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The extensions, new developments and new interpretations for DEA covered in this paper 
include: (1) new measures of efficiency, (2) new models and (3) new ways of implement- 
ing established models with new results and interpretations presented that include treat- 
ments of "congestion", "returns-to-scale" and "mix" and "technical" inefficiencies and 
measures of efficiency that can be used to reflect all pertinent properties. Previously used 
models, such as those used to identify "allocative inefficiencies", are extended by means 
of "assurance region" approaches which are less demanding in their information require- 
ments and underlying assumptions. New opportunities for research are identified in each 
section of this chapter. Sources of further developments and possible sources for further 
help are also suggested with references supplied to other papers that appear in this 
volume and which are summarily described in this introductory chapter. 

Keywords: Technical inefficiency, mix inefficiency, returns to scale, congestion, math- 
ematical programming. 

1 Background 

The  great  n u m b e r  and var ie ty  o f  appl ica t ions  o f  D E A  (Data  E n v e l o p m e n t  Analys is )  

in recent  years  has been  accompan ied  by impor tan t  new deve lopmen t s  in concep t s  

and me thodo logy .  See the ex tens ive  b ib l iog raphy  by Sei ford  (1994)  c i ted in our  

references .  Original ly  des igned to evalua te  D M U s  (Decis ion Mak ing  Units)  such as 

schools  and hospi ta ls  which use mul t ip le  inputs to p roduce  mul t ip le  outputs  with no 

readi ly  ident if ied "bo t t om  line",  D E A  has since been  accorded  a var ie ty  o f  fo rmula -  

t ions and used for  m a n y  other  types  of  entities. The original  appl ica t ions  were  to U.S. 

insti tutions,  but this is no longer  true and centers  o f  research are now located in m a n y  

dif ferent  parts  o f  the world  which have  been the source  of  many  new ideas as well  as 
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new applications. Introductions to DEA are now available in a variety of sources 
- see, for instance, the opening chapters in the recently published book by Charnes et 
al. (1994) - so we here emphasize new developments and interpretations and try to 
suggest further extensions for use and research in DEA. 

2 T h e  T D T  m e a s u r e  o f  e f f i c i e n c y  1~ 

We start with the following measure of efficiency which has recently been introduced 
into the literature of DEA by Thompson, and Thrall (1994b), viz., 

maximize 
U,I/ 

where, for any (u, v), 

l UrYro Z ; = I  UrYrk 

~in=l "OiXio Yq%l l)iXik 

S 
Y'r = 1 UrYrk 

Zi% 1 l)i Xik 

Esr= UrYrj 
- max m 

Z i = I  l)ixij 
j = 1 , . . . , n} ,  (1) 

S SO Zr=l UrYrk/Zi%l UiXik is maximal for this latter set o f j  = 1 ..... n ratios. We refer 
to (1) as the "TDT measure" of relative efficiency. Note that the vectors (u, v) with 
variables ur, vi >- 0 as components are selected to maximize the ratio in the objective 
of (1). All of the ratios in (1) are synthesized from the xij and Yrj, which are constants 
that represent the observed values of the i -- 1 ..... m inputs used and r = 1 ..... s out- 
puts produced by each of j = 1 ..... n DMUs. DMUo, as represented in the objective of 
(1), is the DMU to be evaluated from these data by maximizing its score relative to 
the denominator formed from ratios for the entire collection of DMUj, j = 1 .... n 
- with DMUo included in the second as well as the first of the above expressions. 

We can succinctly represent the ratio o f  ratios 2~ in the objective of (1) by 

Yo / Yk (2) / 
Xo / Xk 

where Yo and Yk represent "virtual outputs" and Xo and xk represent "virtual inputs". 
Because Yk/Xk is maximal over the set k = 1 ..... n, which includes k = o, we have yo/Xo 
< Yk/Xk. The above ratios therefore have a maximum value of unity and this is achiev- 
able if and only if DMUo's performance is not bettered by some other DMU. 

Several features of DEA are brought together compactly in (1). First, DMUo's 
efficiency is evaluated relative to the maximal (best) value attained by the j  = 1 ..... n, 

l)The material in this section is adapted from Cooper and Tone (1995). 
2)This can also be interpreted as a productivity measure and used to measure changes of productivity 

over time in the manner suggested by F~ire and Grosskopf (1994). 
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DMUs (including DMUo) with which it is being compared. The comparison is 
effected by assigning the same u, v vectors to each output and each input of every 
DMU. Because the optimal choice maximizes the efficiency score of DMU o, no other 
u, v values can improve its relative value. 

A priori assignment of weights is not required and relations between inputs 
and outputs need not be prescribed explicitly. The relative form of the efficiency 
evaluations effected by (1) for any DMUo should also make the following properties 
clear: An increase in any input for DMUo cannot improve its efficiency score unless 
increases in this same input also occur in other DMUs. Similarly, an increase in any 
of DMUo's outputs cannot worsen its efficiency score unless increases in this same 
output occur in other DMUs. (See chapter 7 in this volume by Thompson et al. for a 
method that can be used to determine when switchovers from efficient to inefficient 
status will first occur when all data  are var ied  s imu l taneous ly .  See also Thompson 
et al. (1994a) where this method was introduced.) 

What has just been said can be formalized as follows: 

Definit ion 1: Efficiency (TDT or "ratio definition") 
DMUo is to be considered ratio efficient if and only if it achieves a value of unity in 
(1). Conversely, a value less than unity in (1) means that performances of other DMUs 
provide evidence that DMU o is relatively inefficient. 

We will shortly introduce developments which can be used to identify sources 
and estimate the amounts of inefficiency in each  input and output for e v e ~  DMU. 
Here, we note only that (1) is invariant to the units of measures used. That is, the 
value of (1) remains unaltered if we replace the Yrj and xij in (1) with new values 
Yrj = krYrj,  r =  1 . . . . .  s, and 2ij = c ix i j ,  i =  1 . . . . .  m, by applying arbitrary constant 
multipliers kr, ci > 0, to the units in which the outputs and inputs in every DMUj are 
measured. 3~ On the other hand, the optimal (u, v) values in (1) need not be unique. 
Different (u, v) values may yield the same maximal efficiency score. 

This latter type of phenonemon is not unique to DEA. We might also identify the 
subject of alternate optima as a topic that has often been inadequately addressed not 
only in DEA but in other literatures which deal with subjects related to choices of 
weights in effecting decisions or evaluating their consequences. This type of problem 
discovery is not uncommon. New methods and new concepts, such as are involved in 
DEA, often help to identify lacunae or underemphasized topics in established litera- 
tures. An example is provided in "general equilibrium economics", where "rational 
expectations theory" coupled with uses of "game theory" has identified an under- 
researched topic in the form of the possible existence of multiple equilibria - some 
with properties that differ markedly from properties associated with other equilibria. 

3~With, of course, kr = 1 or cl = 1 when the units of measure on some outputs or inputs are not to be 
changed. See Charnes and Cooper (1985) for details and methods of proof. 
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3 The CCR ratio model 

We should note  that (1) may be interpreted and treated in various ways.  For  example ,  

it may  be treated by suitably extended versions of  the statistical theory o f  ex t reme 
values. It may  also be approached determinist ical ly as a mathematical  p rogramming  
problem,  and this is the way we will now proceed.  

The  fo l lowing  model ,  known as the "CCR ratio model" ,  can help to c lar i fy  

matters  at this juncture:  

ZSr=l UrYro 
maximize m 

u,v Zi=l l)iXio 

ZS=l UrYrj 
subject to < 1, j = 1 . . . . .  n, 

Zi  m 1 vixi~ 

Ur 

~i% 1 Di Xio 
> 6, r = 1, . . . ,  s, 

(3) 

vi _>e, i = l  . . . . .  m. 
~i% 1 De Xio 

The  only new e lement  in these express ions  is e, a posit ive "non-Arch imedean"  infini- 
tesimal.  4) We elaborate  on its mathematical  propert ies  later af ter  not ing that its use 

ensures  that all Ur and vi > 0, so all inputs and outputs are to be accorded  " s o m e "  

posi t ive value.  These  values need not be specif ied explici t ly  but can be deal t  with by 
computa t iona l  processes  like the ones descr ibed immedia te ly  after  (7), below. 5) Here,  

we only  note that these e > 0 provide closure and bound the value of  the object ive  

f rom below. Since the other  constraints bound the value of  the object ive  in (3) f rom 

above,  we can use " m a x "  and "min"  rather than "sup"  and " inf"  in our  s ta tement  o f  
the object ive .  

As is c lear  f rom (1), many other  values could have been chosen,  but  the unity 

limit imposed  on the first n constraints in (3) is intended to maintain contact  with 
classical  def ini t ions of  e f f ic iency in engineer ing and science. In fact,  as shown in 

Charnes  et al. (1978),  the formulat ion in (3) greatly general izes  the usual s ingle-out-  

put- to-s ingle- input  ratio defini t ions o f  ef f ic iency which are used in engineer ing  and 

4) See chapter 5 for detailed discussion of dimensionality issues associated with the conditions on e > 0. 
5)As noted in Arnold et al. (1995), the non-Archimedean elements involve extensions to the ordinary 

field of real numbers. Hence, "very small" real numbers approximations are not justified for math- 
ematical use and are not, in general, satisfactory. A more general approach, as given in Charnes et al. 
(1991), does not require all xij, Yrj > 0. It also relaxes the requirement that all ur and vi must be positive 
and dispenses with any use of these non-Archimedean elements in DEA. See also Thompson et al. 
(1993) for a discussion of the importance of being able to treat zeros in both the data and the DEA 
solutions. 
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science. It also relates these engineering-science definitions and usages to definitions 
in economics - e.g., the Pare to-  Koopmans definitions of efficiency given in Charnes 
et al. (1985) - which we formalize explicitly as follows. 

Definition 2: Efficiency (Pareto-Koopmans)  
The performance of DMUo is to be considered fully (100%) efficient if and only if 
the performance of other DMUs does not provide evidence that some of the inputs or 
outputs of DMUo could have been improved without worsening some of its other 
inputs or outputs. 6~ 

We will shortly provide a transformation of (3) that makes it possible to identify 
the sources and estimate the amounts of inefficiency in each input and output for every 
DMU in a manner that requires only minimal assumptions for empirical studies. Here, 
we establish a relation to (1) by noting that a n e c e s s a r y  condition for optimality in (3) 
is that at least one of the j = 1 ..... n output-to-input ratios in the constraints must be 
at its upper bound of unity. We can therefore identify (3) with (1) by noting that the 
denominator in (1) has a value of unity in this case, and the efficiency evaluation for 
DMUo simply reduces to whether the numerator in (1) is unity or less. 

Maximizing yo/Xo in (2) can be managerially interpreted in terms of achieving 
the greatest virtual output per unit virtual input. This provides a basis for extending 
DEA to evaluate returns to scale efficiencies, as we shall later see. Here, however, we 
simply note that this interpretation corresponds mathematically to finding values 
which can be associated with slopes of the supports that envelop the observations. 
Nothing need otherwise be said explicitly about the functions that govern the rela- 
tions between inputs and outputs, and these relations are allowed to vary from one 
DMU to another. 

4 Linear programming equivalents 

Reference to (3) shows that it is a nonlinear, non-convex programming problem, and 
hence is best used for conceptual clarification. To give concepts associated with (3) 
computationally implementable form, we introduce new variables defined as follows:V) 

]2 r -= t]2 r r = 1 , . . . ,  s, 

V i = t l ) i ,  i = 1 , . . . ,  m,  

m m 

l =  ~_ .ViXio ,  SO t = l / Z l ) i X i o  > 0 .  
i=1  i=1 

(4) 

6) This might also be called the Pareto-Koopmans-Farrell definition since the reference to "evidence" 
supplied by the performance of other DMUs has its source in Farrell (1957). 

