2.3. DETERMINISTIC EXCHANGE PROCEDURES 

Next we describe deterministic exchange procedures based on the concept of  
ADD and DROP as they have been proposed by Vo13 [24]. Given a feasible solution, 
markets will be exchanged by using ADD- and DROP-steps in the following two 
approaches: 

In the first approach (called IMP1) we start with a partitioning of V into Vf and 
Vr which represents a feasible solution. With DROP we are searching for that market 
from Vr whose exclusion gives the best improvement of the objective function value 
Z or represents the smallest increase of Z, if no decrease is possible. With ADD we 
try to improve the obtained (not necessarily feasible) solution until no more reduction 
of Z is possible (and the obtained solution by construction is feasible). The ADD- 
steps will be repeated until one market which leads to an increase of Z would be 
added within the ADD-part (i.e., ADD is applied as long as improvements of Z are 
possible). That is, one iteration of IMP1 consists of exactly one DROP-step followed 
by a number of consecutive ADD-steps. IMP1 is terminated after a complete iteration 
whenever any market, which had previously been dropped throughout the procedure, 
was added again in the ADD-part. (For the sake of completeness, let us note as an 
exception that the depot s will not be dropped, even if no other market is run up to.) 

Of course, the above approach may be modified by changing ADD and DROP 
within the described procedure, resulting in the second approach called IMP2. That 
is, each iteration of IMP2 consists of exactly one ADD-step followed by a number of 
DROP-steps. 

For numerical results on these methods, the reader is referred to Vo13 [24]. Here, 
they will be applied for determining initial feasible solutions and serve as a basis for 
local search procedures. Based on IMP1 and IMP2 we have two possible neighbour- 
hood definitions, where a move corresponds to an iteration of IMP1 or IMP2, respec- 
tively. That is, a move consists of  exactly one DROP- or ADD-step combined with a 
number of ADD- or DROP-steps, respectively. Both approaches may be referred to as 
combined DROP- and ADD-procedures (or combined ADD- and DROP-procedures, 
respectively) and will be applied within local search methods to be described below. 
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2.4. SIMULATED ANNEALING 

Simulated annealing is a metaheuristic based on iterative improvement 
principles and has its origins in the simulation of controlled cooling of material in a 
heat bath. Based on the algorithm of Metropolis et al. [17], at each iteration of the 
algorithm a new configuration (neighbourhood solution) is generated by some pertur- 
bation of the current one. If the new configuration gives an improvement, i.e. results 
in a decrease in energy, it is accepted. Otherwise it will be accepted with a certain 
time-dependent probability, based on some temperature, which goes to zero as the 
number of iterations increases. A general outline of a simulated annealing procedure 
for a minimization problem may be described as follows (see, e.g., Dowsland [6] for 
a recent survey on simulated annealing). 

Given a feasible solution x* with objective function value Z*, let x : = x* with Z(x) = Z*, 
choose an initial temperature T > 0 and a temperature reduction factor 8 ~ (0, 1 ). 

Iteration: 

while  stopping criterion is not fulfilled do begin 

(1) randomly select an admissible neighbourhood solution x '  of x with objective 
function value Z(x');  define AE := Z(x')  - Z(x) 

(2) decide on the acceptance of x' :  

if  AE < 0 then 
accept x '  and perform exchanges: x := x', Z(x) := Z(x'), 
if  Z(x) < Z* then Z* := Z(x), x* := x endif  

else 
accept x '  with probability exp( -AE/T) :  generate a uniform random number 
y ~ ( 0 ,  1); 
i f  y< e x p ( - A E / T )  then perform exchanges: x := x',  Z(x) := Z(x')  endi f  

endi f  
if  no significant change for a specified number of iterations then reduce T: 
T : = 6-  T endi f  

endwhi le  

Result: x* is the best of all determined solutions, with objective function value Z*. 

Following the basic simulated annealing philosophy, the cooling schedule is 
defined by specifying parameter T. First an initial value of T is pre-defined at a rela- 
tively high value so as to accept most changes in the beginning of the search, and 
then a scheme for reducing T during the search should be defined. Often, this scheme 
is denoted as a temperature function together with a number of repetitions (epoch) for 
deciding how many changes for each temperature should be performed. 

For an implementation of simulated annealing for the TPP we refer to VoB [24], 
who applies the above procedure with the following parameter setting. The initial 
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temperature is chosen to be a problem-dependent value, i.e. 5(n + m). This temperature 
is reduced by a temperature reduction factor of ~= 0.6, and a number of 10 iterations 
defines an epoch. At the end of every epoch we check for an equilibrium. In the case 
that an equilibrium has been obtained (i.e., no significant change of the objective 
function value has occurred throughout all iterations of the most recent epoch; all 
these objective function values differ only by a sufficiently small nonnegative value, 
say 0.01, and no improvement of Z* has occurred) the temperature is reduced. Further- 
more, the temperature is reduced at the latest after 20 epochs even if no equilibrium 
has been obtained. After every fifth iteration, a 3-optimal exchange procedure is 
applied to the actual tour (because in general finding an optimal tour without consid- 
ering the items is already an NP-hard problem, and the choice of where to add or drop 
respective markets is approximate and need not be optimal). Two versions are adapted 
for comparison in this paper. 

