S. K. Tromason  Possible Worlds
and Many Truth Values*

Some interesting relationships among propositions (or, if you prefer,
among statements or sentences) are clearly not truth-functional — for
example, the implication relation. And, at least according to some views,
some of these relationships make sense only when propositions are under-
stood as capable of being neither true nor false — for example, the pre-
supposition relation, as “The King of France is wise® presupposes ‘There
i8 a King of France’. It is convenient for formal analysis to regard “implies”
and “presupposes” not as relations but as connectives; thus ‘P implies @
is the proposition which is true when P does imply @ and false when P
does not imply . One interesting formal representation of implication
is provided by the possible-worlds semantics of modal logie, in which
“P implies @ is represented by the formula O(p =¢) An analogous ap-
proach to presupposition would be based on a many-valued logic: ‘P pre-
supposes @, or ‘if P is cither true or false, then @ is true’, would be re-
presented by [ ((rp v(pp):>rq). Of course, the problem of presupposition
is only one of several rcasons for considering many-valued modal logic;
Morgan [1] mentions others.

Several authors have proved completeness and decidability theoreins
for particular many-valued modal systems analogous to familiar two-
-valued modal systenws. Schotch et al. [2] consider two three-valued
analogues of I, which differ in the interpretation given to [3. Morgan
studies a class of many-valued analogues of T. Segerberg [3] examines
three-valued analogues of K, T, 84, B, and S5 having two ([J-operators,
one stronger than the other. The general flavour of all this work is: given
a two-valued modal system S which is canonical (the Lemmon-Scott
canonical model for the system is based on a frame for the system, so
in particular the system is complete), and given a many-valued truth-
-functional logic .#, of sufficient expressive power (enough connectives
are definable in it), and given a reasonable way ¥ of evaluating [Jp at
a possible world in terms of the values of p at alternative possible worlds,
one can find axioms and rules of inference for a system §% analogous
to 8, but based on .#, and ¥, and prove completeness of S by a canonical-
-model construction. Naturally, one is led to inquire whether a general
theorem to this effeet can be proved. Morgan gives precise meanings to
the terms “sufficient”, “reasonable”, and “analogous™ as used above,
but (the last paragraph of [1] notwithstanding) he does not prove a general
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theorem of the sort I have in mind — he does not fuggest a general proof
that if S is canonical then so is S%.

But the main problem, I think, is not to construct many-valued ana-
logues of two-valued systems; it is rather to understand many-valued
systems generally. In §1 I shall show that any formula of any many-
-valued modal logic is semantically equivalent (in the sense of being
valid on the same frames) to a formula of two-valued modal logic; the
latter formula is called a »# -reduct of the former In §2 I define, for any
many-valued modal logic 4 (based upon a many-valued truth-functional
logic of sufficient expressive power and a reasonable way of evaluating
the necessity operator) a set of #-axioms and #-rules, and show that
any forniula of .# is, in the presence of these axioms and using just these
rules, syntactically equivalent to any of its # -reducts Thus any formal
system in the language oi 4 (whose rules are the .#-rules and whose
axioms include the #-axioms) is essentially just an ordinary two-valued
svstem, augmented by the Z-axioms and #-rules In §3 I return to
the original problenm of nanyv-valued analogues of two-valued systems.

§1. Let us now be more speeitic. A many-valued modal logic (or, briefly,
a logic) # consists of a many-valued truth-functional logic t(#) and =a
necessity operator ¥ ,. In turn, t(.#) consists of a finite set T , (of “truth
values”), a non-empty proper subset D, (of “designated” truth values),
and finitely many finitary operations = on T, (corresponding to the
truth-functional connectives, denoted by the same symbols as the ope-
rations). Intuitively, a necessity operator is to provide a way of evalu-
ating ‘neeessarily-P’ in a possible world, in terms of the truth values
realized by ‘P’ in alternative possible worlds — in terms, that is, of the
set of such truth values, independently of where, or how often, the truth
values be realized. Morcover, ‘necessarily-P’ should have a “truth-like”
truth value in a given world if and only if ‘P’ has “truth-like” truth values
in all alternative worlds. Formally, then, ¥ ,: P(T,)—T , and, for all
ScTly, Yy8)eD,=8c D,

There is just one interesting two-valued modal logic, which we shall
call o#: T, = {0,1}, D, = {1}, the connectives of ¢(x") arc 7] and v,
and ¥, (S) is 0 or 1 according as 0 € § or not.