7) An alternative approach as given in Charnes et al. (1991) does not require any change of variables to 
achieve these linear programming formulations. 
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These are the so-called "Charnes-Cooper  transformations" from Charnes and Cooper 
(1962), which initiated the field of "fractional programming". We now use them to 
transform the problem in (3) to the first problem in the following dual pair of linear 
programming problems, with assurance (from fractional programming) that its 
optimal value will also be optimal for (3): 

minimize 

subject to 

o - e ( 2 s ? +  
~ . i = l  

0 = OXio Xij/], j -- S~ ,  
j=I 

n 

Yro = Z Yrj ~j  
j = I  

S 

maximize ~. ll r Y ro 
r = l  

m s 

subject to - ~ vixij + ~., ].lrYrj <-- O, 
i = 1  r = l  

m 

Z ViXio = 1, 
i = 1  

- V i <_ - ~., 

-I . tr  < - ~ ,  

r = l  

+ .  
- -S  r , 

(5) 

where the slacks s~: and s + as well as the Xj are constrained to be non-negative. 
As in (1),i = 1 ..... m indexes the inputs, while r = 1 ..... s indexes the outputs and 

j = 1 ..... n indexes the DMUs. Also, as before, j = o is used to identify the DMU to be 
evaluated by (a) placing it in the objective while also (b) leaving it in the constraints. 
Leaving the data for DMU o in the constraints guarantees that solutions exist for both 
problems in (5) and, by the dual theorem of linear programming, it follows that they 
will have finite and equal optimal values. Further, because Zni~=lViXio = 1 with v i >_ O, 

all i, we will have t > 0, so we can move back and forth between (5) and (3). 
We therefore have the full power of available linear programming algorithms and 
computer codes to solve (5) or (3), as we wish. We also have its interpretative power 
available for use in DEA efficiency analyses and inferences. 

Referring to (5) as "linear programming equivalents" of the CCR ratio models 
given in (3) and using * to denote an optimal value, the condition for full (100%) 
"DEA efficiency", as given in definition 2, now becomes: 

$ 

Z ]'lrYro = 1 (6) 
r = l  
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for  the second prob lem in (5). However ,  interest  usually at taches to ident i fy ing 
sources  and amounts  of  ineff ic iency in each input and output  of  the D M U  being 
evaluated.  This is most  easily done from the first problem, where the condit ions for 

eff ic iency become  
(i) O* = 1, (7) 
(ii) all opt imum slack values are zero. 

It is now to be noted that 0 is to be preempt ively  minimized,  after which the sum 
of  the slacks in (5) is to be maximized.  8) In this way, the non-Arch imedean  e lement  
e > 0 is given a computa t iona l  form without  any need to specify it explici t ly.  Its 

coeff ic ients  are then also easily identified with the non-zero slacks and assurance is 
provided that some DMUo will not be mistakenly character ized as efficient  because a 

solution is obtained with 0 " =  1 and all slacks at zero while alternate solutions are 

present  which associate non-zero  slacks with 0* = 1. 
It is also to be noted that the presence of  non-zero  slacks means that the measure 

of  ineff iciency resulting f rom (7) assumes the form 0* - k 'e ,  where k* = sum of  slacks. 
Both 0* and k* are real numbers  and hence are Archimedean 9) whereas e is a non- 

Arch imedean  infinitesimal so that 0* - k*e is not a real number  unless k* = 0. The 

fo l lowing order ing is applicable: If  01 < 02, then 01 - kl ~: < 0~ - k2e for  all values of  

^ ---- 0 2 , then 01 /~ie < Oz /~2e if and only if/~t > / ~  > O, while kl, k2, while if  O~ ^* ^* - ^* - _ - 

O1 - k le  = 02 - kee if  and only if 01 = 02 and kl = ke. See Arnold et al. (1994). 

One way to ensure the achievement  of  a single real-number measure of  ineffi- 

c iency is to conf ine  attention to "weak (or radial) e f f ic iency"  and thereby ignore the 

slacks. Also referred to as "Farrel l"  or " F a r r e l l - D e b r e u "  efficiency,  this involves an 
assumption of  "free disposal"  and confines  attention to 0* as the measure of  effi- 

c iency.  1°) See Fare et al. (1985).  Here,  " f ree  disposal"  means  that non-zero  slack 

excesses  may be disposed of  without  cost. See Koopmans  (1951, pp. 40 and 70 and 
theorem 4.11) and Koopmans  (1957, pp. 43 and 54). This is made mathemat ical ly  
expl ic i t  by replacing e > 0 with a zero in the object ive of  the first problem in (5) or, 

equivalent ly ,  by omit t ing the slacks f rom expl ic i t  representa t ion in the object ive.  

However ,  when slacks are an important  source of  possible ineff iciency (e.g., because  
ineff icient  mixes have been used), then alternative approaches and measures may need 
to be cons idered  (like those given later on) which comprehend  all ineff ic iencies  

( including slacks) in a single real number. 

8) Most DEA computer codes accomplish this in two stages, as follows: stage 1 obtains a value of 
min 0 = 0* with slacks all multiplied by 0 rather than e > 0 in the objective of (5). This 0* is then 
fixed in (5) so that it cannot be altered in a second stage, which is then directed to maximizing the 
sum of slacks. See Arnold et al. (1995). 

9) That is, they have the following property: Given any positive real number, n, it is always possible to 
find another real number x which satisfies 0 < x < n. This is not possible with the non-Archimedean 
e>0.  

10)See Farrell (1957) and Debreu (1951). 
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We can observe that the non-Archimedean element e > 0 is not present in the 
constraints for the first problem in (5). Hence, the values in the constraints involve 
only real numbers. Thus, when an optimal solution is available, we can secure new 
coordinates via 

tl 

* --* Z * * 0 X i o  - -  S i = X i j ~ l ,  j = X i o  

j = l  

and (8) 
? /  

Y r o  -1- S i  = ~ .~  Yrj'~j = Y r o "  

j = l  

First given in Charnes et al. (1978), these are known as "CCR projection operators", 
because they project the originally observed xio, Yro into Xi*,,yro, i =  1 . . . . .  m;  

r = 1 ..... s, which form the coordinates of a point in the set of efficient production 
possibilities defined by the first problem in (5). These Xi*o, YTo are coordinates of the 
point used to evaluate DMUo with, of course, xi*, = xio and Yro = Yro when DMUo is 
efficient. See (7). 

We next note that if any v* = e in the second problem in (5), then we cannot have 
(6) satisfied because no sum of positive multiples of e can equal any positive real 
number. Hence, we then must have ]~S=iu~Yro < 1. Via the duality theory of linear 
programming (which extends to general ordered fields) 11/, we then also have 

0 *  - -  --* +*  F, S i + S r = ]ArYro < 1. 

i = 1  r = l  r = l  

Because 0 is a real number, this equality requires equating the non-Archimedean P*Yro 

on the right to terms involving non-zero slack on the left in a manner analogous to the 
way such relations are treated in complex variable analysis. See Arnold et al. (1994). 

The use of  non-Archimedean elements occurs in other parts of mathematical 
programming. One example is the so-called "big M", which is used in association 
with artificial variables and discarded after these variables are all eliminated in the 
first phase of a two-phase procedure en route  to a solution of the originally stated 
problem. In DEA, however, the non-Archimedean element is retained and recent 
literature has shown that these elements bring properties into the solution that can be 
of  interest in their own right. For instance, as shown by the "two-duals theorem" given 
in Arnold et al. (1994), these elements can be used to obtain solutions to more than 
one dual from an optimal tableau associated with a solution to a single primal 
problem. Whether and how this might be extended beyond DEA to other types of 
mathematical programming problems is a topic that invites further research attention. 

11) See Charnes and Cooper (1958). 
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5 Other models and the treatment of mix and technical inefficiencies 

Adjoining the constraint ]~= l,~,j---- 1 to (5) produces the following modification: 

minimize 0o - e s ;  + S+r 
i=1 r = l  

subject to 0 = OoXio - ~  x i j~  j - s~, 
i=I  

n 
+ 

Yro = Z Yrj~'J - sr ' 
j = l  

1 = ~ ~j; 
j = l  

S 

maximize ~.~ #rYro + Uo 
r = l  

m S 

subject to - ~ vixij + ~_~ t.trYrj + Uo <- 0, 
i=1 

m 

Z Vi Xio 
i=1 

- -  V i 

r = l  

- -#r  

+ for 0 < ~,j ,ST,Sr 

=1, 

_< -1E, 

_< - l e ;  

j = l  . . . . .  n; i = 1  . . . . .  m; r = l  . . . . .  s. 

(9) 

We have explicitly assigned a unity coefficient to each e > 0 in the last m + s 
constraints which bound the values of the variables vi and/-tr in the second problem 
in (9)) 2) These unity coefficients serve to satisfy the dimensional requirements for 
these variables, which are stated in reciprocals of the inputs and outputs to which they 
refer. Hereafter, we shall simply regard these unity elements as also being present, as 
in the first problem in (9) where they serve as coefficients of the si  and s[ even though 
we have not identified these unity coefficients explicitly in the objective. See the "goal 
vectors" discussed by Thrall in chapter 5. 

Although the modification in going from (5) to (9) is simple and straightforward, 
this new model (known as the "BCC model") 13) possesses very important properties 
which expand the range and uses of DEA as we shall see when we study "returns-to- 
scale efficiencies" later in this chapter. 

12)This means that these unity elements must be changed when changes are effected for the units in 
which the Yro and Xio are measured. See the discussion for (14.1) ft. below. 

ta)From Banker  et al. (1984). See also Byrnes et al. (1984). 
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To fu r t he r  c l a r i f y  w h a t  is b e i n g  a c c o m m o d a t e d  in D E A ,  w e  i n t r o d u c e  y e t  a n o t h e r  

c l a s s  k n o w n  as  " a d d i t i v e  m o d e l s " ,  w h i c h  w e  f o r m u l a t e  as  f o l l o w s :  14) 

tn s 

maximize ~ s~- + Y~ s~ + 
i = 1  r = l  

/l 

sub jec t  to Xio = Z x i j ~ j  q- sZ '  
i=1 

Yro = Yr j~ j  - Sr , 
j = l  

n 

1 = ~ j ;  
j = l  

m s 

m i n i m i z e  ~ V i X i o  - -  Z flrYro + Uo 
i=1 r=l  

m s 

subject to ~ v i x i j  - Z f l r Y r j  +Uo >- O, 
i = 1  r = l  

V i ~_ 1, 

P r  ~- 1; 

( l O )  

0 < 2 j  sT, + _ , S r , j = 1 . . . . .  n ;  i : 1 . . . . .  m ;  r = 1 . . . . .  s .  

There is yet another version of the additive model that omits the condition 
n ]~j= 1 &j = 1 which we would use if we were studying relations with (5) rather than (9). 

Here, however, we need only note the following theorem, which is proved in Ahn 
et al. (1989). 

Theorem 1 
A DMU o will be efficient under the additive model in (10) if and only if it is also 
efficient under the BCC model given in (9). 

When a DMU is inefficient, however, its sources and amounts of inefficiencies 
may differ because of the different metrics employed for the efficiency evaluations in 
(9) and (10). 