In SAI each iteration consists of exactly one DROP-step and a number of 
ADD-steps. We first check all possible DROP-steps to find the most improving one 
deterministically. If no such step exists, a market being dropped is randomly chosen. 
Then, as long as ADD-steps are improving the solution, they are performed in a greedy 
fashion. If at a temperature greater than 0.1 (this value was chosen to be different 
from 0 as a means for a stopping criterion) only deteriorations are possible, a market 
to be added is randomly chosen. It is determined whether to accept this choice or not 
as is usual in simulated annealing (see (2) in the outline above). During the whole 
search we try to keep the six best solutions and after termination of the simulated 
annealing procedure we check for all these solutions whether they can be improved 
with IMP1. 

The same proceeding applies to SA2, too, but with exchanging DROP- and 
ADD-steps. That is, whereas the rationale behind SA1 is the principle idea of IMP1 
within the context of  simulated annealing, for SA2 it is that of IMP2. Therefore, each 
iteration consists of exactly one ADD-step and a nonnegative number of DROP-steps, 
whereas only the acceptance of the last DROP-step of each iteration is checked by the 
simulated annealing process (see (2) in the outline above). 

3. Tabu search: Dynamic tabu list management 

In this section we investigate two dynamic strategies for managing tabu lists: 
the cancellation sequence method  (CSM) and the reverse elimination method (REM). 
First some basic ideas of tabu search are described and then CSM and REM are 
treated. 

A transition from a feasible solution to a transformed feasible solution is re- 
ferred to as a move which may be described by a set of one or more attributes. These 
attributes (properly chosen) can become the foundation for creating an attribute based 

memory.  Following a steepest descent/mildest ascent approach, a move may either 
result in a best possible improvement or a least deterioration of the objective function 
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value. Without additional control, however, such a process can cause a locally opti- 
mal solution to be re-visited immediately after moving to a neighbour, or in a future 
stage of the search process, respectively. 

After providing a move definition with respect to the TPE the basic ingredients of 
tabu search as well as the methods CSM and REM will be discussed subsequently. 

3.1. MOVE DEFINITION 

With respect to the TPP, a partitioning of the set V into Vf and Vr may be 
described by means of a binary vector x with xi = 1 for all markets i ~ V r and xi = O, 
otherwise. In this zero-one integer programming context, the attributes may be the 
set of all possible changes in value assignments for the binary variables. Then two 
attributes e and ~, which denote that a certain binary variable is set to 1 or 0 (i.e., a 
market e is added or dropped), may be called complementary to each other. 

Following the DROP-ADD-approach described in section 2.3, a move from one 
solution to another consists of dropping one market and then successively adding more 
markets as long as they improve the objective function value. Correspondingly, we 
may consider the ADD-DROP-approach. Hence, a move may be represented by more 
than one attribute referred to as multi-attribute move. As such, a multi-attribute move 
may be completely decomposed into single-attribute moves (adding or dropping a 
market), the feasibility of a solution may be lost after performing each part of the 
move. However, this decomposition allows us to use the notation of  a successive 
mult i-at tribute move (cf. Dammeyer and Vo13 [4]). This kind of move may be useful 
if an underlying mathematical formulation of a problem consists of  inequality con- 
straints or a number of problem-specific objects not known a priori (with respect to 
the TPP, the number of markets to be included is not known in advance). Another 
classification of multi-attribute moves distinguishes static and dynamic moves depend- 
ing on whether the number of attributes in a move is constant for all iterations or not. 
With respect to the TPP, the above neighbourhood definition implies the notion of 
dynamic moves. 

3.2. TABU SEARCH: BASIC INGREDIENTS 

To prevent a search from endlessly cycling between the same solutions, the 
attribute based memory of tabu search is structured at its first level to provide a short- 

term memory  funct ion,  which may be visualized to operate as follows. Imagine that 
the attributes of  all moves are stored in a so-called running list (RL), representing the 
trajectory of solutions encountered. Then, based on certain restrictions, a tabu list may 
be defined which implicitly keeps track of salient features of the moves by recording 
attributes complementary to those of  RL. These attributes will be forbidden from 
being embodied in moves selected in at least one subsequent iteration because their 
inclusion might lead back to a previously visited solution, Thus, the tabu list restricts 
the search to a subset of admissible moves (consisting of admissible attributes or 
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combinations of  attributes). The goal is to permit "good" moves in each iteration 
without re-visiting solutions already encountered. A general outline of  a tabu search 
procedure based on applying such a short-term memory function may be described as 
follows (for solving a minimization problem like the TPP): 

Given a feasible solution x* with objective function value Z*, let x : = x* with Z(x)  = Z*. 

Iteration: 

while stopping criterion is not fulfilled do begin 

(1) select best admissible move that transforms x into x '  with objective function 
value Z ( x ' )  and add its attributes to the running list 

(2) perform tabu list management: compute moves to be set tabu, i.e., update the 
tabu list 

(3) perform exchanges: x := x' ,  Z(x)  = Z(x ' ) ;  if Z(x)  < Z* then Z* := Z(x) ,  x* : = x 
endif  

endwhile  

Result:  x* is the best of all determined solutions, with objective function value Z*. 

