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In this paper, we introduce a generalized Data Envelopment Analysis (DEA) model which 
unifies and extends most of the well-known DEA models developed over the past fifteen 
years and points the way to new models. By setting three binary parameters of this model 
to different values, we obtain subclasses of the DEA models with general K cone and W 
cone descriptions to represent the evaluator's preferences for the Decision Making Units 
(DMU) and the input/output categories. We also show relationships among the various 
different subclasses of the generalized DEA model and give special attention to efficiency 
definitions and solutions. Furthermore, we state and rigorously prove the equivalence 
between DEA efficiency and the nondominated solutions of a corresponding multi- 
objective program. This latter result is especially important for understanding and inter- 
preting the concept of efficiency. Detailed examples are also presented to demonstrate 
the functions of K cone and W cone, as well as their characteristics. 

Keywords: Data envelopment analysis, efficient production frontier, multiple input/output 
decision making, production possibility set. 

1 Introduction 

Since its original development in 1978, Data Envelopment Analysis (DEA) has 
become one of the core tools available to management scientists for the analysis of 
organizational performance. Indeed, a recent survey of the DEA literature by Seiford 
(1990) indicates that approximately 400 articles have been written on the subject. 
Although different distinct forms of DEA have been used to address different 
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managerial/production problems, all the DEA models are oriented toward frontier 
concepts associated with locating efficiencies and inefficiencies of the decision 
making units (DMU) responsible for converting multiple inputs into multiple outputs. 
Unlike statistical regressions, productivity indices, etc., which (via least squares 
methodologies) are oriented toward average  production or mean output for given 
input, the DEA method is oriented toward individual productivity and the identifica- 
tion of ex tremal  relations between input and output for different decision making 
units. According to Seiford (1990), some of the hundreds of applications of DEA 
methods include identification of efficient production frontiers to aid in allocation of 
U.S. Army recruiting efforts (Charnes and Thomas (1990)), evaluation of the effi- 
ciency of savings institutions (Charnes et al. (1990)), evaluation of the efficiency of 
schools (Charnes et al. (1978)), and evaluation of managerial efficiency in not-for- 
profit organizations (Charnes and Cooper (1985)). 

In many instances, a particular problem under consideration necessitated the 
development of a new or modified DEA model different from the original Charnes 
et al. (1978) model. We call particular attention to the DEA models of Charnes, 
Cooper, Wei and Huang (CCWH) (1989); Banker, Charnes and Cooper (BCC) (1984); 
Charnes, Cooper, Wei and Yue (CCWY) (1988); F~ire and Grosskopf (FG) (1985); 
and Seiford and Thrall (ST) (1990). One purpose of this paper is to demonstrate that 
most of the preceding models are special cases of a new model (which we call the 
generalized DEA model). In addition to subsuming all the previous models, our 
generalized DEA model points to several new hitherto undeveloped DEA models and 
their solutions. This extension and unification of some well-known models is fairly 
simply achieved by using only a three binary parameters vector (6i, 62, 63) and 
incorporating it into the DEA generalized formulation. Moreover, we show the equiva- 
lence between DEA efficiency and the nondominated  solut ions of a corresponding 
multi-objective program, thereby giving rise to an important interpretation and under- 
standing of DEA efficiency. 

In section 2, we introduce our generalized unifying and extending DEA model, 
define efficiency for the model, and show explicitly that most known DEA models 
fall out as simple special cases of the generalized DEA model with various binary 
parameters 61, 62 and 63 set at fixed values. A guide to the exact properties of the 
generalized DEA model examined in this paper is also provided. In section 3, we 
examine in detail the relationships among different subclasses of the generalized DEA 
model (i.e., those obtained by setting (61, 62, 63) equal to different values) with 
particular attention paid to relations between the corresponding efficiency definitions. 
In section 4, we prove the previously mentioned relationship between DEA efficiency 
and nondominated solutions of a corresponding multi-objective program. The gener- 
alized DEA model with polyhedra cones W and K (as defined in section 2) is 
investigated in section 5. We present two detailed examples for illustrative purposes 
in section 6, and the final section includes the summary, conclusions and remarks on 
possible extensions. 
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2 The general ized DEA model 

The original DEA model (and its extensions) is conceptualized as a ratio of "virtual" 
output to "virtual" input, subject to constraints. After applying the Charnes -Cooper  
(1962) transformation, this information may be put into a linear programming 
formulation and solved for each decision making unit to obtain efficiency scores and 
other managerially useful information (such as the production frontier). We begin our 
generalized DEA model formulation from the linear programming equivalent. Accord- 
ingly, we shall study the following generalized data envelopment analysis model: 

and its dual: 

(P) 

(D) 

maximize 

subject to 

minimize 

subject to 

( p T y  0 -- 61].10) 

o j T x  - ].tTY + ]20(~1 eT E K, 

gOTxo = 1, 

(°) E W , ~ l ~ 2 ( - 1 )  ~3 120 >- 0, /1 

0 

( X~, - Oxo ) w* 
- Y ~  + Yo E , 

61eT2c + 8 1 6 2 ( - 1 )  63/t,n+ 1 -= 61, 

E - K * ,  J!.n+ 1 -> 0 , 0  E E l, 

where: 

X = (Xl, x 2 . . . . .  Xn) is an m x n matrix, 

Y= (Yl, Y2 ..... Yn) is an s x n matrix, 

xj is the input vector for the j th  decision making unit, j = 1 ..... n, 

yj is the output vector for the j th  decision making unit, j = 1 ..... n, 

61, 62, 63 are binary parameters assuming only the values 0 and 1, 

W C_ E+ +s is a closed convex cone, Int W ¢: O, and for ( ~ )  E W\{0}, we have: 

o,)Txj > O, ].lTyj > O, j = 1 . . . . .  n, 

K C_ E2 is a closed convex cone, with Int K 4: O, 

W* C E m+s is the negative polar cone of the set W, 

K* C E n is the negative polar cone of the set K, 

e = (1, 1 ..... 1)TEE ". 
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For convenience, we denote x0 = xjo, Yo = YJn, for 1 <J0 < n. The cone W is used to 
describe the relative importance of different input /output  categories, as viewed by 
the evaluator (one who evaluates the DMUs). We call cone K the p r e d i l e c t i o n  cone  

and use it to represent the evaluator's preferences for different DMUs. We shall show 
that our generalized DEA model substantially generalizes the (CCR) model  by 
Charnes, Cooper  and Rhodes (1978); the (BCC) model by Banker, Charnes and 
Cooper (1984); the (FG) model by F~ire and Grosskopf (1985); the (CCWH) model 
by Charnes, Cooper, Wei and Huang (1989); the (CCWY) model by Charnes, Cooper, 
Wei and Yue (1989) for finite number of DMUs, and the (ST) model by Seiford and 
Thrall (1990). 

To begin our analysis, we note that since K C E.~, for any feasible solution of (P) 
we have: 

c o T x  - / I T Y  + ~lJZO eT >_ O. 