Let Var be a countably infinite set of (propositional) variables. The
set Fla , of formulas of 4 is formed in the usual way, beginning with
the variables and using the connectives x of {(.#) and & unary connective [J.

A frame is a pair (W, R), where W is a non-empty set (of “possible
worlds”) and R is a binary (“possible alternative”) relation on W. If
(W, R) is a frame and . is a logic, then an .#-valuation on (W, R) is
a function V: Var x W—T ,. An .#-valuation V has a unique extension
V: Fla, x W—T, satistying V(xay ... @, w) = *(V(ay, w), ..., V(ay,, w))
and V(QOa, w) = V4 ({V (a, v)|wRv}). A formula a of .# is valid on (W, R),
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or (W, R)Ea,if V(a,w) € D, for every w ¢ W and every .#-valuation V
on (W, R).

Two formulas, possibly of different logics, are called frame-equivalent
if they are valid on exactly the same frames. Two formulas « and g of
the same logic .# are called designation-equivalent if, for every frame
(W, R), every w € W, and every .#-valuation V on (W, R), V(a,w)e D,
=V (B, w)eD,.

A logic A is called standard if the connectives of t(.#) include 7,
v, and 7, (@ € T ,) satistying

beDy, = b¢D,,
bveeD, - beD, or c¢ceD,,

w,beD, <= b=a,

for all b,eeT,. The symbols 7, v, 7, will always denote conncctives
satisfying the above conditions; A, =, and <« will abbreviate combi-
nations of 71 and v in the usual way. A standard connective is any of
1, V, Tqy O . A standard formula 1s one whose connectives are all stan-
dard. Note that if # is standard then Ila, < Fla,.

We now embark upon a series of techmical definitions, needed v
establish the connections between 5 and an avbitrary logic .4.

Define d(q, p), where g € Var and g € Fla,, by:

d(q, p) = 0 i peVar,

a(q, *ay ... Up) = NIZLX{d(q, a) 1< é<7n!}7
_ 1+d(q, a) if ¢ ocecurs in «

(g, Oe) = {0 otherwise.

Thus d(g, B) is the depth of ¢ in # — the maximum number of occurrences
of [ having the same occurrence of ¢ in their scope.

If ¢, ..., ¢, are distinct variables and 8, a,, ..., a,, are formulas, let
B(dyy  evy Cnlgyy --+y @) be the result of simultancously substituting a,
for all occurrences of ¢q; in (1 < i< m).

If % is an m-ary non-standard connective of & standard logic 4, let
Ox (ayy ..oy @y, B) be the disjunction, over all (ay, ..., a,, b) € T'"! such
that b = #(ay, ..., @,), of the formulas v, ;A ... A7, auATf.

ProprositioN 1. Ifay, ..., a, arestandard formulas, then i (ay, ..., a,)
is « standard formula, and for any (W, R), V, and w,

V(0x(agyoevy Oy B), W) €Dy == V(B w) = V(xay... @y, w).

{Exactly how 6« (ay, ..., @y, f) would be written in terms of 7] and v
is of no concern; all that matters is that Proposition 1 should hold, as
will be the case under any reasonable unabbreviation conventions. In
what follows, observations similar to this one will be left to the reader.}
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Define the height h(y) of ¥ in the usual way: h(p) =0, h(*a,...a,)
=1+max{h(a)| L <i<m}, and h(Oa) = L+h(a). Define the rank
#(y) of ¥ to be the maximum (for all @ € T ,) height of scopes of occur-
rences of 7, in y.

Define 85, where @ € T , and a is a standard formula of 4 with A (a) > 1,
as follows: if « = 7,7 then §; is the disjunction of all the formulas .y
such that 7,(¢) = a; if « = 7]y then J; is the disjunction of all formulas
7,y such that “j¢ = a; if a = yv ¢ then §; is the disjunction of all for-
mulas 7,yAtgd such that evd = a; and if ¢« = Jy than 4§, is the dis-
junction of all formulas A{TIO007.ylee S}IAA{O r.y|c¢ S} such
that ¥ ,(8) = a.

