
K. Possible Worlds 
and Many Truth Values* 

Some interest ing rela.tionships a.mong proposi t ions (or, if you  prefer, 
a.mong s t a t ements  or sentences) are clearly no t  t r u t h - f l m c t i o n M -  for 
exa.mple, the  implication relation. And, at  least according to some views,  
some of these relat ionships make  sense only when proposi t ions are under-  
.stood as capable  of being nei ther  t rue  nor  false -- for example,  the  pre- 
.supposition relation, as 'The King  of France  is wise' presupposes  'There  
is a. King  of :France'. I t  is convenient  for formM anMysis to regard " impl ies"  
a n d  "presupposes"  not  a.s relations b u t  as connect ives;  thus  <P implies Q' 
is the  proposi t ion which is t rue  when P does imply  Q and false when P 
does  no t  imply  (2. One interest ing formal representa t ion of implicat ion 
is p rovided  b y  the  possible-worlds semantics of modM logic, in which 
"P implies Q' is represented  b y  the  formula  [] (p :~q) An analogous ap- 
p roach  to presupposi t ion  woldd  be based  on a many-vMued  logic: 'P  pre- 
.supposes Q', or 'if P is either t rue  or false, then  Q is t rue ' ,  would  be  re- 
p resen ted  b y  [] ((z'pvqJp)~vq). Of com'se, the  problenl  of presuppos i t ion  
is only one of several reasons for considering m~ny-va.lued modal  logic; 
Morgan [1] ment ions other.~. 

Several  authors  ll:~ve p roved  completeness and decidabi l i ty  theorems 
for par t icular  many-vMued  modal  systelnS analogous to famil iar  two-  
-valued modal  systems.  Sehotch et al. [2] consider two th ree -va lued  
a.nalogues of I;, w]lich differ in the  in terpre ta t ion  given to fN. ~ o r g a n  
studies a class of ma.ny-vMued anMogues of T. S~gerborg [3] exanlines 
three-va lued  ana log ies  of I;, T, $4, B, and $5 having two U]-oper:~tors, 
one stron~'er t han  tile other.  The general f lavour  of all this work is: given 
.~ two-vMned modal  sys tem S which is canonical  (tile Lemmon-Scot~  
canonical  model  for the  sys tem is based  on a fl'anle for the  systenl ,  so 
in par t icular  the  sys tem is complete),  and given a many -va l ued  t ru th-  
-f lmetional logic -//0 of slfffieient expressive power  (enough colmect ives  
a.re definable ill it), and  given a reasonable way  T of evMuat ing  [:]p a.t 
a possible world in te rms of the  values of p at  Mternat ive  possible worlds, 
one ea.n f ind axioms and rules of inference for a sys tem S z analogou.~ 
to S, bu t  b~rsed on J /o  and T, and prove completeness  of S /t by  a canonical- 
-model  construct ion.  Natm'al ly,  one is led to inquire whether  a .a'eneral 
t h eo rem to this effect cem be proved.  5Iorgan gives precise meanings to 
~he ternl.s "suff icient" ,  " reasonable" ,  and  "analogous"  as used above,  
b u t  (the last  paragraph  of [1] notwit.hsta.nding) he does not  prove  a general 
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t heo rem of the  sort I have  in mind he does no t  ~uggest - -  .~ general proof  
t ha t  if S is canonical then  so is S "r 

B u t  the  main  problem, I think,  is no t  to consVcuet many-~,alued ana- 
logics  of two-va lued  sys tems;  i t  is ra.ther to ~mderstand m a n y - v a l u e d  
systems generally. In  w I shall show t h a t  any  formula  of any  many-  
-~alucd moda l  logic is semant ical ly  equiva lent  (in the  sense oi be ing  
val id  on the  same frames) ~o a formula  of ~wo-vMued modM logic; t he  
la t ter  formula  is called a 9ff-reduct of the  former  In  w I define, for a n y  
m an y -va lued  modal  logic J /  (based upon  a ma,ny-vMued t r u t h - h m c t i o n a l  
logic of sttfficient expressive power  and a reasonable  w~y of eva lua t ing  
the  necessi ty  operator)  a se~ of r xioms and Jd-rules, and show tha~ 
any fornmla of J t  is, in the  presence of these  axioms and using jus t  these  
rules, syntac t ica l ly  equi-ca, lent to any  of its ~f- reducts  Thus any  formal  
sys tem in the  language of ~t/ (whose rules arc the  ~/?-rules and  whose  
axioms inch~de the  J [ -ax ioms)  is essentia, lly jus t  a,n ord inary  t w o - v a l u e 4  
s),sten)., augmen ted  b y  the  J/-a.xioms a.nd ~r In  w I retm'n to 
the  original p rob lem of ~ra.ny-vatued analogues of two-u  systems.  