In particular, for the j0th component,  we have: 

c o r x  o - l l r y o  + Sd2  o > 0, 

and hence the objective function of (P) is 

Ftry0 - S1/.t 0 < c o r x  o = 1. 

These equations lead to definition 1, which may be compared to information provided 
by Charnes et al. (1978). 

Definition 1 
(9 o 

If there exists an optimal solution co °, #o,/.to o of (P) with (~o)  E Int W and /.t°ryo 
- 61/-to ° = 1, then DMUjo is called DEA efficient. 

The production possibility set for the generalized DEA model (P) is defined as: 

~E W*, ~leT~+~l~2(--1) $3 ~n+l  (~1, ~ E  , ~ n + l  ->0  - T =  ( x , y ) [ - Y & + Y  

We now examine the various important special cases of the generalized models (P) 
and (D) which are obtained by setting parameters ~l, $2, ~3 to different binary values. 

Case 1:61 = 0, W = E~ '+s and K = E~.. In this case, the model described by (P) and 
(D) reduces to the (CCR) model (Charnes et al. (1978)): 
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and 

(P1) 

(D1) 

maximize 

subject to 

minimize 

subject to 

~ T y  o 

o )Tx j  -- ]2Tyj >_ 0 

o)Txo = 1, 

¢o>_O, p>_O, 

0 
n 

Zj=IXj~ ' j  <-- OXo, 

- 1 Yj~'j  > YO, 

O E EI,~I,j >_0 

In case 1, the corresponding production possibility set is: 

( Y)Ij~I jXj  TCC R = x, x 

j = 1,...,n, 

j = l , . . . , n .  

n 

< x, ~_.yj2~j >- y, 2cj >- O, j = l . . . . .  n . 
j=l 

Case 2 :31 = 1, (~2 = 0,  W = ~+lgm+s and K = E2. In this case, the model described by 
(P) and (D) reduces to the (BCC) model (Banker et al. (1984)): 

and 

(P2) 

(D2) 

maximize (~tT yo -- IZO ) 

subject to o)Tx j  -- p r y j  + PO >- 0 j = 1 . . . . .  n, 

(DT xo = 1, 

o ) > 0 ,  p >O, Po ~ E ~ ,  

minimize 

subject to 

0 

Z~: ~ xj,~j <_ Oxo, 

~.~ = 1 YJ Zj >- YO, 

n 1 

O E EI ,~ , j  >_ O j =  1,..., n. 

The corresponding production possibility set for case 2 is: 

TBC C = {(x, 
n n 

y)[ ~ x j Z j  < x, ~ y j ~ j  >- y, &j = 1, Zj >, O, 
j=l j=l j=l j = , n  I 
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Case 3 : ~ 1  = ~ 2  = 1, S 3 = 0, W= E~ '+' and K = E.~. In this situation, the model  
described by (P) and (D) reduces to the (FG) model (F~ire and Grosskopf (1985)): 

and 

(P3) 

(D3) 

maximize 

subject to 

minimize 

subject to 

(]2 r y  0 -- ]-tO ) 

ojT xj  -- HTyj + ].10 >-- 0 

o)Txo = 1, 

co >_ O, p >_ O, t.t o >_0, 

0 

E~=l Xj~j  ~ OX O, 

~"7 = 1 Yj ~'j >- YO, 

Y~=I ~j -<1 , 

O E E I , & j  >_ O 

j = 1 , . . . , n ,  

In case 3, the corresponding production possibility set is: 

TFG = {(x, Y)I J='~ xjZj <_ x,  y j  ~j >--- y, ~_~ ,~j < 1, ,~j > O, j = 1 . . . . .  n . 
j=l j=l 

Case 4:51 = 5 2 = 13 3 = 1, W = E2 +s and K = E~.. In this case, the model given by (P) 
and (D) reduces to the ST model (Seiford and Thrall (1990)): 

and 

(P4) 

(D4) 

maximize 

subject to 

minimize 

subject to 

~T yo -- flO 

(_DTxj _ # T y j  + 110 > 0 

(DT xo = 1, 

co_>O, /1_>0, /-to _<0, 

0 

E~=I xjXj <_ Oxo, 

X~=~ yjZj >_ yo, 

O E E I , ~ j  >_ O 

j = 1 , . . . , n ,  

j =  1, . . . ,n.  
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The corresponding production possibility set for case 4 is: 

rsT = (x,y)  I xjA`j < x, ~'_.yjA`j >_ y, A`j >_ 1, A`j >_ O, j = 1 . . . . .  n . 
j = l  j = l  j = l  

Case 5: ~l = 0 and W = V x U, where V C E~. n and U C El  are both closed convex 
cones. Thus, the model described by (P) and (D) reduces to the (CCWH) model 
(Chames et al. (1989)): 

(P5) 

(D5) 

and 

maximize 

subject to 

~ T y  o 

coT X _  # T y  E K, 

(.oTxo = 1, 

c o E V ,  p E U ,  

minimize 

subject to 

0 

XA` - Oxo E V*, 

- YA` + Yo E U*, 

A  ̀E - K * ,  O E E 1. 

In case 5, the corresponding production possibility set is: 

Tccw H = {(x, y)l XA  ̀- x E V * , -  YA  ̀+ y E U*,A` E - K * } .  

Case 6 :31  = 1, ~2 = 0, K = E+ and W = V x U, where V C_ E+ and U C E~ are both 
closed convex cones. In this case, the model given by (P) and (D) reduces to the 
(CCWY) model with a finite number of DMUs (Charnes et al. (1988)): 

and 

(P6) 

(D6) 

t maximize 
subject to 

minimize 

subject to 

(#T  y o --/,tO ) 

¢oT X _  # T y  + l.toeT >_ O, 

(-oTxo = 1, 

O) E V, f l E U ,  /2o e E  1 , 

0 

X A ` -  Oxo E V*, 

-YA`+Yo EU*,  

erA, = 1, 

A`>O. 



54 G. Yu et al. / A generalized DEA model 

The corresponding production possibility set for case 6 is: 

TccwY = {(x,y)[ X~, - x ~ V * , -  Y 2  + y E U*,eT ~ -- 1,2 > 0}. 

To summarize the preceding enumeration, the generalized DEA model presented 
in (P) and (D) constitutes the most general model to date and includes all the previous 
specialized DEA models as its special cases. Table 1 lists all the DEA models that are 
subclasses of the generalized DEA model, with the symbol (*) indicating a hitherto 

Table 1 

K W 

61=0 61=1,62 =0 61=62=1,63=0 61=62=63=1 
Yj~j free Y.j~.j= 1 ~ , j2 j<  1 ~,jA.j>_ I 

E2 E2 +s (CCR) (BCC) (FG) (ST) 

K V x U (CCWH) (*) (*) (*) 

E2 V x U (*) (CCWY) (*) (*) 

K W Generalized Generalized Generalized Generalized 
(CCR) model (F'l) (BCC) model (P2) (FG) model (P3) (ST) model (P4) 

nonexistent model. Although all the previously known models are included in the 
generalized DEA model described in this paper, we address the following relevant 
relationships in particular: 

(i) The relationships among DEA efficient solutions obtained by using the different 
special subclasses of (P) and (D) resulting from setting (6t, $2, ~3) to different 
values. 