ProprositioN 2. The formula O, has rank one less than the rank of
T,a, and O, is designation-equivalent to 7,a.

A formula is closed if every occwrrence in it of a variable is within
the scope of some z,. For any y, let t(y) = V{r,v|a € D,}; then v(y)
15 designation-equivalent to y.

It ay,...,a, 15 a listing without repititions of T ,, and ai, ..., a,
e Fla ,, let O6(ay, ..., a,) be the disjunction, for 7+ =1,...,m, oi the
formulas aA 1V {o;| L <j<m, j 24}, Then V{d(ay,...,a,),w)eD,
if and only if exactly one of 1 («;, w) € D_; consequently 6(zq, P, ..., 7., P)
iy valid on all frames.

Now we put all the previous definitions to use, to define a velation >
between formulas of a standard logie /.

(A) I % is non-standard, then 5 > »' if and only if

n
N = [/\ 7 8x(ag, ...\ ay, Q)] =, where 5 = f(afq), a = xa;... a,
=0
cach g, 1s standard, ¢ does not oceur in «, and # = d(q, 8).

ProrositioNn 3. If o is non-standard then an n' such that y > i’
can be found effectively, and any swch n' has one fewer occwrrence of non-
-standard connectives than n has.

(B) Ii 5 is standard and »(y) =1, then % >’ if and only it
7' = B(0gs tyy vy GulGy Gus -5 @)y Where = f(z,a, ay, ..., a,lq, Quy -3 Q)
h{a) = r(n), # has only 7, v, and [J as connectives, and no ¢; oceurs in «.

ProrosirioN 4. If 3 is standard and »(n) =1 then an 7' such that
n > ' can be found effectively; and any such %' is stendard, and either
{5y < r(n) or else »(n') = v(n) and ' has one fewer occurrence of t,’s with
scope of height »(n) than n has.

(C) If 5 is standard, »(n) = 0, 5 is not closed, and 7 is not a formula
of A, then » > %’ if and only if %' is obtained from 5 by replacing some
occurrence of some ¢, not within the scope of any 7., by (¢).
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PROPOSITION 5. If % s standard, r(n) =0, n 8 not closed, and 7
18 not a formula of X", then an o’ such that n > n’' can be found effectively;
and any such 7’ is standard, and r(n’') = 0, and 3’ has one fewer occurrence
of variables not within the scope of any t,.than 7 has.

(D) If 5 is a closed standard formula of rank zero, then # > n' if
and only if %' is

n Lk
IADIA 3@, -, @]} =8,

where p,, ..., p, are all the variables in #, ¢i(1 <1<k, 1L <r<m) are
distinct wvariables, » = max{d(p;, n)| 1< i< k}, and g is the result of
replacing every occurrence of 7, p; in n by ¢;.

PropPoSITION 6. If 5 is a closed standard formula of rank zero, than

an 7' such that n > n' can be found effectively; and any such n' is a formula
of X.

(E) If % is a formula of X, then 5 > %’ if and only if y = #".

Finally, if a is a formula of a standard logic .#, then g is a ¥ -reduot
of a (in A) if § is a formula of & and there is a finite sequence a > 7,
>N > ... >n, > B (of formulas of #).

THEOREM 7. G@Given a formula a of any logic A, one can effectively
find a standard logic A’ extending A and & A -reduct f of a in A’ .

Proor. Pick elements 1 and 0 of D, and T ,— D, respectively,
define new connectives by
—a - 0 if aeD,
1 if a¢Dy,,
1 if aeD, or beD,
0 otherwise,

1 if d—a
’"(d)“{o it d+a,

and form .#’' by adding these to . Then a is a formula of .#’, and .#'
is standard. From Propositions 3 —6 it follows that in any infinite se-
quence a > 7, > 7, > ... of formulas of .#’, there must occur a formula
of o. [Formally: (A)—(E) implicitly define a partial ordering < (the
reflexive, transitive closure of the converse of >) and Propositions 3 —6
state, in effect, that  is well-founded and has exactly the memnbers
of Fla, as minimal elements. Informally: One begins with a, eliminates
non-standard connectives one at a time (working from the inside out)
via (A), until a standard formula is obtained. Then one eliminates con-
nectives within the scopes of 7, s (working from the outside in, beginning
with 7, s with longest scopes) via (B) until a standard formula of rank

5 — Studia Logica, 1/78
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zero is obtained. If this is not a formula of &, then it is made closed by
applications of (C), and then replaced, via (D), by a formula of #.] So
to find a o -reduct of a in 4’ it suilices to produce a > 9, > 5, > ...,
halting when a formula of " appcars. By Propositions 3 —6, this can
be done effectively.