Other models, which have also been introduced in the DEA literature, will not be 
treated here. 15) These include the "multiplicative models" of Charnes et al. (1982, 

14)First published in Charnes et al. (1985). 
15~This does not mean that these models are unimportant or should be excluded from further considera- 

tion. It simply means that we cannot here treat them in the detail required to show how thay may be 
advantageously employed. 
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1983), the Free Disposal Hull (FDH) models of Tulkens (1993), and the "Russell 
Measure" (RM) models introduced by F~ire et al. (1978, 1985). See also Deprins et al. 
(1984) and Russell (1988). The latter two classes of models are special cases of the 
models covered here. This is demonstrated for the FDH and RM models in Bardhan 
et al. (1996, Part II), while, as shown in Charnes et al. (1982, 1983), the multiplicative 
models transform to additive models when the observations are restated in logarith- 
mic units. 

Returning to (10) and (9), we omit the c o n d i t i o n  Y ~ 7 = I ~ j  = 1 in both of these 
models and thereby also delay our discussion of uo in the dual until we examine 
returns to scale efficiencies in section 7. We can then start our present discussion with 
the following modification to the dual of (10): 

s m 

maximize ~ ,llrYro -- Z ViXio 
r = l  i = 1  

s m 

subject to ~ ]lrYrj - Z l"ixij <- O, (11) 
r = l  i = 1  

] ' / r  ~ 1, 

vi > 1, 

where j = 1 ..... n; r = 1 ..... s; i = 1 ..... m. Observing the form of constraints in (11), 
we see that we must have 

s m s m 

max Z 'rYro - Z v ,  X,o = Z rYro - Z V ; X i o  <--0 
r = l  i = l  r = l  i = 1  

(12) 

with equality holding if and only if the DMUo being evaluated is efficient. Returning 
to (9), we next note that the vi and/.t r are expressed in units which are reciprocal to 
Yro and xio, so the same must be true for the slack coefficient in the objective for the 
primal in (9). See the constraints on the vi and/.t r in (9). 

We now use the primals in (9) and (10) to show that two types of inefficiencies 
are considered in (7) - viz., (i) "mix inefficiencies" in the form of inefficient propor- 
tions and (ii) "technical inefficiencies" in the form of excessive uses of all resources 
without altering their proportions. For this purpose, notice that 0 is first minimized in 
(9) without altering the input proportions. Hence, a value of 0* < 1 shows technical 
inefficiencies to be present in all inputs. The presence of non-zero slacks means that 
further reductions can be made. These further adjustments will necessarily alter the 
proportions used and hence they represent mix inefficiencies - because the preceding 
(preemptive) minimization of 0 has exhausted all of the possibilities for removing 
excesses without  altering the proport ions in which the inputs were used. 

Formally, we hereafter associate "technical inefficiencies" with 0 and say that 
technical efficiency has been attained when 0"=  1 - in which case, DMU o is at a 
point on the boundary (not necessarily efficient) of its production possibility set. The 
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further improvements associated with non-zero slacks will be referred to as "mix 
inefficiencies" because they involve altering the proportions in which inputs and out- 
puts are used. The additive model in (10) does not distinguish between mix and 
technical inefficiencies. Although a supplementary analysis may be used to effect 
these distinctions af ter  a solution has been achieved, it is probably better (in most 
cases) to utilize (9) or (5) when these distinctions are of interest. In addition to avoid- 
ing extra work, the latter choice avoids additional difficulties associated with the 
possible presence of alternate optima - problems which are avoided in characterizing 
purely technical inefficiency in (10) because the optimal 0=  0* is unique and invari- 
ant to the units in which the different inputs may be expressed) 6~ 

This brings us to the topic of how these mix and technical inefficiencies may be 
combined in a single measure. We approach this by first utilizing the duality theory 
of linear programming and extending (12) to 

m s m s 

ZSZ*  + ZS+r * -- Z V ~ X i o -  Z . ; Y r o  >-- O, ( 1 3 )  
i=1 r = l  i=1 r = l  

with the inequality replaced by equality if and only if all slacks are zero. In words, a 
DMUo will be characterized as fully efficient if and only if all slacks are zero in an 
optimum solution to (10). 

A valid criticism of the primal objective in (10) is that the amount of inefficiency 
and, indeed, the choice of non-zero slacks entering into an optimal solution can 
depend on the units in which the slacks are stated. See the discussion immediately 
following (9) above, and see chapter 5 for detailed discussions. Much recent work 
has gone into formulating measures which are better than the one provided in the 
objective of (10). See, e.g., Lovell and Pastor (1995), Banker and Cooper (1994) or 
Bardhan et al. (1996, Parts I and II) and Thrall (chapter 5). We cannot discuss this 
work in all detail. We return, instead, to (10) with its convexity condition represented 
by Y~_- I ~ j  = 1 and replace its objective with the following, which has been suggested 
by Cooper and Pastor (1995): 

m + ~ r = l  k. Rr + j 
max , (14.1) 

m + s  

where R~- and R~ + are Ranges defined by 

R7 = -~ij - xij, 

R+s = Yrj - Y rj' 

i = 1 , . . . , m ,  

r ~ l , . . . , S ,  

(14.2) 

16)See (35) below and the discussion following it for a model which effects this distinction simultane- 
ously in inputs and outputs. See also the appendix for its relations to (5). 
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with X'ij, X--ij and Yrj, Yrj representing maximal and minimal observed values for each 
i or r taken over the j = 1 ..... n DMUs for the input or output in question. 

This objective has several desirable and easily interpreted properties. First, we 
have 17) 

n 
0 <-- S~ = Xio -- Z X i j ~ j  <- Xij  -- X--ij, i = 1 . . . . .  m ,  

j=l (15) 
n + 

O < sr = ~_~Yrj2j - Yrj < yrj - Yrj, r = l . . . . .  s 
j=l 

and, therefore, 
Zi=lm (.~_/_)Si- s (Sr+ "~ 

0 < _ + Z r = l \ e + )  -<1. (16) 
m + s  

+ + 
Each ( s r , /R i )  and (S r /Rr  ) measures the amount of inefficiency relative to the range 
of possible inefficiencies which the observations show to be possible for each  input 
and output. Thus, (16) represents an average of the inefficiency proportions with zero 
achieved if and only if all slacks are zero and unity achieved if and only if equality 
is attained in every one of the expressions in (15). Moreover, if it is desired to empha- 
size "efficiency" rather than "inefficiency", one can replace (16) with 

m I__.~_ I s (S+r ~ 
0 < 1 -  ~ i = 1  si- q- Zr=l~e+ J ~1.  (17) 

m + s  

Other measures of efficiency for other DEA models are also possible. See Cooper 
and Pastor (1995). In any case, for science purposes, the measures to be used need to 
satisfy a variety of criteria. Here, we note two such desiderata: The measures should 
be (i) complete and (ii) coordinate free. These properties can be described as follows: 

(i) Comple teness .  The selected measure should reflect all of the pertinent aspects of 
the phenomena to be accounted for - which here take the form of technical and 

mix inefficiencies. 

(ii) Coord ina te  f ree .  The value of the selected measure should be invariant to choices 
of origin and the units in which the different inputs and outputs are measured. 

We use the measures given in (16) and (17) for illustration. Because numerators 
and denominators are stated in the same units for each term in (16) and (17), it follows 
that these measures are "units invariant". Varying the units in which any output or 

t7) It should be evident from these expressions that the slacks will be zero whenever the range is zero, as 
follows from the condition Y~= 1Xj = 1, so these constraints may simply be omitted ab initio and zero 
values assigned to these slacks in the objective. 
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input is measured will not affect the solution when (14.1) is used in the objective for 
the additive model in (10). For example, "miles" may be replaced by "kilometers". 
(The "row rule" of linear programming given in Charnes and Cooper (1961, p. 29) 
completes the analysis.) 

As shown by Ali and Seiford (1990), the primal model on the left in (10) is "trans- 
lation invariant". This means that the solution set to the primal of (10) is not altered 
when arbitrary constants are added to the Xij o r  Yrj, for all j = 1 ..... n, in any of  the 
constraints. This property of  translation invariance is carried over into the objectives 
represented by (I6) and (17), as demonstrated for their numerators by writing 

n n 

S ;  = (Xio + d e )  - Z ( x i j  .-t- d i ) ~ j  = Xio - Z X i j ~ j  ' i = 1 . . . . .  m ,  
j = l  j = l  

n n (18.1) 
+ 

Sr = Z (Yrj + dr )~' j  - -  (Yro + d r )  = ~ yrjZj - Yro, r = 1 . . . . .  s, 
j = l  j = l  

because ~7_-lYrj2j = 1. Similarly, for the denominators, 

R 7  = x, ij - x-x-ij = x i j  .-b d i - ( x i j  + d i ), i = 1 . . . . . .  m ,  
(19) 

R+ = Yrj - Y-rj = Yrj + dr - (Y-rj + dr  )' i = 1 . . . . .  m .  

Hence these measures are "coordinate free". 
In some applications, the measures used have natural zeros as, for instance, 

"number of  acres used" or "number of  miles traveled". Other applications use 
measures which have no natural origin as in "the number of  degree days" that enter 
into evaluation of  Air Force activities at different bases, or the Coopersmith (psycho- 
logical) scores used to evaluate effects on "self esteem" for underprivileged children 
in different educational programs. The coordinate-free properties of (16) and (17) 
make them suitable for use in such cases. They can also be used to handle mixtures 
of  input and output measures and the coordinate-free properties make it possible to 
treat negative values (such as loss versus profit outputs) in a straightforward manner. 

Evidently, the measures in (16) and (17) are also "complete" in that the non-zero 
slacks represent a l l  technical and mix inefficiencies identified by these additive 
models and these inefficiencies are the pertinent phenomena for evaluating efficiency 
as given in definition 2. This is clearly a desirable property and clear warnings should 
generally be given when this property is absent in the efficiency measures used to 
evaluate "total performance". 

These measures also have other desirable properties. For instance, they are strictly 
monotonic in each input and output. That is, an increase in any input or decrease in 
any output with all other variables held constant increases the value of (16). 18) See 

18~Provided the limits prescribed in the denominators are not breached by the corresponding input or 
output variations- 
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Lovell et al. (1995). Further, the limit of zero in (16) is reached only when all slacks 
are zero and the limit of unity is reached for (16) when DMUo, with inputs xij and 
outputs y . ,  is evaluated by one or more DMUj with inputs Xij and outputs Yrj. 

- r j  

Other desirable properties of this and other measures are discussed in Cooper and 
Pastor (1996) and Aida et al. (1997). There are also limitations to be considered. For 
instance (in keeping with what we said earlier about the additive model), this measure 
fails to distinguish between mix and technical inefficiencies and may thus fail to 
reflect alterations in mix which occur when several inputs or outputs are varied 
simultaneously. Also, as Thrall notes in chapter 4, further research on the duals is 
warranted since their properties will not, in general, be translation invariant even when 
this is true for the primal. 

6 Congestion 

Congestion refers to situations in which some inputs are used in amounts that inter- 
fere with output productions. An excess of miners bumping into each other in an 
underground mine is an example where a reduction in the number of miners can 
result in an increase in the amount mined. Extensions to multiple output-multiple input 
situations can be formally defined for use in DEA as follows: 

Congestion: Evidence of congestion is present when reductions in one or more in- 
puts can be associated with increases in one or more outputs or, proceeding in 
reverse, when increases in one or more inputs can be associated with decreases in 
one or more outputs. 

output 
y 

B C f2,2) 
A (5, 1) "l ~(1, 1/21 

Figure 1. Congestion. 