w Le t  us now be more specific. A .ma.n,y-valucd modal logic (or, br ief ly,  
a logic) .t/  consists of a many-valued truth:functional logic t(d/)  an4  ~ 
q~ecessity opera tor  Tdt. In  turn,  t (J[)  consists of a finite set T ~  (of "C-ruth 
values") ,  a n o n - e m p t y  proper  subset  D~f (of "des igna ted"  t r u t h  val~es),  
and finitel$ marts  fmi t a ry  operat ions  �9 on Tdt (corresponding to t he  
truth-functional connectives, deno ted  b y  the  same s s m b o l s  as the  ope- 
rat ions).  In ,nat ively,  a necess i ty  opera to r  is to pro-vide a w a y  of evalu- 
a t ing 'necessar i ly-P '  in a possible world,  in te rms of the  t ru th  values 
real ized b y  ~P' in a l te rna t ive  possible worlds -- in terms,  t h a t  is, of the  
set of such t ru th  values,  independent ly  of where,  or how o~en ,  the  t r u t h  
va.lues be realized. Moreover,  'necessmqly-P'  should ha~-e a " t ru th- l ike"  
t r u t h  va lue  in a given world if and  only if 'P '  has " t ru th- l ike"  t r u th  values  
in all a l ternat ive  worlds. Formal ly ,  then,  T.tt: P(T~t)-+T~/I and, for all 
S ~_ T~tt, T.,,I(S) e D~, t~S ~_ I)i i. 

There is jus t  one interest ing two-va lued  modal  logic, which we shall 
call 3( :  T~r = {0, 1}, D x = {1}, the  connect ives o~ t(.X) ~re -7 and v ,  
and T~.(S) is 0 or 1 according as 0 e S or not .  

Let  Vat  be a coun tab ly  infinite set of (propositional) variables.  The 
set ~la,,t of formulas  o~ Jr is fo rmed in the  usual  way,  beginning wi th  
the  ~ariables  and using the  connect ives �9 of t (J/)  and a 1mary connect ive  D. 

A frame is a pa.ir (W, _R), where  W is a non-empC-y set (of "possible 
wor lds")  and  R is a b inary  ("possible a l t e r n a t i v e ' )  re lat ion on W. 
(W, R) is a f rame a.nd J/[ is a logic, then  an J[-valuatioq~ on (W, R) is 
a funct ion  V: V a t •  W--~-T.,t. A n  J / - v M u a t i o n  V has a lmique extension 
Y: Flu.el • W--->T~t satisfying V(*ax . . .  am, w) = *(V(al,  w), . . . ,  V(a, , ,  w)) 
and V( E]a, w) -= T ct({V(a, v)IwRv}). A formula  a of ~/[ is valid on (W, R),  
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or  (W,  R) ~ a, if V(a,  w) e _D~r fo r  every, w e W a n d  e v e r y  ~ ' - v a l u a t i o n  V 
on (W, R). 

T w o  form~flas, pos s ib ly  of  d i f f e r e n t  logics, a re  ca l led  frame-equivalent 
if ~.lley a rc  va l i d  on  e x a c t l y  t h e  same  fl 'ames.  Tw o  form~th~s a a n d  fl of  
t h e  s a me  logic ~ !  a re  cul led  designation-equivalent if~ fo r  e v e r y  f r a m e  
(W, R),  e v e r y  w �9 W, a n d  e v e r y  ~r V on  (W, R), V(a~ w) �9 Dr 
~ ( f l ,  w) �9 D ~ .  

A logic J /  is e~l led standard if t h e  connective.~ of t(o~//) inc lude  7 ,  
V , a n d  ~. (a e T~t) sa t i s fy ing  

-]b eDr -~ b r162 

b y e  �9 D(~ ~ b �9 D ~  

~a b �9 D~r ~'~ b = a, 

or  c ~ Dzr 

fo r  all b, e e TalC. T h e  symbo l s  7 ,  v ,  Za will a lways  d e n o t e  c o n n e c t i v e s  
s a t i s f y i n g  t h e  a b o v e  c o n d i t i o n s ;  A, ~ ,  a n d  ~ will a b b r e v i a t e  combi -  
n a t i o n s  of -7 s n d  v in t h e  nsna l  wa.y. A standard co~,ective is a n y  of  
7 ,  v ,  va, or  [ ] .  A standard form~da is one  wh o se  c o n n e c t i v e s  are  all sta.n- 
dural. :h'ote t h a t  if J /  is s tanda . rd  Chert ~ l a ~  ~_ _Flue t. 

W e  n o w  e m b a r k  n p o n  a series of  t e c h n i c a l  def in i t ions ,  n e e d e d  ~,  
e s t ab l i sh  t h e  c o n n e c t i o n s  b e t w e e n  ~V a.nd an  arbi t ra i -y  logic , # .  