(ii) The equivalence between DEA efficient solutions from the generalized DEA 
model and the nondominated solutions in the following multi-objective program: 

(vP) 
V-min (x , -y ) ,  

(x, y) E T, 

where V-min denotes vector minimization. 

(iii) The equivalence (in the sense of DEA efficiencies) between the generalized DEA 
model and its corresponding additive DEA model. 

(iv) The characteristics and functions of input/output preference cone W and the 
predilection cone K, especially in the polyhedra case. 

(v) The use of concrete examples to illustrate the implications and uses of the gen- 
eralized DEA model in many different situations. 
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We note that Wei and Yu (1993) have studied the characteristics, properties, 
economic interpretations, and possible applications of the predilection cone K in the 
generalized DEA model. Additionally, Wei et al. (1993) provide detailed analysis and 
rigorous proofs of the necessary and sufficient conditions for return to scale proper- 
ties in the generalized DEA model. 

3 The relationships among special subclasses of the generalized DEA model 

In the generalized DEA model (P) and (D), there are four different subclasses of DEA 
models which can be generated by setting (6b 62, $3) to different values. For clarity 
of exposition, we restate these as: 

Case 1: (~1, ~2, ~3) = (0, *, *), where the symbol * allows the corresponding param- 
eter to take values of either 0 or 1. In this case, (P) and (D) reduce to the generalized 
(CCR) model: 

f maximize /.try o 
subject to corX - / . t r y  E K, 

(PI) COrXo = 1, 

(co)  w,p 
and 

(Ol) 

minimize 0 

subject to (X~" - Ox 0 ") W* 
~,- Y~" + YO ) E , 

O E E  l, ~ E - K * .  

Case 2: 
model: 

and 

(61, 82, ~3) = (1, 0, *). Thus, (P) 

maximize 

subject to 

d'2) 

(62) 
minimize 

subject to 

and (D) reduce to the generalized (BCC) 

(/.tTyo -- ].tO) 

¢oT X - I.trY + t.to eT E K, 

(DTxo = 1, 

(09/EW' 'U0 E E I ' t 2  

0 

(x;t-Oxo) • 
~ , - Y f t + y o  E W  , 

O E E  1, ~ , E - K * .  
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Case 3: (61, 62, 63) = (1, 1, 0). In this case, (P) and (D) reduce to the generalized 

(f 3) 

(FG) model: 

maximize (/JYo - Po) 

subject to 0 1 T x  - p r y  + Poet E K, 

o)Txo = 1, 

minimize 0 

( X 2 - O x ° ' ]  W* 
subject to ~._ Y2 + Yo J ~ ' 

e r 2  < 1, 

O E E  1, 2 ~ - K * .  

and 

Case 4: (61, 62, 63)= (1, 1, 1). Thus, 
model: 

f maximize 
subject to 

(P4) 

and 

(D4) 

minimize 

subject to 

(P) and (D) reduce to the generalized (ST) 

/a Tyo -- PO 

corx - I.try + l.to er E K, 

(DTxo = l, 

0 

(x2 - Oxo ) 
~_Y2  + y o _ e  W*, 

X~= 1 Yj 2j >_ YO, 

er2  >_ I, 

O E E 1, h E - K * .  

For convenience, throughout this paper we use the terminology "(CCR)-DEA 
efficient" to indicate that the decision making unit DMUj, is DEA efficient under the 
generalized (CCR) model. In a similar manner, we will also use the terms "(BCC)- 
DEA efficient", "(FG)-DEA efficient", etc. 

In the remainder of this section, we will present five theorems which show rela- 
tionships between the different generalized DEA models. 
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Theorem 1 

(CCR)-DEA efficient ~ (FG)-DEA efficient ~ (BCC)-DEA efficient, 

(ST)-DEA efficient 

where arrows denote implications. 

Proof 
Consider the programs (151), (152), (153) and (154). The result of the theorem follows 
immediately once we notice that (151) does not contain variable/.t o (equivalent to set- 
t ing/ t  o = 0), (153) requires #0 > 0, (154) requires/.t o < 0, and (152) does not place any 
restriction on/.t 0. With these facts, the theorem can be easily derived. [] 

Theorem 2 
Assume DMUjo is (BCC)-DEA efficient. If (F'2) has an optimal solution co °, #o, #o, 
then: 

(i) if/-to o > 0, then DMUj,, is (FG)-DEA efficient, 

(ii) if #o < 0, then DMUj,, is (ST)-DEA efficient, 

(iii) if/.to o = 0, then DMUjo is (CCR)-DEA efficient. 

Proof 
In this paper, we only prove theorem 2(i), since theorem 2(ii) and (iii) may be proved 
in a similar manner. Say coo, #o, #o is an optimal solution of (152) with 

0 T 
# Yo - #o ° = 1, 

coOTs - -  #°rY  + #ge T E K, 

coOTx 0 = I, 

(oo 1 #o ~ Int W. 

Now #o > 0; thus, coo, #o,/-to o is also an optimal solution to (03), so that by defini- 
tion 1, DMUio is (FG)-DEA efficient. [] 

By a proof similar to that of theorem 2, we also have theorems 3 and 4. 

Theorem 3 
Assume DMUjo is (FG)-DEA efficient. If (153) has an optimal solution co °,/.t °,/.to o with 
/.t o = 0, then DMUjo is (CCR)-DEA efficient. 
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Theorem 4 
Assume DMUjo is (ST)-DEA efficient. I f  (154) has an optimal solution co °,/1 °, #o with 
/2 o = 0, then DMUjo is (CCR)-DEA efficient. 

Based on the preceding information, we can now develop theorem 5. 

Theorem 5 
If  DMUjo is both (FG)-DEA efficient and (ST)-DEA efficient, then it is (CCR)-DEA 
efficient. 

Proof 
Let co*,/2",/2~ be an optimal solution of (153). We then have: 

/2*rYo - /20  = 1, 

co,TX _ / 2 , T y  + /2~e r ~ K, 

go*Tx 0 = I, 

go*T ~ • 
# . r )  E Int W, /2o > 0. 

Now assume that co**,/.t**,/.t~* is an optimal solution of (154). We then have: 

/2**Ty 0 --/2~* = 1, 

co**rX _ #**Ty +/2~,e r E K, 

go**Tx 0 = 1, 

/2. . r  E Int W, <_ O. 

Without loss of generality, we may assume # ;  > 0 and #~* < 0 (since otherwise, by 
theorems 3 and 4, we know that DMUjo is (CCR)-DEA efficient). Let 

coO = agO* + (1 - a)gO**, 

/.t o = a/2* + (1 - a)fl**, 

/20 = a/2  + (1 - 

where 

a - -  
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Thus, 0 < a < 1,/.t o = 0 and 

# °ryo = #  ° r y o - p o  ° =1, 

co ° r X - #  °rY+#o°e r E K ,  

O r 
co x0 =1, 

/ /.t0 E Int W. 