D 

r 

x, input 

Figure 1 is illustrative of the single output-single input case. Here, the first number 
in the parentheses indicates an input amount and the second an output amount 
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associated with each point represented by a black dot for each of  the DMUs labeled 
A to D. Evidently, a reduction from 5 units to 3 in the input used by D could bring it 
into coincidence with C. This provides evidence of  congestion in which a d e c r e a s e  of  
two units of  input is associated with a one unit i ncrease  in output obtained by moving 
from D to C. 

We are still not done. C is not fully efficient since a movement from C to B 
results in a further reduction of  input by one unit w i t h o u t  any decrease in output. The 
input reduction in moving from C to B is not associated with an output i ncrease .  It 
thus represents an ordinary "technical" or "mix inefficiency" 19) of the kind previously 
discussed in which no w o r s e n i n g  of output occurs with this input reduction. See 
definition 2. Stated differently, our evaluation of D contains a congestion component 
in its inefficiencies. Identification of this component is informational in the sense that 
an ordinary DEA analysis would correctly identify the need for further reducing C's 
input by 1 unit when effecting an evaluation of D's performance. See the earlier dis- 
cussion following (7) and the association of e > 0 with slack maximization. 

In order to identify these congestion elements (and amounts), we first use the 
following model: 

maximize 

Xio = 

¢ ZS+r + s; 
r=l  i=1 

n 
+ 

0 -= d~Yro -- Z Yrj~'j -- Sr ,  
j = l  

n 

Z Xij~'J + SZ' 
J=l 

1 =  ~ )Lj, 
j = l  

subject to 

(20) 

0 <--- ,Tt.j,S r ,S i for j = 1 . . . . .  n; r = 1 . . . . .  s; i = 1 . . . . .  m. 

As can be seen, (20) represents a modification of  (9) in which the latter's input 
orientation is replaced by an orientation which is directed to maximizing the outputs. 

We next proceed to a second-stage optimization using a new model which we 
develop as follows. First we solve (20) to obtain optimal values of 4" and +* -* Sr , si for 
r = 1 ..... s and i = 1 ..... m. Then we apply the CCR projection operators by modifying 
(8) in an obvious way to allow for moving from an input to an output orientation. 
This replaces the coordinates Yro, Xio for DMUo with new coordinates, Y~o and xTo, 
which we use to formulate the following new problem: 

t9)The two are indistinguishable in the single output-single input case. 
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maximize 

* + *  

subject to Yro = (¢ Yro + Sr ) = 

- -S  i ) = Xio = (Xio -* 

m 

i=1 
t l  

Y r j ~ j ,  r = 1 . . . . .  s ,  
j = l  

n 

Z Xij/~J -- SZ'  
j = l  

n 

1 = ~ , j ,  
j = l  

si > s[- ,  i = 1 . . . . .  m ,  

(21) 

• 20) where all variables are constrained to be non-negative. 
As noted for (8), these Y*ro, XTo are coordinates of the point on the efficiency 

frontier that was used to evaluate DMUo. Here, in (21), we have expressed the first s 
constraints as equations by not allowing for slacks and hence we have eliminated pos- 
sible reductions in the Y*ro. We then use (21) to determine the largest possible sum of 
input slack values which are consistent with these Y*o. Denoting these values by s~**, 
we then use 

- - *  - - * *  

O <_ s 7  = si - si , i = l . . . . .  m ,  (22) 

to obtain a value for g,.- as the amount of congestion in the ith input. 
For illustration, we insert the data for D from figure 1 into (20) to obtain 

maximize (o + e (  s + + s -  ) 

subject to 0 = ~ -  ½ 2 A - - 2 2 B - - 2 2 c - - l ~ D  +S +, 

5 = 1~, A + 2/~ B + 3)t c + 5;t D + s - ,  

1 = ~A + ~B + "~C + ~D,  

(23) 

with all variables also constrained to be non-negative. The optimum is given by 2B = 1 
and all other ~* = 0 to obtain ~* = 2, s +* = 0 and s-* = 3. Since 2B = 1, we find B with 
coordinates (2, 2) serving as the evaluator of D in figure 1 - because this is where the 
slack maximization associated with e > 0 has positioned the solutions. 

To locate the congestion in s-* = 3 and estimate its amount, we use our solution 
from (23) and substitute in (21) to form the following new problem: 

2°)The last i = 1 .. . . .  m constraints can be treated by the "bounded variables routine" which are incorpo- 
rated in many linear programming codes. See Charnes and Cooper (1961, pp. 561-562)  or Goldfarb 
and Todd (1989, pp. 109-114).  Note also that DMUs identified as efficient by (20) will have all 
si* = 0 and hence may be omitted from further consideration by virtue of the last i = 1 .....  m con- 

straints in (21). 
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maximize s- 

subject to 2 = 

2 =  

1 = 

3 >  

0 <  

½ hA + 2h B + 2h c + lh  D, 

lhA + 2hB + 3hc + 5ZD - s - ,  

hA + '~B -{'- hc + '~D, 

hA, hB, '~C, hD, S-. 

(24) 

This produces 2 c = 1 with s-** = 1, and (correctly) identifies C as the DMU to be used 
in obtaining g- = s-* - s-** = 3 - 1 = 2. Hence, g- = 2 is the "congesting" amount 
of input associated with the output reduction in going from C to D in figure I. 

Returning to (24), as developed from figure 1, we see that hD = 1 is not an admis- 
sible solution. To admit h D = 1, we would first have to reduce the output value from 
y* = 2 to y = 1 in the first constraint. Thus, as our definition of congestion requires, 
we have this input increase as the congesting amount associated with an output 
reduction.  

Before concluding the present analysis, we might note that other paths are also 
available. F~ire, Grosskopf and Lovell (1985, pp. 68-77), for instance, provide an 
alternate approach which utilizes the concept of "allocative efficiency" to arrive at 
estimates of congestion. As discussed in section 9, the concept of allocative efficiency 
assumes knowledge of the exact value of prices and it also assumes that these prices 
remain fixed over the periods that are pertinent to the analysis. The approach we have 
outlined above, however, requires no such knowledge or assumptions, so it can be 
employed in circumstances besides those in which the FGL approach is applicable. 21) 

The example we have used for illustration is confined to the case of one output 
and one input. Extensions to multiple outputs and inputs provide additional possibili- 
ties for attention. For instance, an initial analysis along the above lines might be 
supplemented by reducing one or more of the outputs to associate subsets of congest- 
ing inputs with these reductions. The process could then be continued until all of the 
congesting inputs have been identified. Here, however, we simply stop with the 
initial analysis and assign the congesting amounts of each input obtained from (22) to 
all of the reductions in outputs with which they might be associated. 

Additional complications arise when alternate optimum possibilities are present. 
Here, too, we cut our analysis short and simply remark that in some cases this may be 
regarded as providing an additional opportunity for choosing among solutions which 
allow for different mixes available by following different paths for rectification. 
Managements have sometimes welcomed such possibilities. 22) Scientists, however, 

21)Rolf F~ire has called our attention to an earlier article which introduced the concept of "congestion" 
and deals only with considerations of technical efficiency. See F~ire and Grosskopf (1983). 

22)In fact, this was the case at the Gulf Oil Company in the very first industrial applications of linear 
programming. See Charnes et al. (1954). See also Brockett et al. (1997). 
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generally prefer to have solutions which are unique when the same methods of analy- 
sis are applied to the same data. In such cases, one may try to attain an optimum which 
is unique. See the discussion of "strong complementary slackness" as given by Thrall 
in chapter 5. See also the interior-point algorithm which can be used for obtaining 
solutions involving "geometric centers" in Gonz~ilez-Lima et al. in chapter 6. 

7 Returns to scale: Qualitative characterizations23) 

DEA formulations for returns to scale have undergone a rapid evolution. In 
Banker et al. (1984), uniqueness in solutions was assumed. See also F~ire et al. (1985). 
This assumption was subsequently dropped in an article by Banker and Thrall (1992), 
which also extended the earlier treatment of returns to scale in a variety of ways. Still 
further extensions and relaxation of assumptions are undertaken here which build on 
this earlier work. 

We start with theorems from Banker and Thrall, which we develop as follows. 
Writing (Xo, Yo) for input and output vectors, respectively, with components xio, Yro as 
given in (9), we utilize the dual in (9) and state the following theorem. 

Theorem 2 (Banker and Thrall) 
(i) Increasing returns to scale prevail at (Xo, Yo) if and only if u~; > 0 for all 

optimal solutions. 

(ii) Decreasing returns to scale prevail at (Xo, Yo) if and only if u~, < 0 for all 
optimal solutions. 

(iii) Constant returns-to-scale prevail at (Xo, Yo) if u o = 0 in any optimal 
solution. 

(25) 

Returns to scale generally has an unambiguous meaning only if (Xo, Yo) is on the 
efficiency frontier, and Banker and Thrall assumed this in the model they provide for 
bounding the scale elasticties. 24~ Subsequently, Banker et al. (1995) removed the need 
for making this assumption by replacing the model given by Banker and Thrall (1992, 
p. 81) with a modification which we develop as follows. Suppose we have achieved 
an optimum to (9) with Uo < 0. We can avoid having to check all alternate optima, as 
required for (ii) in (25), by solving for max Uo = u~** in 

23)Materials in this section have been adapted from Banker, Bardhan and Cooper (1996) and Banker, 
Chang and Cooper (1996). 

247 Banker and Thrall assume only "weak (or radial) efficiency", but implicitly extend this by allowing 
the possibility of infinite and zero returns to scale, as noted in the discussions following (41) below. 
Technical and scale inefficiencies are then not distinguishable in these regions of the frontier, and 
either characterization may be used to interpret and evaluate performances. 
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maximize Uo 
i n  S 

subject to - ~  ViXij + Z ]'lrYrj + Uo <- 0, 
i=1 r= l  

m g 

- Z v ,  xio + Z ,* * f ir)  ro + Uo <- O, 
i=1 r= l  

m 

Z * ViXio 
i=1 

Vi 

=1, 

S 

Z]2rYro  +U o =1, 
r= l  

>0,  

]'/r --> 0, 

uo < 0 ,  

j = l  .... n ; j ~ o ,  

j=o,  

(26) 

where X~o and Yro are obtained by applying (8) to the solution obtained from (9). 
Attention is now directed to the last constraint which requires Uo < 0 so that, 

referring to (25), we see that constant returns to scale will prevail for DMUo if and 
only if we can attain a solution to (26) with Uo* = 0, while decreasing returns to scale 
will prevail if and only if an optimum is achieved with Uo* < 0. Thus it is not neces- 
sary to examine all alternate optima. The formulation given in (26) confines solutions 
to those which are critical and the use of XTo, Y*~o obviates the need for assuming  that 
one is on the efficiency frontier. 

Next, turning to the case when we have a solution to (9) with Uo > 0, we can 
replace u o < 0 in the last constraint of (26) with u o >_ 0 and reorient the objective to 
min u o. Again, returns to scale are constant, if we achieve a solution with a new 
Uo* = 0. Otherwise, all alternate optima have the sign originally obtained from (9), 
and all pertinent possibilities are covered as required for (i) in (25). 

This does not end the possible approaches that can be used for returns-to-scale 
characterizations in DEA. As noted in Banker et al. (1984), the model (5) may also be 

n * used to obtain returns-to-scale characterizations by reference to whether Y~j= ~ &) >_ 1 
or Y~= 1~] _< 1 at an optimum. Banker and Thrall also extend this result to allow for 
the presence of alternative optimum possibilities from a use of (5), as follows. 