De f ine  d(q, fl), w h e r e  q e Va t  a n d  fl e-Flu dr, b y :  

d ( q , p )  = 0 if p e V a r ,  

d(q, *al  . . .  am) = m a x { d ( q ,  a~:)l 1 ~ i ~ m}, 

l + d ( q ,  a) if q occm's in a 
el(q, ida) = 0 o the rw i s e .  

Thus  d(q, fl) is t h e  d e p t h  of q in fl -- t h e  m ~ x i m u m  n u m b e r  of ocem' rences  
of [] ha~dng t h e  same  oce~m'ence of q in t h e i r  scope.  

I f  q~, . . . ,  qm are  d i s t i n c t  va r i ab l e s  a n d  fl, a~, . . . ,  a,,~ are  fo rmu la s ,  le t  
fi(aj, . . . ,  am/q~, . . . ,  qm) be  t he  r e su l t  of s imul t~meous ly  snbs t i la l t ing  ai 

fo r  all occmTences  of qi in fl(1 ~ i 4 m). 
I f  �9 is a n  m - a r y  n o n - s t a n d a r d  c o n n e c t i v e  of ;~ s h m d a r d  logic Jr l e t  

b.(az, . . . ,  am, fl) be  t h e  d i s j unc t i on ,  o v e r  all (al, . . . ,  am, b )eT~ t  +~ such  

t h a t  b = . ( a l ,  . . . ,  a~),  of  t h e  f o r n m l a s  v~laz^ . . .  AVamamAWbfl.  

PI~OP0SITIO~ 1. I f  a~, . . . ,  a,~ are stanelarelform, ulas, theft ~. (a~, . . . ,  am) 

is a sta,~dard formula, a~d for a~,y (W, R), V, a~d w, 

V ( ( ~ . ( a l , . . . , a m ,  f l ) , w ) e D ~  -~ V(fl ,  w) = V ( . a l . . . a , a , w  ). 

{ E x a c t l y  h o w  ~. (a l ,  . . . ,  a,,, fl) w o u l d  be  w r i ~ e n  in  t e r m s  of  -7 a n d  v 
is of no  c o n c e r n ;  all  t h a t  m a t t e r s  is t h a t  P r o p o s i t i o n  1 shotfld hold ,  as  
will be  t h e  c~se u n d e r  a n y  r e a s o n a b l e  u n a b b r e v i a t i o n  e o n v e n ~ o n s .  I n  
w h a t  fol lows,  o b s e r v a t i o n s  s imilar  to  Chis one  will  be  lef t  to  t h e  r eade r . }  
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Define  t he  height h(y)  of y in t h e  usua l  w a y !  h(p )  = O, h(*al . . .  a,,) 
= l - ~ m a x { h ( a i )  l l ~ i ~ m } ,  a.nd h([~a) = l + h ( a ) .  Def ine  t h e  ra~k  

r (y)  of ~ to  be t h e  ma .x imum (for all a e T~t) he igh t  of scopes of occur-  
fences  of va in ~. 

Def ine  5~, where  a e T #  a.nd a is a s t a n d a r d  io rmul~  of J / w i t h  h(a) ~ 1, 
,~s fol lows:  if a - - - -  Vb~ t h e n  5~ is the  dis j~mction of all t h e  fo rmulus  v~y 
such t h a t  r~(e) = a ;  i f  a = --lr t h e n  5." is t h e  d i s j lmc t ion  of M1 formula..~ 
r~r  such t h a t  - l e  = a;  if a = r v 6  t h e n  ~ is t h e  d i s j u n c t i o n  of M1 for-  
mulas  r c y A r a 5  such t h a t  e v d  = a ;  a n d  if a = [-]7 t h a n  6~ is t he  dis- 
j unc t ion  of a.ll form~fla.s A { - ] K ] T v ~ r l c e S } A A { [ N - T V c y l C r  } such 
t h a t  T../t (S) = a. 

]?ROPOSITIO~ 2. The formula  b,"~ has ra,~k 09~e less thag~ the ra.M,: of  
vaa , and 6~ .is designatio.~-equivale9~t to raa. 

A f o r m u l a  is closed if eve ry  oecm'rence in i t  of ,~ vz~riable is w i t h i n  
t he  scope of some v,.  F o r  a n y  y, let  v ( r  ) = V{v~?l a eD.r162 t h e n  r.(?) 
is de s igna t ion -equ iva l en t  to  y. 

I f  a l , . . . ,  a,,~ is a l is t ing w i t h o u t  rep i t i t ions  of T z ,  ~md a ~ , . . . ,  %, 
e ~ l a z ,  let  6(a l ,  . . . , a ,~ )  be t he  d i s j lmct ion ,  for  i = 1 ,  . . . , m ,  of t h e  
form.ulas a,:ANV{ai[ 1 < j  <'m,, j r i}. T h e n  V ( f ( a l ,  . . . ,  a,n) , w) e D z 
if a n d  on ly  if exac t ly  one of V(a~, w) e D , l ;  c o n s e q u e n t l y  (~(v~p, . . . ,  r,,,fl~) 
is va l id  on all  f rames .  