Thus, by definition 1, we know that DMUi, ' is (CCR)-DEA efficient. 

From the previous analysis, we can state corollary 1. 

[] 

Corollary 1 
Decision making unit DMUj0 is (CCR)-DEA efficient if and only if it is (FG)-DEA 
efficient and (ST)-DEA efficient. 

4 The equivalence between DEA efficiency and the nondominated solutions 
of multi-objective programs 

In this section, we present several theorems and assumptions regarding DEA effi- 
ciency and nondominated solutions. To begin, we consider the following generalized 
additive DEA model (see Charnes et al. (1985) and by setting K = E.~ and W = E+m+s)." 

(P0) 

and its dual: 

(Do) 

maximize 

subject to 

(v rs -  + ,~rs+) 

n 
E j = I  X j ~ j  -t- S -  = Xo,  

n 

~ j = l Y j ~ j  -- S+ = YO, 

t~l eT~ + ~1~2 (--1) 63 /]'n+l = t~l, 

~ E - K * ,  ~n+l > 0, ( S- ) W* _ S +  E - -  , f nimize  ;Txli  Tyo 
subject to C O T x  -- I, t r Y  + •1#o er  ~ K, 

EW, 

~1~2 (-- 1) 63 ]2 0 -> O, 

,¢ 
where (~)  E Int W. 
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L e m m a  1 (Weak Duality Theorem) 
Let  2, &,+l, s- ,  s + be a feasible solution of  (Po) and let co, f ,  f 0  be a feasible solution 
of  (Do). Then, 

o)Txo -- f r y  o + 5 1 f  0 >_ ,.cTs - + "~Ts+. 

Proof  

0.)-- ~ W* By ( ~ _ ~ )  E W and ( s -  _ , s+) ~ we have 

(CO -- T)T s - + ( f  -- "~)T s+ >_ O. 

Thus, 

TTs  - +'ES + <_ coTs - + f iTs+ 

= 03T XO -- Z X j ~ j  + 
j= l  

n 

/ n 1 fl T Z YJ ~J - Yo 
j= l  

= ((_OTxo -- f T y o ) - -  Z ( ( o T x j  -- ] . lTy j )~ j .  

j= l  

From & E -K*  and coTX-- f T y  + 51 foeT E K, we have 

t/ n 
Z ((_oTxj -- ].lTyj )~ j  + 51120 Z ) ] . j  _> 0. 
j= l  j= l  

We also have 

i.e., 

n ( 
5 1 f o  Z ~'J -- 51]'/0 = 51fO 

j=I  

n 
~__;~j - 1 
j= l  

= -- 5152 (-- 1) 63 f O ~ n + l  

< 0 ,  

61fo ~ ~j  --< 51]./0. 
j= l  

(1) 

(2) 

(3) 

The theorem is now a direct result of  (1), (2) and (3). [] 

Before  we proceed,  we will state assumption 1, which will naturally hold in the 
case when cones K and W are polyhedral  (i.e., the program (Po) is linear). 

Assumption 1 
Let &o, ,,]0n + l, s -°, s +° be a feasible solution of  (Po) and let ~(20 ,  '~n+ 1,0 s-", s +") be a 
c losed set, where 
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o 

O ( Z  °,  Z°n+ 1 , s -  , s +° ) 

" x T c o  -- Y r  ].t + #o~le  + Y1,1 

co + Y2, / 

/'z + Y3' / 
~1~2 (-- 1)~3 ,/20 +Y4, .] 

yT 2cO = O, Y2 S + Y3 S = 0 . 

Y4~'On+l = 0. 

In the discussions in the sequel, we shall always assume that assumption 1 holds. 

L e m m a  2 (Duality Theorem) 
Let Jr °, o _o s+O 2"n+I, S , be an optimal solution of (Po). Accordingly, there must exist an 
optimal solution coo, #o, / -to of (Do) such that 

_ 0  ~ 0 T 0 T 
+ Ts+° = co Xo - / /  Yo + O1,[/13" .~T S 

~ {~ 

Proo f  
Since the dual of (Po) is (Do) and assumption 1 holds, by applying theorem A2 from 
Charnes et al. (1989), we obtain the result of this lemma. [] 

T h e o r e m  6 
If the optimal objective value of (Po) is 0, then DMUjo is DEA efficient. 

Proo f  
By lemma 2, the optimal objective value of (Do) is also 0. Let co*, #*, bt~ be an 
optimal solution of (Do). Then we have 

¢o*T X - [A*T Y + S lp~e  T E K, 

6162(-1)  ~3 ~ ;  _> 0 
and 

CO*Tx o -- ~*ry  o + ~1/.2; = 0. 
NOW let 

_ c o *  _ ~* coo , ~o , ~ o _  /~; 
co*T x 0 co*T x 0 co*T x 0 " 

l" 
Since ( f )  ~ Int W, we have 

y .  ~ ? +WC_ IntW. 
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Thus,  c0*T0 > 0, and 

while  

and 

/oo/ 1/o, / 
12o - co , rxo  12, ~ Int W, 

SISZ ( -  1) 'h 12o = ~1~2 ( _  1)•3 _ _  12; 
12*T x 0 

>_0 

o r o r 1 
12 Xo - 12 Yo -t- ~112g -- CO,T xo - -  (12*T x 0 -- 12*Ty 0 + 6112;  ) = 0. 

However ,  since 
0T 12.T 

CO X 0 - -  X 0 = 1 ,  
12*T x 0 

we conc lude  by def ini t ion 1 that DMUjo is DEA efficient.  [] 

Lemma 3 
If  co °, 12o, 12o is an opt imal  solut ion of  (P) and/.tOry o - 6112o = 1, then for any (x, y) E T 
we have 

c00rx _ 120ry > coOrxo - 120ryo, 

where  T is the product ion  possibil i ty set of  the general ized DEA model .  

Proo f  
Assume  (x, y) ~ T. In this case there must  exist ( ~- ) E - W*, ~, E - K*, 2,, + 1 > 0 such 
that 

/Xy/ / is/ 
/1 - [ -  ' 

-- ~-"~j = 1 Y j ~ j  S+ 

Thus,  
t l  

O r coot x _ 120ry = ~ (co0rxj  - t 2 Y j ) ~ j  + (COOr S- + ]jOTs+) 

j = l  

/ l  
0 7̀  > ~ ( C O  0 rx j  - 1 2  y j ) 2 j ,  

j = l  

while  by ,71, E - K *  and co°rX - 12ory + ~1 12 °er  ~ K, we have 

(4) 

n n 
O r O r 

E(CO x j - 1 2  yj)~, j  +8112 ° E A j  > 0 .  
j = l  j = l  

(5) 

Also, we have 
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co°rx o - # ° r y  o + 61# ° = O. 

From (4), (5) and (6), for any (x, y) E T we have 

t l  n n 
O r c°°rx  - / ' tOry  + ~l/#g Z ~t,j >_ E (co xj - #oTyj )~l,j + 81# 0 E ~J 

j = l  j = l  j = l  

> 0  

= co°rx 0 _ # ° r y  0 + SI# ° ,  
and thus 

c ° ° r x -  # ° r Y  >- co°rxo - I  t Yo + ~1# 0 | -  Z ~j 
j = l  

= COOTx 0 -- #Ory 0 + ~1~2(-1) 63 #00/].n+l 

-> co°rxo - # °ryo.  