Theorem 3 (Banker and Thrall) 
If ~ =  l &j = 1 in any alternate optimum then constant returns to scale prevail. 

If Y~__ 1 )t,j > 1 for all alternate optima then decreasing returns to scale prevail. 
/ I  * 

If Y~j= l &j < 1 for all alternate optima then increasing returns to scale prevail. 

(27) 

As developed by Banker and Thrall, this theorem also assumes that the point to 
be evaluated is on the frontier but, again, the need for this assumption was subse- 
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quently eliminated by Banker et al. (1996) in a formulation which we develop as 
follows. Suppose an optimum solution has been obtained for (5) with ~j= 1 2j < 1. To 
check on alternate optima possibilities we then replace (5) with 

maximize 

subject to OoXo = 

+ E + + 

j= l  i=1 r=l  

j=l 

Yo = 
j = l  

// 

1 -> E , ~  j , 
j = l  

(28) 

where Xj, Yj, Xo and Yo are vectors of the observed values for inputs and outputs 25~ 
and the components of the slack vectors g-  and g+, as well as the components of the 
vector &, are constrained to be non-negative. Here, 0* is the optimal 0 obtained from 

^ *  ~ ^ *  

(5). The optimal solution to (28) yields values A,j for which Y~j = 1 2j  is maximal, so 
the following theorem is immediate. 

Theo rem 4 (Banker, Chang and Cooper) 
tl * 

Given the existence of an optimal solution with ~j= 1 ~ < 1 in (5), the returns to scale 
/l ^ *  at (Xo, Yo) are constant if and only if ~ j = l  ~j  = 1 and returns to scale are increasing 

?l ^ *  if and only if Z j= l  2 j  < 1 in (28). 

We are here restricting attention to solutions of  (28) with ~ = 1 / ~ i  -< 1, but the 
examples we provide show how to treat situations in which 0* is associated with 
solutions of (5) that have values n * Y~j=I ~'j > 1. TO develop what is involved, we use 
figure 2 with coordinate values listed on the bottom as follows: 

A = (1,1), B = (3 ,2 ) ,  C = (3,4), D = (4, 5), E = (4,9),  (29) 

where the first parenthesized value is an input amount and the second an output 
amount. Using A, which is BCC but not CCR efficient in figure 2, we substitute from 
(29) into (5) and write 26~ 

2S)That is, these observation vectors are not adjusted to lie on the efficiency frontier because this is 
accomplished automatically by the ~ in (28). See Banker et al. (1995). 

26) Here, we omit the slacks (with coefficient e > 0) from the objective since this is handles at the next 
stage, as in (28). 
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A=(l,t), B=(~, 2), C=(3,4), D=(4,5), E=(4, ~,) 

Figure 2. Most productive scale size. 

minimize 0 

subject to 10 > lXa + ~/%8 + 3/1.c 

1 < 1,% A + 2/% B + 4,,% c 

0 --< ~A,/%B,/%C, ~D, 2E' 

+ 4~  D + 4/L E, 

+ 5/to + ~/ le ,  
(30) 

This problem has min 0* = 3 /4  with alternate optima represented either by X~ = 1/2 
* t l  ,i~ or by/%c = 1/4 and all other A.* = 0. For each of these optima, we have E j= ~ 7~) < 1, so 

we utilize (28) and write 

maximize ~A + fte + ~.c + ~D + ~E + e(3-  +3  + ) 

subject to 3= l ,~A + 3 ~ 8 + 3 ~ C  +4)~D+4,~E + g- ,  

1 = 1,%a + 2~,B +4,%C + 5AD + 9 , ~ E  s+, 

1 >__ + + , i c  + + 

(31) 

n ^ *  ^ *  ^ *  ^ *  ^ *  ^ *  so that ~ i - 1 A i  - ~a -t-/%B + }I'C + /%D + ~E with all ,% non-negative• Because both 
' J - -  • ~ ^ *  ^ *  t l  ^ : ¢  

opnmal  solunons AB = 1/2 and Ac = 1/4 and all other variables zero give ~ j = l  2.j 
< 1, it follows from theorem 4 that increasing returns to scale prevails at A. 

We next turn to E in (29) as a point which is not on either (i) the BCC efficiency 
frontier represented by the solid lines in figure 2 or on (ii) the CCR efficiency frontier 
represented by the broken line from the origin. Substituting the coordinates for E in 
the CCR model (5), we obtain 



W. W. Cooper et al. /Extensions and new developments in DEA 25 

minimize 

subject to 

0 

40 _> 1~, A +-32,~B + 3&c + 4/~O + 42e ,  

9_2 - < I&A + 22B + 4&C + 5/~D + 9 2 E ,  

0 ~ ~A, '~B, ]~C, ~'D,/]'E" 

(32) 

* * 

Again, we have alternate optima with, now, = 27/32 for either "q-B = 9 /4  or 
• n ,1, 

~-c = 9/8  and all other ~* = 0. Hence, in both cases we have Y~j= i/q,j > 1. Proceeding 
in an obvious way, we next reorient the last constraint and the objective in (28) to 
obtain 

minimize (~A + ~B -t- ~C -t- "~D + ~ E ) -  ~(S-+S+) 

subjectto ~ = l~,a + 3~,B + 3;~C + 4~D + 4;~e + g - ,  

9 = 1)[a + 2,~B + 4~,C + 5)~D + 9 ~ e  --S+, 

0 <-- ~A, f tB ,~C, f t .D,~  E. 

(33) 

This has its optimum at XB = 9/4  or ; ~  = 9/8 with all other variables equal to zero 
and so, in conformance with theorem 3, as given in (27), we associate E with decreas- 
ing returns to scale. 

There is confusion in the literature on the returns-to-scale characterizations 
obtained from theorems 2 and 3 and the BCC and the CCR models with which they 
are associated. Hence, we proceed a bit further as follows. 

As noted earlier, returns to scale generally has an unambiguous meaning only for 
points on the efficiency frontier. When the BCC model is used on the data in figure 
2, the primal model projects E into E'  with coordinates (7/2, 9/2) on the segment of 
the line y = 1 + x which connects C to D on the BCC efficiency frontier. This result 
identifies E as having an inefficiency in the amount of 1/2 unit in its input. This is a 
technical inefficiency, as previously noted, in our discussion of (9). Turning to the 
dual for E formed from the BCC model as given in (9), we obtain a value of u o 
= -1 /4 .  This negative value of u* suggests that returns to scale are either decreasing 
or constant at E '  = (28/8, 9/2), the point to which E is projected in order to obtain 
access to (26). Substitution in the latter model yields a value of Uo = - 2 / 7 ,  which is 
also negative, thereby also identifying E'  with the decreasing returns to scale that 
prevail on this portion of the efficiency frontier. 

Next, we turn to the conditions specified in theorem 3 - opposite (27) - which are 
identified with the CCR model (5). Here, we find the projection is to a new point 
E" = (27/8, 9/2) which is on the line y = 4 /3x  corresponding to the broken line from 
the origin that coincides with the segment BC from B to C in figure 2. This ray from 
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the origin constitutes the efficiency frontier for the CCR model (5) which, when used 
in the manner we have previously indicated, simultaneously evaluates the technical, 
mix and returns-to-scale performances of E. In fact, as can be seen from the solution 
to (33), this evaluation is effected by either ~ = 9 / 4  or ~,~ = 9 /8  - which are vari- 
ables associated with vectors in a "constant returns-to-scale region" that we will 
shortly associate with "most productive scale size" (MPSS) for the BCC model. The 
additional 1/8 unit input reduction effected in going from E'  to E" is needed to adjust 
to the efficient mix that prevails in this MPSS region which the CCR model is using 
to evaluate E. 

The situation is general, as we will see. The CCR model simultaneously evaluates 
scale as well as mix and technical inefficiencies, while the BCC model separates out 
the scale inefficiencies for evaluation in the dual. Further, the scale evaluations in the 
BCC model are conducted "locally" by reference to DMUs like C and D in figure 2, 
whereas the CCR model effects its evaluations "globally" by reference to segments 
like BC. 

In order to extend this analysis, we need to specify what is to be meant by returns 
to scale in multiple input-multiple output situations. For this, we utilize the concept 
of "Most Productive Scale Size" (MPSS) introduced by Banker (1984). To see what 
this means in multiple output-multiple input situations, consider the proportions 
represented by the scalars 13, a >_ 0 in 

(Xoa, L•) ,  (34) 

with X o and Yo representing input and output vectors, respectively. We can continue to 
move toward a possibly better (i.e., more productive) returns-to-scale situation as long 
as max 13/a ¢ 1. In other words, we are not at a point which is MPSS when either (a) 
all outputs can be increased in proportions that are at least as great as the correspond- 
ing proportional increases in all inputs needed to bring them about, or (b) all inputs 
can be decreased in proportions that are at least as great as the proportions in the 
accompanying reductions in all outputs. We will be at MPSS only when this is no 
longer possible. We will then have 13/a = 1 or a = 13, so returns to scale are constant 
at MPSS. 

Recourse to prices, costs (or similar weights) would generally be required to 
determine a "best" or "most economical" scale size. Here, however, we are using the 
concept of MPSS in a way that avoids the need for such additional information by 
allowing all inputs and outputs to vary simultaneously in the proportions prescribed 
by a an 13 in (34). Hence, MPSS allows us to continue to confine attention to tech- 
nical and mix inefficiencies, as before, while allowing for other possible choices after 
scale size possibilities have been identified and evaluated in our DEA analyses. 

The interpretation we have just provided for (34) refers to returns to scale locally, 
as is customary. However, this does not exhaust the uses that can be made of Banker's 
MPSS. For instance, we can now replace our preceding local interpretation of (34) by 
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one which is oriented globally and we can do this in a way that enables us to relate 
the two approaches in theorems 2 and 3 to each other and thereby provide further 
insight into how the models in (5) and (9) enter into scale size (and other) evalua- 
tions. For these purposes, we introduce the following formulations: 27) 

maximize fl/ a 

subject to ]3Yo < 
n 
ZYJ J, 
j= l  

n 

cI, X o > Z Xj,)I,j, (35) 
j = l  

n 

1 = ~ , j ,  
j = l  

0 < fl, a and 2c j ,  j = l  . . . . .  n. 

As already noted, we are moving to a global interpretation of  (34). We are also 
altering the characterization so that these ct and [3 values now yield new vectors 
f(o = aXo and 17o -- flY o which we can associate with points which are MPSS as in 
the following theorem. 

Theorem 5 
When incorporated in (35), a necessary condition for DMUo, with output and input 
vectors Yo and Xo, to be MPSS is max ]3/a = 1, in which case returns to scale will be 
constant. 

This theorem enables us to use MPSS to bring our global interpretation into con- 
tact with the local returns-to-scale interpretations we previously supplied for (34) and 
follows readily from the fact that ]3 = a = 1 with &j = ~,o = 1 is a solution of (35), so 
that always max ]3/a = ]3*/a* >_ 1. See the appendix. 

We illustrate with A = (1, 1) in figure 2, which we insert in (35) to obtain 

maximize fl/ a 

subject to lfl < 1,~ A + 2,~ B + 4,~ C + 5 2  D + 9 ~ E ,  

l a  >_ 1~ A + 3 ~B + 3~c + 4 ~ D  + 42~e, 

1 = ~a -I- ~B + 2C + 2D + 2 E ,  

0 --< ~A . . . .  ,/~E" 

~.7) B. Golany has called our attention to the earlier paper by Golany and Yu (1994), in which this same 
formulation appears. However, their use of it is very different from ours. 
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An opt imum solution is ZB = 1, with fl* = 2, a* = 3 /2 ,  all other Z* = 0, so that f l*/a* 
= 4 / 3  > 1 and MPSS is not achieved.  