Evidently, the key to this procedure lies in the tabu list managemen t  which 
concerns updating the tabu list, i.e., deciding on how many and which moves have to 
be set tabu within any iteration of the search. There are in fact several basic ways for 
carrying out this management, generally involving a recency based record that can be 
individually maintained for different attributes. With respect to dynamic tabu list 
management strategies, the idea is to handle an attribute in a candidate list related to 
a sublist of  RL first. Via certain criteria, these attributes can be definitely included in 
the tabu list if necessary, or excluded from the candidate list if possible. The use of  
different candidate list strategies becomes especially relevant in order to avoid exten- 
sive computational effort without sacrificing solution quality. 

In our present development, we are going to focus primarily on the preceding 
short-term framework in order to give special attention to a class of tabu list manage- 
ment strategies that take into account the dynamic  interdependencies  among the 
memory attributes. These interdependencies, which rely on logical structure as well 
as on heuristic elements, have frequently been neglected in the tabu search literature. 
However,  as can be deduced from different empirical studies (see, e.g., Domschke et 
al. [5] and Vo13 [27]), they can be highly important. Here we investigate CSM and 
REM as exponents of  corresponding methods while incorporating the candidate list 
ideas implicitly. 

3.3. THE CANCELLATION SEQUENCE METHOD 

The primary goal of CSM as well as REM is to permit the reversion of any 
attribute (or move) but one between two solutions to prevent re-visiting the older 
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solution. To find those so-called critical attributes (or moves), CSM uses RL as a 
candidate list (sometimes referred to as active tabu list), that contains the comple- 
ments of attributes that eventually may become tabu. Whenever an attribute of the 
last performed move finds its complement on RL this complement will be eliminated 
from RL. All attributes between the cancelled one and its recently added complement 
build a cancellation sequence (C-sequence for short) separating the actual solution 
from the one that has been left by the move that contains the cancelled attribute. Any 
attribute but one of a C-sequence is allowed to be cancelled by future moves. This 
condition is sufficient but not necessary to prevent re-visiting previously encountered 
solutions, as some aspects may have an influence on whether or not CSM works well. 

An attribute becomes tabu if its complement is the only attribute of a C-sequence 
(the set of such attributes is denoted by TABU-C). Furthermore, in general an attribute 
becomes tabu for one iteration if its complement is the most recent attribute in RL 
(denoted by TABU-S). Note, however, that making a single attribute tabu prevents 
many moves which could lead to yet unvisited solutions. For implementational issues 
concerning CSM, the reader is referred to Dammeyer et al. [2]. An example for the 
proceeding of CSM is provided below. 

Additional specifications help to improve CSM with respect to running times 
as well as solution quality. For instance, whenever a C-sequence includes a smaller 
one, the smaller sequence is said to dominate the larger. In such a case the larger C- 
sequence may be neglected, because any of its attributes will only become tabu if 
they are within the smaller sequence, too. In this respect, a value las t s tar t  may 
indicate the iteration number when the starting element of the most recent C-sequence 
was added to RL. This value may be helpful to evaluate dominance of occurring 
sequences (compare the example below). Furthermore, throughout the whole search 
a global aspiration level criterion may be defined as the best objective function value 
computed so far. That is, whenever a move including a tabu attribute would lead to a 
solution with a better value than previously encountered during the search, this at- 
tribute is released from its tabu status. 

To clarify the concept of CSM we consider an example visualizing the various 
concepts discussed so far. With respect to the TPP we are dealing with successive 
multi-attribute moves. Therefore, we refer to steps instead of iterations, e.g., when 
defining a tabu status. To simplify matters of presentation when calculating objective 
function values, without loss of generality, we shall assume the knapsack problem 
instead of the TPP. Considering the set of binary variables, the definition of the DROP- 
and ADD-steps for the knapsack problem and the TPP coincide. For the knapsack 
problem no further ADD-steps are performed, whenever its constraint would be 
violated, whereas for the TPP this is the case when no further improvement of the 
objective function value is possible. 

We shall choose the data for the knapsack problem, such that the following 
11 moves ( 1 2, 3 1, 2, 1 5, 4 1, 5 6, 1 2, 6 4 3, 2, 3 5, 4 3 2) of a fictitious TPP instance 
totalling 22 steps will be performed: 
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M a x i m i z e  10xt + 20x  2 + 30x3 + 35x4 + 4 0 x  5 + 50x6 

s u b j e c t t o  6 x l + 7 x 2 + 8 x 3 + l O x 4 + l O x 5 + 1 8 x 6 < 2 5 ,  x i E { 0 , 1 )  V i E I N  6. 

F igu re  2 g ives  the t r ea tment  o f  this e x a m p l e  with respect  to C S M  for  a g iven  

s tar t ing so lu t ion  x = (1, 0, 1, l,  0, 0). A m o v e  is def ined  as c o m p l e m e n t i n g  the ent ry  

o f  any  b ina ry  var iable .  In addi t ion ,  the c o r r e s p o n d i n g  pa ramete r s  have  to be c h o s e n  

app rop r i a t e ly  (e.g. the tabu list dura t ion  o f  a tabu attr ibute).  We a s sume  a static tabu 

stcp movc ~lution objcclivc RL last_start TABU-S TAI3LI-C comment 

0 (t,0,1,1,0,0) 75 

l i (0,0,1,1,0,0) 65 T 0 1 

2 2 (0, i,i.l,0,0) 85 i- 2 0 ~S 

3 3 (O,l,O,l,O,O) 55 t 2 3 0 3 

4 i (1,1,0,1,0,0) 65 23- 1 2 ] 