Theorem 7 
If DMUjo is DEA efficient, then the optimal objective value of (Po) is 0. 

(6) 

[] 

Proof  
* * + *  * 

Let an optimal solution of (Po) be 2 ,  s - ,  s , A n+l and zrs -* + frs÷* ~e O. Then, 

is-.) (s.) s+, ¢ 0; i.e., s+, E - W*\{0}. 

Now, since DMUjo is DEA efficient, there exists an optimal solution co °, #o,/.to of 
(P) which satisfies 

O r 
c°°rxo - # Yo +61/#°o =1 

0 )  o 
and (/1o) E Int W. Let 

Then, 
( ) (  -1 X* = X 0 -- S 

Y* YO + S+* " 

Y* ~ZT=l yjZ~ ) E T, 

and from lemma 3, we have 

coOrx * _ #Ory * >_ co°rx o - # ° r y o .  
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On the other hand, since 

COO E E -  ,,.o/ int . (:::) 
and Int W ~ : ~ ,  we know that W is an acute cone (see Charnes et al. (1989, 1990)), 
and hence (coOrs -* + #Ors+*) < 0. Thus, we have 

COOrx * _ pOry * = (co°rx o - / . t ° r y o )  - (coOrs-* + p°rs+* ) < co°rx o _ I.tOryo, 

which contradicts our assumption. [] 

Corol lary  2 
The necessary and sufficient condition for DMUjo to be DEA efficient is that there is 
no feasible solution to the following set of inequalities: 

Proof  

Z j = I  Xj,~t,j + S-  = Xo, 

-Y~j=I Yj'~j + s+ = Yo, 

~1 ~-'~n' I+~1~2(--1)  63 ~n+l = ~1, J= , > 
6 - K  ,~n+l  -- O, 

(s- / . 
s+ e - w  \{0}. 

This corollary is a straightforward conclusion from theorems 6 and 7. [] 

We will now turn our attention to the notion of nondominated vector extremals, 
as we consider the following multi-objective mathematical programming: 

where 

V-min ( f l ( x , y )  . . . . .  fm+s(X,Y))  
(VP) (x, y) E T, 

xk l < k < m ,  

f ~ ( x , y ) =  - Y k - m  m + l < k < m + s ,  

and x = (xl . . . . .  Xm), Y = (Yl . . . . .  Ys), where V-min denotes vector extremization. Note 
that 

( X 2 - x  ] , = K* 
T = { ( x , y ) l ~ _ y j ~ + y )  E W , I ~ l e T ~ T ( ~ I ( ~ 2 ( - - 1 ) S 3 1 ~ n +  1 ~1 ,2  @-- ,,~,n+l _> 0}. 
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Denote 

F ( x , y ) = ( f l ( x , y )  . . . . .  fm+s(X,y))T = (__Xy). 

With the preceding preparation, we can state definition 2. 

Definition 2 
(Xo, Y0) is called a nondominated solution of the multi-objective program (VP) asso- 
ciated with W* if there exists no (x, y) ~ T such that 

F(x, y) E F(x  o , Yo) + W*, F(x, y) ¢ F(x  o, Yo ); 

i.e., if there exists no (x, y) ~ T such that 

( 2 y ]  EC_x~0 / +W*, / 2 y ]  ~ (_x~0 3. 

Based on the preceding information, we have theorem 8. 

Theorem 8 
DMUjo is DEA efficient if and only if (x0, Y0) is a nondominated solution of (VP) 
associated with W*. 

Proof  
By definition of nondominated solutions, the necessary and sufficient condition for 
(x0, Y0) to be a nondominated solution is that there is no feasible solution to the 
following inequalities: 

1 xj  Zj + s -  = x o ,  

- E~=I Yj'q'j + s+ = YO, 

~1 e T a +  ~1~2(-1) a3~'n+l = ~1, 

E - K*, 2,n+1 > 0, 

The theorem then holds by corollary 2. [] 

We now consider the impact of efficient frontiers in DEA analysis. Definition 3 
begins our discussion of this topic. 

Definition 3 
Assume 

E Int W, 6152(- 1) ~3/.t o > 0, and co°rx -/-tOrT + ~ l p ° e  r E K, 
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and let L = {(x, y) l co°rx - bt°ry + 81~g = 0}. Then, L is called an efficient frontier 
surface of T, or simply an efficient frontier, if L f-I T ~: ~ .  

From this definition, we can now provide theorem 9. 

Theorem 9 
The decision making unit DMUjo is DEA efficient if and only if (Xo, Yo) is on one of 
the efficient frontiers of  T. 

Proof  
If DMUjo is DEA efficient, by definition 1 there exist co °,/.t °,/.t o such that 

and 

co°rx  -/ . tOrY + ~l].tge T E K, 

co °r x o = 1, 

/.to E Int W, 

]AOTyo -- ~ l~g  = 1. 

Now let L = { (x ,y ) tco°rx  - / . tOry + 61/.t ° = 0}. Then clearly (xo, Yo) E L  7) T. 
On the other hand, if (xo, Yo) lies on an efficiemt frontier L ,  where if. = {(x, y) l 

~ T  x _ -~ry + $1~0 = 0}, then we have 

~ T  X _ ~ T y  + t~l~oeT E K, 

l°l E Int W, S1S 2 ( -  1) •3 ~0 >- 0, 

~ rX0 -- g r y o  + 81go = 0. 

Let 

(coo~,uo ~ , u o )  _ 1 
~ T x  0 

Since K r x  o > 0, we have 

coOr x _  ldoTy + c~ll2ger = 1 
~ T x  0 

09 0 

~ T x  0 

$1 $2 ( -  1) ~3 #0  0 _ 1 
~ T x  o 

_ _  ( ~ r ,  ~ r ,  ,~o). 

_ _ ( ~ T  X _ f l T y  + S1UoeT) E K, 

- -  8182 ( -  1)'~3 go _> 0, 
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and furthermore, 
1 = c o ° r X o  = # ° r y  o - (~l[d 0 . 

Thus, tO °, #0,/.tO is an optimal solution of (P). From definition 1, we conclude that 
DMUjo is DEA efficient, thereby proving theorem 9. [] 

We now define the projection of DMU in terms of the additive DEA model. Let 
an optimal solution to the generalized additive DEA model (Po) be ;t °, j = 1 .....  n, 
n + 1; s -° and s +°. Define 

and 

~ o S - 0  
J~O = X o  - -  = Z_~Xj;tj 

j=i 

tl 

Y0 : x 0  +s+°  : XYJ;t~" 
J = l  

We call (2 o, Y0) the projection of DMUjo. Theorem 10 follows. 

Theorem 10 
The projection of DMUja is on one of the efficient frontiers of T. 