Turning to D = (4, 5), we again utilize (35) to obtain 

maximize  f l /  a 

subject to 5fl _< 1Z A + 2Z B + 4Z c + 5ZD + 9 Z E  ' 

4 a  > 1Z A + 3 ZB + 3ZC + 4ZD + 4ZE,  

1 = ~A + ~B + ~C + ~D + ~E, 

0 --~ "~a . . . . .  /~E. 

This has an op t imum at Z B = 1, with a* = 3 / 8  and/3" = 2 /5 ,  to g i v e / 3 * / a *  = 16/15  
as the max imum value of  this ratio. It also has an alternate opt imum with Z c  = 1 and 

a* =3 /4 ,  /3* = 4 / 5  so, again, /3*/a* = 16/15.  Evidently,  all convex  combinat ions  of  

these two solutions are also optimal with so lu t ions /3* /a*  = 16/15.  These  additional 

opt ima are der ived f rom the solutions composed  f rom ZB = 1 and Zc = 1 which locate 

end-points  where returns to scale are constant  in figure 2. 
The same constant  returns to scale interval is used to evaluate all o f  the DMUs in 

f igure 2 so that, in accordance with the above theorem, we have m a x / 3 / a  = 1 only in 

this interval. Formally,  let max/3j/aj = /3 ; /a ;  when DMUj is the DMUo to be evalu- 
ated in (35). We then have {'} minimize /3~ - - 1. (36) 

j = l  ..... n ~ j  a ~  

We can now augment  the preceding theorem to the following,  which is proved in the 

appendix.  

T h e o r e m  6 
For  D M U ,  to be MPSS,  both of  the fol lowing 

( i )  fl~/a~ = ( 3 7 )  
(ii) All slacks 

This is intended to mean that the slacks in all alternative opt ima are zero and, to 

align this with (7), we note that this is all taken care of  if the maximum sum of  slacks 

is zero. 
We have omitted slacks from the objective in (35) because we want to focus on other 

relations between (5) and (9). 28) To study these relations, we start with the fo l lowing 

condit ions must be satisfied: 

1. 

are zero. 

28)We also note that (35) is a fractional programming problem, so we can use the Chames-Cooper trans- 
formation to transform it to an ordinary linear programming problem, just as was done in moving 
from (3) to (4). See the appendix. 
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Theorem 7 (Ahn, Charnes and Cooper) 
If  a DMU o is found to be efficient with the CCR model, then it will also be found to 
be efficient with the BCC model. 

Now we remark that the converse of this theorem is not necessarily true. See 
figure 2. It therefore follows that all points of intersection on the efficiency frontier 
will be common to both the CCR and BCC models, and this makes it possible to use 
either model to evaluate returns to scale. We also have 

Theorem 8 
An active vector 29) in an optimal basis is necessarily efficient. 

These active vectors must therefore lie in the intersection between the efficiency 
frontiers of  both the BCC and CCR models. Note, therefore, that the CCR models 
s imultaneously evaluate both returns to scale and technical (and mix) inefficiencies 
and, as previously noted, the active vectors which evaluate performance of  all DMUs 
in the CCR model are to be found in this intersection. 

Next we appeal to the fol lowing 

Theorem 9 (Banker and Thrall) 
(i) uo > 0 for all optimal solutions to (9) if and only if ]~j_l/q'i > 1 for all optimal 

solutions to (5). 
, ?1 * 

(ii) Uo < 0 for all optimal solutions to (9) if and only if ~j=l,~i < 1 for all optimal 
solutions to (5). 

(iii) u* = 0 for some optimal solution to (9) if and only if ~ = l  ~) = 1 in some optimal 
solution to (5). 

Via this theorem, we can remove the possibility that alternate optima (when present) 

might  lead to different returns-to-scale characterizations. This is accomplished by 
^ 

• " ^ *  n ^ *  simply noting that we must have ~ = l  &j = ~ j = l  )-j for (28) 3°), by the definition of  
• ^ *  

an opt imum, even when some of the ,~l,j and /~j differ in alternate opt imum solutions 

to (28). Hence, two different returns to scale characterizations cannot occur from (27) 
and, via theorem 9, the same is therefore true for (25) when (26) is used. 31) 

29) Active vectors are those which have non-zero coefficients as members of an optimal basis. See chap- 
ter 5 by Thrall for detailed developments and discussions of properties of non-basic solutions in which 
vectors with non-zero coefficients may appear as part of an optimum. 

t l  * 3°)Or its modification when ~.j=l& i > 1. 
31) Such differences can occur, however, when input (minimization) orientations are replaced by output 

(maximization) orientations in the DEA models used. See Golany and Yu (1994) for an attempt to 
exploit these differences. 
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Finally, we can relate (35) to (5) by virtue of the following 

Theorem 10 
^* ~ *  * 

Let )~j, , a designate an optimal solution to (35). We then have 

^* : , n ^* : 0 *  (1) Dividing by fl* and setting Aj ~ / f l *  we obtain ~j=z Aj l/fl*, with 
= a*/fl* optimal for (5). 

^ ,  
^*= A~/a* we obtain ~,j=l ~'j (2) Dividing by a* and setting 2j , n = l / a *  with 

= f l*/a* optimal for (10). 

The converse of this theorem is also true. See the appendix for proofs. Given an 
optimal solution to (5), we can therefore obtain an optimal solution to (35) and we 
therefore have a way of moving back and forth between these models. Also, returning 
to the way technical and mix inefficiencies were distinguished in the discussion 
immediately following (12), we can note that (35) allows us to make this distinction 
in inputs and outputs simultaneously. 

8 Returns to scale: quantitative measures 

We now turn from qualitative characterizations to quantitative measures. One possi- 
bility is provided by (35). The value of max f l / a  = fl*/a* is invariant to the units in 
which inputs and outputs are measured, which is a property required for the elasticity 
measures used in economics. See below. It also allows the measures of technical 
inefficiency supplied by fl* and a* to be applied, component by component, to each 
input and output. However, these measures must be supplemented to allow for mix 
inefficiencies, as in the following formulas: 

f l * y  +,  • 
ro + Sr = 2ro, 

a X i o  - -  S i = X i o  , 

r ~ 1 , . . . , s ,  

i = 1, . . . ,m, 
(38) 

which are more symmetric than the CCR projection formulas given earlier in (8) and 
provide a way of distinguishing between "technical" and "mix" inefficiencies in out- 
puts and inputs simultaneously. 32) These Y*~o and Xi*o are coordinates of a point on the 
efficiency frontier which is also MPSS, so the projections in (38) differ from those in 
(8), which are local. It follows that f l* /a* also provides a measure of scale elasticity 
which relates the point being evaluated to a point which is MPSS. 

Interest is usually directed to local measures of returns to scale for which we 
might take advantage of the different properties of the CCR and BCC models to 
develop a measure of the form 

h*/z*, (39) 

32)See the discussion following (12). 
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where h* = 0* is optimal for (5) and z*= 0o is optimal for (9). This is an approach 
which is elaborated on by Fare et al. (1985). See also Banker et al. (1984), as well as 
Banker et al. (1995) and Zhu and Shen (1995). However, this approach does not deal 
explicitly with the possibility of alternate optima, and an assumption of uniqueness 
associated with (38) and (39) can cause these measures to fall short of what is 
required in considering movement intended to take advantage of scale economics or 
remove scale diseconomies. 

To show what is involved in such considerations, we utilize the development in 
Banker and Thrall (1992) 33) and return to the problem on the right in (9), from which 

we obtain 
s m 

E * * E * (40)  IgrYro + U o = 1 = v i Xio 
r = l  i = 1  

on the assumption that efficiency has been achieved. 34) Then we introduce the follow- 
ing new variable: 

m * 
E i  = l Vi Xio 1 1 

• - , - - , ,  ( 4 1 )  
Po ~ S = l l 2 r Y r o  ~ S = l l ~ . Y r o  l _ u o  

which we may define as an elasticity. When the solutions are not unique, we can 
develop bounds via 

I } I ' l  po + = min 1 and Po = max (42) 
1 - + 1 u o  - -  H O 

to obtain 

Po < Po < Po +. (43) 

+ and Uo values from (26) in the following manner. First we We obtain these Uo 

+ Then we continue with the thus omit the constraint uo <- 0 and obtain max Uo = uo. 

modified problem and reorient the objective to obtain rain Uo = Uo. Note that when 
+ = - ~  which gives pg 0 as a lower bound this is done we can obtain solutions with Uo = 

÷ 1 which gives/9+ = ,,o as an upper bound. in (43). We can also obtain Uo = 

We elucidate by returning to A in figure 2 and obtain/.t* = 0 by substitution in 
(26) a f t e r  eliminating the condition Uo > O. This give Uo + = 1 -/,t* = 1 and produces 
po + = 1/(1 - Uo +) = ,,o as an upper bound. Then replacing the objective in (26) by min uo 

in its modified version, we obtain #* = 1/2 so Uo = 1 - # *  = 1/2 and Po = 1/(1 - uo) 
= 2 places a lower bound on the returns to scale at A. That is, we have 

2 = _< p ;  _< = (44) 

33)See also Banker et al. (1984). 
34)Achievement of efficiency can always be arranged, as was noted in the developments leading to (26) 

and (28). 
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to bound the value of Po at A. Then, turning to D = (4,5) in figure 2 we similarly 
obtain 

0 = Po < Po < P~ = 4/5.  (45) 

To see what these results mean, we return to (34) and again interpret these a and 13 
values in terms of  returns to scale locally. Note, for instance, that a one unit reduction 
in input at point D is accompanied by a one unit reduction in output. The proportion- 
ate reductions are therefore a = 1/4, fl = 1/5, so 13/a = 4 /5  shows that the propor- 
tionate reduction in input exceeds the proportionate reduction in output and therefore 
decreasing returns to scale would be experienced by movement in this direction from 
D. Turning next to A in figure 2, we find that a unit increase in output can be secured 
from a 1/2 unit increase in input by movement along this portion of the frontier from 
A to B. Hence, we have f i / a  = 2 and returns to scale are increasing in this direction. 

For this single output-single input example, we have a = Ax/x  and 13 = Ay/y  so 
x a  = Ax and y13 = Ay, while f l / a  = (2xy/y)/(Ax/x) = (x /y ) (Ay /Ax)  from (34). This is 
expressed in a manner easily identified with the elasticity measure used in economics. 
The uniqueness usually assumed for this measure in economics may be missing 
because our functions, although continuous, are not analytic and hence (i) the limit of 
this expression need not exist, and (ii) its value will, in general, depend on the 
intended direction of movement. Evidently the p~+, p~ in (42) and (43) provide infor- 
mation that is needed when input increases or decreases are to be considered for 
returns-to-scale properties at all extreme points. Indeed, in figure 2 only the point E" 
is associated with a unique value in which p~ = Po = P~*. 