5 ~- (1,0,0,I,0,0) 45 3 1 2 3 2 3~ 

6 ] (0,0,0,1,0,0) 35 32 I 5 1 3'2, 21 

7 5 (0,0,0,1,1,0) 75 32 I 5 5 5 33, 2'2 

8 ~ (O,0,0,0,1,0) 40 32 t 54 5 ,4 34, 2:3 

9 1 (i,0,0,0,I,0) 50 3 25__44 I 7 T 24 

10 5 (1,0,0,0,0,0) 10 3 2 4 1 5  8 5 4~ 

11 6 (l,0,0,O,0,1) 03 3 ~ 4  I 56  8 6 4. 2 

12 1- (0,0,0,0,0,1) 50 3 2 4  5~6 ] 10 1 4:3 

13 2 (0,1,0,0,0,1) 70 34  56  ] 2 i0 ~7 44 dominatcd: 4 5 6 1  

i4 6 (0,1,0,0,0,0) 20 3 4 5  t 26  I2 6 51 

15 4 (0,1,O,I,O,O) 55 35 I._~264 I2 4 52 dominatcd: 5 1 2 6  

16 3 (0,I,I,1,0,0) 85 51_.~2643 12 3 5:7 dominatcd: 5 I 2 6 4  

t7 ~7 (0,0, I,1,0,0) 65 5 l 64397 14 2 5.t, 11 

18 3 (0,0,0,1,0,0) 35 5 1 6 4 2 3  17 3 l.e, 2t 

19 5 (0,0,0,1,1,0) 75 ]- g___44 ~73" 5 17 5 I3, 2'.1, dominatcd: "[ g 'l ~73 " 

20 4 (0,0,0,O,l,0) 40 [ 6 2 3 5 4  17 4 l,l, 2:3,6t dolnination/la.s't_start 

2I 3 (O,0,1,O,l,O) 65 I 6 2 5 , l  3 19 3 %, 62 

22 2 (0,l,i,0,1,0) 90 t 65~432 19 2 6:3 aspiration criterion 

Figure 2. Example for CSM (C-sequences appear underlined). 

list o f  length  1 ( T A B U - S )  and a d y n a m i c  tabu list ( T A B U - C )  with a m a x i m u m  tabu 

dura t ion  o f  4 fo r  each  tabu e l e m e n t  (a subscr ip t  at a tabu e l emen t  indicates  its cur ren t  

tabu dura t ion) .  C - s e q u e n c e s  appea r  under l ined .  In the sequel  we  c o m m e n t  on s o m e  o f  

the  in te res t ing  aspec t s  that  m a y  be obse rved .  
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Step 9 gives an example of  too many tabu attributes. The tabu status for 3 and 
2 is not necessary as they could have been chosen within the next two steps (i.e. steps 
9 and 10) without repeating any previously encountered solution and resulting in the 
optimal solution. In step 15 the attribute 4 is no longer tabu, resulting in the same 
solution as in step 3. Nevertheless, we do not get stuck in a cycle as the tabu lists are 
different, and the search trajectory leads to new solutions lateron. Step 20 gives an 
example for the use of last_start. The performed attribute cancels its complement 4, 
resulting in a new C-sequence which is not directly dominated by any other sequence. 
However, the complement of  one of the attributes, i.e. element 2, is tabu and repre- 
sents a one-element sequence that has not been reversed due to its underlying tabu 
status (visualized in the value last_start). In step 22 the optimal solution is obtained 
utilizing a global aspiration level criterion. 

3.4. THE REVERSE ELIMINATION METHOD 

The conditions of CSM need not be necessary to prevent re-visiting previously 
encountered solutions. In general, however, necessity can be achieved by REM. Its 
idea is that any solution can only be re-visited in the next iteration if it is a neighbour 
of the current solution. Therefore, in each iteration the running list will be traced back 
to determine all moves which have to be set tabu since they would lead to an already 
explored solution. For this purpose, a residual cancellation sequence (RCS) is built 
up stepwise by tracing back the running list. In each step exactly one attribute is proc- 
essed, from last to first. After initializing an empty RCS, only those attributes are 
added whose complements are not in the sequence. Otherwise their complements in 
the RCS are eliminated (i.e. cancelled). Then at each tracing step it is known which 
attributes have to be reversed in order to turn the current solution back into one 
examined earlier during the search. If the remaining attributes in the RCS can be 
reversed by exactly one move, then this move is tabu in the next iteration. For single- 
attribute moves, for instance, the length of an RCS must be one to enforce a tabu 
move. 

For an example visualizing the proceeding of REM we refer to figure 3. Let a 
position denote an attribute's location in the running list. The figure gives an example 
for building residual cancellation sequences. We assume three moves following the 
combined DROP- and ADD-procedure, i.e. dropping market 4 and adding markets 7, 
3, and 1, dropping 5 and adding 6 and 4, and exchanging 6 and 5. As we have defined 
dynamic moves for the TPP consisting of multiple attributes in any iteration, the 
number of  traces to be performed is equal to the number of attributes of the corre- 
sponding move. Since we are dealing with successive multi-attribute moves, how- 
ever, we deal with exactly one attribute at a time and the length of an RCS has to 
become equal to one to enforce a tabu move. Note that a tabu status only refers to the 
next step and not to a whole iteration. 
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Running list: 4 73 I 5 6 4 6 5  (latcst attributc: 5) 

tracing step position residual ctmccllation sequence length tabu move 

1 9 5 I 

2 8 6 5  2 

3 7 4 6 5  3 

4 6 4 5 2 

5 5 4 l 

6 4 1 4  2 

7 3 3 1 4  3 

8 2 7 3 1 4  4 

9 i 7 3 1  3 

Tabu list: 4 5  

Figure 3. Example for RCS development. 