Proof 
By theorems 8 and 9, we need only show that (20, Yo) is a nondominated solution to 
the multi-objective program (VP) associated with W*. 

If (2o ,~o) i s  not a nondominated solution of (VP), then there must exist 
(~ ,y )  ~ T and ( ~ )  E W* such that 

( 4 /  = ( - ~ 0 )  + ( ~ 
, # ) s o .  

Since (Zy)  e T, we have 

where ( ~ ) E  W*,~leTX + ~1~2(--1)g3 ~+1 = ~l,~-n+l ~-O,;t E - K * .  
Thus, we have 

-) 
: _ %  + #+~ 

= -Yo - s +° + / ~ + ~  " 
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Since W is an acute cone, n ( -W*) {0} (see Charnes et al. (1989, 1990)). By 

if 

then 

w. ( ° ) .  e \{o}, g e w ,  

& ,  l:-I ° • w* n ( -  w*). 

So ( ~ )  = 0, which contradicts our assumption. 
We have 

(&+~)~W*\{0},/)+,~ 

and hence, 

+ ~S +o - ~ - = Xo 
# - Yo ' 

(~1 eTa" + 6 1 6 2 ( - - 1 )  63~n+1 = 61, 

e -K*,~.n+l  >- O, 

s +° Jl 

(7) 

Since (~)  e Int W and (7) holds, we have TT((-O + ~-) + ,~T(~ + ~ )  < 0.Then, 

.~T(s-" _ ¢ b _ ~ ) + - ~ T ( s  +° - f i - ~ ) =  (~Ts-" +'~Ts+°)--[ 'cT(Co+~)+¢T(~t+~)]  

> (zTs -° + ~rs+° ). 

The preceding information contradicts the assumption that &o, j = 1 ..... n, n + 1 ; 
s -°, s +° is an optimal solution to the generalized additive DEA model (P0), thus, 
theorem 10 holds. []  

5 The generalized DEA model with polyhedral W and K 

We consider now the generalized DEA model (P) and (D) where the cones W and K 
are polyhedra; i.e., are described as 

_ _ 17m+s w {(/~rc)rl /~ > o} c _+ , 

K = { a r F l a  >_ 0} C_ E~_, 
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where 

C = 

is an (m' + s ' )  × (m + s) matrix and 

F = 

is an n '  × n matrix. 

I Cl 
C2 

Cm~+s' 
rl 
r2 

rn, 

Figure I. 

q 

In figure 1, W is a polyhedron formed by vectors crl ,cr  2 , c~ , c  r .  Although the 
polyhedron defined previously is generated by finitely many vectors, polyhedra may 
also be represented by the intersection of finitely many half spaces. The two repre- 
sentations have the following relations. 

Lemma 4 
If K = {arF[  a_> 0}, then K = {k[kF + >_ 0}, where F + is the generalized inverse of F 
(see Rao and Mitra (1971) for a definition of the Moore-Penrose  generalized inverse). 

Proof 
Assume k E { a r F l a >  0}, which means there exists a ° >  0 with k = a°rF.  Thus, 
a°r= kF + > 0; i.e. k ~ {klkF + > 0}. 

Conversely, assume k ~ {klkF + >0} and let a T =  kF +. We then have a >  0 and 
k =  arF++ = a r k  i.e., k E {arFla>_ O}. [] 

For some special cases, the generalized inverse has an explicit expression, as in 
the following examples: 
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(a) I f  F = Fn'xn. rank(F) = n ', then 

F + = F r ( F F r )  - I .  

(b) I f  F = Fn 'x . .  rank(F) = n, then 

F + = ( F r F ) - I F  r .  

(c) I f  F = F~ ×., rank(F) = n, then 

F + =  F -1 " 

By lemma 4, we have 

K = {k lkF + >_ 0}, 

- K* = {F+k ' l  k '  _> 0 } ,  

w* -- {/3'1 _< o }  

In this case, (P) and (D) can be rewritten as 

and its dual: 

(P') 

where 

(D') 

maximize (]2T yo -- 61110) 

subject to co rXF  + - I.tTyF + +/Zo~leTF + >_ O, 

o)T xo = 1, 

((oT, ]2 T)  = (o ) ' r ,  l l"r  )c" 

09'_> 0, # '  > 0, ~1~2(-1)a31/0 > 0, 

minimize 0 

\ - Y o J  

~l erF+A'' + ~1~52( - 1) •3 2n+l  = ~1, 

2">0, ~.n+J >0, O E E  1, 

It" E Em'+s',lAO E E l, ~." E E n', An+ l ~ E 1. 

The production possibili ty set is 

T =  { ( x , y ) I C ( : y I F + ~ '  + C  

> O, ~'n+1 >- 0 t • 
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Clearly, (P') and (D') are linear programs and T is a polyhedron. If we choose 
W = V × U ,  V C E  m, UCE~. ,and  o) 

v = { ( m ' r a ) r l  co' _ 0}, 

g = {(# ' rB)r l  # '  _ 0}. 

The corresponding (P') and (D') are 

and 

(P") 

maximize 

subject to 

(~,ttT ( B y o ) -  (~1120) 

co 'T(AX)F + - I . I 'T(By)F + +/ /OgleTF + >_ 0, 

co'T (Axo)  = 1, 

EO' _> 0, ,/./' >- 0, ~1~2 (--1)63 ]./0 > 0 ,  

(D") 

minimize 

subject to 

0 

(AX)F+~, ' < O(Axo), 

(BY)F+~, ' > (Byo), 

~51 erF+) , '  + ~1¢~2 ( -1 )  $3 ~n+ l  = ~1, 

~ . '>0 ,  ~n+l >0,  O E E  I. 

From the preceding analysis, we can see that if K = E~, then F = I ~n) = F +. Now the 
corresponding (P") and (D") are 

and 

 P6') 

(D~) 

f maximize 
subject to 

minimize 

subject to 

(].l'T (nYO) -- ~1/./0) 

co'T(AX) - I I 'T (BY)  + I.to~le T > O, 

co'r (Axo)  = 1, 

EO' > O, ]2' > O, S1~2(-1)53 120 > 0 ,  

0 

( A X ) 2  ' <_ O( Axo ), 

(BY)~. '  > (Byo),  

t~l e t a '  + •162( - 1) ~53 ~'n+l = ~1, 

~ . ' > 0 ,  /~+l >0 ,  O ~ E  I. 
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We see that when polyhedra V and U are used, it is a simple transformation of the 
original input/output data: 

| ----> 

m ---> 

1 2 "" j ".. n 

x I x 2 . . .  x j  . . .  

Y l  Y 2  " ' "  Y j  " ' "  

X ?l 

---> 

Yn 
__..) 

to the following modified data: 

1 

p 
I?Z 

1 
---> 

A x l  
- -> 

Byl  

2 " ' "  j " "  II 

A x  2 "" A x j  "" Ax,~ 

By  2 "" B y j  "" By  n 

---> 1 
: 

---> S p 

and (P") and (D") correspond to (P;') and (D~') with the addition of the predilection 
cone - polyhedron K. 