The following theorem shows that any formula of any logic is seman-
tically equivalent to a formula of 7.

TuEOREM 8. If a is a formula of any logic 4 and £ is a A -reduct
of a, then a and B are frame-equivalent.

Proor. Without loss of generality, we may assume that .# is stan)
dard. To show that a and g are frame-equivalent, it suffices to show
that whenever 5 > " then 5 and %’ are frame-equivalent. There are
five cases to consider, corresponding to (A) —(E) in the definition of >;
of course (E) is trivial.

(A) If (W, R)isaframe and w € W, let R°(w) = {w}, B"*'(w) = R"(w)
U{v|(Hz2) (2 € R*(w) & 2Rv)}. Then, for any V,

(/\ 07 6a(ays .-y @y, ), ’w) eD,
j=o
G(V’D € R"(’M))) [V (64(ay, . cey Oy Q)7 ) GDJI]
(Vo e B"(w)) [V(g,v) = V(*a; ... ap ,)]
=V (B,w) = V(B(xay ... au/q), w) = V(n, w)
Now if w and V are such that V(y, w) = V(B(a/q), w) ¢ D4, then, since ¢

does 1101' oceur in a, we may assume that (g, v) = V(a, v) for all v e W,

Then V(/\ D 5* a17 ceey Oy Q)’ 'w) € D,/I’ V(ﬂ: w) = V(ﬂ(a/Q)y w) ¢ DJ/: and

=0
Vin',w)¢D,. Oonvorsely, if w and V are such that V(y’, w) ¢ D, then

V (8, w) ¢ D, but V(/\D'd*(al, ooy Uy §), W) €D,. The last fact im-
plies that V(y, w) = V(ﬂ, )¢D,. Hence (W, R)En<(W,R)Eq.

(B) Since 4 is designation-equivalent to v,a, and g has only ], v
and [J as connectives, #(d;/q) is designation-equivalent to £(r,a/g). Hence
7 = B(0z, @1y -y Gnl€y @uy .-y @) 18 designation-equivalent, and hence
frame-equivalent, to 7 = B(t,, 01, -+.y 0u/Q, Quy - oey G-

(C) Since 7(g) is designation-equivalent to ¢, and the substitution
takes place within the scope of no connective other than ~, v, and [, %’
is designation-equivalent to 7.

(D) If (W, R) nonkqy, let V be an #-valuation, and w € W, such that
V(g w)¢Dy,. Let V' be a o -valuation for (W, R) satistying

V,(q:7 v) =1 < V(p'H ’U) = ar had V(rarI)!'? ,U) € D,I[?
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n k
s0 that V’(/\[}j( AO(qey -y ¢), w) = 1. Since % is constructed from
j=0 i=1

the formulas 7, p; using just 71, v,and 0, V'(B, w)= 0. So (W, R) non k7’
Conversely, it Vs a J( valuwmon for some (W, R), and we W, and

V'(y',w) =0, then V'( /\ o’ (/\ (s ooy gh)), w) =1 so there isx an

F=0 =0
-valuation V satisfving, for all v € B*(w), V(p;, ) = a,<=V'(¢}, v) =
Then Vg, w) ¢ Dy, since V(B, w) = 0. Thus (W, R)En = (W, R)Eq,
for all frames (W, R).

§2. Le¢t us tuwrn now to the problem of a syntactical reduction of
formulas of . to formulas of ", Until further notice, .# is a fixed standard
logic. {But all our results would hold so long as the standard connectives
were definable in .4 this is the case, for example, if ¢(.#) 1s functionally
complete, or if t(#) is any of the finitely-many-valued logics of Fuka-
siewicz.}

The #-axioms are the following (finitelv many) formulas of .#:

(ay  p=(qg=p),

() (p =(g=r)) = ((p=q) =(p =),

()  (Tip="1lg) =(g=p),

() DOlp=q)=(0p=09),

(€)  0x(Pry-evy Py ¥P1 --- D)y, Tor each m-ary conncctive * of i(.4),
(f)  pep,

(@) 0Ty -y T, P)s

(hy 0¥ = 7,0p, for cach aeT,.