Obviously, in general, the execution of REM represents a necessary and suffi- 
cient criterion to prevent re-visiting known solutions. With respect to the TPR however, 
sufficiency of REM is not guaranteed due to the move definition described above. 
The tabu status only prevents re-visiting the same set of markets but does not refer to 
the sequence in which the markets are considered within a tour. Therefore, introduc- 
ing a parameter limiting the size of RL seems to be helpful. 

Since the computational effort of REM increases, if the number of iterations 
increases, ideas for reducing the number of computations have been developed 
(cf. Glover [9] and Dammeyer and Vo13 [4]), In principle, REM is not restricted in 
belonging into the short-term memory framework as presented in section 3.2. If 
enough storage is available this proceeding may go on without reservation. Usually, 
storage requirements have to be limited. In that sense a parameter at_n (the only one 
within REM) may be defined as the number of attributes that may be stored within 
the running list, i.e. the length of RL. 

For applications and comparisons of a static tabu search approach, CSM, and 
REM as well as specific simulated annealing implementations, see Dammeyer  and 
Vot3 [3,4] and Domschke et al. [5]. 

4.  S o m e  a d v a n c e d  i s s u e s  

In the previous section we have described the basic ingredients of two tabu 
search methods that explicitly observe logical interdependencies encountered through- 
out the search. In this section a combination of these two methods, the inclusion of  
search intensification and search diversification, as well as strategic oscillation are 
considered. 
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4.1. SEARCH INTENSIFICATION AND SEARCH DIVERSIFICATION 

Recalling the use of the running list, the basic idea of tabu search is to keep 
sufficient information of the search within some memory. Many applications of tabu 
search introduce memory structures based on frequency, and the coordination of these 
memory elements is made to vary as the above short-term memory component be- 
comes integrated with longer term components. The purpose of this integration is to 
provide a balance between two types of globally interacting strategies, called inten- 
sification strategies and diversification strategies. For details of  such considerations, 
see for example the survey by Glover and Laguna [10]. 

Considering the recent search history a general idea for reducing the computa- 
tional effort within tabu search is that of search intensification using a so-called 
frequency based short-term memory (STM). Its basic idea is to observe the attributes 
of all performed moves or a subset of  them. Those attributes, that have not been part 
of any solution generated during a given number of iterations, are eliminated from 
further consideration. This results in a concentration of the search in the neighbour- 
hood of frequently used solutions. Consequently the computational effort will decrease, 
eventually with a loss of accuracy. 

Correspondingly, a search diversification strategy may be based on some 
frequency based long-term memory (LTM) to penalize often selected assignments. 
Then the neighbourhood search can be led into not yet explored regions where the 
tabu list operation is restarted (resulting in an increased computation time). The basic 
intention of search diversification is to explore regions of the search space that 
previously have not been investigated in-depth, whereas search intensification tries to 
search within a limited space, e.g. in a promising region. 

Both memory notions as well as combinations (L + STM) refer to some kind of 
frequency measure, where its success depends on the range of the running list (when- 
ever it is carried along with the search). However, they do not refer to the quality of 
solutions as well as the attraction around local optima. Therefore, more evolved ideas 
may be considered in different settings. Since the main idea of human problem solving 
might be the foundation for the frequency based memory, this process appears to rely 
on combinations of different types of memory functions also incorporating a time- 
dependent measure of frequency (a so-called recognition value). According to Glover 
and Laguna [10], such considerations may lead to even more intelligent strategies for 
capturing successful and advantageous ingredients of  tabu search on a broader level. 
They, as well as Vog [26,27], classify additional concepts of intensification and di- 
versification not only depending on frequency based memory, too. 

A careful observation of CSM and REM reveals that the latter method has more 
difficulties to thoroughly evaluate a larger solution space at different places than CSM. 
This is due to the fact that CSM might advise a tabu status to more attributes than 
necessary, while REM provides sufficiency as well as necessity. Following this argu- 
ment, the following combination of both methods (CSM + REM) becomes obvious. 
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Whenever  CSM terminates according to some stopping criterion, the best found 
solution may be the starting solution for REM, which should search in the near vicin- 
ity for even better solutions that might have been overlooked by CSM. That is, both 
algorithms are combined in a hierarchical way with the output of CSM being the input 
of REM. Whilst the parameter setting of CSM is forwarded immediately to REM (but 
with an empty running list) with most specifications, for LTM the previous frequency 
memory is ignored. 