6 An illustrative example 

We now provide an example to illustrate the functions and implications of the 
input/output preference cone W and the predilection cone K with various settings of 
parameters (•1, ~32, $3). By theorem 8, a necessary and sufficient condition for DMUjo 
to be DEA efficient is that (x 0, Y0) is a nondominated solution of the multi-objective 
program (VP) associated with W*. Accordingly, define W* = {(x, y) l (x, - y)  ~ W* }. 
Then we have 

T =  (x,y)[  Y = Y~t, + ( -  ) ' S l e T ~ ' + ~ l ~ ( - - 1 ) ~ 3 2 n + l = ~ l '  

~ - K*, ;L,~+I _> 0}. 

Thus, the necessary and sufficient condition for (x 0, Y0) to be a nondominated 
solution of the multi-objective program (VP) associated with W* is that (x0, Y0) is a 
nondominated solution of (VP) associated with W* as defined below: 

V - {(min x, max y)} 
(VP) (x, y) E T. 
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E x a m p l e  1 
We now provide an example with 6 DMUs, one input and one output as follows: 

m = l  

I 

5 

1 

2 3 4 5 

6 10 13 17 

5 10 13 16 

6 

25 

18 --~ s = l  

w ~ ~iiiiiiiii 

~t 

Figure 2 

l~ (1) 

~ 03 

Figure 3. 

As shown in figures 2 and 3, we have 

W-* = {(~)~1 + (~)~2[/~1 ~ 0,~ 2 ~ 0), 

Choose KI = { aF51 a > 0 }, where 

[1 0 0 0 0 i]0 0 1 0 0 0 0 

175= 0 0 1 0 0 
0 0 0 1 0 ; 
1 1 1 1 1 
0 0 0 0 0 
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then, 

18 

16 

6 
- K ~  = {(kl,k2 . . . . .  k6)rlkj  _> 0, j = 1 ,2 ,3 ,4 ,6 ,  ~ k j  > 0}, 

j = l  

t = + ( - -W*) ,~  1Z) ] , j  + ~1~2(--1)63 ~ 7 
={(x ,y) l  y /Z~=  l y j 2 j  J=' 

6 
~ 2 j  _>0, 
j = l  

,~j > 0 ,  l _ < j < 7 ,  j ~ 5 } .  

= S1, 

Note that ~-5 does not have a nonnegativity restriction in the product ion 
possibility set TI, which is shown in figure 4. Clearly, K~ favors DMUs, since in the 
production possibility set TI, the efficient frontiers L4 and L 5 remain the same with or 
without Kl (for rigorous proof, see Wei and Yu (1993)). 

13 

10 

5 6 10 13 17 

Figure 4. 

25 
X 

Similarly, choose 

where 

K 2 = {aF2] a _> 0}, 

K 3 = {aF4F51 a _> 0}, 
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and 

1 0 0 
1 1 1 
0 0 1 

F 2 =  0 0 0 

0 0 0 
0 0 0 

F 4 = 

0 0 0 
1 1 1 
0 0 0 
1 0 0 ' 
0 1 0 
0 0 1 

we have 

For this example, K 2 is the predilection cone for DMU2 and K 3 is the predilection 
cone for both DMU4 and DMU5. Similar to K1, we have 

6 

- K  2 = {(k 1 . . . . .  k6)Tlkj > O,j * 2, ~ . k j  > 0}. 
j = l  

Since 

F 4 F  5 = 

1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
1 1 1 3 l 1 

2 2 
1 1 1 1 1 1 
0 0 0 0 0 1 

6 

- K~ = {(k, ..... k6 )Tlkj > O, j * 4,5, ~ kj > O,k, + k2 + k3 + } k4 + I k5 + k6 >__ 0}. 

j = l  

By definition of  production possibility set T3, notice that there are no nonnegativity 
requirements on k3 and k4, and the efficient frontier where DMU 4 and DMU s lie will 
not change (see figure 9). 

Overall, we therefore have the following situations: 

(1) The generalized (BCC) model (al = 1, a2 = 0). 

( la)  Choose W= E+ 2, K = E 6. As figure 5 illustrates, the efficient frontiers are L1, 
L2, L3, L 4 and L 5. W* = E_ 2 = {(x,y)[x <_ O,y >_ 0} is a nondominated cone 
and T is the production possibility set. Since in this case there is no predilec- 
tion, all input and output categories are equally important. To examine the 
efficiency of a DMU, we need to place W with its origin coincident with the 
DMU. Only if W and T intersect at a single point where a DMU resides is 
the DMU a nondominated solution and DEA efficient. Thus, in this example, 
DMUs 1, 2, 3, 4, 5 and 6 are all DEA efficient. 

l 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
l 1 1 1 1 1 
2 2 2 2 2 
0 0 0 0 1 0 
0 0 0 0 0 1 
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Y 

18 

16 

13 

10 

10 13 17 

Figure 5. W = E.~, K = E+ 6. 

25 

Y 

18 , 

16 

13 

I0 

1 

0 

z 
J 

/ 
/ 

/ 
/ 

5 6 10 13 17 25 

Figure 6. W = W  I , K = E  6. 
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( lb)  Choose W= WI, K = E+ 6. See figure 6 for illustration. Due to the existence 
of predilection, the production possibility set T in figure 5 is extended by 

- W*. Hence, W* is the nondominated cone. Since DMUs 2, 3, 4 and 5 are 
the unique intersecting points of W* and T at places where the correspond- 
ing DMUs reside, they are nondominated Pareto solutions and thus are DEA 
efficient. The efficient frontiers are L0, L2, L3, L4 and L 6. 

( lc)  Choose W= E+ 2, K =  Ki, where KI favors DMU 5. As shown in figure 7, 
DMUs 4, 5 and 6 are DEA efficient and the efficient frontiers are L 4 and 
Ls. Since K1 is the predilection cone favoring DMU5 with no restriction to 
)~5 in the definition of T l, the production frontier extends from DMU5 along 
the direction of DMU6 (i.e., Ls) and along the direction of DMU4 (i.e., L4). 
Figure 7 highlights the fact that T~ is the expansion of T of figure 5 by show- 
ing the expanded domain in light shade. 

1 8  

16 

I3 

i 0  

j J 

/ 

/ L ..... .................................. 

~. DMU.  : 

ii:.ii !~i!:, !i: 

0 5 6 10 13 17 25 

F i g u r e  7. W = E+ 2, K = K l . 

( ld)  Choose W = W 1 , K = K l. As figure 8 demonstrates, the efficient frontiers are 
L 4 and L 6, and DMUs 4 and 5 are DEA efficient. The lightly shaded part of 
the figure is due to the presence of K~. 

( le)  Choose W = E 2, K = K 3, where K 3 favors both DMU 4 and DMU 5. As shown 
in figure 9, T 3 is the enlarged production possibility set from T of figure 6, 
DMUs 4 and 5 are DEA efficient and the only efficient frontier is L 4. The 
lightly shaded part in the figure is due to the presence of K 3. 
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Y 

lsA 

12 

10 

13 17 25 

Figure 8. W = W  I , K = K  I. 