The .#-rules are the rules:

Substitution : from a infer a(f/q),

Detachment: from a and a=p, infer g,

Necessitation:  from o infer Ja, n
Eliniination: from  a(7y,Pp, ..., 7, D/qyy .- q,) infer (_/\Dljjé(ql,

m

ooy @)} = a, provided a is a standard formula of rank

zero and 4w = max{d(g;, a)] 1< i<m}, p does not

occur in a and no r,¢ occurs in a.
An .#-system is a formal system whose language is that of .#, whose
axioms include the .#-axioms, and whose rules are just the .#-rules.
The weakest .#-systen, whose axioms are just the .#-axioms, is called
L7, If X is a formal system and a is a formula of the language of X, then
X F a means that « is a thesis of 2, i.e. that « is provable from the axioms
of X via the rules of 2. Two formal systems are equivalent if they have
the same theses.

LeMMA 9. (Completeness Theorem for K-%) A formula of ./ is a thesis
of K if and only if it is valid on oll frames.
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Proor. The .#-axioms are valid on all frames, and the .#-rules
preserve validity on each frame, so every thesis of K7 is valid on all
frames. {The Elimination rule preserves validity for the same reason
that (W, R) kF n=(W, R) k' in case (D) of the proof of Theorem 8.}

By the well-known completeness theorem. for the two-valued modal
systecm K (the system in the language of »# having (a)—(d) as axioms
and Substitution, Detachment, and Necessitation as rules), every formula
of o which is valid on all frames is a thesis of K. But the axioms and
rules of K# include those of K, so every such formula is a thesis of K-
as well.

Now suppose a € Fla , is valid on all frames. Let g be a 2 -reduct
of . By Theorem 8, g is valid on all frames, and by the above remark g
is a thesis of K. To complete the proof of Lemma 9, it suffices to show
that when:ver 5 > %' and 7’ is a thesis of K* then so is 7.

Write + for K +. Again there are four non-trivial cases.

(A) I Fy' then F9n'(a/g) by Substitution. Now F 6« (Pyy ---y Py
*Dy ... Dm'- 50 by Necessitation F (1764 (Py, .y Py *P1 -+ - D) TOT each j.

k12
Since ev - trutology of 1(2¢) is a thesis of K7, it follows that F A 376,

n . j=0
(Pry vy Prs D1 --. D). By Substitution F A (37 0x (g, -..y @,y *ay .. @)
n . j=0
But 9'( /q) = N[O 6«lay, ...y ay, *ay ... a,) =n, 50 by Detachment F #.

j=0 n . .
(B) For m - d(g, f), K kAT (pr=p2)) = (B(p1/g)-=F(palg))]. Since
n j=0
FADY (0" <1,0p), we infer + (B(857/g)<B(r,0p/g)). By Substitution,
=0
F <y,
(C)  This is similar to (B), using the axiom p-<>r(p) of K# in place
of the axiom 0% <7,[0p. Again, F 5’ <.

n k
(D)  Since (74D, -y T,,p) is an M-axiom, we have FADO(A
im0 -1

0(TqPis ) rampi)). If Fn' then, by Substitution and Detachment, F 9.

Notice that all the axioms and rules of K” were used in the above
proof, except for the Elimination rule. Nor is that rule mentioned in
any of [1, 2, 3]. Why we want the rule is explained by the next theorem;
why it is often unnecessary is made clear in §3. The proof of Lemma 9
establishes, as we shall have ocecasion to recall in §3, that if a s -reduct

of a is provable in any .#-system, without using the Elimination rule,
then so0 is a.

THEOREM 10. Let X be an #-system, a € Fla,, and § a A -reduct
of a; then X+ B if and only if X+ a.