4.2. STRATEGIC OSCILLATION 

Strategic oscillation (SO) or tabu tunneling describes approaches that allow 
for infeasibilities throughout the search. These infeasibilities may become necessary 
when considering problems with restrictive equality constraints and focusing on suc- 
cessive multi-attribute moves. They can also become a helpful tool by investigating 
not yet visited regions that are not reachable by the corresponding neighbourhood 
definition. In that sense, they may have an important role within the interplay of 
search intensification and search diversification. If the move definition refers to suc- 
cessive multi-attribute moves, like in the combined DROP-ADD-approach for the 
TPP, then this definition allows for intermediate infeasibilities for a certain number of 
attributes and returns to feasibility when performing the whole move. For instance, 
when dropping a market it may occur that items are no longer available at the remain- 
ing markets. That is, we already included a somehow intrinsic nature of  SO into our 
DROP-ADD neighbourhood definition with respect to the TPP. (An example may be 
visualized with respect to figure 1 above. If market 1 is dropped, resulting in a tour 
T = (s - market 3 - s), item 1 is no longer available in any market of T. After adding 
market 2, we again obtain a feasible solution where all items are available.) 

Here, we go even further in that we propose to combine CSM and REM with 
the following proceeding. Assume the above definition of ADD and DROP, then we 
apply successive multi-attribute moves. For a certain number of  steps, say 5, we drop 
exactly one market (as long as there are enough markets in the solution). Then we 
perform as many ADD-steps as they give improvements of the objective function 
value. (With respect to CSM, these ADD-steps shall be performed while maintaining 
the RL but with an empty tabu list for the first ADD-step. For REM the tabu attributes 
shall be calculated as usual.) The oscillation proposed by this proceeding simply 
allows for dropping markets although the remaining markets do not carry all items 
that have to be purchased. 

For further references on strategic oscillation, the reader is referred to, e.g., 
Dammeyer  and Vo13 [3], Glover and Laguna [10] and Kelly et al. [15]. 

5. Numerical results for the traveling purchaser problem 

In this section we report our numerical results for the tabu search strategies 
described in the previous sections when applied to the TPE Before presenting the 
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results in detail, we discuss the underlying data and the way initial feasible solutions 
have been obtained. 

Numerical results for the TPP have been computed for three graphs known 
from the literature for different routing problems with 10, 31 (cf. Clarke and Wright 
[1]) and 52 (cf. Paessens and Weuthen [21]) markets. For each graph we varied the 
number of items eight times depending on the number of markets (2, 4 ..... 16 items 
for the 10-market example, 6, 12, 19, 25, 31, 37, 43, and 50 for the 31-market example, 
and 10, 21, 31,42, 52, 62, 73, and 83 items for the 52-market example). The fixed 
costs were randomly generated from a uniform distribution within [0, 100]. To simu- 
late different structures of markets to be visited we assumed a certain probability for 
each item to be available at any market. Four different settings, i.e. values 0.25, 0.4, 
0.6, and 0.75 were assumed for this probability. The item costs were randomly gen- 
erated from a uniform distribution. The availability of each item at each market was 
checked by a random number and, depending on that result, the item cost was either 
set to a prohibitively high value or randomly chosen within [0, 1000]. To take another 
structure into consideration, the item costs were also chosen within [0, 100] to get a 
proportion of 1 between item costs and fixed costs in contrast to a proportion of 10. 
With these proportions we have two structures with different chances of considera- 
tion for markets located at a distance far apart from the depot against nearby ones. To 
sum up we have 192 test problems (3 graphs, 8 numbers of items, 4 availabilities, and 
2 settings for item costs). 

For each problem, six initial feasible (or partial) solutions have been computed, 
resulting in an overall testbed of 1152 starting solutions over all 192 test problems: 

(1) The first solution is a partial one consisting only of the depot. 

(2) The second solution is obtained by applying the ADD-procedure. 

(3) The third solution is obtained by applying the ADD-procedure, too. The differ- 
ence is that each time after having performed five ADD-steps and at the end of 
the procedure, the resulting tour is re-optimized by applying 3-opt. 

(4) For the fourth solution, again the ADD-procedure is applied in a modified way, 
until all markets are included into the solution. 

(5) The fifth solution is obtained by applying the DROP-procedure or tour reduc- 
tion method, respectively. 

(6) The sixth solution is obtained by applying the DROP-procedure, too. The dif- 
ference is that each time after having performed five DROP-steps and at the 
end of the procedure the resulting tour is re-optimized by applying 3-opt. 

The procedures that we are investigating are the deterministic exchange proce- 
dures IMP1 and IMP2 of section 2.3, the simulated annealing versions SA1 and SA2 
that are superimposed on the DROP-ADD- (i.e. the basic move definition within 
IMP1) and the ADD-DROP-approach (i.e. IMP2), respectively. For the tabu search 
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metastrategy, both possibilities have been tested, too. That is, the methods CSM and 
REM, the combined CSM + REM, and CSM as well as REM with SO are combined 
with both exchange possibilities. Here, due to the better quality of the obtained re- 
sults, we restrict ourselves to the presentation of the DROP-ADD-approach as the 
foundation for performing exchanging moves (the ADD-DROP-approach did not give 
better results). 

Considering the general framework of tabu search as presented above, we need 
to describe a termination criterion. In tabu search we refer to an epoch as a certain 
number of iterations, similar to that used in simulated annealing (see section 2.4). 
For each of the six initial solutions, each algorithm terminates whenever there is no 
improvement of the best feasible solution (obtained by this algorithm for this starting 
solution) within all iterations of a certain number of successive epochs, say two. The 
length of an epoch starting from an initialized value of 10 is increased over time (i.e. 
after each epoch) by an increase factor which was chosen to be equal to 1.1. In addi- 
tion, an overall termination criterion might be applied (for our examples, however, 
two different choices of 10n and of 50n for this criterion affected neither the termi- 
nation of tabu search nor the solution quality). 