Now we p u t  all t he  pl'e~ioUS def in i t ions  to use~ to def ine  a re la t ion  
bt~tween fo rmulas  of a s t a n d a r d  logic o.//. 

(A)  I f  ~l is n o n - s t a n d a r d ,  t h e n  ~] ~- ~' if a n d  o n l y  if 

= IA . . . .  ",,,, q)l -~fl, whore  v = fl(a/q), a = .a~ . . .  am, 
j=0 

each % is s t anda rd ,  q does n o t  occur  in a, a n d  9t = d(q, fl). 

]PROPOSITION 3. If ~l is .~9~v-standard th~lb a')~, 9/ s~teh that q >- q' 
caw be fou.~vd effectively, a~d a~ty s~t.ch 91' has 09~ fewer occ~trret~ce, of n,o~- 
-sta9~da, rd eo9tn, eetives than, .~ has. 

(B)  I f  ~/ is s t a n d a r d  a.nd r(~/) ~ l, t h e n  ~l >" ~l' if a n d  on ly  i~ 
V' = fl(ba, a ~ , . . . ,  a,n/q , q ~ , . . . ,  q,,), where ~1= f l (r ,a ,  a ~ , . . . ,  a,,~/q, q z , . . . ,  q,,), 
h(a)  = r(~?), fl has  on ly  -1, v ,  a n d  [] as connect ives ,  a n d  no q~ occm's in a. 

PROPOSITIO~ 4. I f  q is stun, dural a,~d r(~)~> i the~ an ~' such that 
~7 >" U' eaq~ be fou,~d effectively; a9~d any s~ch ~' is stag~da9"d, and either 
r(9?') < r(~)  or else r(u'  ) = r(.q) a..n,d ~l' has 09t, e fewer occurre~ce of -6Is with 
scope of h.eigh.t r(~l) tha.~ ~1 has. 

(C) I f  ~l is sta.nda.rd, ,r(~/) = 0, 91 is n o t  closed, a.nd ,q is n o t  a fornmla,  
of 9if, t h e n  ~/ >- ~' if a n d  on ly  if ~1' is ob tMne d  i r o m  ~ b y  rep lac ing  some 
occm'rence of some q, n o t  w i th in  t he  scope of a.ny ra, b y  v(q). 
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:PROPOSITION 5. I f  ~ is standard, r(~) ----O, ~ is not closed, and 
is not a formula of :/f , then an 7' su.eh that ~7 >" 7' can be found effectively; 
and any such ~f is standard, and r(r/') = 0, and. ~' has one fewer occurrence 
of  variables not within the scope of any ca. tha~r ~j has. 

(D) I f  ,/ is a closed s t andard  formula  of rank  zero, t hen  ~ ~ ~f if 
and  only  if 7' is 

n k 

{A .. . ,  q?)ll 
1 = 0  i f f i l  

where  P l ,  . . . ,  Pk are all the  var iables  in ,1, q~(1 ~ i ~< k, 1 ~ r ~ m) are 
d is t inc t  var iables ,  n = max{d(p~,  */)1 1 ~ i ~ k}, and  fl is t he  resu l t  of 
replacing every  accurrence of CarPi in ~1 b y  q~. 

:PROPOSITION 6. I f  V is a closed standard formula of rank zero, than 
an ~j' such that ~ ).- , f  can be found effectively; and any such 7' is a formula 
ofa". 

(E) I f  ,/ is a formula  of Yf, then  ~ >- 7' if and  only  if ~ ---- r/'. 

:Finally, if a is a fornmla  of a s t a n d a r d  logic J / ,  then  fl is a .~"-reduot 
of a (in ~r if fl is a formula  of ~ and  there  is a finite sequence a ~ *h 
)" V2 >" . . .  N Vp :~ fl (of formulas  of ~ ' ) .  

TttEORE:~I 7. Given a formula a of any logic ..r one can effectively 
f i~d  a standard logic .At" extendi~g .At and a Yf-reduet fl of  a in .,//'. 

PROOF. P ick  elements  1 and  0 of D ~  and  T z - - D . t t  respect ively,  
define new connect ives  b y  