Banker 's  MPSS concept allows us to extend this formulation to the case of  
multiple outputs and inputs. Interpreting y and x as "virtual" outputs and inputs, as 
defined in (2), we characterize a and fl as follows. For increasing returns to scale, the 
value of  a = Ax/x  means that all inputs are increased by at most this proportion and 
all outputs are increased in at least the proportion 13 = Ay/y,  with 13/a > 1 and at least 
one output and one input achieves its bound of 13 or a. Turning to decreasing returns, 
the value 13= Ay/y  represents the maximal proportions in which all outputs are 
decreased with decreases in all inputs of at least a = Ax /x  and 13/a < 1 (the propor- 
tionate decreases in inputs exceed the proportionate decreases in outputs). MPSS is 
reached only when f l / a  = 1 and, in (i), the case of increasing returns to scale, when a 
further proportionate increase in inputs is associated with a situation in which at least 
one output will exhibit a smaller than proportionate increase in its value while, for 
(ii), decreasing returns to scale, at least one input will exhibit a smaller than propor- 
tionate decrease than is exhibited by the outputs. 

To continue, we examine the lower bound of zero in (45) and the infinite upper 
bound in (44). To help interpret these results, we note that the relations in (40) corre- 
spond to algebraic expressions for hyperplanes in n-dimensional spaces. In the two- 
dimensional space of  figure 2, these hyperplanes become straight l ineswhich  we 
rotate around points like A and D by varying u o until coincidence is achieved with an 
adjacent frontier segment. 



W. W. Cooper et al. //  Extensions and new developments  in DEA 33 

These extremes, as represented in uo + and Uo, are reflected in the po + and Po in (42) 
which provide the above elasticity measures and, once again, we have DEA as a data- 
based technique. The lower bound Po = 0 in (45), for example, means that no increase 
in output is evidenced by an increase in input starting at D. Hence, the relation asso- 
ciated with Po in (45) means that the corresponding line (= hyperplane in (41)) is 
rotated until it coincides with the dotted line extension from D that is portrayed in 
figure 2. Similarly, the upper bound given by po + = ~ in (44) means that returns to 
scale are infinite on the segment which coincides with the dotted line extending 
vertically downward from A. The data, as given, are thus interpreted to mean that 
even an infinitesimal decrease in input at A will reduce output to zero or, conversely, 
a reversal of this infinitesimal input decrease will result in an output jump from zero 
to unity. 35) Therefore, to finally align our analysis with other parts of this paper, we 
bring our non-Archimedean infinitesimal into play by writing our proportional input 
increment as A x / x  = e / x  so that 

Ay Ay x x 
f i l e t -  _ _ M ~J x ,  

y A x  y ~ y 

with e -1 = M, the so-called "big M" of ordinary linear programming (which is also 
non-Archimedean) represented as the reciprocal of e > 0 when infinite returns to scale 
occurs and, of course, we have 

x zXy - f i / a -  x 
y Ax y 

when zero returns to scale is exhibited. 

0 
- 0  

Ax 

These developments, which rely heavily on Banker and Thrall (1992), evidently 
supply guidance beyond what was previously available. This is not the end of what is 
needed, however, and more work is under way. Golany and Yu (1994), for example, 
proceed in a different manner to establish bounds which we briefly indicate as 
follows. The projections obtained from (5) will generally yield points that differ from 
the projections obtained when the output oriented model (20) is used. Using these 
different projections as bounds, they then try to squeeze them together until a point is 
reached where their scale elasticity values coincide. Other refinements could explore 
alternative directions to find one that yields the greatest advantage - with, perhaps, 
changes in the mix of inputs and outputs needed to secure them. 

9 Allocative efficiencies and assurance region extensions 

Technical or mix inefficiencies are present when some input or output may be 
improved without worsening any other input or output. Removal of returns-to-scale 

35)See footnote 16. 
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inefficiencies, on the other hand, involves movements on the efficiency frontier where 
input-output tradeoffs are necessary. To take advantage of increasing returns to scale, 
for example, it is necessary to augment inputs in order to achieve a more than 
proportional increase in outputs. Use of such an opportunity implies that the output 
augmentations are at least as valuable as the input increases needed to secure them. 
Conversely, the frontier movements needed to eliminate decreasing returns to scale 
imply that the output reductions are less valuable than the more than proportional 
decreases in inputs required. Note, however, that this can all be justified if inequality 
exists so that total returns exceed total costs. Information on exact values of costs and 
prices is not required. 

The topic of "allocative efficiency" to which we now turn extends the required 
valuations a good deal beyond such inequality bounds. In particular, as we will see, 
the information (and results) depends on exact knowledge of the relevant valuations 
with inequalities replaced by equations which are to be satisfied by the choices to be 
made. 

Figure 3 can help to relate what is being said to standard versions of micro- 
economic theory if we interpret the solid line from C to E as an isoquant. 36) That is, 
we interpret this line as representing all of the technically efficient input combina- 
tions of two inputs in amounts (Xl, x2) that can produce a single output in amount y. 

C 

\ \  " D 

.,,.J" ~ , PlXl +P2X2 = k 2 

\ \ " " ~ " " " " ~  E 
PlXl +P2x2 = k 1 

Figure 3. Allocative efficiency. 

The amount of this scalar is obtained by passing a plane at some prescribed level y 
through the production surface associated with 

y = f ( x  I , X 2 ), (46) 

36)We could replace this isoquant assumption with the more general concept of a "unitized frontier", as 
discussed in Cooper et al. (1995), but here we prefer to adhere to the concepts commonly used in 
micro-economic theory. See chapter 2 in E. Rhodes (1978) for a detailed development. 
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where f ( . )  is a "production function" so that, in accordance with the usual assump- 
tions in micro-economics, the output level y is maximal for any input combination 
(xl, x2) that is used. 

We now introduce a cost function, 

PlXl + p2x2 = k, (47) 

where the positive constants (p~, P2) represent the prices per unit of the correspond- 
ing inputs. Geometrically this expression corresponds to downward sloping lines 
like those associated with k2 and k 1 in figure 3. If we seek to minimize the cost of 
producing y, we achieve the usual results from micro-economics 

dx2 ~f/~xl P2 

dxl Of/~x 2 Pl 
(48) 

which represent necessary conditions for a minimum in the open portion of any 
segment such as A - B  in figure 3 where these derivatives exist. 

The Pl and P2 (unit prices) on the right in (48) can be regarded as components of 
the normal vector represented by the arrow in figure 3 that shows the direction in 
which optimization is undertaken. Evidently, cost is minimized at k = kl because 
the normal to the segment A - B  with components ~f/~xl and ~f/~x2 is equal to the 
normal of the cost line and because coincidence is achieved with the segment of the 
isoquant represented by A - B  and no further movement in the direction of the normal 
is possible. In contrast to assumptions like "an absence of technical inefficiency", 
which is customary in micro-economics, we need to allow for additional possibilities 
but we can also use micro-economics to identify issues we need to consider. 

First, we observe that we cannot guarantee that empirical data will necessarily 
conform to the assumptions required to justify characterizing the solid lines CABE as 
an isoquant in the sense of micro-economics. Hence we regard the conditions noted 
in (48) as necessary but not sufficient to guarantee that minimum cost has been 
attained for the production of y and that mix inefficiencies have thereby also been 
eliminated. Second, we observe that technical efficiency is necessary but not suffi- 
cient for cost minimization. Note, for instance, that D is not technically efficient but 
is nonetheless preferred to C even though the latter is technically efficient. Finally, 
we observe that we can continue to obtain improvements at D by moving this line in 
the direction indicated by the arrow until the segment A - B  is achieved, where (in the 
sense of DEA) technical and mix efficiency are both satisfied. Thus, as stated, tech- 
nical efficiency is a necessary but not a sufficient condition for "allocative efficiency". 

Although allocative efficiency can help to clarify matters and provide conceptual 
guidance, it can be of limited value in actual applications because it (a) imposes 
severe data requirements, and (b) utilizes assumptions which may be difficult to 
justify. Exact knowledge of prices is often difficult or impossible to come by and this 
difficulty is compounded when one has to deal with entities like schools, hospitals or 
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air force units where inputs and/or  outputs have no easily ascertained costs or 
prices. 37~ In addition, prices can be (and often are) subject to variation in very short 
periods so that additional choices and assumptions are involved concerning their 
pertinence. 

One route around the latter problem involves a recourse to averages. Another 
possibility is to introduce constraints with lower and upper bounds on the admissible 
values of variables. This has been done for both primal and dual variable values. See 
Arnold et al. (1995) and Cooper et al. (1994). Here, however, we follow the Assurance 
Region approach first developed in Thompson et al. (1986) 38/ and defined more 
precisely in Thompson et al. (1990). We confine attention to the dual. In this 1986 
paper, the assurance region took forms like 

a r  <-- V r  <-- ~ r ,  r = 1 . . . . .  s ,  
V r  o 

~i -< j2i --< ?'i, i = 1 . . . . .  m, 
J.tio 

(49) 

where Vro and I.lio represent dual variables which serve as "numeraires" in establishing 
the upper and lower bounds represented here by a r, fir and by 8i, ~ for the dual vari- 
ables associated with each output and input and where aro = fifo = fii,, = ~,, = 139) Uses 
of such bounds are not restricted to prices and may extend to "utils" or any other 
evaluations that are regarded as pertinent. For an example of the former, see chapter 
14 by Zeng which reports an application that utilizes assurance region approaches to 
impose bounds on proposed vehicle designs and production schedules for Chinese 
automobiles. See also chapter 15 by Zhu, which uses this approach to establish bounds 
on the weights obtained from uses of Analytic Hierarchy Processes in Chinese textile 
manufacturing. 

There is another approach called the "cone-ratio envelopment approach" which 
can also be used for this purpose. See Cooper et al. (1994). We do not examine this 
approach in detail, but rather only note that the assurance region approach can also be 
given an interpretation in terms of cones. To show how this may be done, we use the 
following matrix representation: 

E °o °lI l- o,c v (5o) 

37~Evaluations of air force activities have involved consideration of inputs like "weather", where no 
markets could be referenced. 

38)This application is of interest in its own right since it dealt with evaluations of contributions to 
"fundamental knowledge" in physics, where neither price nor similar guides could be obtained. 

39)Assurance Regions described by (49) are a special case of "cone ratios" in "intersection form". See 
Charnes et al. (1990, pp. 77 and 78). Later, Thompson et al. (1995, p. 112) described (49) as "cone 
ratios in intersection form defined by pairwise comparisons where the first member of each pair is a 
common numerator". 
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where # and v are non-negative vectors with component values to be determined. The 
following example taken from chapter 15 by Zhu can serve to illustrate a use of the 
submatrix D: 

- i  0 1 
0 - 1  

8 - 7  

# 1  

#2 

#3 

- 4 # 1  + #3 -< 0, 

_<0; i.e. 2#1 - #3 -< 0, (51) 

8,/./2 - -  7#3 < 0, 

so that using #3 as "numeraire" we have 1/4 < #1/#3 -< 1/2 and 0 < #2/#3 -< 7/8,  in 
conformance with (49). 

Evidently, D / t <  0 with # >  0 defines an "input cone". Similarly Cv<_ 0 with 
v > 0 in (50) defines an output cone. This is not the end of the line for uses of these 
assurance region concepts, however, because Thompson et al. (1990) subsequently 
extended this to include formulations like 

o o]E ] 
0 C # 

V 
/71 F2 

(52) 

in which the sub-matrices FI and/72 serve as "linkage constraints" - so-called because 
they link input conditions to output conditions - but not in cone ratio forms. 4°) See 
Thompson et al. (1995) for a chronology and a diagrammatic portrayal of the various 
assurance region (and related) approaches that are now available. 41) 

The generality of these formulations is evident. They also provide flexibility in 
use. Prices, utils and other measures may be accommodated and so can mixtures of 
such concepts. Moreover, one can exploit possible interplays to first examine provi- 
sional solutions and then tighten or loosen the bounds until one or more solutions is 
attained that appears to be reasonably satisfactory. Such bounds might take forms 
like Pi < # i / # r  <- P~, where Pi and p~-. represent lower and upper bounds on the ith 
relative price. For the i = 1, 2 inputs in figure 3, these bounds might continue to iden- 
tify a point on the segment A - B  as optimal. Alternatively, they might locate a point 
on the segment A - C  associated with a value k i which is very close to kl and, in any 
case, these bounds might be tightened or loosened in order to explore the properties 
of other solutions. 