10 

18 

16 

13 

10 

10 13 17 

Figure 9. W = E+ 2, K = K3. 

25 
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Since the explanations for the rest of the figures are similar to the above, we omit 
the details. 

(2) The 

(2a) 

(2b) 

(2c) 

(2d) 

generalized (FG) model (61 = 1, 62 = 1, 63 = 0). 

Choose W= E 2, K = E 6. As illustrated in figure 10, DMUs 3, 4, 5 and 6 are 
DEA efficient, and the efficient frontiers a re  L 3, L 4 and L5. 

Choose W = WI, K = E 6. As shown in figure 11, DMUs 3, 4 and 5 are DEA 
efficient, and the efficient frontiers a r e  L 3, L 4 and L 6. 

Choose W = E 2, K = K~. As figure 12 demonstrates, DMUs 4, 5 and 6 are 
DEA efficient, and the efficient frontiers are L4 and L 5. 

Choose W = W1, K = KI. As shown in figure 13, DMUs 4 and 5 are DEA 
efficient, and the efficient frontiers a re  L 4 and L 6. 

(3) The 

(3a) 

(3b) 

(3c) 

(3d) 

generalized (ST) model (•l = 1, ~2 = 1, ~3 = 1). 

Choose W = E+ 2, K = E 2. As figure 14 illustrates, DMUs 1, 2, 3 and 4 are 
DEA efficient, and the efficient frontiers are Ll, L2 and L 3. 

Choose W = W1, K = E 2. As shown in figure 15, DMUs 2, 3 and 4 are DEA 
efficient, and the efficient frontiers are L0, L2 and L 3. 

Choose W = E 2, K = K2. As figure 16 demonstrates, DMUs 1, 2 and 3 are 
DEA efficient, and the efficient frontiers a r e  L 1 and L2. 

Choose W = WI, K = K 2. As shown in figure 17, DMUs 2 and 3 are DEA 
efficient, and the efficient frontiers are L0 and L2. 

E x a m p l e  2 
To illustrate the generalized (BCC) model, consider the following case with two 
inputs and one output: 

1 

---) 2 

--+ 14 

1 

2 3 4 5  6 

3 5 6 9 1  i 
9 6 5 3  

1 1 1 1 --~ 

Choose W = V1 × U1, where 

(1)o ,o1 >_ O, a2 -> 0}, U = E 1 . 
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Y 

I8 

16 

13 

10 

i0 13 17 

Figure 10. W = E~, g = E+ 6. 

25 

18 

IC 

10 13 17 

Figure 11. W = W  I , K = E +  6. 

25 
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10 13 17 

F igure  12. W = E~,  K = K I , 

25 

Y 

18 

16 

13 

1G 

10 13 17 25 

F igure  13. W = W  1, K = K I. 
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W -2 Figure 16. =/ /+,  K = K  2. 

25 
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16 

13 
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5 6 10 13 17 25 

Figure 17. W= W l, K =  K 2. 
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03~ 

vl 

~. 031 

Figure 18. Figure 19. 

Figures 18 and 19 illustrate this information. Then we have W* = Vi* × U I ,  where 

Now select K l = { o~FsI a >  0} and K 3 = { ctF4FsI a>_ 0}, where F 4 and F 5 are the same 
as in example 1. For our current example, since all DMUs have the same output, DEA 
efficiency is determined only by the input data. Accordingly, we need only consider 

Tly=1 = {xlT N {(x,y)ly : 1}} 

n 

= { x l x  = * - V  ,fil e 2 + f l f 2 ( - 1 )  a32n+ 1 = f l , 2 n + t  > 0 , 2 E - K * } .  
j = l  

When all the DMUs have the same output, the various ((CCR), (BCC), (FG) and 
(ST)) notions of DEA efficiency are the same as the (CCR)-DEA efficiency. Hence, 
we need only discuss the case with fl  = 0. Now, 

t'l 

Z l y = l = { x l x =  ~ . x j 2 j - V * , 2 e - K * } .  
j = l  

The following alternatives exhaust the possible situations: 

(a) Choose V -- E 2+, K = E 6. As figure 20 illustrates, DMUs 1, 2, 3, 4, 5 and 6 are all 
DEA efficient, and the efficient frontiers are LI, L2, L3, L 4 and L 5. 

(b) Choose V= V 1, K =  E 6. As shown in figure 21, DMUs 2, 3, 4 and 5 are DEA 
efficient, and the efficient frontiers are L 0, L2, L3, L 4 and L 6. 
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X 

2~ 

I4 

L5 

6 9 14 

Figure 20. V = E+ 2, K = E+ 6. 

~- x 1 

x 2 i  

14 

5 6 9 14 Xl 

Figure 21. V= VI, K= E6+. 
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X 

2 

14 

5 6 9 14 

Figure 22. V = E ,  2, K = K~. 

X 

X 

2~ 

14 

2 3 5 6 14 x 1 

Figure 23. V = Vl, K = K~. 
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X 

2 

14 

0 2 3 5 6 9 14 Xl 

Figure 24. V = E+ 2, K = K 3. 

(c) Choose V = E+ 2, K = KI. As demonstrated in figure 22, DMUs 4, 5 and 6 are DEA 
efficient, and the efficient frontiers a r e  L 4 and Ls. 

(d) Choose V = V1, K = Kl. As shown in figure 23, DMUs 4 and 5 are DEA efficient, 
and the efficient frontiers are L4 and L 6. 

(e) Choose V = E+ 2, K = K3. As illustrated in figure 24, DMUs 4 and 5 are DEA ef- 
ficient, and the only efficient frontier is L 4. 

7 Summary 

In this paper, we have introduced a new generalized DEA model which unifies and 
extends the well-known DEA models which have been developed over the past 
fifteen years. By setting three binary parameters (61, 62, 63) to different values, this 
model reduces to subclasses of DEA models which have general K cone and W cone 
descriptions and may represent the evaluator's preferences for the DMUs and the 
input/output categories. We have shown relationships among several well-known sub- 
classes of the generalized DEA model, focusing especially on efficiency definitions 
and notions of  solutions. We have also stated and rigorously proved the equivalence 
between the notion of DEA efficiency and the notion of nondominated solutions of 
multi-objective (vector extremal) programs, which will aid the understanding and 
interpretation of the concept of  DEA efficiency. We also provided detailed examples 
to demonstrate the functions of K cone and W cone, as well as their characteristics. 
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Finally,  we remark that the model discussed in this paper can be called the 
general ized input-or iented model.  For the fol lowing general ized output -or ien ted  
model,  

(P) 

f minimize 
subject to 

(/ATXo + fil/-tO ) 

c o T x - - / A T Y  + flo~IeT E K, 

].lTyo = 1, 

(°) ~/ E W, ~1~2(-1) ~3,l/0 >- O, 

m 

(D) 

maximize 

subject to 

z 

- Y &  + ZYo 

~1 eT]t" + ~1~2 (--1) a~ -~.+l = ill, 

E - K * ,  ~,.+I >- O, 

the results are very similar and can be derived easily by using the methods described 
here. 
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