_]a =_. 10 if a~D.~, 
if a CD.a ,  

a v b  : ~ 1  if a ~ D ~  or  b ~ D ~  
[o otherwise ,  

: | 1  if d : a  Ta(d) 
if d C a ,  

and  form ~t/' b y  adding these  to ~r Then a is a formula  of J r ,  and  . s  
is s tandard .  F r o m  Proposi t ions  3 -  6 i t  follows t h a t  in a n y  infinite se- 
quence a >- ~ N ~ :> . . .  of formulas  of .~ ' ,  there  mus t  occur  a fo rmula  
of Yd. [Formal ly :  ( A ) -  (E) implici t ly define a paxtial ordering ~ (the 
reflexive, t rans i t ive  closure of the  converse of )-) and  Propos i t ions  3 - - 6  
s tate ,  in effect,  t h a t  ~ is wel l -founded and  has exac t ly  the  member s  
of  Fia x as minimal  e lements .  In formal ly :  One begins wi th  a, eliminates 
non-s tandard  connect ives  one a t  a t inm (working fl 'om the  inside out)  
v ia  (A), unt i l  a s t anda rd  formula  is obtained.  Then one el iminates con- 
nect ives  within the  scopes of v'~ s (working f rom the  outs ide  in, beginning 
wi th  v' a s wi th  longest  scopes) v ia  (B) unt i l  a s t anda rd  form~l~ of r ank  

5 - -  S t u d l a  L o g i c a ,  
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zero is obtained.  I f  this  is not, a, formula, of Jr ,  t,hen it, is m a d e  closed by  
applicat,ions of (C), and  t,hcn rcpla.ced, via (D), by  a fornml,~ of .~.]  So 
to f ind a, ~f-reduct, of a in J//' it' suffices t,o produce a ~- ~1 >" ~h ~- . . . ,  
ha l t ing  when a formula  of 9ff app<ars. By Proposit'ions 3 - - 6 ,  t'his can 
be done cffect,ively. 

The following theorem shows t'hat' an)- formula  of a.ny logic is seman- 
t, ically equivalent' t'o a fornml.~ of .Xz. 

TtIE0~E:~I 8. I f  a is a f o r mu la  o f  any  logic o,// and fl is a ~ - r e d u e t  
of  a, then a aq~d fl are frame-equivalent .  

P~OOF. Wit,hont, loss of generMity,  we ma.y assume t,hat, ~/// is st'an) 
dard.  To show t,hat, a and  fl are frame-equivMcnt ' ,  it, suffices to show 
that' whcnevcr  ~] :> ~' t,hen ~] and  ~1' arc frame-equivMcnt,.  There axe 
five cases to consider, corresponding to ( A ) -  (E) in the  definit ion of >-; 
of course (E) is lwivial. 

(A) If  (W, R) is a f rame and w e W, let, R~ = {w}, /~n+I (w) ---- /i~n(~O) 

w{vl(l~Iz) (z e R " ( w )  & zRv)}.  Then, for any  V, 

lz(A . . . ,  a,,,, q), w) e 
j = u  

~ ( V v  e/7"(w)) [V(<$,(al, . . . ,  a,~, q), v) e D vt] 

 (Vv e R"(w)) [V(q, v) = . . .  v , ) ]  

~V(r w) = V( f l ( . a~ . . .  %~lq), w) = V ( n ,  w) 

Now if w and V arc such t'h~t' V(~], w) = V(fl(a/q) ,  w) r D ~ ,  t,hen, since q 
does not, occm' in a, we m a y  assume tha t  V(q, v) -- V(a ,  v) for all v e W. 

Then V ( A  Di r i . ( a l ,  . . . ,  a,~, q), w) e D it, V(fl ,  w) = V(f l(a/q) ,  w) ~ Ddc , a.nd 
i=o 

V(V' ,  w) ~ D,~t. Conversely, if w and V ~re such t,hat, V(~', w) ~ Dz~ t h e n  

V (fl, w) ~s D ~ but' V ( A [~i d. ( a~ , . . . ,  am, q), w ~) e D z~ . The last fact' ira- 
i = 0  

plies t,h.~t, V(~, w) = V(fl ,  w) r Hence  (W, R) ~ ~]~(W, R) ~ V'. 

(B) Since 5~ is designat,ion-equivMent, to v~a, and  fl hns only  -] ,  v,  
and  [] as connectives,  f l (~ /q )  is dcsignat, ion-equivalent to fl(v~a/q). Hence  
~" = fl(d~, a~, . . . ,  a~/q, q~, . . . ,  q,,~) is designat'ion-equivMcnt,, and  hence 
trame-equivMent,, t,o ~/ = fl(Vaa , ax, . . . ,  a,,dq, q~, . . . ,  q,~). 

(C) Since v(q) is desig~at,ion-equivalent to q, and  t'he substit,ut'ion 
t,a.kes place wi thin  the  scope of no connect ive  or,her t'ha.n -7, v ,  and  UI, ~]' 
is designa.t'ion-equivalent' to ~]. 