Proor. Theimplication from left to right is proved just as in Lemma 9.
To prove the converse, it will suffice to show that whenever 5 > 5’ and
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X F 5 then X' + #’. The cases (B) and (C) follow from what was established
in the corresponding cases of the proof of Lemma 9, viz. that K , F n<n/,
and of course (E) is trivial. For (A), note that the proof of the same case
in Theorem 8 shows that #=x" is valid on all frames. By Lemma 9,
K* F p=y5', whence X F 9 =9'. For (D): finitely many applications of
the Elimination rule transform # into a formula tautologically equivalent
(in t(x)) to %'

COROLLARY 11. If X and 2" are ./#-systems and X+ 2"+ 8 for all
B € Fla,, then X and X' are equivalent.

COROLLARY 12. Fach #-system X is equivalent to the .#-system whose
axioms are the .#-axioms together with the A -reducts of the axioms of X.

§3. A A -system is o formal system whose language is that of 7,
whose axioms include the #-axioms (a)—(d), and whose rules are Sub-
stitution, Detachment, and Necessitation. An .#-system X is analogous to
a A -system 8§ if, for every f € Fla,, S + f<2 F . By Corollary 11, any
two #-systems analogous to the same A -system are equivalent.

Every .#-system is analogous to some 4 -system, namely the # -system
whose axioms are the s -reducts of the theses of the given system. It is
not obvious that cvery .#-system is analogous to the J#-system whose
axioms are the # -reducts of the axioms of the given system. Consequently,
it is not obvious that for every s -system there is an analogous .#-systen.

If X is analogous to § then, using Theorems 8 and 10,

(a) 2 and 8 have the same frames,

(b) ZFa<«=St B, where B is a A -reduct of a,

(¢) X is complete with respect to a given class of frames if and only
if 8 is complete with respect to that class,

(d) X is decidable if and only if S is decidable,

(e) X has the finite model property if and only if S has the finite model
property,

Given a s -system §, let 8% be the .#-system whose axioms are the
axioms of § together with the .#-axioms. Then the theses of S include
those of 8. In fact, they include those of any .#-system X analogous
to S; for if T+ ¢ and g is a A -reduct of a then X'+ g (Theorem 10), S +
(definition of “analogous”), 8% I 8, and 8% + a (Theorem 10). Conversely,
if X'is analogous to § then every axiom of 8 is a thesis of 2. Consequently,
if any .#-system is analogous to 8, then ¥ is.

If 8 is complete, i.c. every non-thesis of § is non-valid on some frame
for §, then S% is analogous to 8. For suppose f € Fla, and S non |- f.
Then there is a frame (W, R) for § on which g is not valid. But 8 and §
certainly have the same frames, so (W, R) is a frame for S8* on which £ is
not valid, and 87 non — B.
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I conjecture that S is always analogous to S.

If 8% is analogous to S, then the Elimination rule is redundant in §7%.
TFor suppose 87 + a. Then 87 + B, where g is a 4 -reduct of a, and S F g.
But any proof in 8 is a proof in S without use of Elimination, so by
the remarks following the proof of Lemma 9, « is provable in $ without
ase of Elimination. {Of course it does not follow that Elimination is re-
dundant in an arbitrary .Z-system X only that it is redundant in an
A-system equivalent to 2, a trivial result, In fact Klimination is not
alwavs redundant — add to K7 an axiom which is a formula, but not
a tautology, of 1(./); the resulting systenmy is inconsistent, hut without
Elimination might well be consistent. No doubt non-trivial examples
exist, as well.}

I have not attempted to catalogue the oceasions when I have hor-
rowed ideas from Morgan’s paper [1]. But I want it to be unanderstood
that it is from Morgan that I got the idea that an analysis might be pos-
sible of the relationship between two-valued modal logic and modal
logie based upon a more-or-less arbitrary many-valued logic. T wish also
to call to the reader’s attention that Morgan considers “global operators”
¥, which do not satisfy my condition ¥ ,(S)e D ,=8 < D ,. Roughly
speaking, Morgan’s results (and mine, presumably) apply whenever an
operator satisfying the condition is definable in terms of the given ¥,
(just as it would suffice that the standard connectives he definable).
I thought it best to forego this generality to simplify the exposition.
For philosophical applications, as Morgan points out, the extra generality
ix important. Moreover, some of the results of Segerberg [3] are special
cases of the generalized version of this work, hut not the ungeneralized.
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