For all tabu search methods, moves are defined as successive multi-attribute 
moves as described above. Within CSM, a tabu attribute stays tabu for the next eight 
steps. For REM we choose at_n = 4n. Combining REM and CSM is performed in a 
very simple way with the rationale being some kind of search intensification, i.e., the 
best solution obtained through CSM is taken as starting solution for the application of 
REM. 

The different memory functions work as follows. For LTM we calculate at most 
nine new starting solutions. That is, each time the respective tabu search procedure 
(CSM, REM, etc.) is applied in the usual way until termination, whereas all markets 
that have not been in any of the solutions encountered, are retained. Then, each time 
a new starting solution is generated, it includes the home depot together with all 
markets retained since the last restart. If two restart solutions are identical when 
following this proceeding, the algorithm is stopped. For STM, after each epoch, those 
markets that have not been included in any solution of the previous epoch are defi- 
nitely excluded. For L + STM we have implemented the following modification. 
Whenever the corresponding method with STM is stopped, a new starting solution is 
obtained by choosing from those elements that have previously been eliminated 
according to STM, and the method with STM is restarted. This procedure is applied 
no more than ten times (i.e. the initial run and up to nine restarts) as long as a new 
starting solution can be found. 

Table 1 summarizes our numerical investigations. It gives some relevant charac- 
teristics for all different algorithms. For each of the 192 test cases its overall best 
solution (with objective function value "best") obtained by any of the algorithms is 
taken as a reference solution. The first two columns show the percentage of best solu- 
tions found referring to the 192 problem instances and referring to all combinations 
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Table 1 

Numerical results for the TPP. 

Method 
Best solutions Average deviation Av. impr. lter CPU time 

ref. 192 ref. 1152 ref. 192 ref. 1152 ref. 1152 (~) ref. 6 (]~) 

IMP1 69.79 49.40 0.570 1.713 7.818 6 10.44 
IMP2 70.83 51.04 0.696 1.600 7.866 3 2.11 

SAI 83.34 66.49 0.333 1.044 8.341 208 159.86 
SA2 88.02 72.66 0.228 0.773 8.532 181 69.25 

CSM 96.88 88.11 0.042 0.150 8.995 116 92.58 
CSM / STM 95.83 84.98 0.078 0.271 8.885 111 57.65 
CSM / LTM 99.48 96.18 0.041 0.064 9.069 636 595.03 
CSM / L+STM 98.96 96.27 0.041 0.076 9.058 881 617.37 

REM 95.31 84.29 0.038 0.274 8.884 113 96.02 
REM / STM 93.23 80.12 0.070 0.466 8.748 105 56.15 
REM / LTM 98.44 92.88 0.013 0.099 9.040 518 528.31 
REM / L+STM 97.40 92.88 0.023 0.092 9.053 706 537.71 

CSM+REM 97.92 91.23 0.001 0.120 9.017 179 140.48 
CSM+REM / STM 97.40 88.28 0.075 0.232 8.917 174 89.51 
CSM+REM / LTM 100 97.05 0.000 0.045 9.080 698 639.52 
CSM+REM / L+STM 98.96 96.53 0.041 0.070 9.061 942 645.87 

CSM-SO 96.88 87.15 0.067 0.159 8.992 158 154.46 
CSM-SO / STM 96.35 86.46 0.224 0.224 8.939 158 116.48 
CSM-SO / LTM 99.48 95.23 0.000 0.030 9.099 698 909.52 
CSM-SO / L+STM 100 96.88 0.000 0.039 9.091 1029 1091.78 

REM-SO 98.96 91.32 0.041 0.136 9.006 122 153.45 
REM-SO / STM 97.92 89.06 0.033 0.199 8.960 118 103.92 
REM-SO / LTM 99.48 97.05 0.000 0.053 9.079 577 905.54 
REM-SO / L+STM 100 97.92 0.000 0.017 9.100 697 832.21 

of  ins tances  and initial runs. That  is, the first co lumn for  each a lgor i thm gives the 

percentua l  co inc idence  o f  its min imal  ob jec t ive  funct ion value over  the six solut ions 

with the respec t ive  values  o f  best. In the second co lumn the respec t ive  percentua l  

co inc idence  referr ing to all 6 x 192 solut ions is given. Correspondingly ,  the ave rage  

dev ia t ion  f rom the overal l  best  known objec t ive  funct ion values is g iven  with respect  

to the best  found  solut ion out o f  the six instances  over  the 192 test  p rob l ems  and 

refer r ing  to all 1152 instances.  Fur thermore ,  we have  added a co lumn "av. impr."  that  

g ives  the ave rage  i m p r o v e m e n t  ove r  the respect ive  start ing solut ions in percent .  The  

ave rage  n u m b e r  o f  m o v e s  (co lumn "i ter")  g ives  the average  n u m b e r  of  i terat ions to 

find the best  solut ion for  each problem,  i.e., with respect  to the best  found solut ion 

over  all 192 test problems,  however,  summed  over  all six starting solutions. All p rog rams  

are i m p l e m e n t e d  in PASCAL and the C P U  t imes refer  to a 386 personal  c o m p u t e r  (with-  
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out coprocessor, 33 MHz). Each entry is the average value over all problems indicat- 
ing the running time necessary for all six starting solutions and the corresponding 
search. (For clarification, to obtain average numbers for single runs the entries in the 
latter two columns have to be divided by six.) 