(D) I f  (W,  It)  non  ~ 7, let' V be a,n ~/-vMuaVion, and  w e W, such t,ha.t, 
V(~7, w ) ~  D,~.  Let, V '  be a 5/f-valuat,ion for (W, R) sat,isfying 

V'(q~.,v) = l .~ V ( p ~ , v )  = a ~  ~ V ( r%p~ ,v )  eDd~ , 
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so t h a t  V ' ( i y ( A  . . . ,  qi")), w) = Since '7 is c o n m ' u c t e d  f, 'om 
j =  i = 1  

the  fo rnmlas  r%p; us ing  jus t  -] ,  v ,  a.nd [-7, V'(f l ,  w) = O. So ( W, R)  non ~ ~7'. 
Convexsely,  if V' is a, ~ - v a l u a t i o n  for  some (W, R), a n d  w ~ W, and  

�9 ~ k 

V'(~/ ' ,w ) = 0 ,  t h e n  V ' ( A ~ ( A 6 ( q ~ , . . . , q ~ , 3 ) , w )  = 1  so the re  is an  
1=0 i=0 

, . /Avahmt ion  V sa t i s fy ing ,  for  all v e R " ( w ) ,  V(p~,  v) = a,.-~V'(q~, v) -- 1. 
Then  l," (r/, w) r D~/,  since V' (fl, w) = 0. Thus  (W, R) ~ ~/ -.~ (W, R) k ~l', 
for  all f l 'ames (W, R). 

w L e t  us t m ' n  now to  t h e  p rob l em of a s y n t a c t i c a l  r e d u c t i o n  of 
fornl.uht.s of o.t/to forlmll~s of ,~.  Unt i l  f t t r ther  not ice ,  os is a f ixed  s t a n d a r d  
lozic. {But all our  resul ts  wou ld  ho ld  so long as t h e  s t a n d a r d  connec t ives  
were  defi,,able in J [ ;  th is  is t h e  ease, for  exa.mple, if t(o.Z) is h m e t i o n a l l y  
C Olnplete, or if t ( J [ )  is a n y  of t he  f i n i t e l y - m a n y - v a l u e d  logics of L u k a -  
~iewiez.} 

The  .,//-a,xiont.s are t he  fo l lowing ( f in i te ly  m a n y )  fo rmulas  o f  J//: 

(a) p~(q~p), 
(1,) Ip ~(q ~r)) ~ ((p -~q) --.(p ~r)), 
(c) ( ~ p  ~ -]q) ~(q  =,-p), 
(d) D(p ~q) ~( Dp =- @q), 
(e) b.(p~,  . . . ,  Pro, *Pl . . .  P,,), for  each m-ary  connec t ive  * of t ( , / / ) ,  
(f) p ~-rp,  
(~) 6 ( r ~ p ,  . . . ,  r%,,p), 
(h) 6~ ~ ~ r ,  Dp,  fox' each a e T # .  

The  .//-r,ules are, t he  ru les :  
Subst i t~l t ion:  f r o m  a infer  a(fl/q), 
Detachment , :  from a a n d  a =-fl, infer  fl, 
Necess i t a t ion :  f ront  a lifter Da ,  
E l i m i n a t i o n :  fl 'om a(v~lP, . . . ,  %, ,P /q l ,  . . . ,  q,,) infer  (f~ [Z i 6 (ql, . . .  

i=o 

�9 . . ,  qm)) ~ a, prov ided  a is ~ .s tandard formuh~ of r a n k  
zero a n d  ,Jb = max{d(q i ,  a) l 1 ~  i ~ m } ,  p does n o t  
occur  in a a.nd no Taq occurs  in  a. 

An .,/[-system is a fo rnml  s y s t e m  whose  l anguage  is Shat  of ~/[, whose 
ax ioms  inc lude  t h e  J / - a x i o m s ,  a n d  whose  rtfles are jus~ the  ~ - r u l e s .  
The  wea,kest o,//-sys~em, whose  ax ioms  are jus t  t he  J / -a .xioms,  is cal led 
1s "//. I f  2 is a, f o r ma l  s y s t e m  a n d  a is a f o r m u l a  of t he  la.ngatage of X, t h e n  
Z ~ a n teans  theft a is a. thesis  of Z', i.e. that a is p rovab le  h 'om the  ax ioms 
of Z v ia  t he  rules of X. Two fo rma l  sys t ems  a.re equivale,t~t if t h e y  h a v e  
the  same theses.  

LE~r~EA 9. (Complete,~vess Theorem for  K "tg) A f o rmu la  of  o# is a thesis 
of K "z ,if and o,ldy ,if it is valid on all frav~es. 
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PROOF. The d / -ax ioms  are val id  on all frames,  and the  J/t'-nlles 
preserve va l id i ty  on each fxame, so evcry  thesis of K "~ is val id  on all 
fxames. {The Elimina.tion rule preserves va l id i ty  for the  same reason 
t ha t  (W, R ) ~  v ~ ( W ,  R ) ~  V' in case (D) of the  proof  of Theorem 8.} 

By  the  well-known completeness  theorem for Che two-va lued  moda l  
sys tem K (the sys tem in the  la.nguage of . f  having ( a ) -  (d) as axioms 
a.nd SubstiVution, De tachment ,  and  Necess i ta t ion as rules), every  formula  
of ~ which is val id  on all f rames is a thesis of K.  B u t  the  axioms and  
rifles of K ~ inehlde those  of K,  so every  such formula  is a thesis of K "/t 
as well. 