Even ab initio, the Assurance Region approach greatly relaxes the conditions and 
widens the scope for use of a priori conditions. In some cases, the conditions to be 

4°lThe expression (52) does not have separate input and output cones and hence is not in the form of a 
cone ratio. 

41)See also their discussion of modifications of (3) and (5), which can be used to measure profit poten- 
tial as well as efficiency. 
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comprehended may be too complex for explicit articulation, in which case additional 
possibilities are available from other recent advances. For instance, instead of 
imposing bounds on allowable variable values, the cone-ratio envelopment approach 
transforms the data. Brockett et al. provide an example in which a bank regulatory 
agency wanted to evaluate "risk coverage" as well as the "efficiency" of the banks 
under its jurisdiction. Bounds could not be provided on possible tradeoffs between 
risk coverage and efficiency, so this was accomplished by using a set of banks iden- 
tified as "excellent" (even when they were not members of the original (regulatory) 
set) and then, employing data from these excellent banks, a cone-ratio envelopment 
was used to transform the data into improved values that could be used to evaluate 
each of the regulated banks operating under widely varying conditions. This avoided 
the need for jointly specifying what was meant by "adequate" risk coverage and 
efficiency not only in each detail, but also in all of the complex interplays between 
risk and efficiency that are possible in bank performances. The non-negativity 
imposed on the slacks in standard DEA models was also relaxed. This then made it 
possible to identify deficiencies which were to be repaired by increasing expense 
items such as "bad loan allowances" (as needed for risk coverage) even though this 
worsened efficiency as evaluated by the transformed data. 

Again, this is not the end of the line. In one very recent effort, Thannasoulis and 
Allen (1994) note that adding restrictions like (52) to "multiplier models" implies 
adding variables to the "envelopment models". 42) Proceeding further on this line, they 
then show how to synthesize new (artificially contrived) DMUs to obtain still more 
information than is obtained from straightforward uses of assurance region ap- 
proaches. This opens possibilities for joint uses of this approach to envelopment 
models in combination with assurance region approaches. Opportunities also exist for 
joint uses of Assurance Region and Cone Ratio Envelopment approaches which, in 
turn, can be extended by introducing bounds on allowable values for the variables in 
the primal (envelopment) model of DEA as well as on the dual (multiplier) model. 
See Arnold et al. (1996). 

10 Conclusion: chapter summaries and suggestions for further research 

We have now covered much ground in which past formulations have been extended 
to provide new uses for DEA. We have also outlined issues for further research to 
which we now make additions with suggestions pointing toward the other papers in 
this volume. 

One such addition could extend DEA for use in evaluating "returns to scope" as 
well as "returns to scale". A beginning in this direction may be found in Maindiratta 
(1990). Zeng's theorem as given in chapter 14 of the present volume of the Annals of  
Operations Research could also be useful because the evidence from the zero 

42) See also Roll and Golany (1991). 
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outputs in one or more DMUs could play a critical role in evaluating returns-to-scope 
possibilities that could extend his studies in Chinese vehicle production. See also 
chapter 15 by Zhu, and see also the still different approach opened in chapter 8 by 
Banker and Morey. 43~ 

It would be even better if this could be accompanied by dynamic extensions which 
could make it possible to evaluate trends in "mix" as well as "productivity" (technical 
efficiency) possibilities. See the Moving Frontier Analyses and the related Isocost 
Curves in chapter 9 by Sinha 44~ Needless to say, such dynamic extensions could prove 
useful in many other ways. The Malmquist Index studies reported in chapter 10 by 
Althin, Fare and Grosskopf add important new dimensions for index number uses by 
making it possible to distinguish between (a) new frontier possibilities that may be 
opened over time; (b) efficient and inefficient uses of such new frontiers; (c) identi- 
fication of when these new possibilities and their uses occur; (d) the identities of the 
DMUs that used (and failed to use) these possibilities. 

Another range of topics could involve choices of weights for use in DEA models 
along lines like those suggested in chapter 5 by Thrall. As noted in our earlier discus- 
sion, this, in turn, raises more general questions of desirable properties of measures 
to be used along lines like those dealt with in chapters 3 and 4 by Pastor and Thrall. 

In a somewhat different direction, one might concentrate research on difficult-to- 
conceptualize methods of measuring some of the more subtle properties of inputs and 
outputs. "Quality" of inputs and outputs is one example. Another is "complexity", 
which is dealt with in the DEA formulations used by Sinha in chapter 9. One can also 
easily add to this list and include topics like "flexibility", etc. En route, one might 
study how DEA responds to misspecifications arising from either (i) an omission 
of pertinent variables, or (ii) an inclusion of variables which are not pertinent. See 
chapter 11 by Banker, Chang and Cooper in this volume. 

In earlier discussions, we cited chapter 7 by Thompson, Dharmapala, Diaz, 
Gonz~ilez-Lima and Thrall which exploits new methods of sensitivity analyses in 
which all data can be varied simultaneously. A related research direction involves 
suitable methods for statistical inference and probabilistic characterizations (and 
interpretations) for use with DEA. One part of the DEA literature has dealt with 
properties of statistical consistency as discussed in chapter 11 by Banker, Chang and 
Cooper. Other parts of the literature have been directed to developing nonparametric 
statistics that can match the non-parametric nature of DEA itself. See Brockett and 
Golany (1995). 

Other problems and possibilities arise very naturally in such extensions. One class 
of problems concerns distinguishing between managerial error and statistical error. 
This is dealt with in chapter 12, where Arnold, Bardhan, Cooper and Kumbhakar study 
ways in which DEA and statistical regressions might be combined. 

43) See also Ray (1995). 
44) See also the recently released book by Sengupta (1995). 
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There is also the problem of how to deal with performance evaluations when risk 
and uncertainty are present in significant ways. Chapter 13 by Cooper, Huang and Li 
addresses this topic from the side of both the "evaluator" and the "evaluated" by 
suggesting "satisficing" rather than "optimizing" models for performance evaluations 
in a chance-constrained programming framework for DEA. 45) 

More generally, one must be concerned with properties of DEA solutions and the 
methods (e.g., algorithms) used to obtain them or to study their properties. This is 
dealt with in detail in the chapters by Thrall and by Gonzfilez-Lima, Tapia and Thrall 
which appear in Part II of this volume. The interior point algorithm developed in the 
latter chapter goes beyond achieving solutions in ways that are not restricted to uses 
of extreme points. It also opens possibilities for other uses. For instance, the "analytic 
center" solutions achievable by this algorithm are put to use in exhibiting the stability 
(= robustness) of DEA solutions in the immediately following chapter 7 by Thompson, 
Dharmapala, Diaz, Gonz~ilez-Lima and Thrall. These robustness properties refer to 
situations in which all data are varied s imultaneously .  These kinds of variations are 
more general than the ones used in outlier analyses in statistics and the algorithms 
used for the sensitivity analyses in parametric linear programming where data varia- 
tions are studied on only one observation at a time. Proceeding on these lines, data 
from international oil companies are used in chapter 7 to show the robustness of DEA 
in distinguishing between efficient and inefficient performance and, of course, the 
methods of analysis are formulated so they can be used in other studies as well. 

Evidently, richness and variety are being added to DEA in the chapters we have 
been describing. There is also a need for unification of the various DEA models, and 
this is serviced by Yu, Wei and Brockett in chapter 2, who show how families of 
different DEA models can be obtained from one basic model formulation. Finally, 
there is the very important topic of new applications and the new problems and 
possibilities flowing from them. Chapters 14 and 15 by Zhu and Zeng, respectively, 
in Part V of this volume provide examples from the mixed economy of China which 
show how bounding techniques (such as "assurance region" approaches) can be used 
to deal with problems arising because non-market data and subjective evaluations 
must be dealt with. 

Applications of DEA have been a source of new and important insights into policy 
shortcomings, which in turn have suggested new topics for research. An example is 
provided in a paper by Arnold et al. (1996), where their use of DEA in a study of 
Texas public schools found that not a single "excellent" school was also "efficient". 
Generally located in more favored districts, these "excellent" schools expended 
excessive resources, at least in part because the excellence evaluations did not take 
resource consumption into account. This inattention to resource consumption as part 
of an excellence evaluation is not confined to Texas. It is to be found in the "Clinton 

45)This has subsequently been extended to include "joint" as well as "'marginal" chance constraints. See 
Cooper et al. (1996). 
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2,000 Plan" for public-school education, and the "Bush-Alexander"  plan (which 
preceded it) also focused on outputs without attention to the resources used to achieve 
specified standards of excellence. Something might be said for an alternative approach 
in which efficiency is also rewarded, perhaps, in a conditional fashion, so that schools 
functioning in difficult circumstances might be helped to achievable levels of excel- 
lence in a step-by-step manner. The evolution of practical methods for effecting such 
evaluations and accompanying rewards could also be a topic for further research along 
lines like those indicated in this volume. 

Appendix 

Proo f  o f  theorem 10 
For this purpose, we replace (35) with the following equivalent: 

minimize a/~ 

subject to ~Yo 
r/ 

-< Z YJzJ, 
j = l  

n 

o c X  0 >- Z Xjz~j, (A.1) 
j = l  

n 

1 = y _ ~ , j ,  
j= l  

0 < a,  f l ,~. j ,  j = 1 . . . . .  n. 

This is a fractional programming problem so, proceeding as in (4), we introduce the 
new variables 1 

/ ~ = t f l = l  so t =  ~ >0 ,  

o=a/p, 

Thus, multiplying all constraints by t > 0 in (A.1) gives 

(A.2) 

minimize 0 
tl tl 

subject to #Yo = Yo < ~ ,  Yj~j = Z YJ~J/fl' 
j = l  j = l  

FI n a 
OXo = -~ Xo >- Z xj~j = Z xj~j/~,  

j = l  j = l  
n /.1 

, 

(A.3) 
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with all variables also constrained to be non-negative.  Since 13 > 0 is def ined by 
Y'J= l ~j=~-'j=ln .a.j/13, this last constraint is redundant and may be omitted to obtain 

minimize 

subject to 

0 
?/ 

Yo_  Z vj j, 
j = l  

FI 

oxo >_ Z Yjij, 
j=l  

--< /~j, j = 1 . . . . .  ,2. 0 

(A.4) 

This is in the same form as (5). So, via the theory of fractional programming,  as given 
in Charnes and Cooper  (I 962), we find that a solution to (A.4) is optimal for (A. 1) 
with min oc/fl = min 0. We may also move back and forth via the t ransformations 
given in (A.2) as claimed in (i) of  theorem 9. Proof  of part (ii) follows an analogous 
route and the necessity and sufficiency conditions of  theorem 6 are an immediate  
consequence of  the conditions for efficiency of  a solution to (5), as specified in (7). 

[]  

Finally, we show that the converse is also true. Consider any optimal solultion to 
(5) with Y.~=I Yj~; = 1/fl*. Setting 0* = ~z*/fl* and mult iplying all constraints by 
j3* > 0, we have a solution which is optimal for (A. 1). This follows because assuming 
a solution to (A.1) with a/13 < a*/13" contradicts the assumption that 0* is optimal 
for (5). [ ]  
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