The results show that simulated annealing is outperformed by the different tabu 
search strategies. CSM shows a slightly better behaviour with respect to the solution 
quality compared to REM. However, the more elaborate tabu list management within 
REM does not imply higher CPU times. Whereas the consideration of LTM takes large 
CPU times, the solution quality is enhanced. L + STM, however, does not give the 
results one would like to see. Opposite to the results for the multiconstraint zero-one 
knapsack problem (cf. Dammeyer and Vo8 [3]) we obtained improvements by apply- 
ing the simple combination of CSM and REM. Strategic oscillation (SO) takes a lot 
of time but improves the solutions again with some advantages for REM-SO against 
CSM-SO. 

Having investigated a number of 1152 reference solutions for our tests, we still 
have to admit the probably occurring simplicity of the instances due to the fact that 
almost 50% of all best solutions have already been obtained by IMP1 and IMP2, 
respectively. Nevertheless, the ranking within the methods gives enough ideas for 
recognizing their behaviour with respect to the TPR This is especially relevant for the 
results with respect to both simulated annealing implementations when comparing 
them with any of the tabu search methods. Furthermore, we investigated some obvi- 
ous modifications of the parameter settings which led to almost the same picture as 
the results shown in table 1. We report some of our findings with respect to the 31- 
market example with item costs ranging between 0 and 1000. 

Varying the tabu duration with respect to CSM within 7 and 14 had nearly no 
influence on the solution quality, but the CPU times were effected by a range of 20% 
when applying the strategic oscillation option and by at most 10% without SO. 
Slightly larger values of the increase factor caused CPU times to be increased up 
to 30% with only slight improvements in the solution quality (which seems to be 
obvious due to the already good solutions obtained with the basic parameter setting). 
Modifying the stopping criterion, such that the algorithms terminate whenever there 
is no improvement within all iterations of a single epoch, gave a considerable reduc- 
tion of the CPU times (about 30 -40%)  but with a considerably worse solution qual- 
ity, especially for those methods incorporating strategic oscillation. 

With respect to the numerical results some additional observations may lead to 
obvious questions that have been investigated through additional tests not shown 
within table 1. First, the deterministic exchange procedure IMP2 slightly outperforms 
IMP1 and the same dominance holds between SA2 and SA1. However, for the tabu 
search methods the opposite holds and the rationale for this behaviour is not quite 
clear. Provided that we have a fixed time limit, the question is whether this picture 
changes. As remarked above, we tried a fixed problem-dependent time limit allowing 
for at least 10n iterations for each method without getting any different results. When 
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the time limit is reduced the dominance of the tabu search methods over simulated 
annealing referring to the best of the six solutions encountered becomes more clear 
(ref. 192), although with respect to the columns ref. 1152 this is not the case. Addi- 
tional tests for simulated annealing with slightly modified cooling schedules allowing 
enlarged CPU times comparable to those of LTM without SO, however, did not change 
this picture, 

For larger graphs with up to 60 markets and up to 120 items, the picture with 
respect to the best solutions becomes clearer in that IMP1 and IMP2 turn out to 
produce weaker solutions. However, the relation between the simulated annealing and 
the tabu search approaches does not change. Therefore, in a final test we tried to 
incorporate additional restrictions with respect to the TPP and it turned out that the 
tabu search methods seem to have more serious difficulties in finding good solutions 
when capacity constraints come into play. A preliminary test in this respect gives some 
advantages for simulated annealing whenever the number of items allowed for being 
purchased at any market is limited. This, however, needs to be studied more thor- 
oughly to provide some more evolved reasoning. 

6. Conclusions 

In this paper we have investigated tabu list management strategies that 
take account of dynamic interdependencies among memory attributes. These inter- 
dependencies, which rely on logical structure as well as on heuristic elements, have 
frequently been neglected in the tabu search literature. Even Glover and Laguna [10] 
state in their recent survey on tabu search that "dynamic rules for determining tabu 
tenure are among the aspects of tabu search that deserve more study". Therefore, the 
considerations of different ideas and concepts within tabu search presented in this 
paper mainly refer to the surroundings of these interdependencies. 

Different studies reveal that the methods considered here may also improve on 
the best known solutions for well-known benchmark problems in different settings 
(see, e.g., the results in VoB [27] for the quadratic assignment problem). Further 
investigations incorporating additional features of tabu search might be of interest 
(see, e.g., some of the additional proposals of Glover and Laguna [10]). 

Numerical investigations have been performed with respect to the traveling 
purchaser problem. This problem has been encountered when observing certain manu- 
facturing processes, i.e., the scheduling of a number of jobs on a multi-state machine 
(an oven where different temperature options may arise for the jobs), and in telecom- 
munications. Further research with respect to the TPP might be the development of a 
more evolved exact (e.g. branch and bound) algorithm as the one presented by Ramesh 
[22]. Logical tests and preprocessing techniques might be helpful in both settings, 
i.e., when considering approximate as well as exact solution procedures. Furthermore, 
a more thorough investigation of additional capacity constraints as mentioned above 

needs to be carried out. 
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