Now suppose a e .Flat  t is val id  on all frames. Le t  fl be  a X ' - reduct  
of a. B y  Theorem 8, fl is va l id  on all frames,  and  b y  the  a b o v e  r emark  fl 
is a thesis of K st. To comple te  the  proof  of Lenlma 9, ir suffices to  show 
tha t  when, ver  ~ >- ~?' and V' is a thesis of K st then  so is ~. 

~rr i te  k for K "r k. Again there  are fore" non-tr ivial  cases. 
(A) l_f k~ 1' then  k v ' (a/q ) b y  SubstiL-ution. Now F-~.(px, . . . , p , ~ ,  

*P~ ...Pm'~ so b y  Necessi ta t ion k E J d . ( p l ,  . . . , p ~ ,  *Pz . . .Pm)  for each j .  
~t 

Since ev t: urology, of t (Jd)  is a thesis of K z ,  it follows t h a t  ~ A [3J5. 
n 1 = o  

(Pl,  . . . ,  ~,,~ *Pl . . .  Pro). B y  Subsr k A i~15.(al ,  . . . ,  am, *al .. am). 
n i = 0  

But  ~ ' ( / q )  = /~ ~J6 . (a~ ,  . . . ,  a,~, *a~ . . .  am)~1 ,  so b y  D e t a c h m e n t  ~ ~. 
j =  0 n 

(B) F,,r n -- d(q, fl), K t- [IA V?J(P~~P~)):~ (/t(p~/q).=>fl(pJq))]. Since 
n i = 0  

I- A ~ ( b ~ V ~ r ~ P ) ,  we infer ~ ( f l (b~V/q)~fl(r , ,Dp/q)) .  B y  Subs t i tu t ion ,  
f = 0  
V ' ~ / .  

(13) This is similar to (B), using the  axiom p-:>r(p) of K "~ in place 
of the  axiom (~aP"~Ta~p. Again, k V ' ~ ? .  

n k 

(D) Since 5 ( v ~ p , . . . , v % ~ p )  is an ~//-axiom, we have  k /~E] i ( /~  
.i=o i = t  

d(~:~pi, . . . ,  v%~p~)). I f  ~ ~' then,  b y  Subs t i tu t ion  and De tachment ,  ~ ~]. 

Not ice  t ha t  all the  axioms and rules of K ~ were used in the  above  
proof, except  for the  :Elimination rule. Nor  is t ha t  rule ment ioned  in 
a.n.5" of [l ,  2, 3]. W h y  we wan t  the  ni le  is explained b y  the  nex t  theorem;  
wh y  it is of ten unnecessary  is made  clear in w The proof  of L e m m a  9 
establishes,  as we shall have  occasion to  recall in w t h a t  if a 9V-redact 
of a is p rovable  in any  ~ ' - sys tem,  wi thou t  using the  El iminat ion  rule, 
then so is a. 

TttEOREM 10. Zet ~, be an Jd-system, a e ~ la s t  , a.~d fl a X- redue t  
of  a; then Z F fl i f  and only i f  X F a. 

PI~OOF. The implicat ion f rom left to r ight is p roved  jus t  as in L~lmna 9. 
To prove  the  converse,  i t  will suffice to show tha t  whenever  ~l N ~' and 
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X F ~/ then E F V'. The cases (B) and  (C) follow f rom wha t  was established 
in the  corresponding cases of the  proof of L e m m a  9, viz. t h a t  Kz~ F ~ ~V',  
and  of cmtrse (E) is r For  (A), note  t h a t  the  proof of the  same case 
in Theorem 8 shows Chat r 1 * v '  is val id on all frames.  By  L e m m a  9, 
K ~ F  ~1~1', whence X F ~ 1 ~ ' .  For  (D): f ini tely nm.ny a.pplications of 
the  Elimina.tion rule t r ans form ~ into a formula  tautological ly  equivalent  
(in t ( ~ ) )  to ~1'. 

COI~OLLARY 11. I f  X a~td X' are od[-systems a.~d X F fl.:-,Z' F fl for  all 
f l e  FIa~., then Z and X' are eq~dvale,~t. 

COROLLAgY 12. Each J/ -sys tem Z is eq~dvalent to the ;/[-system whose 
axioms are the Jd-axioms together with the :~-reduets of the axioms of E. 

w A ,Yf-syste.~b is a forma,1 sys tem whose la,nguage is t h a t  of X ,  
whose axioms include the  ~,f/-axioms ( a ) -  (d), a,nd whose rules are Sub- 
st i tut ion,  De tachment ,  and  :Necessitation. An J / - s y s t e m  E is a,~alogous to 
a :Y-system S if, for every  fl e Flu,r ,  S F f l ~ X  F ft. By Corollary 11, any  
two J / - sys t ems  a.nalogous ~o the  same :Y-system arc equivalent,. 

E v e r y  J/Z-system is analogous to some :Y-system, namely  the  :Y-system 
whose axioms are the  Y/-reducts of the  theses of the  given system. I t  is 
~ot obvious t h a t  every J / - s y s t e m  is analogous to the  YC-system whose 
axioms are the  Jf-reduet,  s of the  axioms of the  given system. Consequently,  
it is no t  obvious t h a t  for every  9t~-system there  is an analogous Jd-system. 

I f  X is analogous to S then,  using Theorems 8 a.nd 10, 
(a) E and S have the same fl'ames, 
(b) X F a ~ S  ~- fl, where fl is a Jg'-red~wt of a, 
(c) X is complete with respect to a given class of fl'ames i f  a,~d o,~ly 

i f  S is complete with respect to that class, 
(d) X is decidable i f  and only i f  S is decidable, 
(e) X has the f ini te  model property i f  and o.~dy i f  S has the f in i te  model 

property, 

Given a ~ - s y s t e m  S, let S "tt be the  J/g-system whose axioms are the  
axioms of S toge ther  with the  ~ Then the  theses of S ~ include 
those of S. In  fact,, t h e y  include those of a.ny , / [ -system E ~malogous 
to S; for if Z F a and fl is a 9g-rcduct of a then  X F fl (Theorem 10), S F fl 
(definition of "analogous"),  S "It F fl, and  S Jb F a (Theorem 10). Conversely, 
if X is analogous to S then  every  a.xiom of S *[[ is a thesis of X. Consequently,  
if any  J f - sys t em is analogous to S, then  S ~ is. 

If  S is complete,  i.e. every  non-thesis of S is non-valid on some f r ame  
for S, then  S "tt is analogous to S. For  suppose f l e  F l a ~  and  S ~wn [- ft. 
Then there  is a f rame (W, R) for S on which fl is no t  valid. Bu t  S -tt and  S 
certa.inly have the  sa.mo frames, so (W, R) is a f rame for S "~ on which fl is 
no t  va,lid, and S "rb non, F- ft. 
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I conjectm'e t'ha.t S "#~ is a lways analogm~s to S. 
I* S "z is a.na.logous to S,  t'hen t'he El iminat ion rule is rcdlmdan~ in S z .  

For  suppose S ~/ F a. Then S "'~l F fl, where fl is a. J f - r educ t  of a, and S F ft. 
But' "my proof  ill S is a. proof in S ~# wit, hoar, use of El iminat ion,  so b y  
the renm.rks followino" t.he proof  of Lemnm 9, a is p rovable  in S "/z withou~ 
use of Elimina.t'ion. {Of course it does not  follow ~ha.t' El iminat ion is re- 
d u n d an t  in an a rb i t ra ry  <//-system -~; only tha t  it, is redunda.n~ in an 
. / / - sys tem equivalent  t'o X, a tr ivial  result.  IJl fact, El iminat ion  is not, 
a lways red~mdant -- add t'o K "# an ax iom which is a. fornmla., but' no t  
a. t au to logy ,  of t( . . / /);  t'he resulting' syst,em is ineonsist'ent,, bu t  wit,hout, 
Eliminat,ion nlJgh~ well be eonsist,en~. ~No donb~ non-tr ivial  exa.mples 
exist,, a.s well.} 

I hq~ve not, att,mn.pt'ed to eatalogue t'he occasions when I have bor- 
rmved ideas f rom Mm'g'a.n's pap(,r [1]. But, I want  it. l;o be undel'S~ood 
that' it, is f rom Morga.n t'ha.t, I g'ot, the  idea that, a.n analysis migh~ be pos- 
sil)le of the  relat ionship bet,ween two-~'alued nmda.1 logic and moda.1 
logic based  upon a more-or-less a rb i t ra ry  n,.a.ny-va.lued logic. I wish also 
to call to t,he reader 's  at ' tention tha t  Morgan em~siders "global opera to rs"  
'I~# which do not, sat isfy m.y eondi thm 7(//(8) e D . z ~ - S  c_ D./~. Roughly  
speaking, MTorg'an's result,s (and mine, presnma.bly) a.pply whenever  an 
operat,or sat,isfying t, he eondit'ion is defin, able in terms of the  given Ti t  
(j~st' a..~ it, would  snf f iee  t'ha.t, t'he s tandard  cmmee~ives 1.)(; de f inab le ) .  

I t,hm~ght it best  t'o forego this .a'enerali~- t'o simplify t'he exposi t ion.  
For  philosophical applications,  as Morgan points  out,, t'he ext'ra gener~flit, y 
is ilp.l)(n't,ant'. Moroover, some ():~ t'he resnlt,s of Segerberg [3J a.re speeial 
cases of 1-he ~'enel'alizt.d versioll of t,his WOl'k~ but, not, l;he ungeneralized. 
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